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Abstract
Recent advancements in miniaturized fluorescence microscopy have made it
possible to investigate neuronal responses to external stimuli in awake behaving
animals through the analysis of intracellular calcium signals. An ongoing chal-
lenge is deconvolving the temporal signals to extract the spike trains from the
noisy calcium signals’ time series. In this article, we propose a nested Bayesian
finite mixture specification that allows the estimation of spiking activity and,
simultaneously, reconstructing the distributions of the calcium transient spikes’
amplitudes under different experimental conditions. The proposed model lever-
ages two nested layers of random discrete mixture priors to borrow information
between experiments and discover similarities in the distributional patterns of
neuronal responses to different stimuli. Furthermore, the spikes’ intensity values
are also clustered within and between experimental conditions to determine the
existence of common (recurring) response amplitudes. Simulation studies and
the analysis of a dataset from the Allen Brain Observatory show the effectiveness
of the method in clustering and detecting neuronal activities.

KEYWORDS
Dirichlet process, mixture of finite mixtures, model-based clustering, nested Dirichlet process,
spike and slab

1 INTRODUCTION

In recent years, calcium imaging has become a popular
technique tomeasure the neuronal activity in awake, freely
moving, and behaving animals over time. Due to the devel-
opment of miniaturized and flexible microendoscopes for
fluorescence microscopy, this technique has enabled the
study of how individual neurons and neuronal networks
encode external stimuli and cognitive processes (Li et al.,
2015; Nakajima and Schmitt, 2020). Calcium ions generate
intracellular signals that determine a large variety of func-
tions in all neurons (Grienberger andKonnerth, 2012). The
mechanism at the basis of calcium imaging is a physiologi-
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cal process of the cells: when a neuron fires, calcium floods
the cell and produces a transient spike in its concentration.
By using genetically encoded calcium indicators, which
are fluorescent molecules that react when binding to the
calcium ions, it is possible to optically measure the level of
calcium ions by analyzing the observed fluorescence trace.
The outcome of this technique is a movie of time-varying
fluorescence intensities, from which the spike trains of
the observable neurons are often extracted through a com-
plex preprocessing phase. In general, this phase is meant
to deal with two issues: identifying the spatial location
of each neuron in the optical field and deconvolving
the temporal signals to extract their spike trains. Several

1370 wileyonlinelibrary.com/journal/biom Biometrics. 2023;79:1370–1382.

https://orcid.org/0000-0001-5034-7414
https://orcid.org/0000-0002-5403-0040
https://orcid.org/0000-0002-6363-9907
mailto:laura.dangelo@unimib.it
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/biom
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fbiom.13626&domain=pdf&date_stamp=2022-03-28


D’ANGELO et al. 1371

methods are employed to extract the fluorescence traces,
for example, by using independent component analysis
(Mukamel et al., 2009; Dombeck et al., 2010), nonnegative
deconvolution (Vogelstein et al., 2010), and nonnegative
matrix factorization (Maruyama et al., 2014).
The resulting processed data consist of a fluorescent

calcium trace for each observable neuron in the targeted
area (see Figure 3 for an example). Although the observed
fluorescence trace can be analyzed directly (Shen et al.,
2021), it is a proxy of the underlying cellular activity and
the information relevant to many studies often requires
the precise spike times and the intracellular calcium
concentration of the observable neurons when the animal
is subjected to external stimuli (Vogelstein et al., 2009).
Extracting the neuronal activity from these series is not
trivial: the calcium imaging technology has several limi-
tations, including the presence of measurement noise, the
nonlinearity between fluorescence transient and calcium
concentration, and the slow decay of the fluorescence trace
compared to the underlying neuronal activity (Rose et al.,
2014; Friedrich et al., 2017; Dana et al., 2019). Moreover,
the large scale of the time series introduces additional
complexity to the analysis. Therefore, a precise estimation
of the spike times and amplitudes is a fundamental step
toward the understanding of the neurons’ behavior.
As a motivating application, here we consider a publicly

available data set from the Allen Brain Observatory (Allen
Institute MindScope Program, 2016; de Vries et al., 2020)
of calcium imaging data obtained through two-photon
microscopy in behaving mice. This study is an extended
in vivo survey of physiological activity in the mouse visual
cortex in response to a range of visual stimuli (Allen Brain
Observatory, 2017). Each mouse is placed in front of a
screen where different types of visual stimuli are shown,
while the mouse’s neuronal activity is recorded. The stim-
uli vary from simple synthetic images such as locally sparse
noise or static gratings, to complex natural scenes and
movies. The goal of the study is to investigate how neurons
at different depths in the visual areas respond to stimuli of
different complexity. Specifically, each neuron in the visual
cortex can be characterized by its receptive field, that is, the
features of the visual stimulus that trigger the signaling of
that neuron. Hence, it is of critical interest to devise meth-
ods that allow inferring how the neuronal response varies
under the different types of visual stimuli. We expect that
the neuronal activity will vary across all the experimen-
tal settings and that some variations in its intensity will be
observed based on the stimulus.
Several approaches have been proposed to accurately

and efficiently estimate the neuronal activity in calcium
imaging data from single neurons. For example, Friedrich
and Paninski (2016) and Friedrich et al. (2017) have pro-
posed an online algorithm based on a lasso penalty to
enforce sparsity of signal detection. Jewell and Witten

(2018) and Jewell et al. (2019) have proposed using an 𝐿0
penalty in lieu of the 𝐿1 penalization and an efficient algo-
rithm to identify the presence or absence of spikes. In a
Bayesian framework, Pnevmatikakis et al. (2013) have pro-
posed to conduct inference on spike trains by estimating
posterior probabilities of a latent binary indicator of spike
presence at each time point. However, the model in Pnev-
matikakis et al. (2013) does not explicitly assume sparsity
of the spikes. Moreover, it is expected the rate and the
distribution of spikes to be stimulus dependent (Brenner
et al., 2002), but none of the previous approaches accounts
for the heterogeneity of spikes’ behaviors as a function
of the stimulus. As Figure 3 clearly shows for the Allen
Brain Observatory data, the spikes’ intensities vary greatly
according to the type of stimulus; see also the discussion in
Shibue and Komaki (2020) where they employ a marked
point processes for the deconvolution of calcium imag-
ing data.
In this article, we introduce a coherent nested Bayesian

finite mixturemodel that allows the estimation of the spik-
ing activity of each neuron—which could be seen as a first
step for the analysis of larger brain activity combiningmul-
tiple neurons in a region. In addition, our model simulta-
neously allows us to reconstruct the distributions of spikes
under various experimental conditions; for example, in
response to different types of visual stimuli in the Allen
Brain Observatory dataset. More specifically, our model-
ing framework estimates and clusters the distributions of
the calcium transient spikes’ amplitudes via a nested for-
mulation of mixture of finite mixtures (Miller and Har-
rison, 2018; Argiento and De Iorio, 2019) and, in particu-
lar, exploiting the generalized mixture of finite mixtures
(gMFM) prior recently proposed by Frühwirth-Schnatter
et al. (2021).
The proposed model further adopts the use of a com-

mon atom specification as in Denti et al. (2021) for esti-
mating the distribution of the spikes’ amplitudes under
each experimental condition. The proposed common atom
gMFM has several advantages with respect to typical
Bayesian nonparametric models for nested data. With
respect to models based on Dirichlet process priors, the
gMFM provides increased flexibility to estimate partitions
characterized either by many, well-balanced, clusters or
by a small set of large clusters. The common atom model
allows us to obtain nested inference on densities without
incurring the degeneracy issues pointed out by Camer-
lenghi et al. (2019) for the widely used nested Dirichlet
process of Rodríguez et al. (2008). At the same time, the
common atom formulation still leverages two nested lay-
ers of random discrete mixture priors to borrow informa-
tion between experiments and to identify similarities in
the distributional patterns of the neuronal responses to dif-
ferent stimuli. In addition, differently than in the nested
Dirichlet process, the common atom model also allows us

 15410420, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13626 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [20/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1372 D’ANGELO et al.

to cluster the inferred spikes’ intensity values both within
and between experimental conditions, so to infer com-
mon (recurring) response amplitudes. Finally, we allow
our model to enforce sparsity of neuron firing over time
by assuming a spike-and-slab prior specification on the
marginal distribution of the amplitudes.

2 BAYESIANMIXTUREMODEL FOR
CALCIUM IMAGING DATA

2.1 Model and prior specification

The observed fluorescence is often considered as a noisy
realization of the underlying true calcium concentration.
To model a neuron’s activity, we adopt a popular model
in the neuroscience literature, where the decay in fluores-
cence is modeled through an autoregressive process and
the spikes are modeled as jumps in correspondence to
the neuron’s firing events (Vogelstein et al., 2010). Denot-
ing with 𝑦𝑡 the observed fluorescence trace of a neuron
and with 𝑐𝑡 the underlying calcium concentration, for 𝑡 =
1, … , 𝑇, one can assume

𝑦𝑡 = 𝑏 + 𝑐𝑡 + 𝜖𝑡, 𝜖𝑡 ∼ N(0, σ2),

𝑐𝑡 = 𝛾𝑐𝑡−1 + 𝐴𝑡 + 𝑤𝑡, 𝑤𝑡 ∼ N(0, τ2), (1)

where 𝑏 models the baseline level of the observed trace
and 𝜖𝑡 is a measurement error. In the absence of neuronal
activity, the true calcium concentration 𝑐𝑡 is considered
to be centered around zero. The parameter 𝐴𝑡 captures
the neuronal activity: in the absence of a spike (𝐴𝑡 = 0),
the calcium level follows an AR(1) process controlled by
the parameter 𝛾 ; when a spike occurs, the concentra-
tion increases instantaneously with the spike amplitude
𝐴𝑡 > 0.
We are interested in characterizing the neuronal activ-

ity under different experimental conditions. For each time
point 𝑡 = 1, … , 𝑇, let 𝑔𝑡 be a discrete categorical variable,
taking values in {1, … , 𝐽}, where 𝐽 is the number of dis-
tinct experimental settings, so that 𝑔𝑡 = 𝑗 indicates that the
neuronal activity at time 𝑡 is observed under condition 𝑗.
The experimental conditions are often designed to capture
variations in neuronal activity with respect to a baseline
process, which may represent a “typical” brain process.
For example, in the Allen Observatory data, the interest is
to investigate visually evoked functional responses of neu-
rons in themouse’s visual cortex. Therefore, some neurons
associated with visual decoding should be expected to acti-
vate in all conditions. It is then of interest to study not only
if but also how the neurons differentially respond to the
presentation of a variety of visual stimuli.

In this paper, we propose a hierarchical Bayesian
approach to investigate similarities and differences in the
distribution of spikes over time and conditions. In order to
borrow information across different experimental condi-
tions, one option is to fit a parametric hierarchical random
effect model and obtain a post-MCMC clustering of the
estimated spikes𝐴𝑡 by grouping together those spikes with
similar magnitudes. This approach has several limitations:
on the one hand, the distribution of the random effects
is constrained into a specific parametric form; on the
other hand, the clustering of, say, the posterior mean
estimates of the parameters 𝐴𝑡s do not allow the model to
fully describe stimulus-specific distributional differences
and to take into account the posterior uncertainty in the
spikes.
In order to allow flexible modeling of distributions and

to describe the heterogeneity of distributional features,
we assume a nested Bayesian finite mixture specification.
More specifically, we rewrite (1) as

𝑦𝑡 ∣ 𝑏, 𝛾, 𝑐𝑡−1, 𝐴𝑡, 𝜎
2, 𝜏2 ∼ N(b + γ ct−1 + At, σ

2 + τ2),

and we assume that the spikes 𝐴𝑡 are from stimulus-
specific distributions, that is, (𝐴𝑡 ∣ 𝑔𝑡 = 𝑗, 𝐺𝑗) ∼ 𝐺𝑗 , 𝑗 =
1,… , 𝐽, to account for the observed variety of neuronal
activity under different experiment settings. We further
allow clustering the distributions across conditions, in
order to capture similar patterns of neuronal activity.
Indeed, onemay typically expect𝐾 < 𝐽 distributional clus-
ters. For example, a neuron may respond to general visual
stimulation andnot specifically to the type of stimulus con-
sidered. More specifically, we assume the following gener-
alized mixture of finite mixtures structure:

𝐺1,… , 𝐺𝐽 ∣ 𝑄 ∼ 𝑄, 𝑄 =

𝐾∑
𝑘=1

𝜋𝑘𝛿𝐺∗
𝑘

(2)

where𝜋1, … , 𝜋𝐾 ∣ 𝐾 ∼ DirichletK(α∕K,…α∕K),𝛼 > 0, and
𝐺∗
1
, … , 𝐺∗

𝐾
are a set of cluster-defining distributions,

obtained as realizations of an underlying randomprobabil-
ity measure, specified further below. Equation (2) implies
that the𝐺𝑗s, 𝑗 = 1,… , 𝐽, have a positive probability of clus-
tering together, thereby giving rise to distributional clus-
ters. In practice, the number of mixture components, 𝐾, is
typically larger than the number of clusters, 𝐾+, and some
of the atoms 𝐺∗

𝑘
are not assigned to any of the 𝐺𝑗s (empty

components). The prior on the number of mixture compo-
nents𝐾 is a translated beta-negative-binomial distribution
as in Frühwirth-Schnatter et al. (2021). Including a prior
𝑝(𝐾) leads to both𝐾+ and𝐾 being randomapriori. Finally,
the distributional atoms 𝐺∗

𝑘
, 𝑘 = 1,… , 𝐾 are also obtained

as a realization from an underlying generalized mixture of

 15410420, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/biom

.13626 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [20/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



D’ANGELO et al. 1373

finite mixtures,

𝐺∗
𝑘
=

𝐿∑
𝑙=1

𝜔𝑙,𝑘𝛿𝐴∗
𝑙

(3)

with 𝜔1,𝑘, … , 𝜔𝐿,𝑘 ∣ 𝐿 ∼ DirichletL(β∕L), for some positive
real number 𝛽 > 0. The set of atoms 𝐴∗

𝑙
is common across

all distributions 𝐺∗
1
, … , 𝐺∗

𝐾
, and they are obtained as inde-

pendently and identically distributed draws from a center-
ingmeasure,𝐴∗

𝑙
∼ 𝐺0(𝐴

∗
𝑙
). Therefore, Equation (3) defines

a clustering of the inferred spike intensities both within a
given condition (i.e., for fixed 𝐺∗

𝑘
) and across conditions

(i.e., across the 𝐺∗
𝑘
s; hence, across the 𝐺𝑗s). In the fol-

lowing, we adopt common terminology in the literature
on nested Bayesian nonparametric priors and indicate the
clustering induced on the 𝐴𝑡 through the proposed two-
layers prior as observational clustering. The nested gMFM
formulation requires the specification of a prior on the
number of components that specify the lower level distri-
butional atoms𝐺∗

𝑘
, 𝐿 ∼ 𝑝(𝐿). Once again, some of the com-

ponents may be empty.
We enforce sparsity in the detection of the spikes by

modeling the base measure 𝐺0 for the parameters 𝐴∗
𝑙
with

a spike-and-slab specification (Mitchell and Beauchamp,
1988), which is a convex mixture between a Dirac mass
at zero—representing the absence of neuronal response—
and a diffuse density on the positive real numbers—
representing the intensity of the neuronal response. More
specifically, we assume

𝐺0 = (1 − 𝑝) 𝛿0 + 𝑝Ga (hA1, hA2), (4)

where the slab is a gammadistribution,Ga(a, b)withmean
𝑎∕𝑏 and variance 𝑎∕𝑏2. The choice of a gamma distri-
bution in (4) is particularly relevant for sparsity-inducing
purposes, as the gamma density belongs to the set of
moment nonlocal prior densities, as defined by Johnson
and Rossell (2010). Therefore, a negligible probability den-
sity is assigned to values in a neighborhood of zero, thus
inducing a clear separation between the baseline neu-
ronal activity and the neuronal responses. In particular, the
higher the shape parameter ℎ𝐴1, the larger is the separa-
tion.We assume aBeta(h1p, h2p) prior for the proportion of
spikes 𝑝 with ℎ1𝑝 much smaller than ℎ2𝑝 in order to favor
sparsity of detections. A spike-and-Gammamodel has also
been used for the analysis of calcium imaging data by
Wei et al. (2019), although in a two-stage setup for model-
ing the distribution of the (already deconvolved) estimated
spikes.
The proposed formulation can be seen as a special case

of inner spike-and-slab nonparametric priors, following a
terminology introduced by Canale et al. (2017, 2021). In the

following, we will refer to the proposed specification as a
finite common atom model (fCAM).
The Bayesian model elicitation is completed by assum-

ing conjugate priors for the underlying calcium level con-
centration parameters, that is, the baseline calcium level
𝑏, and the variances 𝜎2 and 𝜏2. Specifically, the following
conjugate prior distributions are assumed:

𝑐0 ∼ N(0, C0), b ∼ N(b0, B0)

1∕𝜎2 ∼ Ga(h1σ, h2σ), 1∕τ2 ∼ Ga(h1τ, h2τ).

Finally, under the assumption that the process is station-
ary with a positive correlation between the calcium level
at consecutive times, we constrain 𝛾 ∈ (0, 1) and let 𝛾 ∼
Beta(h1γ, h2γ), a priori.
Consistently with our aim of modeling the activity of a

single neuron, each unknown parameter is neuron spe-
cific. However, the hyperparameters of the priors above
can be specified at the population level, especially in the
case of independent analyses for multiple neurons.

2.2 Posterior inference

For computational purposes, it is often convenient to
rewrite the likelihood for an observation 𝑦𝑡 under con-
dition 𝑔𝑡 = 𝑗 by introducing two latent cluster allocation
variables, 𝑆𝑗 = 𝑆𝑔𝑡 and 𝑀𝑡, indicating the distributional
cluster for the group 𝑗 and the observational cluster for
𝑦𝑡, respectively.
Given 𝐾 and {𝜋𝑘}𝐾𝑘=1, the distributional allocation vari-

able 𝑆𝑗 ∼ MultinK(𝝅), where MultinK denotes a multino-
mial distribution with𝐾 categories and event probabilities
𝝅 . Similarly, given 𝐿 and {𝜔𝑙}𝐿𝑙=1, the observational alloca-
tion variable𝑀𝑡 ∼ MultinL(𝝎). For notation simplicity, we
have indicated the parameter vectors using bold letters in
the equations above. Therefore, conditionally on the other
model parameters, the joint distribution of the observed
data and the latent cluster allocations can be written
as

𝑓(𝒚,𝑴, 𝑺 ∣ 𝝅, 𝝎, 𝑨∗) =

𝐽∏
𝑗=1

𝜋𝑆𝑗

∏
𝑡∶𝑔𝑡=𝑗

𝜔𝑀𝑡,𝑆𝑗
𝑝(𝑦𝑡 ∣ 𝐴

∗
𝑀𝑡
),

which facilitates posterior inference.
More specifically, posterior inference for the proposed

fCAM can be carried out quite straightforwardly by means
of Markov chain Monte Carlo (MCMC) techniques. The
sampling of the latent calcium level 𝑐𝑡 uses an iterative
approach based on the Kalman filter and a forward
filtering backward sampling algorithm (Prado and West,
2010). Full conditional posteriors for 𝑏, 𝑝, 𝜎2, and 𝜏2 are
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1374 D’ANGELO et al.

available in closed form thus leading to straightforward
Gibbs sampling steps. For the autoregressive parameter 𝛾,
we use a Metropolis–Hastings within the Gibbs step. The
sampling of 𝐴𝑡 exploits a combination of the nested slice
sampler of Denti et al. (2021) and the telescoping sampler
of Frühwirth-Schnatter et al. (2021). A detailed description
of the latter step is reported in the Appendix. Here,
we just present a schematic description of the MCMC
steps:

(1) Sample the calcium level 𝑐𝑡, for 𝑡 = 0, … , 𝑇, using a for-
ward filtering backward sampling:
(a) Run Kalman filter: set 𝑎0 = 𝑚0 = 0, 𝑅0 = 𝐶0 =

var(c0). For 𝑡 = 1, … , 𝑇 let

𝑎𝑡 = 𝛾𝑚𝑡−1 + 𝐴𝑡

𝑅𝑡 = 𝛾2 𝐶𝑡−1 + 𝜏2.

Compute the filtering distribution’s parameters,
𝑚𝑡 and 𝐶𝑡, for 𝑡 = 1, … , 𝑇, where

𝑚𝑡 = 𝑎𝑡 + 𝑅𝑡 (𝑅𝑡 + 𝜎2)−1 (𝑦𝑡 − 𝑏 − 𝑎𝑡)

𝐶𝑡 = 𝑅𝑡 − 𝑅2𝑡 (𝑅𝑡 + 𝜎2)−1.

(b) Draw 𝑐𝑇 ∼ N(mT, CT);
(c) For 𝑡 = 𝑇 − 1,… , 0, draw 𝑐𝑡 ∼ N(ht, Ht), with

ℎ𝑡 = 𝑚𝑡 + 𝛾 𝐶𝑡 𝑅
−1
𝑡+1

(𝑐𝑡+1 − 𝑎𝑡+1)

𝐻𝑡 = 𝐶𝑡 − 𝛾2 𝐶2𝑡 𝑅
−1
𝑡+1

.

(2) Sample a new value for the baseline level 𝑏:

𝑏 ∼ N

(
b0
B0

+
1

σ2

T∑
t=1

(yt − ct),

√
1

B0
+

T

σ2

)
.

(3) Sample the variance on the output equation 𝜎2 and the
variance on the state equation 𝜏2:

1∕𝜎2 ∼ Ga

(
h1σ +

T

2
, h2σ +

1

2

T∑
t=1

(yt − ct − b)2

)

1∕𝜏2 ∼ Ga

(
h1τ +

T

2
, h2τ +

1

2

T∑
t=1

(ct − γ ct−1 − At)
2

)
.

(4) Update the autoregressive parameter 𝛾 using a
Metropolis–Hastings step.

(5) Update the parameter 𝑝 of the spike-and-slab base
measure from

𝑝 ∼ Beta (h1p + T − n0, h2p + n0),

where𝑛0 is the number of 𝑦𝑡 assigned to the spike com-
ponent.

(6) Update the cluster allocations variables 𝑺 and𝑴, the
number of mixture components𝐾 and 𝐿, and the clus-
ter parameters 𝑨∗ using the nested telescoping sam-
pling for the finite common atom model reported in
the Appendix.

3 SIMULATION STUDY

The performances of the proposed method are assessed
through a simulation study. The purpose of this section is
twofold, namely to assess both the ability to correctly iden-
tify the spike times and the accuracy of the inferred clus-
tering structure.
We simulated synthetic data exhibiting a baseline level

and a number of spikes representing the effect of the
response of a neuron to a stimulus, thus mimicking the
characteristics of real series of calcium imaging following
the structure of model (1).
Specifically, we first divided the time frame into 𝐽 hypo-

thetical experimental conditions of equal length, with 𝐽

varying in the different scenarios described below. Con-
sistent with our motivating assumption that the neuronal
response depends on the type of stimulus, each experimen-
tal condition is assumed to belong to one of the 𝐾 distri-
butional clusters. Then, for each experimental condition,
we generated the neuronal activity: first, we generated the
presence or absence of a neuron response uniformly in
time, where the spike probability can vary across groups.
Then, conditionally on the obtained activations, we gen-
erated some additional spikes in a short subsequent inter-
val, so that it is very likely to observe close or even succes-
sive spikes.
In this way, the data mimic a real calcium imaging time

series. Moreover, we are able to conduct a careful assess-
ment of the ability of the model to distinguish the pres-
ence of a single high spike versus the convolution of sev-
eral spikes at consecutive times. Finally, the values 𝐴𝑡,
conditionally on their distributional cluster, are generated
from one of the finite sets of spike amplitudes described
below.
We simulated 50 independent datasets for each of the

three scenarios described henceforth. In Scenario 1, we
assumed 𝐽 = 6 experimental conditions, generated from
𝐾 = 4 distributional clusters.
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F IGURE 1 Distribution of the misclassification error rate in the simulation study for the four considered methods: CAM, fCAM, and the
methods of Jewell et al. (2019) “L0” and Friedrich et al. (2017) “L1.” This figure appears in color in the electronic version of this article, and
any mention of color refers to that version

The spike amplitudes in the distributional clusters are
(0.35, 0.89, 1.15, 1.80, 2.20), (0.65, 0.89, 1.40, 1.80), (0.35, 0.65,
1.15), and (0.35, 0.89, 1.60).
Scenario 2 assumes 𝐽 = 4 experimental conditions and

𝐾 = 3 distributional clusters with spike amplitudes equal
to (0.3, 0.5, 0.7, 0.9, 1.1, 1.5), (0.3, 0.9, 1.5, 1.8), and (0.5,
0.9, 1.5). Finally, Scenario 3 sets 𝐽 = 5 and 𝐾 = 3 with the
spike amplitudes in the distributional clusters being (0.3,
0.5, 0.7, 0.9, 1.1), (0.3, 0.9, 1.1, 1.3), and (0.7, 0.9, 1.3). While
in Scenario 1, the amplitudes of the spikes are quite large,
spaced apart, and with the corresponding distributional
clusters well distinct, in Scenario 3 the spike amplitudes
are more homogeneous and more clustered in time.
Scenario 2 represents an in-between situation. Hence,
from the first to the last scenario, we are assuming an
increasing degree of complexity. The R script generating
these synthetic datasets is described in the Supporting
Information.
The results attained by the proposed fCAM are com-

pared to those obtained exploiting the common atom
model (CAM) of Denti et al. (2021)—which provides
a benchmark for the clustering of the spikes and the
stimulus-specific distributions—and to those obtained
with the 𝐿0 penalization method of Jewell et al. (2019) and
the 𝐿1 penalizationmethod of Friedrich et al. (2017), which
provide a benchmark for the task of spikes’ detection. For
the latter twomethods, we have assumed complete knowl-
edge of the autoregressive constant controlling the rate of
the calcium decay, since we found that the results were
quite sensitive to this estimate.
To assess the sensitivity of the proposed fCAM to the

prior specification, we repeated the numerical experiment
for different values of the hyperparameters ℎ𝐴1 and ℎ𝐴2 in
(4). In particular, the shape parameter ℎ𝐴1 was supposed to
play a key role in the detection of spikes. Keeping fixed the
ratio ℎ𝐴1∕ℎ𝐴2, the parameters were set equal to 3, 4, 6, and
8: a small value implies, a priori, less separation between
zero and the distribution of the positive spikeswhile a large
value corresponds to the opposite effect.

Focusing on the classification of each time point as a
spike or not, Figure 1 summarizes themisclassification rate
for all competing methods under the three scenarios. The
results of the 50 replications are summarized using box-
plots. For our fCAM, we report only the results obtained
with ℎ𝐴1 = ℎ𝐴2 = 8 as those obtained for the other choices
are essentially equivalent. The rates are small in absolute
value and broadly comparable across the different meth-
ods, thus confirming that all the competing models are
effective in detecting the spikes.
However, the proposed fCAM not only enables the

detection of spikes but also allows us to conduct infer-
ence on the clustering structure. Therefore,we report on its
ability to identify the clustering structure. Figure 2 reports
the adjusted Rand index (Rand, 1971; Hubert and Arabie,
1985) computed on both the observational and the distri-
butional clusters for ℎ𝐴1 = ℎ𝐴2 = 8 (results for other set-
tings are similar). Values of the adjusted Rand index close
to 1 denote that the identified structure resembles the true
clustering. While for the observational clusters the results
are broadly comparable, for the distributional clusters the
performance of the proposed fCAM is uniformly superior.
In addition, the variability of the results generally appears
to be drastically smaller for the fCAM, thus providing
evidence of greater efficiency. This is consistent with the
results of Frühwirth-Schnatter et al. (2021) where the gen-
eralized mixture of finite mixtures is compared to a stan-
dard Dirichlet process mixture model.
From a computational point of view, the proposed algo-

rithm is clearly more demanding than the optimization
methods of Jewell et al. (2019) and Friedrich et al. (2017).
However, the computing time is comparable to the slice
sampler adopted for the CAM, and in general a full run
requires just few minutes on a Linux machine with an
i7-7700HQ 3.8 GHz Intel processor, 8 GB RAM, running
R 4.1.0. For example, for a calcium trace of length 50,000,
the computing time of the proposed method is around 2
min. Indeed, our experience suggests that the main factor
affecting the computing time is the length of the series.
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F IGURE 2 Distribution of the adjusted Rand index on the distributional and observational clusters, computed on the 50 simulations for
the three scenarios of the simulated data. This figure appears in color in the electronic version of this article, and any mention of color refers
to that version

In general, in the analysis of spike activity, we expect the
number of clusters to be small and—in particular—much
smaller than the number of observations.

4 ALLEN BRAIN OBSERVATORY DATA
ANALYSIS

We now revert to the analysis of the data from the
Allen Brain Observatory (Allen Institute MindScope
Program, 2016). The data comprise the 𝑑𝐹∕𝐹-transformed

fluorescence trace for a cell during session-B of the exper-
iment. This session comprises three types of visual stimuli
(static gratings, natural scene, and natural movie) in addi-
tion to some period of spontaneous activity (absence of
visual stimuli). Since the data are recorded at a frequency
of 30 Hz, the resulting series consists of 113,865 time
points for a total of 63.2 min. We focus our analysis on a
neuron located in the primary visual area, at an imaging
depth equal to 350 microns (cell id 508596945). Additional
analyses for other neurons are reported in the Supporting
Information.
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F IGURE 3 Observed fluorescence trace 𝑦𝑡 from the Allen Brain Observatory data (dark line), and visual stimulus to which the mouse is
exposed (shaded areas). The yellow line represents the estimated neuronal activity

The observed fluorescence trace is shown with a contin-
uous black line in Figure 3. Different shaded backgrounds
indicate the types of visual stimuli. Using the notation
introduced in the previous sections, 𝐽 = 4 with 𝑗 = 1, 2, 3

corresponding to static grating, natural scene, and natural
movie, respectively, and 𝑗 = 4 indicating no stimulus pres-
ence.
We ran the MCMC algorithm of Section 2.2 using the

same prior specification of Section 2.1 for 15,000 iterations
discarding the first 7000 iterations as burn-in and keeping
one iteration every four to improve mixing. Visual inspec-
tion of the traceplots and Geweke diagnostics showed
no issues with convergence. The superimposed light line
in Figure 3 represents the estimated neuronal activity in
terms of the inferred amplitude 𝐴𝑡, that is removing the
measurement errors and the result of the accumulation
of calcium from the previous spikes. Here and henceforth,
we identified the presence of a spike if the posterior
probability of a spike at time 𝑡, say 𝑃𝑃𝑆𝑡, estimated by
the proportion of nonzero 𝐴𝑡s over all MCMC iterations,
was greater than 𝜅 = 75.5%. This threshold allows us to
control the (estimated) Bayesian false discovery rate at the
preset value 0.05, that is 𝜅 solves the equation FDR(𝜅) =∑𝑇

𝑡=1(1−PPS𝑡)𝐼(PPS𝑡>𝜅)∑𝑇

𝑡=1 𝐼(PPS𝑡>𝜅)
= 0.05. For more details, we refer

to Newton et al. (2004) and Müller et al. (2007); see
also Sun et al. (2015) for a discussion with dependent
hypotheses.
As already mentioned in the Introduction, in calcium

imaging it is of interest studying the distribution of the
spikes in response to each experimental stimulus, and
identifying similarities and differences in these distribu-
tions across stimuli.

We start by investigating the presence of similarities in
the neuronal response to different types of visual stimuli.
This corresponds to analyzing the clustering of the spike
distributions induced by the proposed fCAM. The model
clusters together the groups corresponding to the natural
scene and natural movie stimuli with high posterior prob-
ability, while the static grating stimulus and the absence
of stimuli are assigned to two separate distributional clus-
ters. In other terms, the neuron appears to show similar
neuronal responses in the natural scene and natural movie
stimuli whereas the responses appear distinctly different
under the other two conditions.
To understand whether and how the neuronal response

depends on the type of stimulus, we estimated the spike
amplitude distribution for each of the four types of stim-
uli. Figure 4 shows the histograms of posterior means of
the nonzero spike amplitudes for the three types of stimuli.
The distribution for the time interval between 1018 and 1319
s in Figure 3 (absence of stimuli) is not presented because
no activity was detected. Despite the apparent similarities
of the distributions in Figure 4, the second cluster of spike
amplitude distributions (natural scene and natural movie)
shows a heavier tail. Specifically, the highest observed clus-
ter during the static grating stimulus (top plot) is centered
at 1.06, while for the other two stimuli we obtained sev-
eral higher values, with the largest cluster centered around
1.43.
A qualitative representation of how these spike clusters

are distributed within the three groups is given in Figure 5.
The three plots show a short interval of the observed cal-
cium series, chosen in correspondence with one of the
highest observed spikes. Each plot also shows a series of
colored vertical lines: the lines are placed at the estimated
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F IGURE 4 Empirical distribution of the
posterior means of the observational cluster
parameters 𝐴𝑡 for the three experimental conditions
of the Allen Brain Observatory data. This
figure appears in color in the electronic version of this
article, and any mention of color refers to that version

spike times, and the colors correspond to the estimated
spike amplitudes. The represented partition is the poste-
rior point estimate obtained by minimizing the variation
of information loss, as proposed inWade and Ghahramani
(2018). Conditionally on the obtained partition, for each
cluster a representative value for the cluster parameter is
obtained as follows: first, for each MCMC iteration, the
group-specific average of 𝐴𝑡 is computed keeping the par-
tition fixed; then, these values are averaged over all the
MCMC iterations. We notice that for all experiments, high
values of the observed calcium level are often produced
as the result of several consecutive spikes, since, individu-
ally, the spikes are characterized by a relatively low ampli-
tude, and the observed calcium level is cumulated due
to its autoregressive behavior. The autoregressive param-
eter 𝛾 has a posterior mean equal to 0.493 with a 95%
credible interval of (0.481, 0.505). This result corresponds

to the understanding that the observed calcium response
may be generated by high-frequency firing neurons: due to
the low-sampling rate, the nonlinear calcium signal essen-
tially captures a superimposition ofmultiple spikes (Hoang
et al., 2020).
As a matter of fact, another useful quantity we can com-

pute to compare the neuronal activity between stimuli is
the firing rate, which provides a measure of how often the
neuron has activated during a specific visual stimulus. The
rate computes the number of detected spikes per second, to
take into account the different duration of the experiments.
For the static grating stimulus, the posterior mean rate
(and related 95% credible interval) is 0.223 (0.216, 0.229),
while for the natural scene and natural movie stimuli
they are 0.419 (0.410, 0.428) and0.511 (0.495, 0.531), respec-
tively. These results highlight the role of spike-frequency
adaptation, whereby some neurons show an increased
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F IGURE 5 Short interval of length 500 of the Allen Brain Observatory data in correspondence of a spike, for the three stimuli. The
vertical lines indicate the time of a spike and the colors correspond to the observational cluster of its amplitude. The bottom panels show the
estimated posterior probability of spike presence, for each time point

activity when exposed to more complex stimuli, thus
exhibiting higher firing rates and larger calcium concen-
tration measurements (Peron and Gabbiani, 2009).

5 DISCUSSION

Calcium imaging has become widely applied to record the
neuronal activity in awake, freely moving, and behaving

animals. However, reliable spike detection and spike time
estimation remain challenging, due to the nonlinearity
and low signal-to-noise ratio of the calcium response. We
have proposed a single-stage nested Bayesian finite mix-
ture model that allows estimating the spike activity and
also characterizing how its distribution varies across stim-
uli.
The method shows good performances in a simula-

tion study and captures characteristic features of neuronal
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activity in an application to publicly available data from the
Allen Brain Observatory.
Our approach exploited the knowledge of the stimu-

lus types to model the partial exchangeability of the data
within a Bayesian nonparametric framework. As a referee
pointed out, continuous covariates are often available in
the neurosciences, for example, the position of an alive ani-
mal in a two-dimensional environment. Our model can-
not be directly applied with this information. The inclu-
sion of available continuous and time-varying covariates is
the subject of the ongoing investigation.
As neuroscience progresses, it is becoming more appar-

ent that history effects can impact also seemingly low-
dimensional experiments as the one considered in the
Allen Brain Observatory data. Our approach does not
explicitly model spike history dependence. However, it
may be possible to explore the effect of history by consid-
ering appropriately defined time windows (e.g., by trials)
and fix 𝐽 equal to the total number of segments, regard-
less of our knowledge that some conditions are repeated.
If history effects are present, one should expect that even
segments corresponding to the same conditions may be
assigned with a high probability to different clusters as
time progresses. However, a proper modeling approach
should incorporate further prior constraints (e.g., con-
straints that take into account the temporal sequence
of the segments) to ensure the interpretability of the
inference.
In line with the current literature, our approach is lim-

ited to the analysis of the calcium responses observed
from a single neuron. Methods to infer neuronal connec-
tivity from calcium imaging data over multiple regions
of the brain remain sparse, often limited to point esti-
mates (Mishchenko et al., 2011) or the analysis of in vitro
data (Rigat et al., 2006). Inferences from our work could
possibly be used to identify patterns across multiple neu-
rons. For example, it is reasonable to assume that neu-
rons exhibiting similar activity patterns may be grouped
into homogeneous (spatial) clusters. Therefore, a second
stage of the analysis may explicitly cluster across neurons
the inferred spikes and the posterior means of the ampli-
tudes within successive time intervals of calcium traces. A
biclustering approach (see, e.g., Turner et al., 2005; Chek-
ouo et al., 2015) could also be employed to describe the evo-
lution of the neuronal patterns over time and conditions,
as well as over space. Alternatively, one could apply the
zero-inflated gammamodel recently proposed byWei et al.
(2019) to study the densities of the deconvolved activity
estimates and similarly heuristically compare such densi-
ties across neurons. Possible extensions of the framework
presented here may focus on encoding the dynamic clus-
tering of temporally correlated groups of neurons within
the fCAM prior, as a function of external stimuli or the
movement of the animal through an environment. In

addition to the low signal-to-noise ratio, issues related to
the dimension of the data and the accurate identification
of the locations of neurons further compound the statisti-
cal and computational challenges (Petersen et al., 2018).
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APPENDIX: NESTED TELESCOPING SAMPLING
Denote with 

𝐷 the current partition on the distributions
and with 

𝑂 the partition on the observations.

(1) Sample the weights on the distributions: (𝜋1, … , 𝜋𝐾) ∣

𝐾, 𝛼,𝐷 ∼ Dir(e1, … , eK); where 𝑒𝑘 = 𝛼∕𝐾 + 𝐽𝑘, and
𝐽𝑘 is the number of groups assigned to the distribution
𝑘.

(2) Sample the weights on the observations: for
all 𝑘 ∈ {1, … , 𝐾} sample a vector 𝝎𝑘 from
(𝜔1,𝑘, … , 𝜔𝐿,𝑘) ∣ 𝐿, 𝛽,

𝑂,𝐷 ∼ Dir(f1,k, … , fL,k); where
𝑓𝑙,𝑘 = 𝛽∕𝐿 + 𝑁𝑙,𝑘, and 𝑁𝑙,𝑘 is the number of observa-
tions in the observational cluster 𝑙 and distributional
cluster 𝑘.

(3) Update the partition on the distributions 𝐷 by sam-
pling from the posterior distribution of the latent clus-
ter allocation variables 𝑺. For 𝑗 = 1,… , 𝐽

Pr(Sj = k ∣ π, K,A∗, y, g) ∝ πk
∏
t∶gt=j

ωMt,Sj
p(yt ∣ A

∗
Mt
),

with 𝑘 ∈ {1, … , 𝐾}. Determine 𝐽𝑘 = #{𝑗 ∶ 𝑆𝑗 = 𝑘}, for
𝑘 = 1… ,𝐾, and the number of nonempty components
𝐾+ =

∑𝐾

𝑘=1
𝐼{𝐽𝑘 > 0}. Relabel the components so that

the first 𝐾+ are nonempty.
(4) Update the partition on the observations 𝑂 by sam-

pling from the posterior distribution of the latent clus-
ter allocation variables𝑴. For 𝑡 = 1, … , 𝑇

Pr(Mt = 𝑙 ∣ 𝑆𝑔𝑡 = 𝑘, 𝑺, 𝝎, 𝐿, 𝐾, 𝑨∗, 𝒚, 𝒈)

∝ 𝜔𝑙,𝑘 𝑝(𝑦𝑡 ∣ 𝐴
∗
𝑀𝑡
),

with 𝑙 ∈ {1, … , 𝐿}, 𝑘 ∈ {1, … , 𝐾}. Determine𝑁𝑙 = #{𝑡 ∶

𝑀𝑡 = 𝑙}, for 𝑙 = 1… , 𝐿, and the number of nonempty
components 𝐿+ =

∑𝐿

𝑙=1
𝐼{𝑁𝑙 > 0}. Relabel the compo-

nents so that the first 𝐿+ is nonempty. Because all the
mixtures share the same atoms, the cluster parameters
are sorted regardless of the distributional cluster allo-
cation.

(5) Sample the cluster parameters for the nonempty com-
ponents: 𝑝(𝐴∗

𝑙
∣ −) ∝ 𝑝(𝐴∗

𝑙
)
∏

𝑡∶𝑀𝑡=𝑙
𝑝(𝑦𝑡 ∣ 𝐴

∗
𝑙
).

(6) Conditional on 𝐷 , sample the number of components
𝐾 of the mixture on distributions.

(7) Conditional on 𝑂, sample the number of components
𝐿 of the mixtures on observations. If 𝐿 > 𝐿+, sample a
new parameter𝐴∗ for the empty components from the
prior distribution.

(8) Update the hyperparameter 𝛼 on the Dirichlet distri-
bution on the mixture weights on distributions.

(9) Update the hyperparameter 𝛽 on the Dirichlet distri-
bution on the mixture weights on observations.

The posterior distributions for steps 6–9 are given
in Frühwirth-Schnatter et al. (2021).
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