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We consider couplings of electrically and magnetically charged sources to the maximally symmetric
nonlinear extension of Maxwell’s theory called ModMax. The aim is to reveal physical effects which
distinguish ModMax from Maxwell’s electrodynamics. We find that, in contrast to generic models of
nonlinear electrodynamics, Lienard-Wiechert fields induced by a moving electric or magnetic particle, or a
dyon, are exact solutions of the ModMax equations of motion. We then study whether and how ModMax
nonlinearity affects properties of electromagnetic interactions of charged objects, in particular the Lorentz
force, the Coulomb law, the Lienard-Wiechert fields, Dirac’s and Schwinger’s quantization of electric and
magnetic charges, and the Compton Effect. In passing we also present an alternative form of the ModMax
Lagrangian in terms of the coupling of Maxwell’s theory to axion-dilaton-like auxiliary scalar fields which
may be relevant for revealing the effective field theory origin of ModMax.
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I. INTRODUCTION

A nonlinear extension of free D ¼ 4 Maxwell’s electro-
dynamics, called ModMax, which preserves all the
symmetries of the latter, namely the four-dimensional
conformal symmetry and electric-magnetic duality, was
discovered in Ref. [1]. This is the unique specimen with
such properties among the variety of models of nonlinear
electrodynamics (see [2] for a review). This theory exhibits
interesting features, such as a peculiar form of birefrin-
gence [1,3] and, in spite of its intrinsic nonanalyticity, has
plane waves [1] and topologically nontrivial knotted null
electromagnetic field configurations [4] as exact solutions
in its Hamiltonian formulation. Properties of the ModMax
Lagrangian formulation were studied in more detail in [5,6]
and its Hamiltonian formulation in [7].
ModMax arises as a weak field limit of a generalized

two-parameter Born-Infeld theory [1,8]. Further general-
izations of these theories were discussed in [9,10]. Quite
remarkably, as was shown recently [11–13], both, ModMax
and the generalized Born-Infeld theory arise as different

TT̄-like deformations of Maxwell’s and the Born-Infeld
theory, and the generalized Born-Infeld theory is a TT̄
deformation of ModMax. Their supersymmetric extensions
were constructed in [14,15], and in [16] (super)conformal
higher-spin generalizations of ModMax were derived.
A possibility of linking the generalized Born-Infeld theory
to string theory by uncovering a stringlike nature of the
former was discussed in [17].
Effects of ModMax and its generalizations on properties

and thermodynamics of charged black holes (e.g., Taub-
NUT, Reissner-Nordström ones, and others) have been
studied in a number of papers [3,18–27]. The aim of this
article is to study how the ModMax nonlinearity affects
properties of interactions of electrically and magnetically
charged point particles, in particular the Lorentz force, the
Coulomb law, the Lienard-Wiechert fields, Dirac’s and
Schwinger’s quantization of electric and magnetic charges,
and the Compton effect. We will show that the Lienard-
Wiechert fields created by a moving electric or magnetic
particle, or a dyon, are exact solutions of the ModMax
equations of motion, while this is not the case for most of
nonlinear electrodynamics models. In passing we will also
present an alternative form of the ModMax Lagrangian in
terms of the coupling of Maxwell’s theory to axion-dilaton-
like auxiliary scalar fields which may be relevant for
revealing the effective field theory origin of ModMax.
We will show that for a certain choice of the definition of

physical electric and magnetic charges, which is associated
with an appropriate rescaling of the source-free ModMax
Lagrangian, and the standard minimal electromagnetic
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coupling of the charges, there is no difference in the
Coulomb law and Lorentz forces describing interactions
of two electric particles (one of which is a test particle) in
ModMax and Maxwell’s theory. The difference appears if
magnetic monopoles or dyons are present. On the other
hand, as is the case of vacuum birefringence of ModMax
[1,3], the Compton scattering differs from that in
Maxwell’s theory for any scaling of the ModMax
Lagrangian.
Notation and conventions.—We use the almost minus

signature of the Lorentz metric ðþ;−;−;−Þ and natural
units in which the speed of light c and the Planck constant ℏ
are set to one.

II. MODMAX ELECTRODYNAMICS

The Lagrangian density of ModMax has the following
form [1]

L ¼ cosh γSþ sinh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p

¼ cosh γ
2

ðE2 −B2Þ þ sinh γ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − B2Þ2 þ 4ðE ·BÞ2

q
;

ð2:1Þ

where

S¼−
1

4
FμνFμν¼1

2
ðE2−B2Þ; P¼−

1

4
FμνF̃μν¼E ·B

ð2:2Þ

are the two independent D ¼ 4 Lorentz invariants con-
structed from the electromagnetic field strength Fμν ¼
∂μAν − ∂νAμ and its Hodge dual F̃μν ¼ 1

2
εμνρλFρλ. Ei ¼

F0i is the electric three-vector field (i ¼ 1, 2, 3), Bi ¼ F̃0i is
the magnetic vector field, and γ is a dimensionless coupling
constant. The conditions of causality and unitarity require
this constant to be non-negative γ ≥ 0 [1]. These values of γ
also ensure that the Lagrangian density is a convex function
of the electric field Ei [1] and that its energy-momentum
tensor satisfies the weak, strong, and dominant energy
conditions [28]. Note that Maxwell’s electrodynamics is
not a weak field limit of ModMax because of conformal
invariance, but is recovered when the ModMax coupling
constant tends to zero γ → 0.
The Lagrangian field equations of the theory, accom-

panied by the Bianchi identities, are

∂μGμν ¼ cosh γ∂μFμν þ sinh γ∂μ

�
SFμν þ PF̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ P2
p

�
¼ 0;

∂μF̃μν ¼ 0; ð2:3Þ

where

Gμν≔−2
∂L
∂Fμν

¼ coshγFμνþsinhγ

�
SFμνþPF̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2þP2
p

�
: ð2:4Þ

The equations are nonlinear, but they linearize for field
configurations for which P ¼ cS with c being a constant.
So all the solutions of Maxwell’s equations with P ¼ cS
are solutions of ModMax theory.
One can notice that the equations of motion (2.3) are

nonanalytic and are not well defined when the electromag-
netic fields are null, i.e., the fields for which the Lorentz
scalar and pseudoscalar (2.2) are zero

S ¼ 0; P ¼ 0: ð2:5Þ

In the null-field limit the ambiguity of the values of the
scalar factors Sffiffiffiffiffiffiffiffiffiffi

S2þP2
p and Pffiffiffiffiffiffiffiffiffiffi

S2þP2
p in (2.3) range from −1

to þ1. This might be an issue, since the class of solutions
for which the electromagnetic fields are null, such as the
plane waves, are not well defined in the ModMax
Lagrangian formulation.1 However, somewhat surprisingly,
the Hamiltonian formulation of ModMax comes to the
rescue [1]. In the ModMax Hamiltonian formulation the
null electromagnatic fields are well defined. Among these
configurations, the plane waves [1] and topologically
nontrivial knotted electromagnetic fields [4] (generalizing
those of Maxwell’s theory [29]) are exact solutions of the
ModMax Hamiltonian equations (see [1,2,4] for more
details).

A. Conformal and duality invariance

The ModMax action I ¼ R
d4xLðS; PÞ is invariant under

the D ¼ 4 conformal transformations [1,8], which can be
easily checked for the rescaling of the coordinates and the
fields with a constant parameter b

xμ → bxμ; Aμ → b−1Aμ; Fμν → b−2Fμν: ð2:6Þ

The ModMax field equations and the Bianchi identities
(2.3) are invariant under electric-magnetic duality SOð2Þ
rotations of Gμν and F̃μν [1,5]

�
GμνðF0Þ
F̃0μν

�
¼

�
cos α sin α

− sin α cos α

��
GμνðFÞ
F̃μν

�
: ð2:7Þ

The duality invariance is ensured by the fact that the
ModMax Lagrangian density (2.1) satisfies a condition
which must hold for any duality-invariant nonlinear electro-
dynamics [30], namely

1Note, though, that the vacuum (in which Fμν ¼ 0) is a well-
defined solution of the ModMax Lagrangian field equations (2.3)
with zero energy-momentum tensor.
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FμνF̃μν −GμνG̃
μν ¼ 0 ⇒ L2

S −
2S
P

LSLP − L2
P ¼ 1; ð2:8Þ

where LS ¼ ∂L
∂S and LP ¼ ∂L

∂P.

III. ALTERNATIVE FORMS OF THE MODMAX
LAGRANGIAN

The ModMax Lagrangian density (2.1) contains the
square root function of S and P, which may hinder the
quantization of this theory. Using three auxiliary scalar
fields ψ1, ψ2, and ρ one can construct a Lagrangian density
which is classically equivalent to ModMax and has the
following analytic (polynomial) form2

L ¼ cosh γSþ sinh γðSψ1 þ Pψ2Þ −
1

2
ρ2ðψ2

1 þ ψ2
2 − 1Þ:

ð3:1Þ

The equations of motion for the scalar fields are

sinh γS ¼ ρ2ψ1; sinh γP ¼ ρ2ψ2 ð3:2Þ

and

ρðψ2
1 þ ψ2

2 − 1Þ ¼ 0 ð3:3Þ

which for ρ ≠ 0 reduces to

ðψ2
1 þ ψ2

2 − 1Þ ¼ 0: ð3:4Þ

For ρ ¼ 0, the values of ψ1 and ψ2 are not defined from
(3.3), while from (3.2) we get S ¼ 0 ¼ P, i.e., the electro-
magnetic fields are null. In this case the Lagrangian density
(3.1) reduces to

L ¼ ðcosh γ þ ψ1 sinh γÞSþ ðsinh γψ2ÞP ð3:5Þ

which is nothing but the Lagrangian density of the
Bialynicki-Birula theory describing all possible configura-
tions of the null electromagnetic fields (see [8,30,32] for
details about this theory).
Let us now proceed with the case of finite ρ. Substituting

the solution of equations (3.2) for ψ1 and ψ2 into (3.1) one
gets

L ¼ cosh γSþ 1

2
ðρ−2sinh2γðS2 þ P2Þ þ ρ2Þ: ð3:6Þ

Now the equation of motion of ρ gives

ρ4 ¼ sinh2γðS2 þ P2Þ: ð3:7Þ

Substituting this back into (3.6) we get the original
ModMax Lagrangian density (2.1).
Note that the choice of the square of the field ρ in the

Lagrangian densities (3.1) and (3.6) ensured that (3.7) has
the unique solution with the positive sign on its right-hand
side (provided that γ > 0). If instead of ρ2 we chose a
generic auxiliary field ρ̂, the corresponding field equation
would have two solutions ρ̂ ¼ � sinh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
, which

would correspond to the ModMax Lagrangian densities
with the plus and minus sign of sinh γ in (2.1), respectively.
Alternatively, the equations (3.3) and (3.2) can be solved

as follows:

ψ1 ¼ cosφ; ψ2 ¼ sinφ; ð3:8Þ

ρ2 ¼ S sinh γ
cosφ

¼ P sinh γ
sinφ

> 0: ð3:9Þ

Substituting the expressions for ψ1 and ψ2 as the functions
of the single auxiliary field φ into (3.1), one gets the
Lagrangian density of the following form:

L ¼ cosh γSþ sinh γðS cosφþ P sinφÞ: ð3:10Þ

To get back the original ModMax Lagrangian density (2.1)
one eliminates the auxiliary field φ by solving its equation
of motion and substitutes the solution back into Eq. (3.10)

Ssinφ−Pcosφ¼0⇒ tanφ¼P
S
⇒ sinφ¼� Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2þP2
p ;

cosφ ¼ � Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þP2

p : ð3:11Þ

Substituting into (3.10) the solution for φ in (3.11) with the
upper sign we recover again the ModMax Lagrangian
density (2.1). In the formulation with the three auxiliary
fields, the solution of (3.11) with the minus sign is excluded
by the positive definiteness of the expressions in (3.9).
If, however, one considers the Lagrangian density (3.10)

as an independent starting point without imposing the
conditions (3.9), then a priori the second solution in (3.11)
cannot be excluded and, upon substitution into (3.10),
results in the Lagrangian density

L ¼ cosh γS − sinh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
: ð3:12Þ

For γ > 0 this Lagrangian density has problems with
causality and unitarity, but is “healthy” for γ ≤ 0 and
coincides with (2.1) after the replacement γ → −γ. So,
starting with the Lagrangian density (3.10) without requir-
ing (3.9), upon elimination of the auxiliary field φ one gets
the ModMax Lagrangian with positive or negative coupling
constant γ.
In spite of the above issue which requires further study, it

is interesting to have a closer look at the Lagrangian density

2This is somewhat similar to the case of the Born-Infeld theory
in which the square root can be removed by introducing four real
auxiliary scalar fields [31].
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(3.10). Let us note that the coupling between the scalar and
electromagnetic fields described by the term S cosφþ
P sinφ was introduced in [33,34] as a building block of a
model which the authors called nonlinear axion-dilaton
electrodynamics. Here we would like to discuss a similarity
of the Lagrangian density (3.10) to that of Maxwell’s
theory coupled to an axion aðxÞ and a dilaton ϕðxÞ

L ¼ −
e−ϕ

4
FμνFμν þ a

4
FμνF̃μν ¼ e−ϕS − aP: ð3:13Þ

If in (3.10) we formally promote the coupling constant γ to
a scalar field γðxÞ we see that the Lagrangians (3.10) and
(3.13) are related to each other by the field redefinitions

a¼−sinhγ sinφ; e−ϕ¼ coshγþsinhγcosφ ð3:14Þ

whose inverse are

cosh γ ¼ eϕ

2
ðe−2ϕ þ a2 þ 1Þ;

sinφ ¼∓ 2ae−ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe−2ϕ þ a2 þ 1Þ2 − 4e−2ϕ

p : ð3:15Þ

As is well known, a and ϕ parametrize a hyperbolic
space SLð2; RÞ=SOð2Þ. So Eqs. (3.14) and (3.15) are just
the change of coordinates on SLð2; RÞ=SOð2Þ from ðγ;φÞ
to ða;ϕÞ and vice versa. More precisely the coordinates
ðγ;φÞ parametrize two copies of SLð2; RÞ=SOð2Þ since

the relations (3.14) are invariant under the map ðγ;φÞ →
ð−γ;φþ πÞ, which is a discrete symmetry of the
Lagrangian density (3.10).
Maxwell’s theory coupled to the axion and the dilaton

(3.13) is well known to possess the electric-magnetic
duality symmetry which is enhanced from SOð2Þ to
SLð2; RÞ [35,36]. This symmetry is of course preserved
by the field redefinitions (3.14). If γ is constant [as in
(3.10)], then SLð2; RÞ gets broken to SOð2Þ. The infini-
tesimal SOð2Þ duality transformation parametrized by α
acts on the scalar field ϕ as follows:

δφ ¼ 2αðcosh γ þ sinh γ cosφÞ ¼ 2αLS: ð3:16Þ

It is obtained from an SLð2; RÞ transformation of a and ϕ
which can be found e.g., in [35]. One can notice that φ
transforms under SOð2Þ nonlinearly and with a constant
shift which resembles a Goldstone behavior of this field.
The axion and the dilaton are dynamical fields whose

propagation is described by the SLð2; RÞ invariant
Lagrangian density

La;ϕ ¼ 1

2
∂μϕ∂

μϕþ e2ϕ

2
∂μa∂μa: ð3:17Þ

Substituting the expressions (3.14) into (3.17) one gets the
kinetic terms for the fields γ and φ which have the
following form:

Lγ;φ ¼ ðcosh 2γ þ sinh 2γ cosφÞ∂μγ∂μγ − 2sinh2γ sinφ∂μγ∂μφþ sinh2γ∂μφ∂μφ

2ðcosh γ þ sinh γ cosφÞ2 : ð3:18Þ

It would be of interest to figure out whether the
Lagrangian density (3.10) with constant γ and non-
dynamical φðxÞ can be regarded as a certain conformal
effective field theory limit of an axion-dilaton-coupled
Maxwell’s theory. We hope to address this problem
elsewhere.

IV. COUPLING OF MODMAX TO ELECTRIC
AND MAGNETIC CHARGES

In this section we will consider effects of the ModMax
nonlinearity on the electromagnetic interactions of charged
particles.

A. Electrically charged point particles

Consider first the minimal coupling of ModMax
to a point particle of mass me carrying an electric
charge e. The corresponding action has the following
form:

S½A;y�¼
Z

d4xL−
Z

d4xjνeAν−me

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dyμðτÞ
dτ

dyμðτÞ
dτ

r

ð4:1Þ

where L is the ModMax Lagrangian density (2.1), yμðτÞ is
the particle worldline parametrized by the parameter τ, and

jμe ¼ e
Z

dτ δð4Þðx − yðτÞÞ dy
μ

dτ
: ð4:2Þ

The electromagnetic field equations (2.3) now acquire a
source and take the following form:

∂μGμν ¼ cosh γ∂μFμν þ sinh γ∂μ

�
SFμν þ PF̃μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ P2
p

�
¼ jνe;

∂μF̃μν ¼ 0: ð4:3Þ
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The equations of motion obtained by the variation of (4.1)
with respect to the particle worldline yμðτÞ describe the
conventional Lorentz force acting on the electrically
charged particle

dpμ

dτ
¼ eFμνðyÞvν; ð4:4Þ

where

vμ ¼ dyμðτÞ
dτ

; pμ ¼ mvμffiffiffiffiffiffiffiffiffi
vνvν

p

are respectively the relativistic particle velocity and
momentum.
As was mentioned in Sec. II, the Eqs. (4.3) are nonlinear

in general; however, for some classes of fields they reduce
to Maxwell’s equations (modulo a rescaling). For instance,
in the case in which the electric and magnetic fields are
orthogonal i.e., satisfy P ¼ 0 (but S ≠ 0), the equations
become linear,

eγ
S
jSj∂μFμν ¼ jνe; ∂μF̃μν ¼ 0: ð4:5Þ

If electric and magnetic fields have the same strength, i.e.,
S ¼ 0 (but P ≠ 0) the equations also linearize

cosh γ∂μFμν ¼ jνe; ∂μF̃μν ¼ 0: ð4:6Þ

More generically we can study the case in which both S and
P are nonzero, but proportional to each other, such that
P ¼ cS with c being a constant. Then the equations of
motion again reduce to linear ones,

�
coshγþ S

jSj
sinhγffiffiffiffiffiffiffiffiffiffiffiffi
1þc2

p
�
∂μFμν¼ jνe; ∂μF̃μν¼0: ð4:7Þ

Thepossibility that the equations ofmotion are linearized for
certain configurations of electromagnetic fields is due to the
conformal invariance of the theory. This does not happen in
the nonconformal nonlinear electrodynamics such as the
Born-Infeld theory, unless S and P are constant. For latest
developments in the construction of solutions of duality-
symmetric nonlinear electrodynamics models see [37].

B. Lienard-Wiechert fields

Above we have seen that particular classes of electro-
magnetic fields satisfy equations of motion which are
similar to Maxwell ones, but with different effective
coupling constants between the fields and the charges.
Therefore, the solutions of Maxwell’s equations which
describe the fields satisfying P ¼ cS with c being a
constant, are also the solutions of ModMax theory. For
instance, the solutions of the Maxwell equations

∂μFμν ¼ jνe; ∂μF̃μν ¼ 0 ð4:8Þ

describing the fields generated by a moving electrically
charged point particle are called Lienard-Wiechert fields
(see e.g., [38]). Their 4-vector potential is

Aμ
LW ¼ e

4π

vμ

vνlν

����
s¼s0

ð4:9Þ

where s is the particle proper time parameter defined
by the relation ds2 ¼ ημνdyμðτÞdyνðτÞ, lν ¼ xν − yνðsÞ,
vνðsÞ ¼ dyνðsÞ

ds , and s0 is the solution of l2 ¼ 0 with the
condition x0 > y0ðs0Þ. The corresponding Lienard-
Wiechert field strength has the following form:

Fμν
LW ¼ e

4π

1

ðlρvρÞ3
½lμvν þ lμlλðvλaν − aλvνÞ

− ðμ ↔ νÞ�js¼s0 ≡ efμν; ∂μf̃
μν ¼ 0; ð4:10Þ

where aνðsÞ ¼ d2yνðsÞ
ds2 .

One can see that the Lienard-Wiechert fields satisfy the
condition P ¼ 0, since fμνf̃

μν ¼ 0. Note also that

fμνfμν ¼ −
1

8π2ðvμlμÞ4
< 0 ⇒ S > 0: ð4:11Þ

Therefore, we can easily adopt (4.10) to be a solution
of the ModMax equations (4.5) by making the following
rescaling:

Fμν
MMLW ¼ e−γefμν: ð4:12Þ

So a difference of ModMax and Maxwell theory is that the
electric charge in the Lienard-Wiechert fields gets effec-
tively rescaled by the ModMax coupling constant. Let us
elaborate on this difference in more detail by considering an
electric particle at rest. In Maxwell’s theory the fields
produced by this particle are the Coulomb ones. In the
ModMax theory the Coulomb fields have the same form,
but with the rescaled electric charge

E⃗ ¼ e−γ
e
4π

r⃗
jr⃗j3 ; B⃗ ¼ 0⃗; ð4:13Þ

where r⃗ ¼ ðx; y; zÞ is the position vector in space with the
particle placed at r⃗ ¼ 0. Therefore, from (4.4) it follows
that the Coulomb force acted on a test point particle of
charge q at the position r⃗0 is given by

F⃗ ¼ e−γ
eq
4π

r⃗0
jr⃗0j3

; ð4:14Þ

so that the permittivity of the vacuum differs from
Maxwell’s theory by the factor eγ.
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The Coulomb force is tested in experiments with a very
high precision, so forModMax to be a theory consistentwith
the experiment for electromagnetic fields in the vacuum its
coupling constant γ should be very small.3 On the other
hand, if one assumes thatModMaxmay serve as an effective
theory for the description of electromagnetic properties of
certain materials, there is a priori no restrictions on γ. For
instance, in somematerials the variation of the permittivity ϵ
and the permeability μ from their vacuum values can be
presumably modeled by a function of γ.
In Sec. V we will moreover show that the Coulomb law

in the ModMax theory can be made exactly the same as in
Maxwell’s electrodynamcs, i.e., the scale factor eγ can be
removed from the field equations (4.5) by rescaling the
source-free ModMax Lagrangian but keeping the minimal
coupling to the electric charges intact. This is equivalent
to an appropriate rescaling of the electric charge in the
minimal coupling term of (4.1). However, eγ factors will
reappear in the magnetic sector of the theory, as we
will see.

C. Magnetic monopoles

Let us now add to the action (4.1) terms that describe the
coupling of the electromagnetic field to a point particle
carrying a magnetic charge g (monopole) and having the
mass mg. To this end we will use the Dirac formulation in
which the electromagnetic potential of the monopole is
defined everywhere except for a line going from the
monopole to infinity (the so-called “Dirac’s string”) (see
e.g., [38,40] for a review). The presence of the magnetic
current along the particle trajectory zμðτÞ

jμg ¼ g
Z

dτ δð4Þðx − zðτÞÞ dz
μ

dτ
ð4:15Þ

modifies the Bianchi identity in (4.8) as follows:

∂μF̃μν ¼ jνg: ð4:16Þ

The solution of this equation is

Fμν ¼ ∂μAν − ∂νAμ − C̃μν; ð4:17Þ

where C̃μν is the Hodge dual of the antisymmetric tensor
distribution

CμνðxÞ ¼ −g
ZZ

dτdσ

�
∂wμ

∂τ

∂wν

∂σ
−
∂wν

∂τ

∂wμ

∂σ

�

× δð4Þðx − wðτ; σÞÞ ð4:18Þ

that has its support on the Dirac string worldsheet N
stemming from the monopole

wμðτ; σÞ ¼ zμðτÞ þ uμðτ; σÞ; uμðτ; 0Þ ¼ 0: ð4:19Þ
Using Stokes’s theorem one can directly check that

∂μCμν ¼ jνg ð4:20Þ
and hence Eq. (4.16) holds. The action describing the
coupling of ModMax to the electric and magnetic charges
has the following form:

I½A; y; z; u� ¼
Z

d4xL −
Z

d4x jμeAμ

−me

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dyμðτÞ
dτ

dyμðτÞ
dτ

r

−mg

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dzμðτÞ
dτ

dzμðτÞ
dτ

r
ð4:21Þ

where L is as in (2.1) but with Fμν defined in (4.17).
The action depends on the electromagnetic vector

potential, the trajectories of the charges, and the worldsheet
of the Dirac string. The latter must however be invisible,
i.e., the physical effects should not depend on the string
position in space.
We will now show, following [41], that the action (4.21)

changes under a different choice of the string worldsheet by
a term proportional to eg. The requirement of the inde-
pendence of the path integral of the quantum theory of the
Dirac string results in Dirac’s quantization condition for the
electric and magnetic charge. First, let us notice that
Eq. (4.20) holds for any string which stems from the
monopole. Let us take two strings whose worldsheets N 1

and N 2 described by Cμν
1 and Cμν

2 do not coincide. Since
N 1 andN 2 have the same boundary given by the worldline
of the monopole, the boundaryless worldsheet N 2 −N 1 is
the boundary of a three-dimensional manifold S. Poincaré
duality [42] then implies for the associated tensorial δ
functions the relations

Cμν
2 − Cμν

1 ¼ g∂ρDρμν ↔ N 2 −N 1 ¼ ∂S; ð4:22Þ
where Dρμν is the tensorial δ function with support on S
[analogous to (4.18)]. We thus have

C̃μν
2 − C̃μν

1 ¼ gð∂μD̃ν − ∂
νD̃μÞ; ð4:23Þ

where D̃μ ¼ 1
6
ενρσμDνρσ , i.e., the Hodge dual of the three-

tensorDρμν defined in (4.22). Since the field strength (4.17)
must be invariant under a change of Dirac strings, we
require the four-potential to transform as follows when
passing from one choice of the string to another:

Aμ → Aμ þ gD̃μ: ð4:24Þ
3A bound on the value of γ which one extracts from data of the

experiment PVLAS [39] on the vacuum birefringence (discussed
in Sec. VI) is γ ≤ 3 × 10−22 [2].
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Therefore, a finite change of the Dirac string only affects
the minimal-interaction term of the action (4.21) which
changes as follows (setting jμe ¼ ejμ):

ΔI ¼ Δ
�Z

d4x jμeAμ

�
¼ eg

Z
jμD̃μd4x: ð4:25Þ

According to the theory of “integer forms” [42], the integral
on the right-hand side is an integer n, counting the number
of intersections of the particle worldline with the three-
volume S.4 We thus have

ΔI ¼ eg n: ð4:26Þ

In the quantum theory the functional integrals always
contain a factor eiI. From (4.26) we see that eiI is Dirac
string independent if and only if

eg ¼ 2πn n ¼ 0;�1;�2;… ð4:27Þ

which is the famous Dirac quantization condition.

Let us now derive the equations of motion of AμðxÞ,
zμðτÞ and yμðτÞ from the variation of (4.21). Varying the
action with respect to Aμ we get the electromagnetic field
equations

∂μGμν ¼ jνe ð4:28Þ

accompanied by “Bianchi’s identities” sourced by the
magnetic current (4.16).
The monopole equation of motion is obtained by varying

the action with respect to zμðτÞ, taking into account the
dependence of wμ on zμ in (5.5)

dpμ
g

dτ
¼ gG̃μν dzν

dτ
: ð4:29Þ

Finally, let us show that the equation of motion of the
electrically charged particle derived from the action (4.21)
describes the Lorentz force (4.34) acting on the particle
with Fμν given in (4.17). To this end we perform the
variation of the relevant terms in (4.21) with respect to
yμðτÞ in the following way:

δy

�Z
jνeAνd4x −me

Z
dτ

�
¼

Z �
dpμ

e

dτ
− eð∂μAν − ∂

νAμÞvν
�
δyμdτ

¼
Z �

dpμ
e

dτ
− eð∂μAν − ∂

νAμ − C̃μνÞvν
�
δyμdτ − e

Z
C̃μνvνδyμdτ

¼
Z �

dpμ
e

dτ
− eFμνvν

�
δyμdτ − δy

�
1

2

Z
d4x C̃μνC

μν
e

�
ð4:30Þ

where Cμν
e is associated with a formal Dirac string world-

sheet attached to the electric current, namely

Cμν
e ðxÞ ¼ −e

ZZ
dτdσ

�
∂wμ

e

∂τ

∂wν
e

∂σ
−
∂wν

e

∂τ

∂wμ
e

∂σ

�

× δð4Þðx − weðτ; σÞÞ ð4:31Þ

and

wμðτ; σÞ ¼ yμðτÞ þ uμeðτ; σÞ; uμeðτ; 0Þ ¼ 0; ð4:32Þ

so that

∂μCμν ¼ jμe: ð4:33Þ

Note that the last term in (4.30), namely

1

2

Z
d4x C̃μνC

μν
e

is eg times the number of intersections between the Dirac
string worldsheets of the electric particle and the monopole.
Under infinitesimal variations of the electric particle world-
line it is zero.5

The equation of motion of the electrically charged
particle is thus

dpμ

dτ
¼ eFμνðyÞvν; ð4:34Þ

which is the standard Lorentz force (4.4) induced by the
field strength (4.17).

4In this derivation we put aside the issue of the Dirac veto
discussed in detail in [41].

5In the derivation described in (4.30) we have added and
subtracted the term with C̃μν and argued that one of the two terms
drops out from the final result. For the explanation of this
peculiarity see the more rigorous treatment of [41], tackling also
the issue of the Dirac veto.

MAXIMALLY SYMMETRIC NONLINEAR EXTENSION OF … PHYS. REV. D 106, 016009 (2022)

016009-7



D. ModMax coupled to dyons

In this section we consider an action that describes the ModMax theory coupled to an arbitrary system of dyons with
masses mr, world lines yr, and (electric and magnetic) charges ðer; grÞ, r ¼ 1; 2…; N. This action is

I½A; y� ¼
Z �

−
1

4
cosh γFμνFμν þ

1

4
sinh γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFμνFμνÞ2 þ ðFμνF̃μνÞ2

q
− AμJ

μ
e

�
d4x −

X
r

mr

Z
dsr: ð4:35Þ

In this case the field strength Fμν is still given by (4.17), but the δ functions associated with the r Dirac strings are now
given by

Cμν ¼
X
r

grC
μν
r ; Cμν

r ¼ −
ZZ

dτdσ

�
∂wμ

r

∂τ

∂wν
r

∂σ
−
∂wν

r

∂τ

∂wμ
r

∂σ

�
δð4Þðx − wrðτ; σÞÞ: ð4:36Þ

The total electric current is

Jμe ¼
X
r

erj
μ
r ; jμr ¼

Z
dτ δð4Þðx − zrðτÞÞ

dzμr
dτ

: ð4:37Þ

The electromagnetic field equations become

∂μGμν ¼ Jνe ∂μF̃μν ¼ Jνg ð4:38Þ

instead of (4.16) and (4.28), where Jμg ¼
P

r grj
μ
r and Gμν

was defined in (2.4). And the equations of motion of the
dyons are

dpμ
r

dτr
¼ ðerFμν þ grG̃

μνÞ dyrν
dτr

: ð4:39Þ

Note that the equations of motion (4.38) and (4.39) are
formally invariant under the duality rotations (2.7) if we
assume that the electric and magnetic charges of each dyon
get transformed accordingly

�
e0

g0

�
¼

�
cos α sin α

− sin α cos α

��
e

g

�
: ð4:40Þ

Under a different choice of the Dirac strings [see (4.23)]
accompanied by the shift of the four-vector potential

Cμν
1 → Cμν

2 ¼ Cμν
1 þ

X
r

grð∂μD̃ν
r − ∂

νD̃μ
rÞ;

Aμ → Aμ þ
X
r

grD̃
μ
r ; ð4:41Þ

the action changes as follows:

ΔI ¼ Δ
�Z

d4x JμeAμ

�
¼

X
r;s

ergs

Z
jrμD̃

μ
sd4x

¼
X
r;s

ergsNrs; Nrs ∈ N; ð4:42Þ

which leads to the Dirac-quantization conditions

ergs ¼ 2πnrs; nrs ¼ 0;�1;�2;…; ð4:43Þ

for each pair ðr; sÞ, that generalize the condition (4.27).
Notice that the conditions (4.43) violate the SOð2Þ

duality invariance (4.40). They are only invariant under
the discrete Z4 transformations generated by er → gr,
gr → −er (and the same for the s dyon) and nrs → −nsr.
To get an SOð2Þ-invariant charge quantization condition,
following [41] we add to the action (4.35) a term involving
only the Dirac strings, which does not change the equations
of motion of the electromagnetic field, nor those of the
dyons. The modified action takes the form

I0 ¼ I þ 1

4

Z X
r;s

erC̃
μν
r gsCsμν: ð4:44Þ

The dependence of the second term in (4.44) on the particle
trajectories is proportional to an integer multiple of π, and
hence does not contribute to infinitesimal variations of the
classical action with respect to zμrðτÞ.
Under the change of the choice of the Dirac strings

(4.41), with the use of (4.20) and (4.42), one finds that the
variation of the modified action is

ΔI0 ¼ ΔI −
1

2

X
r;s

ðergs þ esgrÞ
Z

jrμD̃
μ
sd4x

¼ 1

2

X
r;s

ðergs − esgrÞ
Z

jrμD̃
μ
sd4x

¼ 1

2

X
r;s

ðergs − esgrÞNrs: ð4:45Þ

Requiring that this variation does not change eiI in the
functional integrals we get the Schwinger quantization
condition

1

2
ðergs − esgrÞ ¼ 2πnrs; nrs ¼ 0;�1;�2;…; ð4:46Þ
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which is invariant under the SOð2Þ rotation (4.40) of the
charges.
But there is even more, as was shown in [41] for

Maxwell’s theory, by adding the same second term as in
(4.44) the resulting effective action for dyons obtained by
performing the functional integral over the gauge field Aμ is
invariant under SOð2Þ duality. We assume that also the
ModMax theory coupled to dyons and based on the
modified action (4.44), will eventually be invariant under
SOð2Þ duality.

E. The Lienard-Wiechert field of a single dyon

Let us now consider the coupling to ModMax of a single
dyon carrying the charges ðe; gÞ, i.e., we take r ¼ 1 in
(4.35)–(4.39). The electromagnetic field equations have
the same form as in (4.38). We will now show that for
the single dyon the equations (4.38) are satisfied by the
Lienard-Wiechert fields induced by the moving dyon. As
the ansatz we take the following generalization of the
Lienard-Wiechert field strength (4.12)

Fμν
dLW ¼ e−γefμν − gf̃μν; ð4:47Þ

where fμν has been defined in (4.10) and is such that

∂μfμν¼
Z

dτδð4Þðx−yðτÞÞdy
ν

dτ
; ∂μf̃

μν¼0; fμνf̃
μν¼0:

ð4:48Þ

So the field strength (4.47) is such that

∂μF
μν
dLW ¼ e−γje; ∂μF̃

μν
dLW ¼ jg: ð4:49Þ

So the second equation in (4.38) is also satisfied and it
remains to show that the above relations imply that the first
equation is satisfied as well. To this end we should compute
the form of Gμν in (2.4) for the ansatz (4.47). Using the last
equation in (4.48) we find that6

S ¼ −
1

4
ðe−2γe2 − g2Þfμνfμν;

P ¼ −
e−γ

2
egfμνfμν ⇒ P ¼ 2e−γeg

e−2γe2 − g2
S ð4:50Þ

and hence

Gμν ¼ efμν − e−γgf̃μν; ð4:51Þ

which satisfies the first equation in (4.38). Thus we have
proved that the Lienard-Wiechert fields created by the dyon
are indeed exact solutions of the ModMax equations of

motion. However, in general, linear combinations of
Lienard-Wiechert fields created by several dyons will
not be solutions of the ModMax nonlinear field equations.
The Lorentz force of the Lienard-Wiechert fields acting

on a test dyon of an electric charge q and a magnetic charge
r has the form [see (4.39) with r ¼ 1, and use (4.51) and
(4.47)]

dpμ

dτ
¼ ½e−γðqeþ rgÞfμν þ ðre − qgÞf̃μν�vν: ð4:52Þ

As has already been observed for the Coulomb force (4.14),
we see that in the “electric” part of the ModMax theory
[first term on the l.h.s. of (4.52)], the Lorentz force differs
from that in Maxwell’s theory by a factor of e−γ , while the
“magnetic” parts are the same [the second term in (4.52)].
We will now show that the electric parts of the Lorentz
forces in the two theories can be made equal by a suitable
rescaling of the ModMax Lagrangian. But this will lead to a
difference in the magnetic part of the Lorentz forces.

V. DIFFERENT SCALINGS OF THE MODMAX
LAGRANGIAN

Let us consider the ModMax Lagrangian rescaled with
the e−γ factor7

L ¼ e−γðcosh γSþ sinh γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 þ P2

p
Þ: ð5:1Þ

Then

Gμν ¼ −
2∂L
∂Fμν

¼ e−γ
��

cosh γ þ sinh γ
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2 þ S2
p

�
Fμν

þ
�
sinh γ

Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ S2

p
�
F̃μν

�
ð5:2Þ

and now for P ¼ 0 and S > 0 we have Gμν ¼ Fμν and the
field equations reduce to the linear Maxwell equations.
These have the standard Lienard-Wiechert fields (4.10) as
solutions, while the Lorentz force remains the same as in
(4.4). Therefore now the Coulomb law takes exactly the
same form as in Maxwell’s theory.
Let us note that the rescaling of the ModMax Lagrangian

results in the following modification of the duality-
invariance condition (2.8):

GμνG̃
μν ¼ e−2γFμνF̃μν ð5:3Þ

and so the duality transformation (2.7) now involves the
rotation of ðGμν; e−γF̃μνÞ instead of ðGμν; F̃μνÞ. Hence, if

6A recent result obtained in ModMax for a charged black hole
in a Rindler frame [27] is a particular case of the general solution
considered here.

7As “Note added” of [8], a different form of this Lagrangian
was somewhat implicitly present in [43] among a more general
class of conformally invariant models of nonlinear electrody-
namics.
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we want to couple the Lagrangian density (5.1) to a dyon in
such a way that the formal SOð2Þ duality invariance of the
equations of motion holds for the electric and magnetic
charges transformed as in (4.40), the field equations (4.38)
should be modified as follows:

∂μGμν ¼ jνe; e−γ∂μF̃μν ¼ jνg: ð5:4Þ

With this choice of the form of the second equation above,
the tensor distribution Cμν in (4.17) acquires the factor eγ in
comparison with (5.5), namely

CμνðxÞ ¼ −eγg
ZZ

dτdσ
�
∂wμ

∂τ

∂wν

∂σ
−
∂wν

∂τ

∂wμ

∂σ

�

× δð4Þðx − wðτ; σÞÞ: ð5:5Þ

The above rescalings then imply that the Lienard-Wiechert
fields of the dyon that satisfy (5.4) have the following form:

Fμν ¼ efμν − eγgf̃μν; Gμν ¼ efμν − e−γgf̃μν: ð5:6Þ

These fields produce the following Lorentz force on a test
dyon carrying the charges ðq; rÞ:

dpμ

dτ
¼ ½ðqeþ rgÞfμν þ eγðre − qgÞf̃μν�vν: ð5:7Þ

The “electric” part of the force is the same as in
Maxwell’s theory, while the “magnetic” part differs by
the factor of eγ. Note also that the Dirac quantization
condition (4.27) and the Schwinger quantization condition
(4.46) acquire now the factor of e−γ

qg ¼ 2πne−γ;
1

2
ðre − qgÞ ¼ 2πne−γ: ð5:8Þ

One can remove the factors of e−γ from the equations (5.4),
the magnetic part of (5.7) and the quantization conditions
(5.8) by redefining the physical values of the magnetic
charges g → e−γg and r → e−γr. Then the Lorentz force
takes the form

dpμ

dτ
¼ ½ðqeþ e−2γrgÞfμν þ ðre − qgÞf̃μν�vν; ð5:9Þ

which preserves Schwinger’s quantization condition (4.46).
In any case, from (5.7) and (5.9) it follows that via the

Lorentz force one can distinguish ModMax described by
the Lagrangian (5.1) from Maxwell’s theory only in the
presence of magnetic charges.8 This suggests that one looks
for other physical effects in which ModMax nonlinearity is

manifested independently of the rescaling of its Lagrangian
and charges. One of these effects is the birefringence of
light propagating in a uniform strong electromagnetic
background computed for ModMax in [1,3]. Another
one is the Compton effect which we will analyze in the
next section.

VI. COMPTON EFFECT IN MODMAX

The Compton effect is a well-known photon-electron
scattering process. It consists in the change of the wave-
length of the photon when scattered by a free electron
and manifests the corpuscular nature of light. In [44]
properties of Compton scattering were derived in a
generic theory of nonlinear electrodynamics (analytic in
S and P) in a uniform magnetic background and used to
study features of this effect in some concrete models,
such as the Heisenberg-Euler, Born-Infeld, and a logarith-
mic electrodynamics. Like in the case of birefringence,
switching on a strong uniform electromagnetic back-
ground allows one to distinguish the Compton effect in a
given nonlinear electrodynamics model from that in
Maxwell’s theory. In this section we will compute the
Compton effect in ModMax in the presence of a magnetic
background.
To this end we take the dispersion relations for the 4d

wave vector kμ ¼ ðω;kÞ of an electromagnetic wave
propagating in a uniform magnetic background B com-
puted for ModMax in [1]. The wave undergoes birefrin-
gence and splits in two rays. One of them propagates along
the standard relativistic light cone

ω2 ¼ jkj2; ð6:1Þ
while the other one propagates along a path characterized
by the following dispersion relation:

ω2 ¼ jkj2ðcos2β þ e−2γsin2βÞ; ð6:2Þ
where

cos β ¼ k · B
jkjjBj ð6:3Þ

and β is the angle between the direction of the light ray
and the background magnetic field. In this case (for
β ≠ 0 and γ > 0) the velocity of propagation v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos2β þ e−2γsin2βÞ

p
is less than the speed of light in

the vacuum (c ¼ 1).
We are interested in the Compton effect of the photon

obeying Eq. (6.2), because the Compton scattering of the
relativistic photon (6.1) will be the same as in Maxwell’s
theory. Since we are using natural units in which c ¼ 1 and
ℏ ¼ 1, the dispersion relation (6.2) is straightforwardly
promoted to the condition on the four-momentum pμ ¼
ðE;pÞ of the photon

8Note that the rescaling of the ModMax Lagrangian and
magnetic charges considered in this section also affects the
contribution of charges to the black hole solutions in general
relativity coupled to ModMax considered in [3,18–27].
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E2 ¼ jpj2ðcos2β þ e−2γsin2βÞ with cos β ¼ p ·B
jpjjBj :

ð6:4Þ

A. Compton effect in the magnetic field orthogonal
to the incoming photon momentum

As in [44] we first consider a magnetic field orthogonal to
the direction of the incoming photon. We assume that an
experimental setup is such that the electron can be consid-
ered at rest before scattering. Hence, the initial four-
momentum of the electron is pμ

e ¼ ðme; 0Þ, where me and
λe ¼ m−1

e are the electron mass and the Compton wave-
length, respectively. Upon scattering with the photon the
electron acquires the four-momentum pμ

e ¼ ðEe;peÞ. The
four-momentum of the incoming photon is pμ ¼ ðE;pÞ and
that of the outgoing one is p0μ ¼ ðE0;p0Þ. Because of our
choice of the orientation of B (p · B ¼ 0), from (6.4) we
have

E2 ¼ e−2γjpj2;
E02 ¼ jp0j2ðcos2β0 þ e−2γsin2β0Þ≡ jp0j2f2ðβ0; γÞ; ð6:5Þ

where β0 is the angle betweenB and themomentump0 of the
outgoing photon.
Conservation of the four-momentum implies that

E2
e ¼ ðEþm − E0Þ2;

p2
e ¼ ðp − p0Þ2 ¼ jpj2 þ jp0j2 − 2p · p0: ð6:6Þ

Remembering that E2
e − p2

e ¼ m2
e and using (6.5) we get

the following relation:

p2ðe−2γ − 1Þ þ p02ðf2 − 1Þ − 2pp0ðe−γf − cos θÞ
þ 2mðe−γp − p0fÞ ¼ 0; ð6:7Þ

where p ¼ jpj, p0 ¼ jp0j and θ is the angle between p
and p0.
For the wavelength λ ¼ 1=p and λ0 ¼ 1=p0 of the

incoming and outgoing photon the above equation takes
the following form:

λ02ðe−2γ − 1Þ þ λ2ðf2 − 1Þ − 2λλ0ðe−γf − cos θÞ

þ 2
λλ0

λe
ðe−γλ0 − λfÞ ¼ 0: ð6:8Þ

Solving this equation for positive λ0 we find

λ0 ¼ 1

2 − 2 sinh γðλe=λÞ
ffλþ λeðf − cos θÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½eγfλþ λeðf − eγ cos θÞ�2 þ 2eγλλeð1 − f2Þð1 − sinh γλe=λÞ

q
g: ð6:9Þ

One can see that for γ ¼ 0 we have f ¼ 1 and (6.9) reduces to the usual Compton scattering formula, as expected.
The above expression is rather complicated, but assuming that γ is small one can perform the Taylor expansion of (6.9) up

to the first order in γ which results in the following simpler expression:

λ0 − λ ¼ λeð1 − cos θÞ þ γλ

�
1 −

sin2β0

1þ λe=λð1 − cos θÞ
��

1þ
�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ: ð6:10Þ

In ModMax the effect differs from that in Maxwell’s theory by

Δλ≡ λ0 − λ − λeð1 − cos θÞ ¼ γλ

�
1 −

sin2β0

1þ λe=λð1 − cos θÞ
��

1þ
�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ

¼ γ

�
λcos2β0

1þ λe=λð1 − cos θÞ þ
λeð1 − cos θÞ

1þ λe=λð1 − cos θÞ
��

1þ
�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ: ð6:11Þ

We see that, with the chosen direction of the back-
ground magnetic field, in ModMax the difference of the
wavelengths of the incoming and outgoing photons is a bit
greater than that in Maxwell’s electrodynamics. This can be
attributed to two contributions. The first one is
proportional to cos2 β0 in (6.11) and is due to the refraction
in the chosen magnetic background which is such that

the effective velocity of the outgoing photon v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2β0 þ e−2γsin2β0

p
≥ e−γ [read from (6.5)] is in general

greater than that of the incoming one. This contribution
increases for larger wavelengths of the incoming photon.
And the second contribution is nonzero even in the case in
which β0 ¼ π=2 and the velocity does not change but is still
less than the vacuum speed of light (v ¼ e−γ)
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Δλ ¼ γ
λeð1 − cos θÞ

1þ λe=λð1 − cos θÞ

×

�
1þ

�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ:

When the trajectory of the scattered photon is along the
magnetic field ðβ0 ¼ 0Þ the relation (6.10) simplifies to

Δλ ¼ γλ

�
1þ

�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ: ð6:12Þ

B. Compton effect in the magnetic field parallel
to the incoming photon momentum

One can consider a different setup for studying the
Compton scattering by orienting the uniform magnetic field
B along the momentum p of the incoming photon. With
this configuration, indicating as before with θ the angle
between p and p0 [which is now the same as the angle
between B and p0 (θ ¼ β0)], we see that the energy-
momentum relations (6.4) take the following form:

E2 ¼ p2; E02 ¼ p02f2ðγ; θÞ where

f2ðγ; θÞ ¼ cos2θ þ e−2γsin2θ: ð6:13Þ
Imposing the conservation of the four-momentum and
proceeding as above we find the relation

λ0 − fλ −
λλe
2λ0

ð1 − f2Þ − λef þ λe cos θ ¼ 0: ð6:14Þ

Solving this equation for positive λ0 we get

λ0 ¼ 1

2
fλþ 1

2
λeðf − cos θÞ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2eðf − cos θÞ2 þ λ2f2 þ 2λλeð1 − f cos θÞ

q
:

ð6:15Þ
The Taylor expansion of this expression up to the first order
in γ gives

Δλ ¼ λ0 − λ − λeð1 − cos θÞ

¼ −γ
λsin2θ

1þ λe=λð1 − cos θÞ

×

�
1þ

�
λe
λ
þ λ2e
λ2

�
ð1 − cos θÞ

�
þOðγ2Þ: ð6:16Þ

In contrast to the case discussed in Sec. VI Awe see that the
difference of the wavelengths of outgoing and incoming
photons is smaller than in Maxwell’s electrodynamics. This
can be attributed to the fact that, as can be deduced from

(6.13), the effective velocity of the outgoing photon is less
than that of the incoming one due to the refraction in the
magnetic background. In general, the difference between
the effects in the two theories increases for larger wave-
lengths, but when the photon is recoiled, i.e., θ ¼ π, there is
no difference with Maxwell’s theory, because in this case
the incoming and the recoiled photons travel with the speed
of light in the vacuum.

VII. CONCLUSION

In this paper we have studied the interaction of electri-
cally and magnetically charged particles in the ModMax
theory. We have found that the Lienard-Wiechert fields
induced by a moving electric or magnetic particle, or a
dyon, are exact solutions of the ModMax equations of
motion (with appropriately rescaled charges). The Lorentz
force, and in particular the Coulomb law between two
electric particles, can be made the same as in Maxwell’s
theory by choosing a suitable definition of the physical
electric charges (which corresponds to a certain rescaling of
the ModMax Lagrangian). However, in the presence of
magnetic charges the Lorentz force in ModMax always
differs from that in Maxwell’s theory independently of the
rescaling of the charges. Different rescalings with functions
of the ModMax parameter γ result in different values of the
permittivity and the permeability inModMax in comparison
with their vacuum values in Maxwell’s theory. This can
presumably be used for mimicking properties of some
materials.We have then considered physical effects, namely
birefringence and the Compton scattering, which manifest
the discrepancy of ModMax from Maxwell’s theory inde-
pendently of the scaling of theModMax Lagrangian and the
definition of the physical charges. It will be of interest to
study other physical effects, e.g., light-by-light scattering
and the Hall effect as a measure of the fine structure constant
in this theory. We have also presented alternative forms of
the ModMax Lagrangian constructed with the use of
auxiliary scalar fields. These forms may be useful for
understanding the origin of ModMax as an effective field
theory and for its quantization.
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