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A B S T R A C T

The assessment of histamine levels in fishery products has emerged as a paramount issue in the context of global
food safety, given its profound implications for human health and the consequential impact on food quality and
trade. Histamine intoxication, stemming from the ingestion of foods containing heightened histamine levels,
results from the bacterial decarboxylation of histidine under conditions of improper handling, processing, or
storage. This study endeavors to provide a thorough examination of histamine contamination in frozen-thawed
tuna (Thunnus albacares) samples, employing an integrated approach that combines near-infrared spectroscopy
(NIRS) with advanced machine learning techniques. One hundred and one samples were considered, and a
systematic fortification process was applied to obtain samples with 4 histamine concentrations (0; 50; 150; 250
mg/kg); the fortification levels were confirmed by the LC-MS/MS analysis. Subsequently, NIRS spectra were
collected and chemometric analyses, including modified partial least squares regression (MPLS) and support
vector machine (SVM), were employed for quantitative and qualitative evaluation, respectively. Histamine
quantification through MPLS utilizing the full spectrum exhibited good predictive performance in cross-
validation and in hold-out validation (R2CV = 0.88; R2P = 0.74, respectively), confirming the potential of NIRS
for estimating histamine levels in tuna. SVM classification models, both binary (presence/absence) and multi-
class (four levels), demonstrated high accuracy (100% and 93%, respectively). The study highlights the effec-
tiveness of NIRS combined with machine learning for rapid and accurate histamine detection in frozen-thawed
tuna, offering a non-destructive, environmentally friendly alternative to traditional methods. This approach
holds significant promise for food business operators and regulatory authorities, enhancing product safety,
quality control, and decision-making processes related to histamine contamination in the seafood industry.

1. Introduction

Histamine determination in fishery products is a relevant issue with
global food safety and security purposes given its effects on human
health and its impacts on food quality and trade. In Europe, no sub-
stantial variations in reporting histamine intoxication outbreaks were
observed in 2021 compared with recent years, despite the increase
observed over last ten years. Indeed, in 2021, among the overall 47
outbreaks of histamine intoxication (1.2% of the total foodborne out-
breaks), 14 strong-evidence outbreaks were reported for the food

category fish and fish products by the causative agent histamine (EFSA
& ECDC, 2022). Additionally, from the Rapid Alert System for Food and
Feed (RASFF) network 4 out of the overall 33 notifications on foodborne
incidents were related to histamine poisoning (European Commission &
Directorate-General for Health and Food Safety, 2022). In more detail,
histamine was reported in 5.6% of RASFF notifications in 2004–2017
and 2019, mainly in tuna. These notifications (generally information
notifications, but also alerts and border rejections) were transmitted
mostly by Italy and concerned products from Spain, Morocco, and also
from Asia. The basis for the notifications was usually an official control
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on the market, but also food intoxication and a control at the border,
after which the consignment was detained (Pigłowski, 2023). Similarly,
among the overall seafood recalls that occurred over the 20-year period
by the United States Food and Drug Administration, tuna is the second
most cited seafood group involved in recalls, and histamine was the fifth
most common reason for these seafood recalls (3%) (Blickem et al.,
2023).

This intoxication is caused by the consumption of foods with high
level of histamine, which in turn, is formed by bacterial decarboxylation
of the amino acid histidine present in the food resulting from inappro-
priate handling, processing or storage conditions (EFSA, 2017; FAO &
WHO, 2013; Sheng&Wang, 2021; Visciano et al., 2020). The content of
histamine in fish and fish products is variable within individual lots of
products, and even within individual fish, and depends on a multifac-
eted scenario involving: i) the type of fish, in relation to the amount of
histidine in the primary/raw product and the activity of the microbial
enzyme histidine decarboxylase, which is directly related to the amount
of these microorganisms; ii) the way the fish is handled and the relative
potential for growth of microorganisms containing this enzyme; (iii) the
duration, conditions and temperature of storage of the fish, also in terms
of time-temperature abuse of fish (FAO & WHO, 2013). Besides, hista-
mine is heat-stable, meaning that common industrial or domestic pro-
cess such as canning, cooking and freezing do not reduce its presence.
Moreover, it is not correlated with any sensory changes of fish products
(Ruiz-Capillas & Herrero, 2019). Therefore, consumers’ education may
not be an effective means of preventing the consumption of
histamine-contaminated fish. Considering all these aspects, the food
testing along with good hygienic practices and temperature control
throughout the chain (from fish catch to manipulation, storage and
commercialization) are the main preventive measures adopted by Food
Business Operators (FBOs) to effectively control this hazard. Neverthe-
less, it is important to acknowledge that the objective of testing is the
implementation of all required control measures. FBO must identify
failures in the system and take action to prevent the placing of unsafe
food on the market or remove implicated products from the market, as
well as to enforce the action levels performed by official surveillance
programs and inspections for histamine detection (FAO and WHO,
2013). Therefore, various sampling approaches, along with their
respective plans and analytical methods, are widely utilized.

In relation to food testing, there are no difficulties in analysing his-
tamine and a number of suitable methods are available (FAO& WHO,
2013). Regulation (EC) 2073/2005 (European Commission, 2005) in-
dicates the EN ISO 19343:2017 (ISO, 2017), that uses high performance
liquid chromatography (HPLC) coupled to UV detection, as the official
referenced method in Europe for the safety criteria for histamine in
fishery products and fish sauces from species associated with a high
amount of histidine. Moreover, the AOAC 977.13 fluorometric method
established by the Codex Alimentarius is the most used. Other methods
include thin-layer chromatography, gas chromatography,
enzymatic-linked immunosorbent assay and biosensors (Ghidini et al.,
2021). However, histamine testing by these analytical methods is rarely
efficient for monitoring Critical Control Points (CCPs) and cannot be
used as a tool of process control. This is primarily due to the cost and
time-consuming nature of analytical procedures, the need of operators
with specialized skills, and the inability to deliver real-time results. The
only exception is the use of enzymatic immunosorbent assay (ELISA) and
colorimetric enzymatic methods, which can be applied routinely for
self-checking monitoring by FBO. However, these methods are not
applicable by Competent Authorities and lack legal advice.

In this context, the faster, easier and cheaper near infrared (NIR)
spectroscopy has been recently used by Ghidini and Colleagues (2021)
to directly quantify istamine content in raw and processed tuna. Also
attenuated total reflectance-Fourier transform infrared spectroscopy
was suggested as a non-destructive, fast and accurate method for
determining the histamine in tuna fish samples (Asghari et al., 2022).
Further, the ultraviolet–visible (UV–VIS)-NIR spectroscopy has recently

been listed, by Commission Implementing Regulation (EU) 2022/2503
(European Commission, 2022), among the official methods that can be
used when the organoleptic examination gives rise to any doubt that
previously frozen fish is commercially presented as fresh (Annex VI,
Chapter 1, General provision B “Freshness indicators”, Commission
Implementing Regulation (EU) 2019/627).

The main objective of this study was to rapidly detect samples with
potentially hazardous levels of contamination. In detail, the perfor-
mances of NIR spectroscopy were investigated by simulating the worst-
case real scenarios to directly quantify histamine in the muscle tissue in
which frozen-thawed tuna samples could be tested. Unsupervised and
supervised chemometric techniques were tested in the quantification
and classification models, to provide valuable insights into wavelengths
associated with this amine and the feasibility of identifying specific
safety thresholds suitable for the self-monitoring of raw materials.

2. Materials and methods

2.1. Fish samples and histamine spiking procedure

A frozen fish sample of Thunnus albacares, belonging to the Scom-
bridae family (one of the six families associated with a high amount of
histidine included in Regulation (EC) 2073/2005), was purchased from
the market and transported to the Food Safety Laboratory of the
Department of Veterinary Medical Sciences, University of Bologna. The
sample was defrosted keeping it in a chilling room at 4 ◦C for 24 h.
Firstly, a fillet sample was analyzed by LC-MS/MS method to confirm
the absence of histamine. The muscle tissue weighed 5.5 kg and was cut
in several portions that were minced using a domestic blender for 1 min.
Then, the homogenate was divided into four portions: one portion was
used to prepare 12 blank samples of 50 g, while the others 3 portions
were divided into 89 samples of 50 g each, fortified at different levels of
histamine (namely 30 samples at 50 mg/kg, 30 samples at 150 mg/kg
and 29 samples at 250 mg/kg with 0.5 mL of histamine solutions in
water at 5000 ppm, 15,000 ppm and 25,000 ppm respectively). In order
to both have a homogenous contamination and not modify the physi-
ochemical composition of fish samples, 0.5 mL of histamine solutions
were added into each homogenate sample and then they were manually
mixed for 2 min, stored in a chilling room at 4 ◦C for 10 min, and mixed
again for a total of three times. A total of 101 samples were prepared and
analyzed. Each sample was divided in two aliquots: 10 g for the LC-MS/
MS analysis to confirm the fortification level and 40 g for the NIRS
analysis. All the samples were stored at − 20 ◦C before the subsequent
analysis, aiming to employ NIR spectroscopy in the most challenging
conditions associated with frozen-thawed treatment. Additionally,
chemical analyses of tuna samples were conducted both before and after
the second frozen-thawed treatment to confirm consistent histamine
levels (data not showed).

2.2. Reagents and chemicals

Histamine (purity >99.0%) was purchased from Sigma-Aldrich (St.
Louis, MO, USA). Acetonitrile, methanol, perchloric acid, and formic
acid were acquired by Merck (Darmstadt, Germany), ammonium
formate was purchased from Sigma-Aldrich (St. Louis, MO, USA), all LC-
MS grade. Ultrapure water was freshly produced from a Milli-Q® water
purification system (Merck, Darmstadt, Germany). Paper filters and
PTFE syringe filters (13 mm 0.2 μm) were purchased from Waters Corp.
(Milford, MA, USA). Stock solution (50 mg of standard in 50 mL of an
80:20 methanol: water v/v solution) was prepared and stored at − 20 ◦C.

2.3. LC-MS/MS analysis

The extraction procedure was conducted following the protocols
outlined by Chen et al. (2010) and Altieri et al. (2016). Appropriate
adjustments were made to adapt the method to LC-MS/MS analysis.

S. Currò et al.
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Thus, 1 g of grounded tuna muscle was weighted in a 15 mL poly-
propylene tube. 3 mL of a perchloric acid 0,1 M solution were added and
the sample was homogenised with ultraturrax for 2 min. Thus, the
mixture was centrifugated at 8000 rpm for 15 min at 4 ◦C. The super-
natant was filtered with a paper filter and subsequently was further
filtered with 0.2 μm filter. Finally, the sample was subjected to a double
dilution: a first 1:10 and a second 1:50, with 80:20 acetonitrile: water
v/v solution prior the LC-MS/MS analysis.

Detection and quantification of histamine in tuna was performed
using ultrahigh-performance liquid chromatography coupled with tri-
ple–quadrupole mass spectrometry (UHPLC-MS/MS) technology. The
equipment employed consisted of a Waters Acquity UHPLC® binary
pump coupled with a Waters Xevo® TQ-S micro triple–quadrupole mass
spectrometer (Waters Corporation, Milford, MA, USA) equipped with an
electrospray ionization source (ESI). Analyses were performed in posi-
tive electrospray ionization (ESI+) mode and MRM (multiple reaction
monitoring) mode, following two specific transitions for the target an-
alyte (112.0 > 95.00, 112.0 > 67.95). Capillary voltage was set at 0.50
kV, source temperature at 150 ◦C, and desolvation temperature at
350 ◦C finally, desolvation gas flow was 1000 L/h. Argon was used as
collision gas. The development of the chromatographic method
commenced with conditions similar to those used by Self et al. (2011)
employing an analytical HILIC column. Given the polar characteristics
of biogenic amines, Hydrophilic Interaction Liquid Chromatography
(HILIC) with a silica stationary phase and a high organic/low aqueous
mobile phase offered significant advantages (Gianotti et al., 2008). The
chromatographic separation was carried out on a Waters Acquity
UHPLC® BEH HILIC (50 mm × 2.1 mm, 1.7 μm) column (Waters Cor-
poration, Milford, MA, USA) maintained at 30 ◦C and the chromato-
graphic conditions were settled as follow: mobile phases were 20 mM
ammonium formate in water acidified with 0.1% of formic acid (A) and
acetonitrile (B). The gradient started from 0 min with 20% phase A; this
percentage increased to 85% in 2 min, it was held for 1 min, then
decreased linearly at 20% in 1 min. This condition was held for 1 min for
column re-equilibration. Total run time was 5 min, the flow rate was
0.500 mL/min, and the volume injected was 10 μL. Thermostated
autosampler was kept at 20 ◦C. Data were acquired and processed using
Waters MassLynx™ 4.1 software (Waters Corporation, Milford, MA,
USA).

The quantification of histamine in tuna was carried out through the
use of six points matrix-matched calibration curve (50–300 mg/kg). The
calibration curve was introduced at the beginning and end of each
samples batch. The method was validated according to Regulation EU
2021/808 (European Commission, 2021).

2.4. Near infrared Spectra collection

The spectra of 101 homogenate tuna samples were collected at room
temperature after the thawing process in a chilling room at 4 ◦C for 24 h.
Spectra were acquired in reflectance mode across the 400–2500 nm
(every 0.5 nm) wavelength range using a NIRS™ DS2500 (FOSS Electric
A/S in Hillerød, Denmark) benchtop device and placing samples in the
standard circular ring cups, (FOSS sample cups, with diameter of 6 cm).
Each spectrum was an average of 32 sub-spectra recorded at eight
different points by rotating the sample FOSS cup automatically. Spectra
were collected in triplicate through ISIscan Nova and Mosaic software
(FOSS Electric A/S, Hillerød, Denmark) and automatically converted in
absorbance as log(1/Reflectance). The final representative spectrum
considered for chemometric analysis was obtained by averaging the
three spectral replicates for each sample.

2.5. Chemometric analysis

Two distinct methods were assessed to determine the optimal
approach for the evaluation of histamine contamination in tuna fish
using supervised methods. Initially, the prediction of contamination was

conducted using the modified partial least squares regression (MPLS)
model to estimate the histamine amount (mg/kg). Subsequently, a
spatial data exploration and classification model were performed to
identify contamination categories (zero, low, mid, and high) through the
use of the PCA and support vector machine (SVM), respectively, using R
software version 4.2.3 (R Core Team, 2023).

2.5.1. Full-spectrum prediction models and wavelength interval selection
Table 1 reported the number of samples and histamine concentration

variability used to develop prediction models through the WinISI III
version 1.6 (Foss and Infrasoft International LLC, State College, PA)
software, using MPLS regression method. A calibration set comprising
70% of the samples (n = 73) and a validation set comprising 30% of the
samples (n = 28) were proposed, ensuring a balanced representation
among the histamine groups: Zero (0 mg/kg, n = 4), Low (<100 mg/kg,
n = 9), Mid (≥100–200< mg/kg, n = 10), and High (≥200 mg/kg, n =

8). Several combinations for scattering corrections (i.e., no scatter
correction, detrend, standard normal variate, standard normal variate
and detrend, and multiplicative scatter correction) and derivative
mathematical treatments (e.g., 0,0,1,1; 1,4,4,1; 1,8,8,1; 2,5,5,1; and
2,10,10,1; Cendron et al., 2023) were tested through a cross-validation
in the calibration set and then validated in the validation set. If a sample
exhibited a significant disparity between its predicted value and the
reference value, surpassing 2.5 standard deviations (T-statistics), it was
classified as an outlier and subsequently excluded from the dataset
(Forte et al., 2023, pp. 1–17).

Moreover, to select the most informative wavelengths for the hista-
mine prediction, the interval-partial least squares (iPLS) using R soft-
ware, version 4.2.3 (R Core Team, 2023) was conducted. This approach
tests all possible combinations of spectral regions using one or several
moving windows of fixed size selecting the specific wavelengths or areas
most informative according to the histamine investigated in tuna fish as
reported in the study of (Asghari et al., 2022).

The selection of the best prediction model in the calibration set was
based on various fitting statistics, including the number of latent factors
(LF), the standard error of cross-validation (SECV), the coefficient of
determination of cross-validation (R2CV), and the residual predictive
deviation of cross-validation (RPDCV). The calculation of these statistics
followed the method proposed by Williams and Sobering (1993), where
RPD values were determined as the ratio of the standard deviation of the
trait to the SECV. The interpretation of R2CV values was based on the
thresholds suggested by Karoui et al. (2006). Specifically, R2CV values
between 0.50 and 0.65 indicated the differentiation of samples with low
and high histamine concentrations; values between 0.66 and 0.81 sug-
gested an approximate histamine prediction, while values between 0.82
and 0.90 indicated a good histamine prediction; whereas, R2CV values
greater than 0.91 identified excellent histamine prediction.

2.5.2. Wavelengths selection, principal component analysis and
classification models

Foremost, a binary evaluation was assessed to evaluate differences

Table 1
Description of dataset of Tuna samples (number), Histamine classes and
contamination variability.

Tuna
Samples
(n.)

Histamine Class Mean
(mg/kg)

Standard.
Dev (mg/kg)

Min
(mg/
kg)

Max
(mg/
kg)

12 Zero (0 mg/kg) 0 0 0 0
30 Low (<100 mg/

kg)
48.41 7.52 35.34 65.3

33 Mid
(≥100–200<
mg/kg)

154.88 27.08 108.04 199.63

26 High (≥200
mg/kg)

232.81 28.09 201.42 271.15

S. Currò et al.
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between the presence and absence of histamine (presence/absence set)
in the examined tuna samples. Following this, a multiclass evaluation
considered four different histamine contaminations (multiclass set; zero,
0 mg/kg; low, <100 mg/kg; mid, ≥100–200< mg/kg; high, ≥200 mg/
kg) as reported in Table 1.

Similarly to the prediction process, spectral data were processed for
derivative mathematical treatments using ‘prospectr’ package for R
software, version 3.2.5 (R Core Team, 2022). Prior to identifying the
most significant wavelengths, the binary (presence/absence set) and
multiclass spectral datasets were divided into the training sets (70% of
samples; n = 73) and the testing sets (30% of samples; n = 28) using the
’createDataPartition’ function in the ’caret’ package for R (Kuhn, 2008).
The Random Forest (RF) feature selection procedure was performed on
the training sets utilizing the Boruta algorithm (Boruta package) (Kursa
& Rudnicki, 2010) with a wrapper approach. Feature selection method
was employed to select bands that contained the most informative data
while eliminating irrelevant and noisy data points (Ayyıldız & Arslan
Tuncer, 2020; Currò et al., 2022). After the data treatment with RF, the
PCA, as an unsupervised method, was performed as a descriptive tool for
data visualization on both sets.

Support Vector Machine (SVM), a supervised model, was used to
investigate the NIR classification capability before and after the RF
feature selection procedure. The SVM was modelled by the use of the
‘caret’ package, through both the SVM Linear and SVM Radial kernels
applied to the training dataset with repeated cross-validation. The C-
value (Cost) in the Linear classifier and the Radial Basis Function sigma
were customized, adopting a grid search. The performance of histamine
classification models developed on the training sets (binary and multi-
class) were then evaluated through the hold-out validations. In detail,
the best model was developed on the training sets models through
repeated cross-validation (setting number = 10 and repeats = 5), and
then tested on the testing set (30%). A confusion matrix was allowed to
evaluate the accuracy, sensitivity and specificity of the classification
models (Bisutti et al., 2019).

3. Results and discussion

3.1. Prediction models and wavelength selection

The LC-MS/MS analyses of the 4 sets of tuna samples prepared for the
validation of the NIR technique confirmed the expected fortification
levels (Table 1): blank samples (0.0 ± 0.0 mg/kg); samples 50 (48.4 ±

7.6 mg/kg); samples 150 (152.9 ± 28.9 mg/kg); samples 250 (235.0 ±

30.0 mg/kg).
Among the several mathematic treatments, the most relevant

outcome was reported in Table 2, which showed detailed statistical re-
sults of the calibration and prediction in cross-validation and in hold-out
validation. In detail, the best prediction performance was observed for
data without scattering corrections but optimized with the first deriva-
tization and considering the whole spectrum (400–2500 nm). Basically,
the optimal calibration model (No scatter correction 1441), developed
using the calibration set (70% of samples), demonstrated an R2 of 0.98
and a SEC of 11.79 in calibration. Cross-validation within the calibration
set revealed an R2CV of 0.88, with an SECV of 31.03 and an RPDCV of 2.87,
surpassing the threshold of 2.5, thereby confirming the model’s

suitability for the specified analytical objective (Karoui et al., 2006;
Sinnaeve et al., 1994). The hold-out validation of the model on the
validation set resulted in an R2P of 0.74, a SEP of 45.38, and an RPD of
1.86. In the hold-out validation, approximate performance predictions
were observed, influenced by biases introduced by samples character-
ized by the lowest histamine concentrations (<50 mg/kg).

On the other hand, slightly lower performance of prediction after the
iPLS wavelength selection was observed (Table 3); indeed, this approach
for variable selection to extract the most informative features may lead
to information loss. However, according to the iPLS analysis, it was
evident that only a limited number of wavelengths held significance in
predicting histamine content, with the most crucial interval spanning
from 1182.5 to 1242 nm, indicative of the presence of -OH and -CH3
groups (Workman Jr. & Weyer, 2012). The prediction of histamine
levels in tuna has previously been explored by other researchers
(Asghari et al., 2022; Ghidini et al., 2021) showing excellent prediction
performance. However, these studies significantly differed from the
current investigation in terms of experimental design, results, and
applicability. In detail, the study of Ghidini et al. (2021) focused on
exploring histamine contamination by utilizing solutions (0.1 mL) with
seven different concentrations (0, 10, 50, 100, 200, 400, and 1000
mg/L) of histamine. Each solution was introduced into 1 g of minced raw
tuna sample and then analyzed utilizing a NIR reflectance apparatus
using shorter wavelength range (1000–2500 nm) compared to the pre-
sent study. Through this methodology, Ghidini et al. (2021) achieved
histamine predicition capability of 0.92 R2P in external validation.
However, the present study showed less prediction performance in
cross-validation (with an R2CV of 0.88) and in hold-out validation (with
an R2P of 0.74) that can be largely attributed to the sample status (fro-
zen-thawed), that could affect physicochemical properties. In detail, the
differences on the physical status, on the water retention or dispersion,
scattering effects of the fish matrix can interfere with the NIRS spectrum
measurements (Pasquini, 2018), making the histamine prediction pro-
cess more complex. The absorption is primarily associated with the
chemical constituents found in the food matrix, while the scattering may
be attributed to the food matrix physical structure (Pasquini, 2018). The
smaller amount of matrix (1 g) used for the measurements and pre-
dictions of histamine in the study of Ghidini et al. (2021) could have
reduced the scattering effect compared to the present study which used
an aliquot of 40 g of muscles, therefore resulting in a sample more
representative for the analysis. Even though lower performance was
observed in this study, the results suggest that this could still be

Table 2
Fitting statistics of calibration and prediction model in cross-validation (calibration set, N = 73) and of hold-out validation (validation set, N = 28) for histamine
concentration (mg/kg) in frozen-thawed tuna through the Modified Partial Least Square Regression.

Math. Mean SD SEC LF R2c SECV R2CV RPDCV SEP R2P RPD

NONE 1441 130.04 89.14 11.78 8 0.98 31.03 0.88 2.87 45.38 0.74 1.86

Math, mathematical treatment; NONE, no scatter correction; SD, standard deviation; SEC, standard error of calibration; LF, number of latent factors selected; R2c,
coefficient of determination of calibration; SEcv, standard error of cross-validation; R2cv, coefficient of determination of cross-validation; RPDcv, ratio of performance
to deviation of cross-validation; SEP, standard error of hold-out validation; R2P, coefficient of determination of hold-validation; RPD, ratio of performance to deviation in
hold-out validation.

Table 3
Fitting statistics of prediction models for histamine concentration (mg/kg) in
thawed tuna developed using cross-validation results through interval Partial
Least Square regression (iPLS).

Range wavelengths (nm) LF RMSE R2CV

462.5 522 7 44.14 0.75
1122.5 1182 10 37.77 0.82
522.5 582 13 36.19 0.83
1182.5 1242 12 35.56 0.84

LF, number of latent factors selected; RMSE, Root Mean Square Error; R2CV, co-
efficient of determination of cross-validation.

S. Currò et al.
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considered a positive aspect for the adoption of this technology in
routine histamine control by Food Business Operators (FBOs), especially
those who typically analyze larger sample quantities (see Table 4).

In contrast to the investigation undertaken by Asghari et al. (2022),
wherein the prediction model yielded an R2CV of 0.965 subsequent to the
wavelength selection process employing iPLS, this divergence is likely
ascribed to disparate technological modalities and/or distinct data
filtration methodologies (notably, the automatic Whittaker filter).
Alternatively, it may be explicable by the comparatively limited vari-
ability (5–100 ppm) within contamination levels and the more
restrained sample size (n= 38; 4 samples per concentration) considered,
relative to the parameters encompassed in the present study.

3.2. Clusterization and classification model on wavelength selected

In this study, PCA was conducted following feature selection of the
treated spectra to eliminate irrelevant attributes. This analysis reduces
the dimensionality of the spectra, allowing for a visual depiction of the
samples spatial distribution to underline the clusterization according to
sample characteristics. In particular, Figs. 1 and 2 display the score plots
of the first three principal components of the binary and multiclass sets,
respectively. In detail, the binary score plot showed the highest variance
explanation 97.5% (PC1 = 70.7%; PC2 = 20.1%; PC3 = 6.7%), whereas
in the multiclass score plot the PC1, PC2 and PC3 explained 46.6%, 29%
and 13.6% of the total variance, respectively. The graphical distribution
of binary and multiclass set data depicted in noterworthy clusterization
among groups suggesting a promising segregation using a linear classi-
fication model.

The data classification may offer advantages when confronted with

complicated results, aiming for a simple threshold classification that can
aid in decision-making regarding the risk of histamine contamination. A
classification approach was implemented through the application of two
distinct models, specifically binary and multiclass. In the binary
approach, the spectral patterns of tuna categorized by the presence (>0
mg/kg) or absence (0 mg/kg) of histamine, demonstrating remarkable
resemblances, including absorbance characteristics (Fig. 3). Nonethe-
less, subtle distinctions in absorbance were discernible within the
spectral range of 490–680 nm and 1388 nm, where tuna samples devoid
of histamine exhibited heightened absorbance. Out of the 4202 wave-
lengths examined, the RF selection identified 210 wavelengths. Specif-
ically, the selected wavelnghts are located mainly within the visible part
(ranging from 480 to 500.5 nm, and 648–687.5 nm) and within the first
part of the NIR region (ranging from 752 to 762.5 (OH phenolic and CH),
781–814.5 nm (C-OH, and and CH) which encompasses the third and
second overtones in which the analysis of the sample molecular struc-
ture is more refined (Workman Jr. & Weyer, 2012).

Nevertheless, the multiclass analysis of spectral patterns across the
four histamine levels (0;<100;≥100–200<; and≥200 mg/kg) revealed
distinct absorption peaks associated with varying histamine contami-
nation levels. In detail, tuna spectra with zero or low histamine levels
generally exhibited higher absorbance values compared to those with
high histamine contents. These discrepancies could stem from the his-
tamine quantity, exerting an influence on the absorbance peak, or they
might arise due to the intricate molecular interactions between hista-
mine and the tuna’s inherent molecular matrix. Nonetheless, it is crucial
to consider that the food spectrum represents the fingerprinting of a
sample, reflecting the internal characteristics originating from chemical
components (Fakayode et al., 2020); Additionally, it is important to take
into account molecular vibrations, intermolecular interactions such as
hydrogen bonding, and the general effects of the chemical environment,
which contribute significantly to what is known as ’matrix effects’ in
analytical spectroscopy (Bázár et al., 2015; Beć et al., 2022). Notably,
amines engage in interactions with carboxylic acids through hydrogen
bonding and/or electrostatic attractions thereby forming aggregates
(Nakamura et al., 2011). Thus, the interaction of histamine with other
chemical compounds in the food matrix may affect the variation in
spectrum absorbance.

Moreover, the RF process for wavelength selection according to the
multiclass approach showed that 199 wavelengths retained significance
to detect differences among the four histamine concentrations. Notably,
the wavelengths selected ranged within the visible spectrum from 434 to
437 nm; 485–487 nm; 512 nm; 648–672 nm; 692–701 nm; 712–738 nm
and in the NIR spectrum from 1063 to 1079 nm; 1462–1476 nm and
1741–1744 nm; 1769 nm, 2045–2047.5 nm and 2057.5 nm (Fig. 4). In
contrast to the wavelengths selected within the binary class, it is salient

Table 4
Performance of classification using support vector machine model to classify
frozen-thawed tuna sample according to the histamine contamination level in
hold-out validation.

Predicted
Reference of histamine class

Zero (0
mg/kg)

Low (<100
mg/kg)

Mid (≥100–200<
mg/kg)

High (≥200
mg/kg)

Zero 3 0 0 0
Low 2 7 0 0
Mid 0 0 9 0
High 0 0 0 7
Sensitivity (%) 60 100 100 100
Specificity (%) 100 91 100 100
Balanced
Accuracy (%)

80 95 100 100

Overall
Accuracy (%)

93

Fig. 1. Principal component score plot for PC1, PC2 and PC3 of frozen-thawed tuna with histamine presence and absence.
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Fig. 2. Principal component score plot for PC1, PC2 and PC3 of frozen-thawed tuna with zero (0 mg/kg), low (<100 mg/kg), mid (≥100–200< mg/kg) and high
(≥200 mg/kg) histamine concentration.

Fig. 3. NIR spectra (mean) of frozen-thawed tuna without histamine contamination (grey line) and with histamine contamination (blue line) collected using bench-
top spectrometer (FOSS DS 2500). Grey areas show the most informative wavelengths selected by Random Forest on the training set (n = 73) for binary purpose.

Fig. 4. NIR spectra (mean) of frozen-thawed tuna without histamine contamination (grey line), with low (<100 mg/kg; light-blue line), mid (≥100–200< mg/kg;
blue line) and high (≥200 mg/kg; dark blue line) level of histamine contamination collected using bench-top spectrometer (FOSS DS 2500). Grey areas show the most
informative wavelengths selected by Random Forest on the training set (n = 73) for multiclass purpose.
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to observe that the chosen wavelengths not only traverse the VIS range
but also exhibit a more extensive expansion into the NIR spectrum. This
extension is particularly notable as it takes into consideration the
combination band region, where interactions among vibrational modes
manifest, enabling amore comprehensive investigation into the intricate
details of molecular structures due to the distinction among the four
histamine contamination levels.

In particular, this spectral range, which is of interest for the identi-
fication of the class of histamine, is associated with functional groups
such O-H combination band, alcohols or water (1065 nm); N-H or N-H2
(Amide/Protein; 1463 nm); N-H for secondary amine as (R-NH-R; 1465
nm); N-H combination band from primary amides (R-C=O – NH2; 1470
nm); N-H Amide with N-R group (Amide/protein; 1471 nm); N-H pri-
mary aromatic amine (Aromatic amine; 1472 nm); -SH, CH3 groups
(1740, 1744 and 1770 nm, respectively); and N-H group between 2040
and 2060 nm (Workman Jr. &Weyer, 2012). The variations observed in
the selection of significant wavelengths can likely be attributed to dis-
tinctions between the two approaches, which diverged in their objec-
tives and the number of samples per class. The binary approach
primarily focuses on distinguishing the presence or absence of histamine
in the samples, potentially prioritizing critical wavelengths specific to
this discrimination task. This constitutes a crucial element for the
innovation of food safety; indeed, the optimization of the targeted
spectral range permits to enhance a smooth and rapid screening process
to verify and ensure the freshness of marketed tuna in the first stages of
the supply chain. Moreover, in certain sampling planes where individual
samples containing over 50 ppm were coupled with organoleptic ana-
lyses for sample rejection, and are considered decomposed (e.g., FDA), a
simple model could be useful in the screening process (DeBeeR et al.,
2021).

Conversely, the multiclass approach is more complex, necessitating
the inclusion of a broader set of variables from the NIR spectrum to
assess histamine levels and their interaction with the food matrix. The
inclusion of extra wavelengths in this expanded set of variables leads to a
more efficient approach, providing greater benefits according to the
real-time analysis in product destination decisions based on the relevant
contamination level at each phase of the supply chain. Another
contributing factor may be the lower number of samples considered for
each class in the second approach, which could require a greater number
of variables to account for the differences observed among the samples.

Classification offers more straightforward data interpretation and
enhances data learning efficiency compared to prediction algorithms.
This distinction arises from the objective of categorizing data into spe-
cific groups rather than predicting precise numeric values. The binary
classification task aimed to distinguish between the absence and pres-
ence of histamine in frozen-thawed tuna fish. Specifically, the predictive
performance was assessed by comparing samples with no histamine (0
mg/kg) against samples with histamine (50–250 mg/kg), where the
latter category included all tuna samples with the three different levels
of histamine. For this specific binary classification task, the combined
SVM Linear model demonstrated exceptional performance during hold-
out validation. In particular, the model effectively differentiated sam-
ples based on the presence or absence of histamine content, achieving
the highest levels of accuracy, sensitivity, and specificity (100%).

Regarding the multiclass analysis, the 73 tuna samples of the training
set were reclassified based on the four levels of histamine contamination
(zero, 0 mg/kg; low, <100 mg/kg; mid, ≥100–200< mg/kg; and high,
≥200 mg/kg). Utilizing the significant RF wavelengths from the training
set, the results of the SVM Radial Grid supervised model achieved a
notable classification of 93%. However, complete classification was not
achieved, as some misclassification occurred. In detail, two samples
from the zero category were identified as belonging to the low-class with
the lowest level of contamination (<100 mg/kg).

This modelling approach proved suitable as a rapid screening
method in identifying the true positive tuna samples contaminated with
the highest levels of histamine, representing a valid approach for the

control of raw materials that enter the food chain, and allowing the
implementation of precautionary measures to prevent health risks
associated with the consumption of foods contaminated with histamine.
However, the results suggest that the developed model may require
further refinements or enhancements, as it appears to respond particu-
larly to samples with low levels of histamine contamination. Nonethe-
less, the capability to distinguish between samples with minimal to no
histamine and those with moderate to high levels remains highly valu-
able for FBOs. It aids them in avoiding the distribution of food products
to consumers that contain hazardous levels of histamine. It is important
to note that while EFSA identified a no observed adverse effect level
(NOAEL) of 50 mg/kg for histamine (EFSA, 2011), most histamine
poisonings are associated with products that exhibit abnormally high
histamine levels, often exceeding 200 mg/kg (EFSA, 2011). This un-
derscores the practical significance of this method in ensuring food
safety. In detail, with NIRS being an untargeted approach, the histamine
contamination could be associated with specific functional chemical
groups, highlighting the capability of NIRS to classify frozen-thawed
tuna according to the histamine amount. Specifically, this differentia-
tion may be attributed to the molecular phenotype variations among
histamine contaminations, reflecting their distinct expression according
to the interaction with histamine and organic molecules of the tuna
matrix. On the other hand, the untargeted nature of this approach is one
of its primary advantages. With a single instrument, FBOs could gather a
wealth of information regarding both the safety aspects (specifically
related to histamine) and the physicochemical characteristics of the
product (Khodabux et al., 2007; Li et al., 2020; Reis et al., 2017). It is
worth noting that several models have already been validated for the
latter purpose, further enhancing the versatility and value of this
method.

4. Conclusion

Due to the widespread consumption of fishery products, histamine
control is of utmost importance for both FBOs and food control au-
thorities in the decision-making process to prevent intoxication issues
resulting from histamine contamination. This study addresses the need
for a prompt detection of histamine contamination in frozen-thawed
tuna fish using an untargeted methodology. The VIS-NIR analysis re-
sults offer an accurate, non-destructive, rapid, and environmentally
friendly method for assessing the presence and level of histamine
contamination in frozen-thawed tuna. For the quantification prediction,
the MPLS using the full spectrum exhibited good (R2CV = 0.88) and
approximate (R2P = 0.74) predictive performance in estimating hista-
mine amount in frozen-thawed tuna. Conversely, the support vector
machine classification combined with wavelength selection approach
excelled in sample identification. Specifically, the binary classification
model accurately distinguished between the presence and absence of
histamine, achieving a flawless 100% accuracy. In the multiclass
approach, the model exhibited a commendable classification accuracy of
93%, successfully identifying classes with concentrations higher than
100 mg/kg. However, the multiclass model adopted a cautious
approach, as two samples from the zero class were identified as
belonging to the low class.To the best of our knowledge, this study
represents the first attempt to explore wavelength selection and
construct a classification model based on the presence/absence of his-
tamine, as well as its four distinct levels, in frozen-thawed tuna.
Therefore, the analyzed tuna dataset offers compelling evidence
regarding the efficacy of this approach when integrated with machine
learning for both qualitative and quantitative objectives. It enables a
prompt evaluation, proving particularly beneficial in scenarios
demanding quick decisions, such as food safety inspections and regu-
latory compliance checks, especially for perishable foods like fish. This
approach offers several advantagesas as it allows testing all samples
rather than just a representative subset, thus improving the sampling
plans or identifying contamination in lots with low prevalence.
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Moreover, the user-friendly technique, coupled with the ability to assess
quality, verifies the physical status of fish product (Regulation EU 2022/
2503) (European Commission, 2022), and ensure its safety in detecting
and quantifying histamine, emphasizes its significance. This approach is
valuable for both FBOs and Competent Authorities. In conclusion, this
approach offers rapid and straightforward results, making a positive
contribution to consumer safety and enhancing business operations in
the quality control of raw material as well as supplier qualification.
Further studies should be performed to evaluate different fish matrices
in order to determine the feasibility of near-infrared applications, the
presence of matrix interferences as well as matrix interactions with
artificial compounds.
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