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Abstract
Stochastic resonance (SR) is the phenomenon wherein the introduction of a suitable level of noise enhances the detection of 
subthreshold signals in non linear systems. It manifests across various physical and biological systems, including the human 
brain. Psychophysical experiments have confirmed the behavioural impact of stochastic resonance on auditory, somatic, and 
visual perception. Aging renders the brain more susceptible to noise, possibly causing differences in the  SR phenomenon 
between young and elderly individuals. This study investigates the impact of noise on motion detection accuracy throughout 
the lifespan, with 214 participants ranging in age from 18 to 82. Our objective was to determine the optimal noise level 
to induce an SR-like response in both young and old populations. Consistent with existing literature, our findings reveal a 
diminishing advantage with age, indicating that the efficacy of noise addition progressively diminishes. Additionally, as 
individuals age, peak performance is achieved with lower levels of noise. This study provides the first insight into how SR 
changes across the lifespan of healthy adults and establishes a foundation for understanding the pathological alterations in 
perceptual processes associated with aging.
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Introduction

Surprisingly, introducing a specific amount of noise to a 
subthreshold stimulus can improve signal detectability—a 
phenomenon known as stochastic resonance (SR) (McDon-
nell & Abbott, 2009; Moss & Wiesenfeld, 1995; Moss et al., 
2004). One practical application of SR is observed in image 
restoration, where controlled, typically low-level noise is 
strategically introduced to a degraded image. This carefully 
calibrated noise interacts with existing image information, 

serving as a catalyst to amplify weak or subtle features 
(Kojima et al., 2019).

In investigating SR-like phenomena through behav-
ioural tasks, plotting individual performance against exter-
nal noise levels reveals a characteristic inverted U-shaped 
function (McDonnell & Abbott, 2009), indicating optimal 
performance at an intermediate level of noise (Moss et al., 
2004; Simonotto et al., 1997). Concerning the mechanism 
at the basis of SR, the energy of the noise acts like a ped-
estal (Moss et al., 2004). Consequently, in the absence of 
noise, the energy of the stimulus is insufficient for detection. 
By adding the optimal amount of noise, the total energy 
(signal + noise) rises above the threshold and the stimulus 
becomes detectable. Conversely, when the noise is too high, 
it overwhelms the signal, causing a degradation in perfor-
mance. When the amount of noise is on the sweet spot, the 
peak performance is achieved (van der Groen et al., 2018).

The term SR, initially introduced in the realm of physics, 
has garnered attention across various perceptual domains. 
For instance, in the sensorimotor domain, Mendez-Balbuena 
et al. (2012) illustrated that applying mechanical noise at 
varying levels to participants’ arms enhanced motor output 
at moderate noise levels. Similarly, Zeng et al. (2000) dem-
onstrated auditory SR by using white noise to aid speech 
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perception in hearing-impaired individuals, finding that 
specific noise intensities improved recognition capabilities, 
thereby supporting the application of SR in auditory assis-
tive technologies. In tactile domains, Collins et al. (1996) 
manipulated mechanical noise intensities applied to the fin-
gertip, which enhanced the detection of weak tactile stimuli. 
Vestibular SR was examined by Iwasaki et al. (2014) and 
Mulavara et al. (2011), who found that noise could enhance 
postural stability, suggesting potential applications in bal-
ance disorder rehabilitation.

Visual SR has been extensively investigated through vari-
ous methods, including computational modelling, laboratory 
experiments, and brain stimulation techniques (Kim et al., 
2006; van Boxtel, 2019; Ward et al., 2002, 2006; Yamazaki 
& Lioumis, 2022). Simonotto et al. (1997) showed that an 
appropriate amount of noise (gaussian noise) led to improve-
ments in contrast detection of a digitized picture of Big Ben. 
Runnova et al. (2016) introduced the concept of “effective 
noise intensity” to quantify brain activity during the per-
ception of ambiguous images, such as the Necker cube, 
confirming that optimal noise levels could indeed enhance 
visual perception. Studies by Kundu and Sarkar (2015) and 
Sasaki et al. (2006) focused on contrast sensitivity enhance-
ments due to SR, whereas Treviño et al. (2016) and Itzcovich 
et al. (2017) expanded this research to motion perception 
and clinical populations, respectively. Itzcovich et al. (2017) 
found that noise could assist in motion perception tasks for 
individuals with visual impairments.

In the field of neuroscience, an ongoing debate sur-
rounds the question of whether the brain has evolved to 
incorporate random noise in vivo as part of the “neural 
code.” This idea is supported by indirect evidence of a 
positive role for noise in the brain (McDonnell & Abbott, 
2009). However, this hypothesis is complicated by the 
existence of various sources of noise that interact together. 
For instance, external noise includes irrelevant perceptual 
stimuli, whereas neural noise encompasses random fluctua-
tions in brain activity at both the single cell level and the 
neural network level (Dinstein et al., 2015). At the cellular 
level, sources include electrical noise, thermal agitation, 
channel noise, neural adaptation, and synaptic plasticity 
(Clifford et al., 2007; Faisal et al., 2008; Feldman, 2009; 
Manwani & Koch, 1999). At the network level, random 
fluctuations arises from homeostatic adjustments to excita-
tion/inhibition balance, changes in attention and arousal, 
interactions among large neural populations, and modula-
tion of inter-regional connections (Clare Kelly et al., 2008; 
Fontanini & Katz, 2008; Turrigiano, 2011; van den Brink 
et al., 2019). These combined mechanisms (and others) 
may generate substantial variability both at rest and across 
trials during a task performance (Baracchini et al., 2021; 
Uddin, 2020).

A few studies have investigated the combined influence of 
external and neural noise in eliciting SR-like phenomena and 
found that that external and neural noise could synergisti-
cally enhance sensory and cognitive functions. Kitajo et al., 
(2003, 2007) found that introducing visual noise to one eye 
could improve visual signal detection in the other, an effect 
correlated with increased brain-wide phase synchronization. 
Aihara et al. (2008) explored visual detection in the presence 
and absence of visual noise, defining indices to measure 
external stochastic resonance effects and their correlation 
with internal noise levels, which was supported further by 
computational models (Aihara et al., 2010).

Recent research has shifted toward modulating internal 
neural noise through electrical stimulation rather than exter-
nal noise sources. This research includes studies by Batt-
aglini et al. (2023), Pavan et al. (2019), and van der Groen 
et al., (2018; 2016), who employed noninvasive transcranial 
random noise stimulation (tRNS) to modulate neural noise in 
targeted brain areas responsible for visual processing.

In addition to immediate changes, neural noise is subject 
to long-term changes that take place throughout life. In the 
process of healthy aging, the brain undergoes gradual struc-
tural changes while maintaining a high level of cognitive 
ability, in the sense that these changes often are accompa-
nied by a reorganization of functional brain networks (Reu-
ter-Lorenz & Park, 2014). Various neurocognitive theories 
of aging have debated whether such changes are advanta-
geous or detrimental. Some argue that age-related changes 
are due to the combined effects of age-related structural 
changes and the change in the dynamics of a metastable 
system (Naik et al., 2017).

The neural noise hypothesis of aging suggests that owing 
to age-related increased neural noise, the signal-to-noise 
ratio (SNR) of the central nervous system degrades during 
aging, which leads to diminished cognitive performance 
(Cremer & Zeef, 1987; Li et al., 2001; Welford, 1981). In 
support of this hypothesis, Voytek et al. (2015) have meas-
ured with EEG the within-population spiking asynchrony 
and the local field potential 1/f slope. They observed an 
age-related flattening in the EEG 1/f slope, which means a 
higher level of 1/f noise. These changes have been associated 
with cognitive decline, specifically with working memory 
(Voytek et al., 2015). Further findings confirmed that with 
age there is a notable flattening of the 1/f exponent, indica-
tive of an increase in local asynchronous activity in the cor-
tex (Cesnaite et al., 2023; Clark et al., 2024; Dave et al., 
2018; Finley et al., 2024; Merkin et al., 2023; Pathania et al., 
2022; Tran et al., 2020; Voytek et al., 2015; Waschke et al., 
2017), which is associated with cognitive decline in specific 
areas, such as working memory (Thuwal et al., 2021; Voytek 
et al., 2015), speeded processing (Pathania et al., 2022), and 
visual spatial attention (Tran et al., 2020).
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Another line of research has instead suggested that 
aging is associated with a reduction in neural noise, 
reporting a decrease in trial-to-trial variability in BOLD 
responses and a consequent behavioural decline (Garrett 
et al., 2011). Variability has been demonstrated to con-
vey task-related information in animal models (Denfield 
et al., 2018; Scaglione et al., 2011) and in human studies 
(Burlingham et al., 2022; Dinstein et al., 2015). In this 
sense, neural variability is a positive, not negative, factor 
(Waschke et al., 2021), indicative of neural adaptability to 
tasks (Nomi et al., 2017). Beyond the conceptualization of 
variability as noise, a deeper analysis of Garrett’s results 
(2011) reveals that only some brain areas have been found 
to show less variability in older people. In contrast, other 
areas have shown the opposite pattern. Moreover, a key 
finding was that the pattern of variability in the aged brain 
was more diffuse. This last finding can be not a hallmark of 
a reduction in neural noise, but can result from age-related 
dedifferentiation. Furthermore, measuring EEG activity, 
P300 latencies (reflecting cognitive functions) appeared to 
be more variable with age (Kilgler et al., 1993). However, 
variability in BOLD and EEG signals at rest relates differ-
ently to aging in the human brain (Kumral et al., 2020), 
partially owing to the different temporal resolutions of 
these tools. Given the temporal resolution, fMRI signal 
fluctuations are the result of time integration of activation 
across large neural populations and therefore are indices 
of network-level variability connected to structural brain 
connectivity (Baracchini et al., 2021; Fallon et al., 2020). 
Although EEG predominantly reflects oscillatory activi-
ties, it also is influenced by microscale neurophysiological 
factors; aperiodic neural activity can generate detectable 
scalp potentials and shape broadband EEG features (Brake 
et al., 2024). Background aperiodic or “scale-free” broad-
band activity is present across all frequencies, adhering to a 
1/f power distribution where spectral power decreases with 
increasing frequency (Pritchard, 1992), constituting a large 
proportion of the spontaneous neural activity recorded 
from the cortex (He et al., 2010). 1/f spectral exponent has 
been shown to track variations in the balance of excita-
tion and inhibition (E/I; Gao et al., 2017), which in turn is 
closely linked to neural variability on fine timescales (Har-
ris & Thiele, 2011; Kanashiro et al., 2017). Therefore, it is 
important to note that the choice and interpretation of vari-
ability measures strongly affect the direction of observed 
effects (Waschke et al., 2021).

Mechanistically, increased neural noise is attributed to a 
dysregulation of homeostatic protective mechanisms in late 
adulthood, altering the inhibition/excitation balance (Rad-
ulescu et al., 2023). Ageing induces an increase in excitatory 
signalling (Rozycka & Liguz-Lecznar, 2017), causing an E/I 
imbalance, which then increases internal noise levels (Ben-
nett et al., 2007; Casco et al., 2017; Cremer & Zeef, 1987; 

Hua et al., 2006; Tran et al., 2020; Voytek et al., 2015; Wel-
ford, 1981), primarily due to a reduction of GABA (Cham-
berlain et al., 2021; Hickmott & Dinse, 2012; Leventhal 
et al., 2003). In addition to the neurochemical alterations, 
the SNR during visual perceptual processing in the senes-
cent brain is compromised by a reduction in structural integ-
rity that triggers compensatory mechanisms in aged visual 
circuits (Parvez et al., 2021; Silva et al., 2020). As a result, 
the effectiveness/occurrence of SR in the elderly might be 
altered (Li et al., 2006). In our study, we define neural noise 
as the asynchronous, randomly generated brain activity that 
constitutes the aperiodic component of the EEG spectrum. 
Because the optimal functioning of SR requires an opti-
mal overall sum of internal and external noise, alterations 
in internal noise levels necessitate adjustments to external 
noise to maintain the appropriate overall noise level (Aihara 
et al., 2008; Yi et al., 2006; Zhang et al., 2017).

A recent study by Battaglini et al. (2023) supports this 
interpretation. They stimulated the cortex of healthy adults 
with a noninvasive neuromodulatory technique based on 
an alternating current with randomly varying intensity 
(tRNS), which was supposed to modulate the amount of 
neural noise. Participants performed a coherent motion 
detection task in which external noise was manipulated 
by varying the total number of dots. Results showed that 
neuromodulation induced by tRNS caused a leftward shift 
in the peak of performance when accuracy was plotted as 
a function of external noise (dots numerosity). More spe-
cifically, when 1 mA-tRNS was applied to increase neural 
noise, the peak in performance was obtained for a lower 
level of external noise. This result suggests an inverse 
relationship between the amount of neural and external 
noise required to reach the threshold, and hence SR. In 
contrast, the results of the previous computational study by 
Li et al. (2006) suggested a direct relationship between the 
amount of neural1 and external noise required for optimal 
SR. In their study, a stochastic gain-tuning model was used 
to simulate changes in SR in the senescent brain. They 
reproduced the age-related increase in endogenous noise by 
changing the gain parameter (G) in the model. In doing so, 
they demonstrated that cognitive aging, characterized by 
heightened intrinsic neuronal noise but diminished plastic-
ity, necessitates an increased amount of external noise for 
the SR phenomenon to manifest. This was illustrated by a 
consistent shift in peak performance towards higher levels 
of external noise, i.e., to the right in the inverted U-shaped 
curve (Li et al., 2006).

Given the conflicting evidence in the literature, under-
standing how age-related increases in neural noise impact 
the strength and occurrence of SR throughout the lifespan 

1 Neural noise is called internal noise in Li et al. (2006).
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remains unclear. In our study, we aimed to test the predic-
tions of Li et al. (2006) model by using psychophysical 
methods, focusing on age-related changes in SR within the 
adult visual system.

Motion perception is an ideal model for studying percep-
tual aging (Billino & Pilz, 2019). We employed the Random-
Dot Kinematogram (RDK) task, where participants detect 
coherent motion amidst randomly moving dots. This task 
requires integrating multiple motion signals for accurate 
detection. Ho and Giaschi (2009) demonstrated that both low- 
and high-level versions of first-order RDKs activate motion-
sensitive areas, such as MT, indicating their role in process-
ing varying complexities of motion information. Moreover, 
coherence perception correlates directly with activity levels 
in the motion-sensitive middle temporal area MT. Previous 
studies have shown that age-related changes impact both 
motion perception thresholds and activity in motion-sensitive 
brain regions (Biehl et al., 2017; Ward et al., 2018).

Our study involved a group of healthy adults spanning an 
age range from 18 to 82 years, all of whom engaged in a two-
interval forced-choice task. Participants were required to 
determine which of two successive displays contained coher-
ent motion. This setup allowed us to explore age-related 
changes in SR using two distinct experimental blocks, each 
with specific manipulations. In the initial block, we manipu-
lated the coherence level of the stimuli. Coherence level in 
this context refers to the ratio of dots moving coherently in 
a specified direction (e.g., rightward) to the total number of 
dots presented. In contrast, the second block kept coherence 
level constant while varying dot density. This manipulation 
involved adjusting the total number of dots within the same 
spatial area of the display, thereby increasing perceptual 
noise in the stimulus.

Stochastic resonance occurs with stimuli close to the per-
ceptual threshold. The initial block also served to calibrate 
task difficulty through an adaptive procedure, aiming for 
70.7% accuracy based on individual coherence thresholds. 
By standardizing task difficulty across participants in this way, 
we could later isolate the effects of external noise (dot density) 
on SR from individual differences in coherence thresholds.

It is crucial to distinguish between manipulating dot 
density and manipulating coherence level or SNR, typi-
cally defined as the ratio of coherent dots moving right-
ward to randomly moving dots. Increasing dot density 
introduces Correspondence Noise, stemming from uncer-
tainties in matching dots across frames, which may mask 
coherent motion (Barlow & Tripathy, 1997; Tripathy 
et al., 2012). A large increase in density not only activates 
occipital areas more but also tends to reduce task accuracy 
(Ho & Giaschi, 2009; Tripathy et al., 2012). We expect 
increased external noise due to increased density to interact 
with internal noise.

In both blocks, the coherent dots were consistently pre-
sent on one of the two screens per trial, although partici-
pants often erred. An incorrect response indicates that the 
coherent dot signal failed to exceed the participant's detec-
tion threshold. Adding noise (increasing density) that results 
in fewer errors (increased accuracy) implies that the noise 
raised the signal above the detection threshold by enhancing 
detector aggregation (integrative mechanisms). Conversely, 
if performance deteriorates, it suggests that the noise has 
likely overwhelmed the signal, consistent with the “classi-
cal” threshold SR paradigm.

Participants in the thresholding block were randomly 
assigned to two subgroups tested with different dot num-
bers (100 vs. 400 dots). This division served dual purposes. 
First, it ensured that participants did not exhibit better 
performance in the second block under the same density 
conditions as in the first block due to practice effects. By 
employing two densities for the staircase, we could detect an 
eventual bimodal distribution in the second block indicative 
of practice effects, independent of age. Second, it enabled us 
to explore the impact of density on coherence level thresh-
olds across different age groups by comparing the slope of 
age-related threshold regressions between the 100-dot and 
400-dot groups.

In the thresholding block, we expected a general age-
related deterioration in performance and better thresholds 
in the condition with fewer dots (less external noise) for 
older adults (Hutchinson et al., 2014). For SR in the constant 
stimuli block, we expected to observe the typical peak at 
intermediate levels of external noise in young adults and a 
flattening of the curve with aging (Li et al., 2006). Regard-
ing the positioning of the peak with respect to the amount 
of noise, we hypothesized two possible outcomes: 1) as age 
increases, the peak shifts to the left, i.e., inverse relationship 
between neural and external noise (Battaglini et al., 2023); 
and 2) as age increases, the peak shifts to the right, i.e., 
direct relationship between neural and external noise (Li 
et al., 2006).

Methods

Participants

A total of 286 participants took part in the experiment, all 
possessing normal or corrected-to-normal vision. The mean 
age of the participants was 45.92 years (SD = 19.85). Before 
the commencement of the study, three exclusion criteria 
were established:

1) Participants with a coherent motion threshold above 75% in 
the initial block staircase were excluded (32 participants).



1052 Cognitive, Affective, & Behavioral Neuroscience (2024) 24:1048–1064

2) Participants who did not achieve a minimum of 6 rever-
sals in the last 40 trials of the first block, which is nec-
essary to ensure accurate threshold estimation, were 
excluded (5 participants).

3) Participants with an average percentage of correct 
responses exceeding 90% in the second block were 
excluded to avoid ceiling effects (28 participants).

After applying these exclusion criteria, 214 participants 
remained for subsequent analysis. This final sample included 
92 females and had a mean age of 43.52 years (SD = 19.61), 
with the age range spanning from 18 to 82 years. The age 
distribution of the final sample is depicted in Fig. 1.

The Ethics Committee of Psychological Research (Area 
17) at the University of Padova granted approval for the 
experiment (protocol 4014). The procedures employed in 
this study align with the principles outlined in the Decla-
ration of Helsinki. Before data collection, all participants 
provided informed consent for both participation in the study 
and the publication of anonymized aggregated data.

Apparatus and stimuli

Participants performed the task on their own computer, 
remotely via the internet. At the beginning of the experi-
ment, they were asked to sit in a quiet, semidark room, with 
no direct light on the screen. The task was implemented 
using HTML (Hyper Text Markup Language), CSS (Cas-
cading Style Sheets) and jsPsych, an open-source JavaS-
cript library developed specifically as a framework for web-
based psychological experiments (de Leeuw, 2015). The 

experiment was hosted on a server located at the Department 
of General Psychology at the university of Padova and was 
made available online thanks to a JATOS instance (Lange 
et al., 2015). Participants were recruited among the acquaint-
ances of the experimenters' collaborators and were unaware 
of the goals of the study. Each participant received the link 
for participation in the experiment via email together with a 
copy of the informed consent. A computer with a screen size 
of at least 10 in. was required for participation. People with 
touchscreen devices, such as smartphones and tablets, were 
excluded from participation. Participants were also asked to 
maintain a viewing distance of 57 cm from the screen, with 
the monitor perpendicular to the line of gaze throughout 
the experiment. The first screen presented participants with 
an informed consent form, before continuing. In a second 
screen, after entering some information (age, gender, and 
handedness), participants were asked the size of the monitor 
in centimetres. Based on the size of the monitor and resolu-
tion, we then calculated the individual number of pixels per 
degree of visual angle. Subsequently, all visual elements 
in the experiment were scaled according to this number to 
ensure consistency of stimulus size between participants.

The Random Dot Kinematogram (RDK) is a stimu-
lus widely used in motion studies both in lab and online 
(Rajananda et al., 2018). In RDKs, a certain percentage of 
dots are designated to move in one coherent direction, and 
the remaining percentage of dots are designated to move in 
random directions. In this experiment, coherent dots moved 
in the direction of coherent motion in all frames, contrary 
to random dots. The direction of the coherently moving dots 
was rightward; the other dots moved to an adjacent position 

Fig. 1  Frequency distribution of the age of the participants. Histo-
gram represents the frequency distribution of age in the dataset, with 
a density curve (grey line) overlaid. Green line indicates the mean 

age, while the red line represents the median age. Bin width for the 
histogram is set to 4 units. The plot provides insights into the central 
tendency and distribution of age in the examined population
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in a random direction in each frame (“random walk”). The 
stimuli consisted of white dots moving on a black back-
ground (Fig. 2). The aperture was a square window of 10°, 
displayed at the centre of the screen while dot diameter was 
0.075°. In each frame, dot displacement was 0.05°, resulting 
in a speed of 3 deg/s. The “dot lifespan,” which determines 
the time that pass before a dot disappears and reappears 
somewhere else within the aperture, was set to be longer 
than the stimulus duration. If a dot reached the end of the 
squared aperture, they were then reallocated to a random 
point on the opposite edge. Stimuli were created by means 
of the RDK jsPsych plugin (Rajananda et al., 2018).

Procedure

The motion detection task used a two-interval forced-choice 
paradigm and was mutuated from two previous laboratory 
studies in which an inverted U-shaped curve for performance 
as a function of dots numerosity was found (Battaglini et al., 
2020, 2023). Participants decided which of two sequentially 
presented RDKs displayed a more coherent rightward direc-
tion of motion (Fig. 3).

The experiment comprised two blocks: a thresholding 
block and a constant stimuli block. Each of these blocks 
was preceded by a 10-trial practice session.

In the initial thresholding block, the total number of dots 
remained constant, while the proportion of coherently mov-
ing dots varied using a one-up two-down Levitt staircase 
(Levitt, 1971). Participants in this block were randomly 
assigned to one of two subgroups. One subgroup (N = 118, 
mean age = 43.18) had an initial threshold determined with 
a numerosity of 100 dots; the other subgroup (N = 96, mean 
age = 43.94) had a numerosity of 400 dots.

In the staircase procedure, the initial coherence level 
was set at 70%, and the initial step size was set at 10%. Fol-
lowing each reversal, the step size progressively decreased 
by 5%, 3%, 2%, and ultimately 1%. The staircase concluded 
after 12 reversals, and the threshold was computed as the 
average of the reversals, excluding the initial 4. This average 
denoted the minimum coherence level required for observ-
ers to accurately detect rightward motion 70.7% of the time.

Instructions were repeated before each trial, and feedback 
on response accuracy was provided. Each trial commenced 
with a fixation cross displayed for 1000 ms in red with a 
visual angle of half a degree. Subsequently, the first RDK 
was presented, followed by a 1000-ms poststimulus gap, and 
then the second RDK. Another 1000-ms poststimulus gap 
preceded participant response. A 100-ms warning sound 
preceded the presentation of both RDKs.

In each trial, a standard RDK consisted of randomly mov-
ing dots, alongside a target RDK containing a few coherent 
rightward moving dots (Fig. 3). Participants were instructed 
to press the "z" button if the target was in the first interval 
or the "m" button if in the second interval. Responses were 
recorded after both intervals were presented, and the subse-
quent trial began automatically upon pressing the response 
key. A red circle in experimental trials signalled when par-
ticipants should respond.

The second block was identical to the first except for the 
change in the procedure from adaptive to constant stimuli. 
The random-to-coherent dots ratio was set based on the 
threshold obtained from the first block. In alignment with 
the methodology of Battaglini et al. (2023), the overall num-
ber of dots varied across 14 levels, strategically selected 
along a quasi-logarithmic scale (20, 29, 41, 58, 83, 118, 
168, 239, 340, 485, 691, 999, 1403, and 2000 dots). The 
decision to adopt a logarithmic spacing was influenced by 

Fig. 2  Statically, two examples of the configuration of moving dots presented throughout the experiment. A configuration of moving dots 
with a percentage of coherently moving dots (left). All the dots move randomly (right)
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the understanding that the perception of motion and point 
numerosity adheres to a compressive nonlinearity, akin 
to Weber's Law (Zanker, 1995). Each of these 14 levels 
comprised 20 trials, resulting in a total of 280 pseudorand-
omized trials. Accuracy, defined as the proportion of correct 
responses at each noise level, was measured.

Data analysis

We utilized the statistical software R (R Core Team, 2013) 
to conduct analyses and create figures. For the statistical 
analyses, continuous variables were first scaled and cantered 
using the “scale()” function in R.

In the first experimental block, our objective was to 
investigate the effects of dot density and age on coherence 
level thresholds. For this purpose, we employed a linear 
model with the natural logarithm (ln) of the threshold as the 
dependent variable. Coherence level thresholds are defined 
as the ratio of dots moving coherently in a specified direc-
tion (e.g., rightward) to the total number of dots presented, 
expressed as a percentage. The dependent variable ranged 
as an integer from 0 to 100, representing the percentage of 
coherent dots.

The choice of ln transformation aimed to capture the 
observed compressive nonlinearity in dot numerosity 
and motion perception (Zanker, 1995). This decision was 

reinforced by a substantial enhancement in the distribu-
tion of model residuals after the transformation. The model 
included the participant’s age as a continuous predictor 
and group as a two-level factor, representing the number of 
dots in the staircase procedure (either 100 or 400 dots). We 
assessed the significance of factors using an F-test.

For the examination of SR in the constant stimuli block, 
we employed a generalized linear mixed model with the 
binomial variable accuracy as the dependent variable. The 
model included the participant's age and the logarithm of 
the number of dots as continuous predictors. To address 
within-subject correlation in repeated measures, the model 
featured an individual random intercept. Regarding the num-
ber of dots, we hypothesized a nonlinear effect, resulting 
in an inverted U-shaped curve. Model selection involved 
comparing four mixed models, estimated using the glmer() 
function from the “lme4” package (Bates et al., 2019) in 
R. The number of dots variable was modelled with linear 
regression in one model and subsequently with polynomi-
als up to the fourth degree. Orthogonal polynomials for the 
SOA variable were calculated using the poly() function in R.

We selected the best model based on the Akaike infor-
mation criterion corrected for small sample sizes (AICc) 
with the aictab() function from the “AICcmodavg” pack-
age (Mazerolle, 2023). This test determined whether a non-
monotonic (curve) model outperformed a linear one. After 

Fig. 3  Trial sequence consisted of a 133-ms initial interval featur-
ing coherent (or random) motion, followed by a 1000-ms post-
stimulus gap. Subsequently, there was a second 133-ms interval 
with random (or coherent) motion, another 1000-ms poststimulus gap 
and, finally, the participant's response. During the practice block, the 

response was followed by visual feedback. Trial-by-trial instructions 
were exclusively presented during practice trials. In the experimen-
tal trials, a red circle replaced the instructions, signalling participants 
when to provide their response
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choosing the best model, we conducted an omnibus test to 
assess significance, utilizing a Type III Wald chi-square tests 
with the Anova() function from the “CAR” package (Fox & 
Weisberg, 2019).

Given that the age distribution of participants (refer to 
Fig. 1) was nonuniform, during the review process, we 
accommodated a suggestion to incorporate a statistical test 
that would explore the effect of age as a binary factor rather 
than as a continuous variable. To implement this, we par-
titioned the sample into two age-based groups—“younger” 
individuals ranging from 18 to 50 years, and “older” indi-
viduals from 50 to 82 years, each spanning 32 years. Conse-
quently, we adapted the previously selected optimal model 
by replacing the continuous age variable with a categorical 
variable representing these age groups. On this modified 
model, we again applied an omnibus test to assess signifi-
cance using a Type III F-test with the Satterthwaite approxi-
mation for degrees of freedom.

We assessed model assumptions using the DHARMa R 
package (Hartig & Lohse, 2022). This package employs a 
simulation-based method to examine residuals for fitted Gen-
eralized Linear Mixed Models (GLMMs). The Asymptotic 
one-sample Kolmogorov–Smirnov test identified a significant 
deviation from the expected distribution for both the linear 
thresholding model (D = 0.05, p < 0.001) and the constant 
stimuli linear mixed model with both continuous (D = 0.033, 
p = 0.003) and categorical age (D = 0.032, p = 0.005). Upon 
visual inspection, this deviation appears negligible. Impor-
tantly, neither the dispersion test nor the outlier test yielded 
significant results. Therefore, in the absence of clear signs 
of heteroscedasticity or over/under dispersion, we proceeded 
with the analyses using these models.

For the LMM in the thresholding block results were 
reported using the “report” package (Makowski et al., 2020), 
and effect sizes were labelled following Field’s recommenda-
tions (Field, 2013). For the GLMM in the constant stimuli 
block as an estimate of the effect size, we calculated the semi-
partial coefficients of determination, also known as  partR2 
(∆R2), by means of the partR2 package (Stoffel et al., 2021). 
As suggested by Stoffel, part R2 for main effects and inter-
actions were calculated separately and part R2 for the main 
effects were estimated after excluding the interaction from 
the model.

Results

In the initial experimental phase, we investigated the vari-
ation in performance, which we defined as the logarithm 
of the number of dots required to identify the interval 
with coherent motion 70.7% of the times. This explora-
tion focused on the threshold for two levels of dot numer-
osity, specifically 100 and 400 (representing external 

noise), in relation to age. Figure 4 visually represents the 
ln(threshold) as a function of participants’ ages at two lev-
els of dot numerosity.

The results, assessed through an F test, indicated a 
statistically significant yet small main effect of staircase 
dot numerosity (F(1, 2992) = 33.04, p < 0.001; partial 
η2 = 0.01, 95% CI [5.58e-03, 1.00]). The estimated mar-
ginal mean for the staircase with 100 dots was 2.88 (stand-
ard error = 0.021, degrees of freedom = 2992, CI [2.84, 
2.92]), equivalent to 17.8 dots. In contrast, the estimated 
marginal mean for the staircase with 400 dots was 2.69 
(standard error = 0.036, degrees of freedom = 2882, CI 
[2.64, 2.74]), equivalent to 14.7 dots.

The main effect of age was also statistically signifi-
cant, though small (F(1, 2992) = 141.74, p < 0.001; Partial 
η2 = 0.05, 95% CI [0.03, 1.00]). With each passing year, 
there was an observed increase in the threshold of 0.192 
on a logarithmic scale, equivalent to 1.21 dots.

Furthermore, the interaction between staircase dot 
numerosity and age was statistically significant, with a 
very small effect size (F(1, 2992) = 4.89, p = 0.027; Partial 
η2 = 1.63e-03, 95% CI [9.59e-05, 1.00]). For each year of 
age, the difference between the staircase with 100 dots and 
the one with 400 dots decreased by − 0.035 on a logarith-
mic scale, equivalent to − 0.96 dots.

When examining the relationship between performance 
and dot numerosity (Fig. 5), a peak was observed at inter-
mediate levels. Visual exploration data were supported by 
model selection, where the model incorporating dot numer-
osity as a fourth-degree predictor outperformed other mod-
els (AICcWt = 0.64), particularly surpassing the linear dot 
numerosity model (AICcWt = 0). Comprehensive results of 
the model selection are presented in Table 1.

The marginal  R2 and 95% CI for the full model were 
 R2 = 0.01, 95% CI [0.01, 0.013]. The omnibus Type III Wald 
chi-square test over the best model (fourth degree) suggested 
that the main effect of the logarithm of the number of dots was 
statistically significant and substantial, explaining a significant 
portion of the model's variance (χ2(4) = 611.2400, p < 0.001; 
∆R2 = 0.01, 95% CI [0.008, 0.012]). The main effect of age 
was statistically not significant and very small (χ2(1) = 0.4579, 
p = 0.499; ∆R2 = 0.0002, 95% CI [0, 0.002]). The interac-
tion between the logarithm of the number of dots and age 
was statistically significant and very small (χ2(4) = 28.7636, 
p < 0.001; ∆R2 = 0.0004, 95% CI [0, 0.001]).

Figure  5 illustrates the predictions generated by the 
fourth-degree model. Despite entering the age variable as 
a continuous parameter in the model, we opted to visually 
represent it across four distinct age levels. The model’s pre-
diction for an individual aged 20 years is expressed by the 
equation Y = 0.76 − 0.21x − 0.35x2 − 0.032x3 + 0.021x4 , 
while for an 80-year-old individual, it is given by 
Y = 0.75 − 0.5x − 0.38x2 − 0.18x3 + 0.031x4  .  I t  i s 
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Fig. 4  Age-related changes in threshold for coherent RDK. The 
plot shows how the ln(threshold) for detecting coherent motion, 
expressed as the natural logarithm of the percentage of coherent dots 
out of the total dots, varies with age for staircases with 100 and 400 

dots. Linear regression lines, shaded 95% confidence bands, and indi-
vidual data points are included. Red line corresponds to the staircase 
with 100 dots. Green line represents the staircase with 400 dots

Fig. 5  The relationship between accuracy, dot numerosity, 
and age. Lines represent predictions of the fourth-degree model. 
Although the age variable in the model is inherently continuous, for 

visualization, we have represented it through four age levels. The 
x-axis represents dot numerosity on a logarithmic scale. The coloured 
bands represent the 95% confidence intervals
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noteworthy that with increasing age, there is a gradual 
augmentation in the negativity of both the linear and 
cubic terms. This interaction results in a flattening of the 
curve for lower dot numerosity values (left side of the 
curve) and a sharp decline in performance for higher dot 
numerosity (right side of the curve).

When analysing age as a dichotomous variable, the partic-
ipants were divided into two age-defined groups: the younger 
group comprised 123 individuals within an age range of 18 
to 50 years, and the older group included 91 individuals aged 
between 50 and 82 years. The marginal  R2 and 95% CI for the 
full model were  R2 = 0.01, 95% CI [0.01, 0.013]. The omnibus 
Type III Wald chi-square test indicated that the main effect of 
the logarithm of dot numerosity was statistically significant 
and substantial, explaining a significant portion of the mod-
el's variance (χ2(4) = 630.848, p < 0.001; ∆R2 = 0.01, 95% CI 
[0.008, 0.011]). Conversely, the main effect of age group did 
not reach statistical significance and had a negligible effect 
size (χ2(1) = 0.504, p = 0.478; ∆R2 = 0, 95% CI [0, 0.001]). 
However, the interaction between the logarithm of dot numer-
osity and age group was statistically significant, albeit small 
(χ2(3) = 38.031, p < 0.001; ∆R2 = 0.001, 95% CI [0, 0.003]). 
The predictive model for the younger group was described by 
the equation Y = 0.76 − 0.22x − 0.36 − 0.047x3 + 0.026x4 , 
while for the older group, it was articulated as 
Y = 0.75 − 0.45x − 0.37x2 − 0.15x3 + 0.025x4 . The results 
further demonstrated an increase in the negative coefficients 
of linear and cubic terms with for the older age group, thus 
corroborating the findings obtained when age was modelled 
as a continuous variable. Figure 6 illustrates the predictions 
generated by the fourth-degree model with age group as a 
categorical two-level factor.

Discussion

The purpose of the study was to investigate age-related 
changes in psychophysical stochastic resonance (SR) within 
human visual perception, considering external noise as a 

variable. A sample of healthy adults underwent a two-inter-
vals forced-choice coherent motion discrimination task with 
RDK stimuli. Two separate blocks were administered. In 
the first, we determined the coherence level required for a 
70.7% accuracy performance. In the second, using a con-
stant stimulus procedure, we manipulated external noise 
(total dot number) to assess its impact on accuracy.

As expected, initial thresholding block indicated a decline 
in coherent motion detection ability with increasing partici-
pant age, aligning with findings from previous studies (Braham 
Chaouche et al., 2020; Pilz et al., 2017; Trick & Silverman, 
1991) showing age-related deterioration in global motion per-
ception. Coherent motion detection involves pooling similar 
motion signals while suppressing irrelevant ones (Dakin et al., 
2005). This decline in ability may be attributed to increased 
tonic neural noise negatively affecting stimulus-associated 
neural variability in aging (Tran et al., 2020). Interestingly, 
younger participants demonstrated improved performance with 
more dots (400), whereas this advantage diminished for older 
adults. Higher dot numerosity theoretically facilitates global 
pooling by increasing the likelihood of combining motion sig-
nals from the target direction (Dakin et al., 2005). However, for 
older adults, the detrimental impact of increased global noise 
may outweigh the benefits of enhanced pooling.

Our results parallel findings by Hutchinson et al. (2014). 
In their investigation, they assessed the performance of both 
young and old participants under three distinct conditions: 
equal dot numbers but varied sizes and densities (exp. 1); 
uniform density but increased dot number and size (exp. 2); 
uniform size but heightened density and dot number (exp. 
3). In contrast to younger participants, elderly participants 
in both Experiments 1 and 2 did not demonstrate improved 
performance as the dot number or size increased. How-
ever, in Experiment 3, mirroring our initial experimental 
phase, no statistically significant difference in performance 
between young and old participants was observed.

Despite the lack of statistical significance, a closer exami-
nation of the data revealed a notable trend—an inverse 
relationship between density and performance for both 

Table 1  Model selection based on AICc

K = number of parameters in each model; AICc = Akaike Information Criterion corrected for small sample sizes; Delta AICc = difference in 
AICc values between each model and the best-fitting model; AICcWt = Akaike weight, representing the likelihood of each model being the best-
fitting model; Cum.Wt = cumulative weight, the sum of AICc weights up to the current model; LL = log-likelihood, a measure of how well the 
model explains the observed data

Model K AICc Delta AICc AICcWt Cum.Wt LL

Fourth degree 11 13,408.62 0.00 0.64 0.64  − 6693.26
Cubic 9 13,409.76 1.14 0.36 1.00  − 6695.85
Quadratic 7 13,424.48 15.87 0.00 1.00  − 6705.22
Linear 5 13,720.58 311.96 0.00 1.00  − 6855.28
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age groups. Young individuals excelled at high density, 
whereas older individuals exhibited better performance at 
low density. This observed trend in Hutchinson et al. (2014) 
is in agreement with our results in the thresholding block. 
The difference in statistical outcome may be attributed to a 
large difference in statistical power between the two studies 
(N = 18 in Hutchinson et al. compared with our N = 214). By 
integrating our results with prior research, we posit that in 
an aging neural system characterized by heightened intrin-
sic noise, performance is hindered rather than improved by 
increased dot number/density, unlike in younger individuals.

Following the standardization of baseline performance, 
we further examined the influence of advancing age on SR. 
Employing the constant stimulus method, we systemati-
cally varied the total number of dots from 20 to 2000 while 
maintaining a consistent stimulus size. Performance was 
then assessed across 14 levels of dot numerosity. As antici-
pated, the accuracy plotted against dot number exhibited the 
characteristic inverted U-shaped curve associated with SR 
(Battaglini et al., 2023).

This result was corroborated by model selection, wherein 
polynomial models of second degree and higher outper-
formed the linear model. The model offering the best bal-
ance between fit and parsimony, as determined by the AICc, 
was the fourth-degree polynomial model. However, the 
difference in AICc between the fourth-degree model and 

the cubic model was less than 2, indicating that both mod-
els were nearly equivalent, with a slight preference for the 
fourth-degree model owing to the decrease in log-likelihood 
(Arnold, 2010). Notably, the fourth-degree term exhibited 
minor age-related differences, whereas significant differ-
ences were observed in the linear and cubic terms, which 
became increasingly negative with advancing age.

According to the predictions of the fourth-degree model, 
as age increases, the curve becomes less steep to the left of 
the peak and steeper to the right. Surprisingly, in the old-
est individuals (around 80 years of age), optimal perfor-
mance was observed at the lowest external noise level (peak 
shifted to the left), with accuracy declining as the number 
of dots increased. This differs from the beneficial SR effect 
observed in younger participants. These findings suggest that 
with advancing age and increased neural noise, the sweet 
point for optimal performance shifts towards lower external 
noise levels.

Concerning our initial hypothesis, whereas the flattened 
curve in the elderly aligns with predictions from Li & col-
leagues (2006), the leftward shift of optimal performance 
does not. Instead, it aligns with the findings of Battaglini 
et al. (2023). For younger adults, the addition of weak exter-
nal noise may not surpass the threshold, resulting in subop-
timal performance. Conversely, in the brains of older adults, 
the weak external noise combines with an elevated level of 

Fig. 6  The relationship between accuracy, dot numerosity, and 
age group as a categorical two-level factor. Dots represent average 
accuracy for each group. Lines depict the predictions of the fourth-

degree model. X-axis denotes dot numerosity on a logarithmic scale. 
Coloured bands represent the 95% confidence intervals
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internal noise, potentially triggering SR. When external 
noise is optimized for inducing SR in younger individuals, 
performance deterioration is observed in older individuals.

The addition of an optimal level of external noise has 
been demonstrated to amplify responsiveness to visual 
stimuli by boosting the neuronal firing rate (Srebro & Mal-
ladi, 1999). However, in the elderly, the baseline noise in the 
visual cortex is already high (Talyansky & Brinkman, 2021; 
Tran et al., 2020; Yan et al., 2020). Consequently, lower 
amounts of external noise may be sufficient to trigger SR in 
older adults due to the combination with heightened levels 
of internal neural noise.

Similar interaction between external and internal noises 
has been previously reported both in psychophysics and 
electrophysiology (Aihara et  al., 2010; Douglass et  al., 
1993). For example, Douglass et al. (1993) found higher-
than-expected detection accuracy values in single sensory 
neurons of crayfish at low external noise levels, proposing 
that neural noise played a role in this phenomenon. Addi-
tionally, Varlet & Richardson (2016) demonstrated a mutual 
relationship between internal and external noise for neural 
synchrony, indicating that moderate internal noise facilitates 
synchronization at minimal external noise levels, whereas 
high levels of both internal and external noise degrade 
synchronization.

Considering this theoretical background, our research 
supports theories suggesting nonlinear effects of neural 
noise changes on behaviour in noisy environments (Cremer 
& Zeef, 1987; Li et al., 2001; Welford, 1981), indicating 
that the effect of increased neural noise, which is marked 
by enhanced local neural excitability, as evidenced by a 
decrease in the 1/f exponent, also should be balanced on the 
levels of external noise.

Research by Tran et al. (2020) demonstrated that older 
adults with flatter spectral slopes exhibited more variabil-
ity within the occipital alpha band, as measured by inter-
trial phase coherence, indicating an inverse relationship 
between an increase in neural noise (as a reduction in the 
exponent of the aperiodic component) and neural variability 
in response to stimuli. Furthermore, recent findings by Man-
yukhina et al. (2024) demonstrated a negative correlation 
between changes in periodic power and the aperiodic expo-
nent observed before and after a task. This suggests that as 
the aperiodic exponent decreases (indicating an increase in 
tonic basal neural noise), there is a corresponding decrease 
in periodic power.

This interaction implies that heightened neural noise is 
associated with reduced neural responsiveness at the net-
work level. Additionally, the study highlights a relationship 
between the aperiodic exponent and poststimulus neural 
inhibition in visual areas, suggesting that increased neu-
ral noise disrupts normal inhibitory processes, leading to 
altered neural responses following a stimulus. Therefore, an 

increase in noise at high frequencies of the spectrum appears 
to coincide with a disrupted homeostatic balance tipped in 
favour of excitation, leading to a loss of neural tuning.

According to Rubenstein and Merzenich (2003), corti-
cal noise reflects a hyperexcitable and poorly differentiated 
cortex. Our findings also align with the Loss of Complexity 
in Aging Hypothesis (LOCH). Initially, when LOCH was 
introduced, complexity was defined as the extent to which 
the underlying system generates aperiodic fluctuations 
resembling nonlinear chaos. Complexity characterizes a 
state between order and disorder, where increasing random-
ness could lead to either an increase or decrease in complex-
ity (Goldberger et al., 2002; Lipsitz & Goldberger, 1992). 
However, both a reduction in synchronized neural response 
variability and the increase in aperiodic basal noise could 
induce a loss of complexity, ultimately leading to decreased 
behavioural performance (Sleimen-Malkoun et al., 2014). 
Our study also may represent a support to dedifferention 
theory, according to which age-related decline results from 
increases in neural noise that reduce the selectivity of neu-
ral representations (Reuterr-Lorenz & Park, 2014). Loss of 
complexity along with dedifferentiation constitute two inter-
twined facets of the same aging process (Sleimen-Malkoun 
et al., 2014).

We acknowledge that our conclusions regarding internal 
noise are preliminary, given that internal noise levels were 
not directly quantified in our study. Notably, at the begin-
ning of data collection, despite the pandemic abating, it 
remained inadvisable to involve elderly participants in a 
laboratory environment. Opting for online testing over in-
laboratory assessments allowed for a broader age range, 
and thus, we employed age as a proxy for increased neural 
noise. Using age as a proxy for increased neural noise gains 
support from consistent findings across various independ-
ent studies that report a change in exponent with advanc-
ing age, underscoring the robustness of this assumption in 
our research framework. Collectively, these studies sug-
gest a flattening—or reduction—in the exponent with age 
(Cesnaite et al., 2023; Clark et al., 2024; Dave et al., 2018; 
Finley et al., 2024; Merkin et al., 2023; Pathania et al., 
2022; Tran et al., 2020; Voytek et al., 2015; Waschke et al., 
2017), an event linked with an change in the E/I balance 
(Gao et al., 2017) and an increment in noise at higher fre-
quencies, denoting more local (nonnetwork-level) and asyn-
chronous cortical activity (Thuwal et al., 2021). The recent 
expansion in such research has been facilitated by the avail-
ability of numerous free toolboxes (Donoghue et al., 2020; 
Hu et al., 2024; Wen & Liu, 2016; Whitten et al., 2011; 
Wilson et al., 2022), which are integrated into user-friendly 
analysis platforms. These tools enable straightforward cal-
culations of the exponent and intercept of the aperiodic por-
tion of the EEG spectrum, further applied to investigate the 
impact of age on basal neural noise. Another limitation is 
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the nonuniform age distribution in our sample. However, it 
is reassuring that similar results were observed when ana-
lysing age both as a continuous variable, as planned, and 
as a two-level factor. Lastly, we cannot fully exclude the 
possibility that differences in hardware typical of online 
data collection could have impacted data quality, despite 
the large sample size and rigorous planning of our study.

Future studies could address this limitation, potentially 
extending and generalizing these results to other tasks, 
types of noise manipulation, and age cohorts. Furthermore, 
investigating changes in SR in children and individuals with 
autism spectrum disorders, characterized by increased neu-
ral noise (Dinstein et al., 2012; Milne, 2011; Rubenstein & 
Merzenich, 2003), would be of interest.

Conclusions

This study examined age-related changes in psychophysical 
stochastic resonance in human visual perception, focusing on 
the impact of external noise. Results confirmed age-related 
declines in coherent motion detection, aligning with previ-
ous findings. Younger participants showed enhanced perfor-
mance with increased dot numerosity, whereas older adults 
experienced diminishing advantages, indicating a complex 
interaction between age, external noise, and task demands.

The investigation into SR revealed an unexpected inverted 
U-shaped curve, with optimal performance for older indi-
viduals occurring at lower external noise levels. This chal-
lenges the initial hypothesis and aligns with recent findings 
by Battaglini et al. (2023). Integrating these results with the 
neural noise hypothesis of aging suggests that increased 
internal neural noise may contribute to observed patterns. 
The interplay between external and internal noise in trig-
gering SR aligns with previous research.

While the reduced ability of older adults to filter exter-
nal noise may contribute to performance decrements, the 
speculative nature of conclusions related to internal noise 
is emphasized because of the absence of direct measure-
ment. Future research should address this limitation, explor-
ing implications in various cognitive tasks and extending 
findings to diverse populations, such as children and indi-
viduals with autism spectrum disorders. This investigation 
provides valuable insights into nuanced dynamics of age-
related changes in visual perception, paving the way for 
further exploration of the interplay between external and 
internal noise in the aging brain.
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