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Introduction

We are experiencing a period of transition in cosmology. In the last 25 years, several cos-
mological experiments probing the cosmic microwave background (CMB) and the large-scale
structure (LSS) of the Universe have led to the establishment of the standard model of cosmol-
ogy, the ΛCDM model. This model fits with high accuracy a broad variety of cosmological
data and observables. It describes the Universe as a flat and expanding space-time governed
by the laws of General Relativity, the evolution of which is dictated by different constituents:
the ordinary baryonic matter (∼ 5%), the so-called cold dark matter (∼ 27%), and the cosmo-
logical constant Λ (∼ 68%). The ΛCDM model describes a Universe that is unknown at 95%
in the nature of its constituents; as a matter of fact, modern cosmology is facing the exciting
challenge of understanding the dark side of the Universe.

In spite of the preponderant dark sector that the ΛCDM model introduces to describe the
evolution of our Universe, it provides an accurate description of almost all cosmological mea-
surements. However, in recent years, the ΛCDM model started to show some tensions. Data
analysis performed on the CMB and on the late Universe, are well fitted by ΛCDM, neverthe-
less, the derived value of some parameters is not in agreement between the two observables. In
particular, there is a tension concerning the exact value of the expansion rate of the Universe
today, i.e. the Hubble constant H0, known as the H0 tension. Measurements coming from the
type Ia supernovae as standard candles infer a higher value of the Hubble constant with respect
to the CMB analysis. At the same time, the estimation of the total matter density and the ampli-
tude normalization of matter fluctuation inferred from weak lensing measurements of the late
Universe do not agree with analysis of the CMB data assuming ΛCDM.

Beyond the tensions, modern cosmology is facing the so called dark energy problem. The
cosmological constant Λ was introduced to describe the observed late-time acceleration of the
Universe, and even if this property of the space-time is in good agreement with the data, its
existence and especially its magnitude cannot be explained in a natural way. The discovery of
the late-time acceleration is the greatest breakthrough in cosmology. Currently, the major effort
of the cosmological scientific community is being spent to study its physical origin, methods to
measure and characterize this accelerated expansion, and to develop experiments to investigate
its effects.

In the next decades, an astonishing amount of data with unprecedented accuracy coming
from several experiments will be available, possibly unveiling the nature of its dark compo-
nents and new physics. In particular, measurements of CMB temperature and polarization,
gravitational wave observatories, underground dark matter and neutrino detectors, and large-
scale galaxy surveys are being conducted soon. One of the most relevant upcoming galaxy
surveys is Euclid, a mission of the European Space Agency. Euclid will be one of the widest
spectroscopic and photometric galaxy surveys, covering one-third of the sky area. It will mea-
sure galaxy spectra up to redshift z ∼ 2, mapping in detail significant contiguous fractions
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4 INTRODUCTION

of the observable Universe over an unprecedented large cosmic volume. Moreover, Euclid
will probe in detail the epoch at which the Universe started its accelerated expansion, possibly
shedding new light on the dark energy problem. The two main cosmological probes that will be
explored in the analysis of Euclid data are weak gravitational lensing and the baryonic acoustic
oscillation of galaxy clustering. The joint analysis of these two cosmological probes will put
unprecedented constraints on cosmological parameters.

Given the precision of upcoming cosmological analysis, the constraining power of the stan-
dard cosmological probes is close to reaching its maximum. For this reason, a way to go
further in understanding the physics acting in our Universe is to look for new independent cos-
mological probes. The combination of different probes can help to reduce the uncertainty on
cosmological parameters; moreover, the diversity between different methods may open new
observational and theoretical windows. Among the new emerging cosmological probes, in this
work we focus on cosmic voids that are particularly significant at the dawn of wide and deep
spectroscopic galaxy surveys, such as Euclid. Cosmic voids are large underdense regions in
the large-scale structure of the Universe, they span a large range of scales and constitute the
largest observable objects in the Universe. Their size and underdense peculiarity make them
a particularly suited probe in investigating the dark energy problem. Moreover, their sizes re-
quire surveys characterized by a very large volume to have significant statistics. To measure
and model various cosmic void properties, a detailed map of galaxy positions with good spatial
resolution is required. With these resources demanded, cosmic voids find in upcoming galaxy
surveys the environment in which all their power can be released. The Euclid mission is the
ideal galaxy survey for probing cosmology with cosmic voids. These cosmic void features and
their requirements from the observational point of view make the cosmological exploitation
of cosmic voids just at its beginning. Moreover, classical LSS clustering analyses focus on
overdensities and collapsed regions, whereas cosmic voids probe underdensities, so they may
provide a complementary point of view in studying the Universe, possibly shedding new light
on the open questions in cosmology and physics, motivating effort in theoretical studies and in
characterization for cosmological analysis.

In this thesis, we focus on the study of cosmic voids in the three-dimensional matter/galaxy
distribution considering their statistical properties and their cosmological exploitation in spec-
troscopic galaxy surveys. We will provide an unprecedented theoretical treatment, a detailed
study and modelization of their properties measured in N-body cosmological simulations, and
we forecast the constraining power of cosmic voids in the Euclid survey.

The thesis is organized as follows. In Chapter 1 we introduce the cosmological framework
in which the following research is developed. We review the dynamics and the properties of the
background homogeneous Universe, and the matter-energy components driving its evolution;
then we consider how to treat the evolution of inhomogeneities in the context of LSS, the
formation of dark matter halos and galaxies from the initial perturbed density field, and their
biased statistical properties with respect to matter fluctuations. We conclude by describing
the standard cosmological model, its immediate extensions and criticalities, representing the
starting point of the current research in cosmology.

In Chapter 2 we introduce our original work aimed at theoretically modeling the statisti-
cal properties of voids, halos, and their cross-correlations in the excursion-set framework. We
consider how voids and halos form and how their formation can be implemented within the
excursion-set framework, we introduce the equations describing proto-halos and proto-voids
formation in the initial density field and their spatial correlations, we show numerical method-
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ologies to solve them, and we present our original results.
In Chapter 3 we present our original analysis on the properties of cosmic voids measured

in large N-body cosmological simulations. This work aims to explore some of the observable
properties and statistics of cosmic voids as cosmological probes, investigating possible mod-
elizations and evaluating their sensitivity to the dark energy equation of state and to the total
neutrino mass. In particular, we introduce the N-body simulations and the void finding algo-
rithm used for this study, then we focus on the abundance of voids and on the void density
profile.

In Chapter 4 we present for the first time in the literature the forecast on cosmological pa-
rameters provided by the void abundance as a standalone probe in the Euclid spectroscopic
survey. We introduce the Euclid mission, the simulations used, we widely discuss the method-
ology adopted, and we present our results.
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Chapter 1

The cosmological framework

Cosmology is a branch of physics whose aim is the comprehension of the Universe as a whole.
Modern cosmology relies on General Relativity, in which the evolution of space-time is re-
lated to the matter-energy component embedded in it. A description of the whole Universe at
any scale is impossible from a practical point of view, so cosmology focuses on scales much
larger than the typical galaxy size, usually considering scales ≳ 1 Mpc = 3.086 × 1022 m.
Experiments in cosmology can be divided into two broad classes, Cosmic Microwave Back-
ground (CMB) experiments, i.e. the study of the light of the primordial plasma that traveled
through the Universe toward us, and Large-Scale Structure (LSS) experiments, i.e. the study
of the distribution of tracers, usually galaxies. This work focuses on cosmic voids as tracers of
the large-scale structure of the Universe, so even if the current Standard Cosmological Model
strongly depends on the progress performed in studying the CMB, we mainly focus on LSS.

In this chapter, we introduce the formalism and tools needed to describe the large-scale
structure of the Universe and the research presented in the following chapters. In Sect. 1.1
we introduce the background dynamics of the Universe and the matter-energy components; in
Sect. 1.2 the cosmological perturbation theory used to describe structure formation in the late
Universe; in Sect. 1.3 we introduce the formalism to describe the relation between the statistical
properties of collapsed object and of the underlying matter distribution; in Sect. 1.4 we discuss
the status of the Standard Cosmological Model.

1.1 The smooth expanding Universe

1.1.1 The FLRW metric
Observations and ideas concerning cosmological physics can be formalized with General Rela-
tivity, which is, to date, the fiducial theory of gravity and space-time. In the context of General
Relativity, space-time is a manifold on which we define a Lorentz four-dimensional metric gµν.
The invariant space-time length element is

ds2 = gµνdxµdxν , (1.1)

where the indices µ and ν range from 0 to 3. The first index is reserved for the time-like
coordinate, dx0 = dt, where we have considered natural units c = 1, and the last three for spatial
coordinates. We will work with the metric signature (− + ++) so that a 4-vector v is time-like
if vµvµ < 0 and space-like if vµvµ > 0. In a Lorentz frame, i.e. gµν = diag(−1, 1, 1, 1), the scalar
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10 CHAPTER 1. THE COSMOLOGICAL FRAMEWORK

product between two 4-vectors v and w thus is (v, w) = gµνvµwν = −v0w0 + v1w1 + v2w2 + v3w3.
Note also that the 4-velocity u of a (massive) particle satisfies −(u0)2 + |u|2 = −1 [1]. From the
metric we can derive all the properties describing the space-time, in particular, the Christoffel
symbols,

Γλµν =
1
2
gλσ

(︂
∂νgσµ + ∂µgνσ − ∂σgµν

)︂
, (1.2)

the Riemann tensor Rσ
λµν, the Ricci tensor Rµν and the scalar curvature R obtained by contrac-

tions of the Riemann tensor [2],

Rσ
λµν = ∂µΓ

σ
λν − ∂νΓ

σ
λµ + Γ

σ
ηµΓ

η
λν − Γ

σ
ηνΓ

η
λµ

Rµν = Rλ
λµν

R = gµνRµν .

(1.3)

The Standard Cosmological Model is built on the assumption of homogeneous and isotropic
spatial sections [3]. A homogeneous space is one that is translation invariant, or the same at
every point. An isotropic space is one that is rotationally invariant, or the same in every direc-
tion. A space which is everywhere isotropic is necessarily homogeneous, but the converse is
not true. These assumptions are not verified on small scales; nevertheless observations of the
CMB, counts of radio galaxies, galaxy distribution, and other experiments provide empirical
evidence that the Universe is homogeneous on scales above ∼ 100 Mpc [4]. More precisely, in
a space-time with a homogeneous and isotropic space part, there is a preferred geodesic time
coordinate t, called “cosmic time”, such that the 3-space slices of constant t are maximally sym-
metric spaces or, equivalently, spaces of constant curvature. The maximally symmetric 3-space
is characterized by a number n(n + 1)/2 of isometries, represented in the three-dimensional
space (n = 3), by 3 spatial translations and 3 spatial rotations, which, respectively, describe ho-
mogeneity and isotropy. The maximally symmetric 3-spaces have a constant curvature, since a
position dependent curvature would break the isotropy and homogeneity. Therefore, the metric
is of the form

ds2 = gµνdxµdxν = −dt2 + a2(t)γi jdxidx j , (1.4)

where the Latin indices run over the spatial dimensions. The scale factor a(t) is a function of
time, it is not fixed by symmetries that refer to the spatial part only. The geometric properties
of the spatial part depend on the constant curvature K, obtained from [3]

(3)Ri jkl = K(γi jγkl − γikγ jl) ⇒ (3)Ri j = 2Kγi j , (1.5)

where (3)Ri jkl is the 3-space Riemann tensor and (3)Ri j is its contraction, i.e. the Ricci tensor. It
is useful to express the spatial part in spherical coordinates,

ds2 = −dt2 + a2(t)
[︂
fK(r)dr2 + r2(dθ2 + sin2 θdϕ2)

]︂
, (1.6)

where fK(r) is a function of the radial coordinate r depending on the curvature. Calculating the
Ricci tensor of this metric and comparing it with Eq. (1.5), we find that fK(r) = 1/(1 − Kr2),
therefore,

ds2 = −dt2 + a2(t)
[︄

dr2

1 − Kr2 + r2(dθ2 + sin2 θdϕ2)
]︄
. (1.7)

This is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The curvature K defines
the geometrical properties of the 3-space isotropic and homogeneous metric, which can be the
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Euclidean space (K = 0), the hypersphere (K > 0) and the hyperbolic space (K < 0). The
curvature of the 3-spatial dimensions is used to classify the structure of FLRW universes, i.e.
the Universe is spatially flat if a slice of constant t is isometric to the Euclidean space, closed
if isometric to the hypersphere and open if isometric to the hyperbolic space. The geometrical
properties of flat, close and open space-time become more explicit rewriting the spatial part of
the metric as

γi jdxidx j = dχ2 + χ2(dθ2 + sin2 θdϕ2) , (1.8)

where χ is the radial coordinate measuring the length at constant time, and satisfies

r =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K−1/2 sin

[︂√
Kχ

]︂
K > 0

χ K = 0
K−1/2 sinh

[︂√
−Kχ

]︂
K < 0 .

(1.9)

It is often useful to consider the conformal FLRW metric. Two metric gµν and g̃µν are linked by
a conformal transformation if they can be written as

g̃µν = Ω(x)gµν such that Ω(x) > 0 . (1.10)

A conformal transformation locally modifies spatial lengths and times, nevertheless, the angles
and the causal structure are preserved. A simple conformal transformation can be performed
by factorizing the scale factor in Eq. (1.8),

ds2 = a2(t)
[︂
−dη2 + dχ2 + χ2

(︂
dθ2 + sin2 θdϕ2

)︂]︂
= a2(t)ds̃2 , (1.11)

where η is the conformal time defined as

η(t) =
∫︂ t

0

dt′

a(t′)
. (1.12)

In the conformal metric ds̃2 the spatial part is no longer multiplied by the scale factor a(t),
these space coordinates are called comoving coordinates. We recover the physical coordinates
by multiplying the comoving coordinates by the scale factor a(t). We will see later that the
scale factor can be fixed up to a normalization, so is usually set a(t0) = 1, where t0 corresponds
to the today epoch, in this way comoving and physical coordinates and lengths coincide in the
present time.

1.1.2 Particle propagation and cosmological redshift
Once we have a metric, we can consider the propagation of particles in it, which in the absence
of external forces follow the geodesic equations [3]. The geodesic equation can be easily
derived by minimizing the Lagrangian that describes the system.

Let us consider a photon propagating radially as seen by an observer, so the relevant part of
the metric Eq. (1.8) is

ds2 = −dt2 + a2(t)dχ2 = 0 , (1.13)

where ds2 = 0 is because photons follow null geodesics. This is equivalent to say that the
propagation of this photon is described by the Lagrangian

L =
1
2
gµν ẋµ ẋν , (1.14)
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where the dots denote a derivative with respect to an affine parameter λ. Therefore, the Euler-
Lagrange equation for χ reads

d
dλ
∂L

∂χ̇
−
∂L

∂χ
=

d
dλ
∂L

∂χ̇
= 0 , (1.15)

where we use the fact that L does not depend explicitly on χ, so ∂L/∂χ = 0. From the above
equations we can obtain the covariant momentum

pµ =
L

∂xµ̇
⇒

p0 =
L

∂ṫ
= −ṫ

pχ =
L

∂χ̇
= a2χ̇ ,

(1.16)

that is conserved along the photon trajectory. The energy observed by the observer is

Eo = −pµuµ , (1.17)

where uµ = (−1, 0, 0, 0) is the 4-velocity of the comoving observer and pµ = (p0, pχ, 0, 0) is the
photon covariant momentum. Moreover, from special relativity, Eo − po = 0, so

Eo = po = −p0u0 = ṫ = a(t)χ̇ =
pχ

a(t)
. (1.18)

This equation shows that the observed photon energy Eo and the observed photon momentum
po vary inversely with the scale factor a(t). Since the photon energy is proportional to the
inverse of the wavelength, Eo ∝ λ−1, it follows that λ ∝ a(t). Let us consider Ee and pe the
energy and momentum of the photon observed by a comoving observer at some initial time,
which can be the emitted time. It follows that

Eo

Ee
=

po

pe
=
λe

λo
=

a(te)
a(to)

. (1.19)

The observed wavelength appears to be shifted by a factor

z =
λo − λe

λe
=

a(to) − a(te)
a(te)

. (1.20)

If we consider that the observed time is the present, to = t0, it follows that a(to) = a(t0) = 1 and

z =
1
a
− 1 ⇐⇒ a =

1
1 − z

, (1.21)

where z is called redshift. As the Universe expands, the wavelength of a freely propagating
photon increases as physical distances increase with the expansion.

Eq. (1.20) describes how the redshift is actually measured. For example, in the observed
spectra of distant galaxies, we can recognize the emitting or absorbing lines of some compo-
nents. The most relevant is the Hα line, corresponding to a wavelength of λHα = 656.281 nm.
The observed wavelength would be larger due to the expansion and Eq. (1.20) provides us the
corresponding redshift. Note that if the light we observe is emitted by comoving observers,
the redshift is in a one-to-one map with the scale factor, epoch of the emission, time of the
emission, and the distance of the emitter, as we will see later.
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1.1.3 Dynamics of the homogeneous and isotropic Universe
Up to now, we have not considered General Relativity, since the properties of the FLRW metric
can be inferred from spatial symmetries only. However, General Relativity is necessary to
describe the dynamics of the Universe, described by the Einstein field equations,

Gµν = Rµν −
1
2
gµνR + Λgµν = 8πGTµν , (1.22)

where G is the Newtonian constant, Gµν is the Einstein tensor, Λ is the cosmological constant,
and Tµν is the energy-momentum tensor. The left-hand side of this equation, i.e. the Einstein
tensor, depends on the metric only and describes the space-time curvature and its evolution.
The right-hand side describes the matter and energy components that source the space-time
curvature and their evolution, sourced by the space-time curvature.

The energy-momentum tensor can be written in the generic form

Tµν = ρuµuν + P(gµν + uµuν) + πµν, (1.23)

where uµ is the fluid-4 velocity with respect to the observer, ρ is the energy density, including
both the rest mass and the internal energy, while P is the pressure, or isotropic stress. Note that
both ρ and P are defined in the fluid rest frame. The πµν term is the shear stress or anisotropic
stress, that is symmetric πµν = πνµ, transverse, uµπµν = 0, and traceless, πµµ = 0.

The isotropy and homogeneity of the Universe provide some constraints on the stress-
energy tensor. Since there is no preferred direction, the fluid 4-velocity is uµ = (−1, 0, 0, 0).
This means that the fluid is at rest with the comoving observers. Then the isotropy condi-
tion requires that the anisotropic stress must be null. It follows that the general form of the
stress-energy tensor with the FLRW symmetries has components

T00 = ρ, T0i = T0i = 0, Ti j = Pa2γi j . (1.24)

The T00 component is the total energy density, T0i is the i-component of the energy flux, Ti0

is the 3-momentum density, and Ti j is the flux of the fluid momentum pi through a surface
oriented in the j-direction.

To solve the Einstein equation, we compute the Einstein tensor Gµν from the FLRW metric.
The Einstein tensor is a symmetric two-index tensor, so it has a priori 10 degrees of freedom,
nevertheless the symmetries involved greatly simplify the task. In particular, the components
of the Ricci tensor and the scalar curvature are

R00 = 3
ä
a
, Ri0 = 0, Ri j =

(︄
ä
a
+ 2

K + ȧ2

a2

)︄
a2δi j, R = 6

(︄
ä
a
+ 2

K + ȧ2

a2

)︄
. (1.25)

Substituting these quantities in Eq. (1.22) remains only two independent equations,

H2 =
8πG

3
ρ +
Λ

3
−

K
a2 , (1.26)

ä
a
= −

4πG
3

(ρ + 3P) +
Λ

3
, (1.27)

that are the first and second Friedmann equations, respectively. In these equations, we intro-
duced the Hubble factor H = ȧ/a, which describes the expansion rate of the Universe at a given
epoch.
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Let us now consider the continuity equation ∇µT
µ
ν = 0. The spatial components identically

vanish, ∇µT µi = 0, due to the metricity of the connection in General Relativity, i.e. ∇µg
µ
ν = 0

[2, 3]. The time component is

∇µT µ0 = ∂µT µ0 + ΓµµνT
ν0 + Γ0

µνT
µν = 0 , (1.28)

where substituting Eq. (1.24) we obtain

ρ̇ + Γ
µ
µ0ρ + Γ

0
00ρ + Γ

0
i jT

i j = 0 . (1.29)

The only non-vanishing Christoffel symbol is Γ0
i j = Hgi j, from which

ρ̇ = −3H(ρ + P) , (1.30)

describing the evolution of the energy density. Note that this equation is not independent from
Eq. (1.26) and Eq. (1.27) and therefore can also be obtained by combining them. The terms
can be rearranged in order to express it in the form

d
dt

[︂
a3(t)ρ(t)

]︂
= P(t)

da3(t)
dt

, (1.31)

that reads as the adiabatic equation for a perfect fluid: the change in the “internal energy” of a
volume element equals the pressure times the change in the proper volume. This is the first law
of thermodynamics in the cosmological context.

To describe the evolution of the energy density of the components of the Universe, we have
to know the corresponding equation of state

P = P(ρ) , (1.32)

allowing to solve both the equation of the evolution of the energy density Eq. (1.30) and the
Friedmann equations Eqs. (1.26) and (1.27). Most of the fluids involved in cosmology can be
described by a linear equation of state,

P = wρ , (1.33)

so that

ρ(t) = ρ0a−3 exp
[︄
−3

∫︂ a

1

w(a′)
a′

da′
]︄
. (1.34)

Moreover, most of the components of the Universe have a constant equation of state, i.e. w(t) =
const, so

ρ(t) = ρ0a−3(w+1) . (1.35)

1.1.4 The constituents of the Universe

To solve the Friedmann equations, we must consider the matter and energy components of the
Universe and describe how they contribute to the total energy density budget.
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• Cold matter. In this component, we consider all the non-relativistic massive elements,
for which the momentum is negligible with respect to the mass, so they are pressureless,
i.e. P = 0 ⇒ w = 0. Cold matter is mainly composed of ordinary matter, i.e. baryons,
and cold dark matter. Additionally, non-relativistic massive neutrinos contribute to the
cold matter. The energy density evolution is given by Eq. (1.30) with w = 0,

ρ(a) = ρ0a−3 . (1.36)

This equation describes the mass conservation: if the comoving particles number is con-
served, the energy density is proportional to the particle number density, which scales as
a−3.

• Radiation. This component refers to relativistic elements, mainly represented by pho-
tons and relativistic neutrinos. The equation of state can be derived considering the
energy-momentum tensor of the electromagnetic field, which is given by

Tµν = FµλF λ
ν −

1
4
gµνFαβFαβ , (1.37)

where Fµν = ∂µAν − ∂νAµ is the Faraday tensor, in which Aµ is the 4-vector potential of
the electromagnetic field [5]. Since Fµν is antisymmetric, the corresponding stress energy
tensor is traceless,

T µ
µ = Fµ

λF λ
µ −

1
4

4FµνFµν = 0 , (1.38)

therefore, considering the components of the energy momentum tensor, Eq. (1.23), we
obtain

P =
ρ

3
. (1.39)

From this equation of state follows

ρ(a) = ρ0a−4 . (1.40)

This equation can be physically interpreted considering that the number of photons is
conserved, so their number density scales as ∝ a−3, while the observed energy of each
photon is proportional to the wavelength, which scales proportionally to a−1, therefore
the photon energy density scales as ∝ a−4.

• Curvature. Even if the curvature is a property of the space-time and not a matter-energy
field in the Universe, it can be treated as an energy component. In the first Friedmann
equation, Eq. (1.26), we can factorize the 8πG/3 term in such a way that we can consider

ρK = −
3

8πG
K
a2 . (1.41)

This means that the curvature acts like an energy component scaling as ∝ a−2, so the
corresponding equation of state is w = −1/3, according to comparison with the second
Friedmann equation Eq. (1.27).

• Cosmological constant. The cosmological constant is an intrinsic property of the space-
space time, nevertheless, in the Friedmann equations can be treated as an energy compo-
nent

ρΛ = −
Λ

8πG
. (1.42)
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It follows that we can consider that to the cosmological constant corresponds a constant
energy density, for which the equation of state is w = −1, as can be seen by comparing
the first and second Friedmann equations, Eq. (1.26) and Eq. (1.27). The fact that ρΛ
does not change as the Universe expands has a remarkable consequence: since the en-
ergy density of the other components decreases with the scale factor, the cosmological
constant becomes more dominant as time increases with respect to the other components.
In addition, the fact that it corresponds to a constant energy density despite the increasing
space volume, entails that the cosmological constant behaves like a vacuum energy.

The first Friedmann equation can now be written in the compact form

H2 =
8πG

3

∑︂
i

ρi(a) , (1.43)

where the index i labels the specie of matter-energy. We now introduce the critical density

ρc =
3H2

0

8πG
, (1.44)

where H0 is the Hubble rate at the present time. We can define the density parameters Ω(a) =
ρ(a)/ρc, so that the first Friedmann reads

H2(a) = H2
0

[︂
Ωra−4 + Ωma−3 + ΩKa−2 + ΩΛ

]︂
, (1.45)

in which we consider the matter-energy components described previously: the subscript r
stands for radiation, m for matter, K for curvature, Λ for the cosmological constant. We use
the notation Ωi to indicate a density parameter at present time, when the time dependence is
implicit we will write Ωi(a). Sometimes, when the notation would be ambiguous, we will add
subscript 0, i.e. Ωi,0, to stress the fact that a density parameter is considered at the present time.
From the definition of the density parameters follows

i≠K∑︂
i

Ωi + ΩK = 1 . (1.46)

Therefore, the Universe is open if Ω < 1, flat if Ω = 1 and closed if Ω > 1, where Ω =
∑︁i≠K

i Ωi

is the sum of all the density parameters except the curvature one.

1.1.5 Distances and horizons
Since the Universe is expanding, there is no unique way to define distances on our backward
light cone. The first distance notion we consider is the comoving distance: this distance does
not change with time for comoving observers, hence the name. The analytical expression
of the comoving distance between us and a source is given by the conformal time spent or,
equivalently, by the comoving distance traveled by a photon in the conformal space, described
by Eq. (1.11),

dη = dχ , (1.47)

it follows

χ =

∫︂ t0

t

dt′

a(t′)
=

∫︂ 1

a

da′

a′2H(a′)
=

∫︂ z

0

dz′

H(z′)
. (1.48)
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Another way to determine distances in astronomy is to measure the angle θ subtended by
an object of known physical size l. In the small angle limit, the distance to that object is

DA =
l
θ
. (1.49)

To compute the angular diameter distance in an expanding universe, we first note that the
comoving size of the object is χ = l/a. The comoving distance is the distance in the conformal
metric, and conformal transformations preserve angles, therefore the angle subtended is θ =
(l/a)/χ(a). Comparing with Eq. (1.48) we obtain

DA = aχ =
χ

1 + z
. (1.50)

Note that the angular diameter distance converges to the comoving distance at low redshift,
but decreases at higher redshift. This means that, at least in a flat universe, objects at higher
redshift appear larger than they would at a lower redshift.

A third way to infer distances in cosmology is to measure the flux from an object of known
luminosity. The observed flux F at distance DL from a source of known luminosity L is

F =
L

4πD2
L

, (1.51)

where DL is the luminous distance. The flux observed in comoving coordinate is

F =
L(χ)
4πχ2 , (1.52)

where L(χ) is the luminosity through a comoving spherical shell with radius χ(a). The lumi-
nosity is the the sum of photons passing through the comoving spherical shell per unit time
multiplied by their energy. In a fixed time interval, photons travel farther on the comoving grid
at early times than at late times, since the associated physical distance at early times is smaller.
Therefore, the number of photons crossing a shell in the fixed time interval will be lower today
than at emission by a factor of a. Similarly, the photons will be redshifted because of the ex-
pansion, so their energy is decreased by a factor a with respect to the emission. Therefore, the
energy per unit time passing through a comoving shell at distance χ(a) from the source will be
a factor of a2 lower than the luminosity at the source Le

F =
Lea2

4πχ2 , (1.53)

so
DL =

χ

a
= (1 + z)χ . (1.54)

Let consider the comoving distance that light could have traveled since t = 0, this is defined
by Eq. (1.48), where t = 0 corresponds to a = 0 and z → ∞. Causal physical processes
could not have occurred at distances greater than this distance, which is therefore called the
“comoving horizon” or the “particle horizon”. It is important to consider the causal horizon
at various epochs, because this tells us on which scale causal physical processes occur, so the
integration of Eq. (1.48) runs from t = 0 to the epoch considered, i.e. t0 is substituted by a
generic t. Another quantity related to causality is the Hubble radius, defined as

λH =
1

aH
. (1.55)

This quantity defines the physical scale in which processes can be in causal relation in a time
scale of H−1. As the comoving horizon, the Hubble radius depends on the epoch considered.
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1.2 The inhomogeneous Universe
Homogeneity and isotropy well describe our Universe at the largest scales; nevertheless, at
smaller scales we see that the Universe is far from being homogeneous and isotropic. To
describe the evolution of the Universe at different scales, in particular on the scales of inho-
mogeneity, it is possible to split the dynamics of the Universe into background and perturba-
tions. Moreover, the Standard Cosmological Model provides that the initial condition, i.e. the
post-inflationary scenario (see Sect. 1.4), is described by small amplitude perturbations. The
amplitude remains small enough to allow for a linear order treatment at least up to the CMB
epoch and further.

1.2.1 Perturbed metric
The most general perturbed FLRW metric can be written as

ds2 = a2(t)
{︂
−(1 + 2Ψ)dη2 + −2Bidηdxi +

[︂
(1 − 2Φ)γi j + hi j

]︂
dxidx j

}︂
, (1.56)

whereΨ, Φ, Bi, and h ji are all functions of time and space and include scalar, vector, and tensor
type perturbations. The hi j tensor is traceless, i.e. γi jhi j = 0. In linear order in perturbations, we
can treat the perturbation variables as 3-tensors and raise/lower their indices with γi j, and we
raise/lower components of 4-vectors with the 4-metric gµν. It is convenient to decompose the
spatial-like vectors Bi into its longitudinal, i.e. curl-free, and transverse, i.e. divergence-free,
pieces,

Bi = B∥i + B⊥i = ∂ib + B⊥i , (1.57)

where

∇ × B∥ = ϵ i jk∂ jB
∥

k = ϵ
i jk∂ j∂kb = 0

∇ · B⊥ = ∂iB⊥i = 0 ,
(1.58)

and ϵ i jk is the Levi-Civita tensor. The potential b is a spin 0 perturbation, while B⊥i is a spin 1
perturbation. The traceless spatial-like tensor hi j can be decomposed into

hi j = h⊤i j + h∥ji + h⊥i j , (1.59)

where h⊤i j is transverse, while the divergences of h∥i j and h⊥i j are longitudinal and transverse
vectors, respectively, i.e.

∂ih⊤i j = 0 and γi jh⊤i j = 0 , (1.60)

ϵ i jk∂ j∂
lh∥kl = 0 and γi jh∥i j = 0 , (1.61)

∂i∂ jh⊥i j = 0 , and γi jh⊥i j = 0 . (1.62)

Note that h∥i j is a scalar perturbation, while h⊥i j is a vector perturbation, and h⊤i j corresponds to
a genuine tensor perturbation. Its 2 independent degrees of freedom are the polarizations of
gravitational waves, so it corresponds to a massless spin-2 field [6].

In General Relativity, the notion of perturbation is ambiguous. There is no unique decom-
position of a variable, and it is always possible to perform arbitrary coordinate transformations.
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To define perturbations, we have to compare the actual perturbed space-timeM to a homoge-
neous and isotropic FLRW reference space-timeM. After that, the density perturbation at the
point xµ ∈ M is

δρ(xµ) = ρ(xµ)|M − ρ(xµ)|
M
. (1.63)

This introduces a gauge choice in the specific map betweenM andM. A gauge transformation
changes the map between M and M without changing the coordinate system, i.e. the chart.
This induces a coordinate change on M known as a gauge transformation, which can be viewed
as an infinitesimal coordinate change. Under this transformation, the coordinates of the point
xµ ∈ M change to x′µ = xµ + ϵµ. In the following, we will consider ϵµ as a small quantity, since
from the point of view of General Relativity, the cosmological perturbations are always small
quantities. It follows that a density perturbation after a gauge transformation can be expressed
as

δρ′(x′µ) = ρ′(x′µ) − ρ̄′(x′µ)
= ρ(xµ) − ρ̄′(x′µ) (ρ transforms as a scalar)

= ρ(xµ) − ρ̄(x′µ) (ρ̄ is the same onM andM)
= ρ(x′µ − ϵµ) − ρ̄(x′µ)
= ρ(x′µ) − ϵµ∂µρ(x′µ) − ρ̄(x′µ) .

(1.64)

Note that ρ̄ depends on time only, so

δρ′ = δρ − ϵµ∂µρ = δρ − ϵ
0∂0ρ . (1.65)

A gauge transformation involves ϵµ = (ϵ0, ϵi) that can be decomposed into two spin 0 pertur-
bations, i.e. ϵ0 and the spatial longitudinal part ϵ∥i , and one spin 1 perturbation, i.e. the spatial
transverse part ϵ⊥i . It follows that a gauge transformation involves four functions, so the 10
degrees of freedom of the perturbed metric gµν are reduced to 10 − 4 = 6 physical degrees of
freedom. Moreover, we showed that the six physical degrees of freedom decompose into two
spin 0, one spin 1 and one spin 2 perturbations. Since gauge transformations do not involve
spin 2 quantities, the h⊤i j perturbation term, i.e. gravitational waves, is gauge invariant, so it
remains the same under any redefinition of the background. All the other perturbation terms
depend on the gauge choice.

The two most popular choices are the synchronous gauge, which corresponds to Ψ = Bi =

0, and the conformal Newtonian or longitudinal gauge, in which only scalar degrees of freedom
are considered, therefore the corresponding metric is

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 − 2Φ)γi jdxidx j . (1.66)

In the following, we will consider the Newtonian gauge only. The name of this gauge choice
is due to the fact that in the non-relativistic limit, the perturbed time term takes the form of the
Poisson equation with a Newtonian gravitational potential Ψ. The Φ term is the perturbation to
the curvature of constant time hypersurfaces. In the absence of anisotropic stress Φ = Ψ [6].
After the radiation epoch, i.e. the cosmological epoch in which the radiation energy density
was the dominant term in the Friedmann equations, the anisotropic stress became negligible, so
Φ ≃ Ψ. We will not consider tensor and vector perturbations because the scalar perturbations
are the only ones that couple to matter perturbations and are the most important ones that couple
to photon perturbations as well [6].
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1.2.2 Newtonian approximation of structure formation
Let us consider the perturbed metric (Eq. (1.66)) explicitly recovering the light velocity c,

ds2 = −

(︄
1 + 2

Ψ

c2

)︄
c2dt2 + a2(t)

(︄
1 − 2

Φ

c2

)︄
γi jdxidx j . (1.67)

It can be seen that c simplifies in the Newtonian potential term Ψ, while it suppresses the
curvature term Φ. The Newtonian approximation is valid until Φ/c2 ≪ 1, so that this term can
be neglected. Let us consider the Poisson equation

∇2Ψ = 4πGρ̄δ , (1.68)

where delta is the density contrast defined as

δ(x) =
ρ(x) − ρ̄

ρ̄
. (1.69)

If we assume the spherical approximation, the potential can be written as Ψ = 4πGρδλ2, where
λ is the linear comoving scale of the system. Using the first Friedmann equation, Eq. (1.26),
we can write

Ψ ∼ λ2H2a2δ =⇒
Ψ

c2 ∼
λph

λH
δ , (1.70)

where λph = aλ is the physical scale of the system and λH = c/H is the comoving Hubble
radius. At present time λH ∼ 10 Gpc, and δ ≪ 1 on those scales. In LSS (non-relativistic)
analysis, the maximum relative distances considered are ∼ 100h−1Mpc, it follows that the
Newtonian approximation accurately describes the formation of structures.

Consider the dynamics of self-gravitating collisionless particles; each particle follows New-
ton’s law

r = ax r̈ = −∇rΨ (1.71)

with
∇2Ψ = 4πGρ . (1.72)

With the symbol ∇r we indicate the gradient in the physical coordinates, i.e. ∇r = ∂/∂r, while
∇ is the gradient in the comoving coordinates, ∇ = ∂/∂x. Note that the Poisson equation for
the homogeneous background provides the second Friedmann equation, Eq. (1.27). The time
derivative of the physical position r is

ṙ = ȧx + aẋ = Hr + v , (1.73)

where v is the physical velocity of the particle. We can now write the Lagrangian of the particle,

L′ =
m
2

(ȧx + aẋ)2 −mΨ(x, t) . (1.74)

The equations of motion are defined from the Lagrangian unless to a total time derivative of a
function [7]. Thus, we consider the canonical transformation

L = L′ −
dψ
dt

where ψ =
m
2

aȧx2 , (1.75)
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obtaining
L =

m
2

a2 ẋ2 − mϕ where ϕ = Ψ − Ψbg = Ψ +
m
2

aäx2 , (1.76)

in which the footnote bg indicates background quantities. The Poisson equation in comoving
coordinates is

∇2ϕ = 4πGa2ρ + 4aä = 4πGa2ρ̄δ. (1.77)

From the Lagrangian we can derive the canonical momentum and force

p =
∂L

∂ẋ
= ma2ẋ = mav

ṗ =
∂L

∂x
= −m∇xϕ = mȧv + mav̇ ,

(1.78)

therefore
dv
dt
+ Hv =

1
a
∇ϕ . (1.79)

Note that this equation is the Euler fluid equation.
The Liouville theorem states that in the absence of collisions, the phase-space density

f (x,p, t) is conserved, i.e.

d f (x,p, t) = 0 =⇒
∂ f
∂t
+ ẋi ∂ f

∂xi + ṗi ∂ f
∂pi = 0 , (1.80)

inserting the expression for velocity and momentum, we obtain the Vlasov equation [8]

∂ f
∂t
+

pi

ma2

∂ f
∂xi − m∂iϕ

∂ f
∂pi = 0 , (1.81)

which must be solved together with the Poisson equation for ϕ. The Vlasov equation can be
solved for any momentum of the phase-space distribution, in particular, the 0th order momen-
tum [8]

ρ(x, t) =
m
a3

∫︂
d3 p f (x,p, t) (1.82)

is the mass density; the normalized 1st moment

vi(x, t) =
1

ma

∫︁
d3 ppi f (x,p, t)∫︁
d3 p f (x,p, t)

(1.83)

is the stream velocity; the 2st moment provides the velocity dispersion tensor

Πi j(x, t) = ⟨viv j⟩−viv j =
1

m2a2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∫︁

d3 ppi p j f (x,p, t)∫︁
d3 p f (x,p, t)

∫︁
d3 ppi f (x,p, t)

∫︁
d3 pp j f (x,p, t)(︂∫︁

d3 p f (x,p, t)
)︂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1.84)

If we integrate the Vlasov equation (Eq. (1.81)) with respect to p, we obtain

∂

∂t

(︂
a3ρ

)︂
+

1
a2

∂

∂xi

∫︂
d3 ppi f (x,p, t) = 0 , (1.85)

that reduces to
∂ρ

∂t
+ 3

ȧ
a
ρ + ∂i(ρui) = 0 , (1.86)



22 CHAPTER 1. THE COSMOLOGICAL FRAMEWORK

where ui = ẋi. This is the continuity equation. Now, if we split the density into the background
part and the perturbation part, i.e. ρ(x, t) = ρ̄(t)(1 + δ(x, t)), and we consider the background
evolution of ρ̄ given by Eq. (1.30), we obtain

∂δ

∂t
+ ∂i

[︂
(1 + δ(x))ui

]︂
= 0 , (1.87)

Note that both δ and ui are first-order terms in perturbation, so the first-order continuity equation
is

∂δ

∂t
+ ∂iui = 0 . (1.88)

Now we consider the first moment of the Vlasov equation, multiplying Eq. (1.81) by p and then
integrating it. To perform the calculation, note that by integrating by parts we can simplify the
third term as ∫︂

d3 ppi ∂ f
∂p j = −δ

i
j

∫︂
d3 p f = δi

j ρ
a3

m
, (1.89)

where δi
j is the Kronecker delta. Therefore, the first moment of the Vlasov equation becomes

∂

∂t

∫︂
d3 ppi f +

1
ma2

∫︂
d3 p f∂ j

∫︂
d3 ppi p j f + a3ρ∂ jϕ = 0 . (1.90)

Then, substituting Eq. (1.82), Eq. (1.83), Eq. (1.84) and the continuity equation, we obtain [8]

∂vi

∂t
+

ȧ
a
vi +

1
a
v j∂

jvi = −
1
a
∂iϕ −

1
aρ
∂ j

(︂
ρΠi j

)︂
, (1.91)

that is the Euler equation. In the single stream regime, the velocity dispersion Πi j vanishes,
meaning that there is only one stream for each position. This is true before structure formation;
when a structure fully collapses, various streams cross each other, and the system reaches the
so called “shell crossing” event. Before shell crossing occurs, we can consider Πi j = 0, and if
we only consider first-order terms, Eq. (1.91) becomes

u̇i + 2
ȧ
a

ui = −
1
a2∂

iϕ . (1.92)

If we combine this equation with the time derivative of the continuity equation Eq. (1.88),
together with the Poisson equation, we obtain

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 . (1.93)

Note that, by Eq. (1.44), the last term can be rewritten as 3H2
0Ωma3/2. This equation describes

the linear growth of perturbations, and it allows for analytical solution for matter dominated,
radiation dominated, and ΛCDM universe. In the matter dominated universe, the solution of
the first Friedmann equation Eq. (1.26), gives a ∝ t2/3, H = 2/(3t), and ρ̄ = 1/(6πGt2). It
follows that Eq. (1.93) becomes

δ̈ +
4
3t
δ̇ −

2
3t2 δ = 0 . (1.94)

It is useful to write δ = δ(x, ti)D(t), since the linear growth equation shows that at the linear
level the time evolution of the density contrast field is decoupled from the position. The above
equation provides two solutions, the growing mode and the decaying mode,

D+(t) ∝ t3/2 ∝ a D−(t) ∝ t−1 ∝ H , (1.95)
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where D+(t) is commonly called “linear growth factor”, or simply “growth factor”. The grow-
ing mode of ΛCDM is [6]

D+(a) =
5Ωm

2
H(a)
H0

∫︂ a

0
da′

(︄
H0

a′H(a′)

)︄3

, (1.96)

while the solution for generic cosmology is numerical [9]. Note that the cosmological constant
suppresses the growth of perturbations. In some types of analysis, such as measurements of
redshift-space distortions or of the integrated Sachs-Wolfe effect, it is useful to use the loga-
rithmic derivative of the growth factor, called “growth rate”

f =
ln D(a)

ln a
. (1.97)

In ΛCDM this quantity is often effectively parameterized as [6]

f ≃ Ωγm (1.98)

with γ ≃ 0.55.

1.3 From dark matter to halos
The concordance cosmological model describes the Universe as dominated by dark compo-
nents, i.e. dark matter and dark energy, generally speaking. Cosmological perturbation theory
describes the statistical properties of the fluctuations of the matter density field. Neverthe-
less, observations measure the light emitted by galaxies, and cosmological analyses of galaxy
surveys attempt to extract the global properties of the Universe via the measured statistical
properties of galaxies. This is like inferring the shape of the continents on Earth (matter dis-
tribution on large scales) by looking at satellite pictures of city lights (the galaxies). Although
a correlation between the two distributions is present, the mapping between galaxies and the
underlying matter distribution is complex. This map is known as the galaxy bias.

Unfortunately, a complete theory of galaxy formation and evolution from first principles
does not exist yet. The physics of galaxy formation is awfully complicated, and to date it can
only be faced in an effective way. A first step towards understanding the mechanisms respon-
sible for biasing is to ignore the effects of all forces but gravity and study how the distribution
of (dark) matter clumps, within which galaxies should form, in relation to the underlying mass
distribution. Therefore, in this treatment, matter is considered as a non-collisional gas at any
scale, like cold dark matter, so we often exchange the terms of matter and dark matter, since
they are treated in the same way. This simplified model of galaxy formation can be tackled
both theoretically and via cosmological simulations that are particularly important in consider-
ing non-linearities at small scales. The objects we consider here are therefore dark matter halos
instead of galaxies. A dark matter halo is defined as a fully collapsed region in the matter dis-
tribution of the Universe, forming a virialized gravitationally bound object. There are various
methodologies to consider when an halo is formed, mainly based on thresholding: an halo is
considered formed in a position x, when the density contrast filtered on a given scale exceeds a
threshold value. We postpone a detailed description of dark matter halo formation in Chapter 2,
while in this section we introduce the relation between halos and matter distribution on larger
scale. In particular we consider how bias emerges in the one-point (Sect. 1.3.1 and Sect. 1.3.3)
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and two-point (Sect. 1.3.2) statistics of halos, how halos are considered in cosmological simu-
lations (Sect. 1.3.5), and how the relation between galaxies and dark matter halo is treated in
the literature (Sect. 1.3.6).

1.3.1 The halo mass function
The halo mass function is the differential number density of halos as a function of their mass.
Press & Schechter [10] presented an analytical model to compute the number density of self-
gravitating objects formed by gravitational instability in hierarchical scenarios of structure for-
mation with Gaussian initial conditions. The key assumption is that all density fluctuations
with linearly extrapolated density contrast above a critical threshold δc of order one undergo
gravitational collapse. More precisely, a region of volume V = 4πR3/3 in the initial density
field will collapse to form a halo of mass M = ρmV , when its linearly extrapolated density
contrast filtered on the scale R, δR, exceeds the critical threshold. In the treatment of halo bias
we will often consider the initial density field linearly evolved to the epoch of interest, this is
called Lagrangian space.

From the assumption of Gaussianity of the Lagrangian field, the fraction of fluctuations
belonging to halos of mass greater than M is given by the complementary error function

p(δR > δc) =
1√︁

2πσ2(R)

∫︂ ∞

δc

dδ exp
[︄
−

1
2

δ2

σ2(R)

]︄
=

1
2

erfc
[︄

δc
√

2σ(R)

]︄
. (1.99)

Note that the halo mass is in one-to-one correspondence with the filtering radius. In this equa-
tion σ(R) is the root-mean-square of linear smoothed density perturbations on the scale R,

σ2(R) =
⟨︂
δ2

R

⟩︂
=

∫︂
dk
2π2 k2P(k)W2(Rk) , (1.100)

where W(Rk) is the filtering kernel in Fourier space. The error function p(δR > δc) describes
the Lagrangian volume fraction of the total mass enclosed in halos greater than M, which can
be written as

F(> M) =
1
ρm

∫︂ ∞

M
dM′M′dnh(M′)

dM′
= p(δR > δc) , (1.101)

where nh(M) is the number density of halos with mass M and dnh/dM is the halo mass function.
We can obtain an explicit expression of the halo mass function by taking the derivative with
respect to the mass M of the above expression. The differential volume fraction of halos of
mass M is therefore

f (M) = −
dF(> M)

dM
= −

dp(δR > δc)
dM

, (1.102)

this quantity is usually called the “multiplicity function”, and the corresponding halo mass
function is

dnh

dM
=
ρm

M
f (M) . (1.103)

Note that this mass function does not appear to be properly normalized, since an integration
over all the mass included in halos only recovers half of the total mass,∫︂ ∞

0
dM′M′dnh(M′)

dM′
= −ρm

∫︂ ∞

M
dM′dp(δR > δc)

dM′

= −ρm
[︁
p(R = ∞) − p(R = 0)

]︁
=

1
2
ρm ,

(1.104)
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where the last equality is obtained from Eq. (1.99) considering that σ(R) → 0 for R → ∞ and
σ(R) → ∞ for R → 0. To resolve this issue, [10] introduced an ad hoc fudge factor of two
which corrects the normalization and leads to the Press-Schechter mass function,

dnh

dM
→ 2

dnh

dM
. (1.105)

Let us now express the multiplicity function by taking the derivative with respect to the mass
of Eq. (1.99) corrected by the fudge factor. Note that the multiplicity function defined in
Eq. (1.102) is a differential quantity, so to properly change the variable, we must consider
the differential form f (X) dX = f (M) dM, where X is the new generic variable. It follows that
the Press-Schechter halo mass function can be expressed as

dnh

dM
(δc) =

ρm

M
f (νc)

⃓⃓⃓⃓⃓
dνc

dM

⃓⃓⃓⃓⃓
(1.106)

with

f (νc) =

√︃
2
π

exp
[︄
−
ν2

c

2

]︄
, (1.107)

where νc = δc/σ(R) is the significance of the critical density in terms of the standard deviation
of matter fluctuations filtered on the scale R. This expression for the halo mass function has
a clear interpretation: the ρm/M term is the number density of fluctuations with mass M, the
multiplicity function is the fraction of the fluctuation of mass M that collapsed to form a halo,
the last factor is the Jacobian of the transformation from the variable of the multiplicity function
into the mass scale. Note that this formulation is general for any halo-mass function model,
where, for each of them, corresponds a specific multiplicity function.

From a theoretical point of view, the Press-Schechter theory is the first attempt to predict
the halo mass function from first principles, showing strength and weakness. The strength
of the Press-Schechter model is that it introduces all the features that a halo mass function
is expected to have. In particular, note that the halo mass function is fully determined by
few ingredients, i.e. the power spectrum of linear perturbations, the expansion history of the
Universe that determines the linear growth factor D(z) hidden in σ, responsible of the linear
extrapolation of the initial density field, the value of the threshold δc, the function form of the
filter kernel in computing σ(R), which fixes the exact relation between M and R. The weak
point is that this model is not accurate enough to encapsulate the physics of halo formation,
reflected by the fudge factor correcting the normalization, due to the so called cloud-in-cloud
problem [11, 12]. This term was introduced to describe the fact that, in the Press-Schechter
model, all the linearly extrapolated fluctuations exceeding the critical threshold would form a
halo. However, if a region that exceeds the threshold on a scale R1 is embedded in a forming
halo overdensity on a larger scale R2 > R1, the larger fluctuation will collapse to form one
single halo; consequently, the smaller fluctuation should not be taken into account in the halo
mass function. The cloud-in-cloud problem, and consequently the wrong normalization, is
solved within the excursion-set framework, that we widely discuss in Chapter 2.

Comparisons with simulations show that the Press-Schechter theory captures the general
behavior of the halo mass function, but it does not accurately reproduce the measurements. In
particular, the Press-Schechter halo mass function predicts a stronger high mass suppression
with respect to simulations. The original idea of thresholding the initial density field was
modified by Bond & Myers [13] considering the collapse of an ellipsoid and its impact in
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describing halo formation and, consequently, in predicting the halo mass function. Sheth &
Tormen [14] showed that the ellipsoidal collapse can be implemented effectively considering
two extra degrees of freedom in the halo mass function, obtaining [14, 15]

f (νc, p, q) =

√︃
2
π

[︄
1 +

1
2p
√
π
Γ

(︄
1
2
− p

)︄]︄−1 [︂
1 + (qν2

c)−p
]︂ √

qe−qν2
c/2 . (1.108)

In this expression, known as the Sheth-Tormen multiplicity function, p and q are not a priori
quantities, but they are fitted to the halo mass function measured in simulations; therefore, these
parameters generally depend on the precise definition of halos used in the simulation analysis.
In the original work, these values were fixed to p = 0.3 and q = 0.707 [14, 15] . Note that for
p = 0 and q = 1 we recover the Press-Schechter multiplicity function.

1.3.2 Halos bias from Lagrangian clustering

From perturbation theory, we can derive the two-point statistics of matter density fluctuations.
Considering the Press-Schechter arguments, we want to study the correlation of overdense
regions above a threshold value in Lagrangian space, that we call proto-halos. As before, we
consider that perturbations in Lagrangian space follow Gaussian statistics; therefore, the two-
point correlation function, or equivalently the power spectrum, encapsulates all the statistical
properties. The spatial distribution of the overdense regions is given by

p(q) = Θ(δR(q) − δc) , (1.109)

where q is the Lagrangian position, Θ(x) is the Heaviside step function, and the footnote R
denotes that the density contrast field is filtered on a Lagrangian scale R. Note that this spatial
density distribution is defined up to a normalization factor. The correlation of the overdense
regions is given by

1 + ξh(r) =
⟨Θ(δR(q) − δc)Θ(δR(q + r) − δc)⟩

⟨Θ(δR(q) − δc)⟩2
. (1.110)

the expected number density of overdense regions is the one computed in Press-Schechter
theory, so

⟨Θ(δR(q) − δc)⟩ =
1
2

erfc
(︄
νc
√

2

)︄
, (1.111)

while the numerator is

⟨Θ(δR(q) − δc)Θ(δR(q + r) − δc)⟩ =
det(C−1)

2π

∫︂ ∞

δc

∫︂ ∞

δc

d2y exp
(︄
−

1
2

y⊤C−1y
)︄

(1.112)

where y = (y1, y2) = (δR(q), δR(q + r)) and C is the correlation matrix that we express as

C = σ2(R)
(︄

1 wR(r)
wR(r) 1

)︄
, C−1 =

1
σ2(R)[1 − w2

r (R)]

(︄
1 −wR(r)

−wR(r) 1

)︄
, (1.113)
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where wR(r) = ξR(r)/σ2(R) and ξR(r) is the two-point matter correlation function in Lagrangian
space filtered on a scale R. Substituting ν = y/σ(R), we obtain

⟨Θ(δR(q) − δc)Θ(δR(q + r) − δc)⟩ =

=
1

2π
√︂

1 − w2
R(r)

∫︂ ∞

νc

∫︂ ∞

νc
dν1dν2 exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣−
(︂
ν1 − wR(r)ν2

)︂2

2
(︂
1 − w2

R(r)
)︂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ e−ν
2/2

=
1

2π

∫︂ ∞

νc
dν exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣− νc − wR(r)ν√︂
2
(︂
1 − w2

R(r)
)︂
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ e−ν

2/2 .

(1.114)

The correlation of overdensities of Eq. (1.110) can now be expressed as

1 + ξh(r) =

√︃
2
π

[︄
erfc

(︄
νc
√

2

)︄]︄−2 ∫︂ ∞

νc
dν exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣− νc − wR(r)ν√︂
2
(︂
1 − w2

R(r)
)︂
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ e−ν

2/2 . (1.115)

This computation was first performed by Kaiser [16] to explain the observed clustering prop-
erties of the Abell clusters. At large correlation distance wR(r) ≪ 1, and considering νc ≫ 1,
i.e. large masses, the argument of the complementary error function in the integration sign can
be approximated to (νc − wR(r))/

√
2, where we considered that only ν ∼ νc contributes to the

integration, due to the exponential suppression of the e−ν
2/2 term. This approximation allows

us to expand the complementary error function around the νc/
√

2 value,

erfc
[︄

1
√

2

(︂
νc − w(r)

)︂]︄
≃ erfc

[︄
νc
√

2

]︄
+

√︃
2
π
wR(r)νce−ν

2
c/2 . (1.116)

We then consider the Taylor expansion of the complementary error function in the limit for the
argument tending to infinity,

erfc(x) ≃ e−x2

(︄
1
√
πx
+

1
2
√
πx3
+

1
4
√
πx5
+ · · ·

)︄
x ≫ 1 , (1.117)

that allows us to write Eq. (1.115) as [16]

ξh(r) ≃
ν2

c

σ2(R)
ξR(r) . (1.118)

This first result shows that the clustering of overdensity regions is not the same as that of the
underlying matter distribution. Under the approximation used, i.e. r such that ξR(r) ≪ σ2(R)
and νc ≫ 1, the bias relation is linear. However, even in this simple thresholding model, the
relation between ξh(r) and ξR(r) is generally non-linear.

Let us now consider the general N-point correlation, Eq. (1.112) can be generalized as

pN(y) =
1

(2π)N/2
√

det(C)

∫︂ ∞

νc

dNy exp
(︄
−

1
2

y⊤C−1y
)︄
, (1.119)

where y = (y1, · · · , yN) with yi = ν(qi), therefore the covariance matrix can be written as
C = I +W, in components Ci j = δi j + wi j, where δi j is the Kronecker delta, wi j = 0 for i = j
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and wi j = w ji, since C is symmetric. Writing the N-dimensional Gaussian in Fourier space we
obtain

pN(y) =
1

(2π)N/2
√

det(C)

∫︂ ∞

νc

dNy

∫︂ ∞

−∞

dNk
(2π)N exp

(︄
−

1
2

k⊤Ck
)︄

e−ik·y . (1.120)

The Fourier transform allows to work with C instead of its inverse; consider now k⊤Ck/2 =
k2/2 +Q(k), where Q(k) = k⊤Wk/2. This can be transformed as an operator acting on e−ik·y:
Q(k)→ Q(i∂/∂y) so that it can be brought out of the k integral [17],

pN(y) =
1

(2π)N/2

∫︂ ∞

νc

dNy

∞∑︂
n=0

Qn
(︂
i ∂
∂y

)︂
n!

e−y2/2 . (1.121)

Let go back to the case N = 2, where w10 = w01 = wR(r), so that Q(k) = −wR(r)k1k2 and
Q(i∂/∂y) = wR(r)∂2/∂y1∂y2. The above equation reduces to

p2(y1, y2) =
1

2π

∫︂ ∞

νc

dy1dy2

∞∑︂
n=0

1
n!

(︄
wR(r)

∂

∂y1

∂

∂y2

)︄
e−y2/2 . (1.122)

This expression shows that the proto-halo correlation function can be expressed as a series,
where the n = 0 term is

1
2π

∫︂ ∞
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dy1dy2e−(y2
1+y

2
2)/2 =
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2
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(︄
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√

2

)︄]︄2

= ⟨Θ(δR(q) − δc)⟩2 , (1.123)

and the generic n > 0 is

1
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(1.124)

where Hn(x) is the Hermite polynomial of order n. The correlation function of overdensities
can now be written as the series

ξh(r) =
∞∑︂

n=1

(bL
n )2

n!
ξ2

R(r) , (1.125)

where

bL
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2
√
π

[︄
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(︄
νc
√

2

)︄]︄−1 2−ne−ν
2
c/2

σn(R)
Hn−1

(︄
νc
√

2

)︄
. (1.126)

The bL
n terms are the bias parameters, and the superscript L indicates that they refer to the

Lagrangian density field. Since fluctuations in matter density are small on large scales, ξ(r)→
0 as r → ∞. Moreover, the expansion of Eq. (1.125) quickly converges, so at large scale the
leading term accurately describe the correlation function of proto-halos,

ξh(r) = (bL
n )2ξ2

R(r) . (1.127)
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This shows that on large scales the correlation function of overdense regions in Lagrangian
space is directly proportional to the matter correlation function, and ξh(r) is enhanced with re-
spect to the matter correlation function by the factor (bL

n)2. This bias term becomes large for rare
high-mass overdensities, i.e. large Lagrangian patches that would collapse in massive halos,
for which ν ≫ 1 and σ(R)→ 0. This simple thresholding model, as the Press-Schechter model,
does not correctly describe low-mass objects due to the cloud-in-cloud problem, nevertheless,
it captures the idea of halo bias and its general behavior.

Consider the density contrast of proto-halos δh(q) = nr(q)/⟨nh⟩ − 1, note that if we express
it as the series expansion in δR

δh(q) = bL
1δ

L
R(q) +

1
2

bL
2

[︂
(δL

R(q))2 − σ2(R)
]︂
+ · · · , (1.128)

we obtain Eq. (1.125) from the correlation ⟨δh(q)δh(q + r)⟩. This series is known as the local
bias expansion, since δh(q) is a local function of the filtered matter density field δL

R, i.e. it
depends only on the field δL

R evaluated at the Lagrangian position q.

1.3.3 Peak-background split: from the halo mass function to halo bias

A model for the halo mass function of virialized structures automatically provides a way to
predict their large-scale clustering properties. This can be shown considering the variation of
the number density of halos with respect to the background matter density field. The basic idea
of the peak-background split (PBS) approach is to decompose the density field into the sum of
a background with a large coherence length and into a noisy component (peak) with a higher
amplitude and a small coherence length [16, 18]. The PBS simply states that a long-wavelength
density perturbation acts like a local modification of the background density, and it can be con-
sidered constant over the spatial scale within which halos form. In thresholding models for the
halo mass function, the effect of the background can be reabsorbed in the critical threshold for
halo formation. The PBS makes two assumptions in considering the halo number density: the
abundance of halos depends on the amplitude of the matter power spectrum only through the
variance of the matter density field σ2(M); the threshold of halo formation is unchanged by the
presence of a long-wavelength density perturbation, which allows us to derive the bias param-
eters from the mass function [19]. This second assumption is exact for a spherical symmetric
background, since it is a consequence of Birkhoff’s theorem [3], and it is a good approximation
for a background density field that varies on a length scale greater than the Lagrangian halo
size, so that large-scale tidal effects can be ignored.

Let us consider the expected density contrast of proto-halos in Lagrangian space,

δL
h (δL

bg) =
nh|δL

bg

nh|δL
bg=0
− 1 . (1.129)

An overdense density background increases the number of halos, since the halo formation
threshold can be considered as δc → δc − δ

L
bg, so

δL
h (δL

bg) =
nh(δc − δ

L
bg)

nh(δc)
− 1 . (1.130)
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From this expression, the peak-background split bias parameters in Lagrangian space can be
obtained from the derivative of the mean number density of halos with respect to δL

bg,

bL
N =

1
nh|δL

bg=0

∂Nnh

∂(δL
bg)N

⃓⃓⃓⃓⃓
⃓⃓
δL

bg=0

. (1.131)

Let now consider the halo mass function defined in Eq. (1.106), the above equation becomes

bL
N(M) =

(−1)N

σN(M)
1

f (νc)
dN f (νc)

dNνc
(1.132)

Applying this formula to the Press-Schechter and Sheth-Tormen multiplicity function, i.e.
Eq. (1.107) and Eq. (1.108) respectively, the linear and second-order Lagrangian bias parame-
ters read

bL
PS,1 =

ν2
c − 1
δc

bL
PS,2 =

ν2
c

δ2
c
(δ2

c − 3) ,
(1.133)

and

bL
ST,1 =

qν2
c − 1
δc

+
1
δc

2p
1 + (qνc)p

bL
ST,2 =

qνc

δ2
c

(qδ2
c − 3) +

2p
δ2

c

(2p + 2qν2
c − 1)

1 + (qν2
c)p .

(1.134)

The Sheth-Tormen PBS bias parameters provide a good fit with simulations.
To obtain these results, we introduced a background perturbation to the density contrast

field. This method can be generalized to describe also other bias terms, e.g. with respect to the
tidal field, higher derivative operators such as ∇2δ or (∇δ)2, and bias contributions induced by
primordial non-Gaussianity [19].

1.3.4 Eulerian biasing
Up to now, we stressed the fact that the results presented refer to the Lagrangian space, i.e.
the initial density field linearly evolved to the desired epoch. However, they do not account
for large-scale flows that modify halo positions at the observation time with respect to the
Lagrangian position. The fully non-linear evolved density field is called Eulerian space. A first
approximation to the final distribution of halos can be provided by considering that large-scale
regions in which halos are embedded will tend to collapse or expand depending on whether
they are overdense or underdense. Assuming that the dynamics of the background field is in
the single-stream regime, and considering that by definition we refer to proto-halos in the initial
conditions as the exact progenitors of halos identified in the evolved field, the number of halos
within a background patch of initial volume VL and final volume V is conserved,

(1 + δL
h )VL = (1 + δh)V , (1.135)
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while the mass conservation entails

(1 + δbg)V = VL . (1.136)

This last equality depends on the fact that the density contrast of the background patch in
the initial condition is negligible by construction. Note that the quantities labeled with the
superscript L refer to Lagrangian space, while the others refer to Eulerian space. Combining
the two above equations, we obtain

1 + δh = (1 + δL
h )(1 + δbg) . (1.137)

If the background field is small, it does not undergo a full non-linear evolution, and its value can
be interchanged with the corresponding one in linear evolution, i.e. its Lagrangian counterpart,
δbg ≃ δ

L
gb, where |δgb| ≪ 1. Eq. (1.137) becomes now

δh ≃ δ
L
h |δL

bg
+ δL

bg ≃ (1 + bL
1 ) δL

bg , (1.138)

where we have truncated the Lagrangian bias expansion of δL
h |δL

bg
to the first term because |δL

bg| ≪

1. It follows that the first term of Eulerian bias is

bE
1 = 1 + bL

1 . (1.139)

Large-scale perturbations are small at any epoch of the Universe, therefore, the halo correla-
tion function at r ≪ 1 is well approximated considering the bias expansion truncated to the
first term, as in Eq. (1.127). Nevertheless, this is not the case around the baryonic acoustic
oscillation peak, i.e. r ∼ 100h−1Mpc, where non-linearities and non-locality become important
[20, 21].

To extend the calculation of the Eulerian bias parameters to any order, we need the map
between the Lagrangian and Eulerian background density field. As discussed at the beginning
of this subsection, spherical symmetry provides an accurate approximation to describe the evo-
lution of (non-extreme) background density fields, moreover the derivation of this map for the
matter-dominated universe is analytical and its solution is almost cosmology independent (see
Sect. 2.1). The spherical symmetry allows to expand the Lagrangian to Eulerian map and its
inverse in the series [22–24]

δ =

∞∑︂
k=1

aKδ
k
L where a1 = 1, a2 =

17
21
, a3 =
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, · · ·
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∞∑︂
k=1

aI
Kδ

k where aI
1 = 1, aI

2 = −
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21
, aI

3 =
2815
3969

, · · · .

(1.140)

Inserting this map in Eq. (1.137) we obtain the Eulerian bias parameters [23, 25],

bE
1 = 1 + bL

1

bE
2 = 2(1 + aI

2)b+L
1 + bL

2

bE
3 = 6(aI

2 + aI
3)bL

1 + 3(1 + 2aI
2)bL

2 + bL
3

... .

(1.141)
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These bias parameters depend on the halo mass. For practical purposes, it is more conve-
nient to work with the effective bias parameters, i.e. the bias values convolved with the halo
mass function in a given mass range I = (Mmin,Mmax), usually Mmax → ∞,

beff,n =

∫︂
I
dM

dnh(M)
dM

bn(M)∫︂
I
dM

dnh(M)
dM

, (1.142)

where bn(M) is the nth bias parameter of the expansion, which can be Lagrangian or Eulerian.

1.3.5 Halos in N-body cosmological simulations
N-body simulations are numerical solvers of the non-collisional Vlasov equation given an ini-
tial phase space distribution. The continuous matter density field is discretized in particles with
a specific mass, for which the initial position and velocity are known [see 26, for and extensive
review]. Dark-matter halos coincide with the densest sites of the matter density field which do
not have well-determined boundaries. The mass distribution surrounding their cores is continu-
ous, for this reason there is always some degree of arbitrariness in defining the halo boundaries
and its total mass. In numerical simulations, halos are identified using algorithms that implic-
itly also provide a definition of dark-matter halo. Historically, void finder algorithms can be
divided into two classes [see 27, for a review].

The first class of halo finders shares the philosophy of the spherical overdensity (SO) al-
gorithm [10, 28]. Procedurally, this class of algorithms is composed of two main steps. First,
it identifies a density maximum after having smoothed the mass distribution, then it finds the
radius R∆ of the sphere centered in it which encloses a fixed density contrast ∆SO. The halo is
formed by the particles contained within this sphere. The density contrast is a free parameter
and usually is fixed to ∼ 200 because this is the density contrast of a virialized object that
undergoes to a quasi-spherical collapse in a matter dominated universe (see Sect. 2.1).

The second class of algorithms includes the ones that share the same philosophy of the
friends-of-friends algorithm [FoF, 29–31]. This algorithm starts from a particle and finds all its
neighbors within a fixed distance L, called friends. After that, it looks for friends of friends and
keep iterating until no new friends are found. Each class of friends forms a halo. The length
scale L is given in units of the mean particle separation (mps), i.e. L = l × mps. Thus, FoF
halos correspond to regions for which the local density contrast is δ(x) ≥ l−3. Usually l = 0.2,
corresponding to δ(x) ≥ 125. Note that ∆SO is the density contrast integrated over the sphere
with radius R∆, while in this case we consider the estimation of the local density contrast in
each point of the FoF halo, i.e. δ(x) such that x ∈ halo.

These two algorithms remain the foundation of nearly every halo finder code: they often
involve at least one phase where either particles are linked together, like in FoF, or shells are
grown to collect particles, as in SO [27]. The FoF method, i.e. connecting and linking together
particles that are close to each other, has also been extended in the 6D phase space [see e.g
ROCKSTAR, 32], with an appropriate metric definition. These original halo finders have been
improved at the expense of simplicity by combining them with algorithms that purge the halos
by removing gravitationally unbound particles and algorithms that find substructures. Which
halo finder is more appropriate to use depends on the particular application. In general, the
FoF method better matches the mass distribution of halos with no symmetries, but tends to
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spuriously link together multiple halos that are bridged by thin threads of particles. On the
other hand, SO algorithms are expected to better correlate with galaxy clusters, especially for
high ∆SO values, i.e. ∼ 400 − 500. In any case, it is not obvious how to compare simulated
halos with observations. Moreover, it is worth noting that the comparison between theoretical
predictions of halo clustering and simulations assumes a halo finding algorithm with an implicit
halo definition. In particular, the Sheth-Tormen multiplicity function is fitted to reproduce the
FoF halos, while the Tinker et al. [33] model is calibrated to reproduce the SO halo mass
function.

1.3.6 Galaxies in halos

As anticipated in the introduction to this section, the physics acting in galaxy formation is
extremely complex, and a complete predictive theory of galaxy formation has not been estab-
lished to date; nevertheless, it is possible to consider empirical connection between galaxies
and halos, based on both observation and simulations. With the advent of wider and deeper
redshift surveys, it became evident that there is no one-to-one connection between observed
galaxies and halos described theoretically and with simulations. More specifically, the galaxy
two-point correlation function at small scales is different in shape from the expected one of
dark matter halos [34, 35]. This led to the development of the halo model paradigm, where an
entire set of galaxies is associated with single dark-matter halos [36–41] [see 42, for a review].
Mathematically, multiple occupancy is described by the “halo occupation distribution” (HOD),
which in its simplest version provides the probability P(Ng|M, z) of finding Ng galaxies in a
halo of mass M at redshift z. Adopting the halo model paradigm [42], contributions to the
clustering of galaxies can be split into two terms: the two-halo term, which considers correla-
tions between galaxies belonging to different halos, and the one-halo term, considering galaxies
of the same hosting halo. Moreover, in standard HOD models [41], galaxies are assumed to
follow the matter distribution within their host dark matter halo, directly measured if we are
dealing with cosmological simulation, or by using a universal mean mass profile, such as the
Navarro-Frenk-White [NFW, 43]. Galaxies are generally divided into “central” and “satellite”.
Every halo hosting galaxies has one central galaxy, sitting in the halo barycenter or around it;
all the other galaxies, if present, are satellite galaxies.

The galaxy number density can therefore be written as

ng =

∫︂ ∞

M
dM

dnh(M)
dM

⟨︁
Nc(M)

⟩︁ [︁
1 +

⟨︁
Ns(M)

⟩︁]︁
, (1.143)

where the term ⟨Nc(M)⟩ [1 + ⟨Ns(M)⟩] is a convenient way to express the expected number of
galaxies hosted by a halo of mass M. Note that Nc can be 0 or 1, so if no central galaxy is
present, satellite galaxies are not considered, whereas the number of hosted galaxies is 1 + Ns.
It follows that the effective bias of galaxies can be written as

bg,eff =
1
ng

∫︂ ∞

M
dM

dnh(M)
dM

⟨Nc(M)⟩ [1 + ⟨Ns(M)⟩] bh(M) , (1.144)

where bh(M) is the halo bias.
Usually, the central galaxy term Nc is described to follow a step-like function, while Ns is

considered to follow a Poisson statistic, for which the expectation value can be parameterized
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by a power law with logarithmic slope [44],

⟨Ns(M)⟩ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(︄

M − M0

M′
1

)︄α
M ≥ M0

0 M < M0 ,

(1.145)

where M0 is the cut-off value of the halo mass, M′
1 is the characteristic mass of halos hosting

one satellite, and usually α ∼ 1. Then, to fix the model parameters, the mean number density
and the projected correlation function of a HOD sample of N-body simulations are measured
and compared with the data [45].

In recent years the HOD model has been expanded in the parameters and physical quantities
on which galaxy distribution depends [see e.g. 46, and references therein]; moreover other
methodologies has been explored to describe the connection between halos and galaxies, such
as the sub-halo abundance matching techniques [SHAM, 47, 48].

1.4 The concordance model
Standard Cosmological Model

PΦ(k) = As

(︄
k
k0

)︄ns−1

k3 (1.146)

where
⟨Φ(k)Φ∗(k′)⟩ = (2π)3δ(3)(k − k′)PΦ(k) , (1.147)

and δ(3)(x) is the 3-dimensional Dirac delta. In analyses concerning the late Universe, As is
exchanged with the σ8 parameter, i.e. the root mean square of density fluctuations in spheres
of 8 h−1Mpc linearly evolved at present time. Both As and σ8 are normalizations of the power
spectrum, the first one fixes the amplitude of the initial conditions, the other fixes the amplitude
of perturbation at present time, so they are in one-to-one correspondence. In the Standard
Cosmological Model, inflation also causes a flat space-time, i.e. ΩK = 0, within a scale of the
order of the comoving horizon before the inflation, which according to CMB measurements
[49] is larger than the present comoving horizon.

Other parameters are the baryon energy density at present time Ωb and the total matter
density at present time Ωm, which corresponds to the sum on the energy density of baryons and
cold dark matter, and more generally of each non-relativistic component. Another parameter
is the Hubble constant at present time H0. For historical reasons, H0 is usually written as
H0 = 100 h Km s−1Mpc−1 = 3.236 × 10−18h s−1 = 2.133 × 10−33h eVℏ, and it is common to
factorize the h parameter from observed quantities, such as masses and distances. The last
parameter considered in this six-parameter model is the optical depth τ, due to CMB photons
undergoing Compton scattering during their cosmic journey towards us. This last parameter
does not explicitly enter into the ΛCDM model, but is needed to fit the ΛCDM model in CMB
analyses [50]. Moreover, in principle, it can be derived by the other parameters, nevertheless,
its physical origin depends on complex astrophysical processes difficult to model. Beyond
these six parameters, the radiation density Ωr is crucial to predict the power spectrum of matter
fluctuation, nevertheless its measure is so precise that it is considered fixed. All the parameters
and quantities present in the Standard Cosmological Model can be derived from these 6+1
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parameters. The term ΛCDM indicates the dark components considered in the model that are
the cold, i.e. non-relativistic, dark matter and the cosmological constant Λ, that describes the
late time acceleration of the Universe.

Although the Standard Model of Cosmology is quite successful, there are still several pos-
sible extensions, open questions, and discrepancies. An extension of ΛCDM widely explored
in the literature is to consider the sum of neutrinos mass eigenvalues

∑︁
mν as a free parame-

ter [51–53]. To date, cosmology has provided the tightest constraints on the sum of neutrino
masses [50].

The most important question that may extend the ΛCDM model concerns what causes
the observed late time acceleration. In the Standard Cosmological Model this is described
with the cosmological constant, i.e. an intrinsic property of the space-time, which value is
fitted on data. However, there are other possible explanations. The first one is the vacuum
energy of fundamental interactions, that can be described by an effective cosmological constant.
Its value computed considering the known interactions is in tremendous disagreement with
respect to observations; despite this discrepancy, a correct computation should consider all
the particles and interactions existing in nature, which are unknown [see 54, for an extensive
review]. Alternatively, the late time acceleration can be explored considering the presence
of an exotic field minimally coupled with gravity, dubbed dark energy [see e.g 55, 56], or
modifications of General Relativity, i.e. theories of modified gravity [57]. If the cosmological
constant provides a time-independent equation of state w = −1, the equation of state of dark
energy changes with time, as in inflationary cosmology. This equation of state can be effectively
parameterized in order to measure various classes of dark energy models. The two most used
parameterizations are the constant equation of state, with w = const < −1/3 and the Chevallier–
Polarski–Linder (CPL) equation of state [58, 59],

wCPL(z) = w0 + wa(1 − a) = w0 + wa
z

z + 1
, (1.148)

that considers a linear dependence with respect to the scale factor a.
The Standard Cosmological Model presents now a day also some discrepancies when it

is used to measure early or late cosmological probes. The two main tensions refer to the H0

and the Ωm–σ8 problems. The Hubble constant H0 determined from early-Universe probes
(CMB) appears to be in significant disagreement with respect to the estimates provided by late-
Universe experiments. Even if many analyses addressed whether this might be due to some
systematics hidden in either measurement, at the current status, this seems disfavored [60–70].
At the same time, differences also arise in the estimate of matter energy density Ωm and of σ8

often summarized with the quantity S 8 = σ8
√
Ωm/0.3 [71–83]. In the case these discrepancies

are not attributable to some problems with the data, they may break the ΛCDM model.
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Chapter 2

Cosmic voids in the excursion-set
framework

The excursion-set mechanism offers a powerful framework for studying the statistical proper-
ties of halos and cosmic voids depending only on the linear statistical properties of matter. The
fundamental idea of the excursion-set formalism relies on studying the statistical properties of
halos or voids in the initial density field, which are consequently mapped in the fully nonlinear
evolved density field, as introduced in Sect. 1.3. In the literature, the excursion-set framework
is widely used to describe the clustering properties of dark-matter halos, whereas the treatment
of cosmic voids is just at its beginning. In this chapter, based on unpublished work [84], we
present an unprecedented modelization of void statistics in the excursion-set formalism, with
the aim of describing from first principles the abundance of voids and their clustering proper-
ties, focusing on the void-void and void-halo correlation functions. Even if the treatment of
voids in the excursion-set framework shows many analogies with respect to the halo case, it
presents some important differences that we widely discuss. A theoretical description of void
statistics from first principles translates into a predictive cosmological observable. This is par-
ticularly interesting considering that Large-Scale Structure (LSS) experiments are dominated
by the analysis of the clustering properties of collapsed structures. In this picture, cosmic voids
can provide a new point of view to tackle the open question of modern cosmology [85, 86]

This chapter is organized as follows. We present in detail void and halo formation (Sect. 2.1)
and discuss the theoretical foundation of the excursion-set mechanism (Sect. 2.2); then we de-
rive the stochastic field equations to describe halo and void formation and their statistical prop-
erties, providing some analytical solutions (Sect. 2.3); then we discuss numerical methods to
solve them for the general case (Sect. 2.4.1); then we discuss the numerical results describing
the clustering properties of voids and halos (Sect. 2.5).

2.1 The spherical model for halo and voids formation
The simplest dynamical model that approximately describes the formation of self-gravitating
structures is the evolution of a spherical fluctuation in a homogeneous background, also known
as the top-hat model. This toy model allows to give an insight on the gravitational evolution of
a density perturbation from the linear to the strongly nonlinear regime. In order to study ana-
lytically the fully nonlinear gravitational evolution, spherical symmetry is assumed to reduce
the degrees of freedom of the differential equations involved. Moreover, this simple model is

37



38 CHAPTER 2. COSMIC VOIDS IN THE EXCURSION-SET FRAMEWORK

used to link the linear statistical properties of the matter density field with the formation of the
LSS.

In General Relativity, Birkhoff’s theorem [3, 87] states that a spherically symmetric region
of space-time evolves independently of the surrounding space-time. This implies that for a
generic spherically symmetric density perturbation with a monotonic density behavior, each
concentric shell remains concentric and evolves like a closed (∆ > 0) or open (∆ < 0) FLRW
universe, regardless of the background and outer shells. This allows us to treat the perturbation
with the so called “separate-universe” approach [88–91]. Note that the Poission, continuity,
and Euler equations introduced in Sect. 1.2.2, i.e. Eq. (1.77), Eq. (1.87), and Eq. (1.91), can
be solved to describe the same problem. Nevertheless, the “separate-universe” approach is
obtained with General Relativity without any approximation, so the result is more general and
exact at any scale. We do not address possible extensions of this problem in modified theories
of gravity, for which the treatment depends on the specific model assumed, or alternatively
requires effective parameterizations [see e.g. 92–95]

Consider a spherically symmetric density perturbation with monotone density contrast with
initial physical radius Ri and initial average density ∆i = 3R−3

i

∫︁ Ri

0
δ(r)r2dr at some early time

ti ≪ 1/H0, such that ∆i = ∆(ti) ≪ 1. The density enclosed within Ri is ρ(ti)(1 + ∆i) and the
mass is

M =
4πR3

i

3
ρ(ti)(1 + ∆i) . (2.1)

We assume a ΛCDM cosmology throughout; nevertheless, generalizations to include a dark
energy component instead of a cosmological constant and a non-zero background curvature are
straightforward [91]. The fluctuation evolves as a FLRW universe with cosmological parame-
ters shifted with respect to the ones of the background, accordingly to ∆(t) quantity,

ρ̃m(t) = ρm(1 + ∆(t)) , (2.2)

where t denotes the proper time of the comoving observer in the background universe. The
other cosmological parameters are modified accordingly within the fluctuation

Ω̃mh̃
2
= Ωmh2 , Ω̃Λh̃

2
= ΩΛh2 , Λ̃ = Λ , (2.3)

where the tilde denotes the quantities within the fluctuation. Note that the cosmological con-
stant does not depend on the environment, since according to the Einstein equations 1.22, it
is a property of the space-time modifying the Einstein tensor, whereas it does not affect the
stress-energy tensor. Note, however, that the density parameter associated with the cosmo-
logical constant varies within the fluctuation, according to the other quantities. The evolving
radius of the spherical shell of the perturbation, i.e. R(t), plays the role of the scale factor.
It follows that, assuming mass conservation and taking the time derivative of Eq. (2.1), the
expansion/contraction rate of the fluctuation reads

Ṙ(t)
R(t)
=

ȧ(t)
a(t)
−

∆̇(t)
3[1 + ∆(t)]

, (2.4)

while the corresponding first Friedmann equation is(︄
Ṙ(t)
R(t)

)︄2

=
8πG

3
(1 + ∆(t))ρma(t)−3 +

1
3
Λ −

K̃
R(t)2 . (2.5)
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The second Friedmann equation describing the dynamics of the fluctuation can be obtained
from the time derivative of Equation (2.4), leading to the full nonlinear differential equation for
∆(t):

∆̈ + 2H∆̇ −
4
3

δ̇
2

1 + ∆
= 4πGρm(1 + ∆)∆ . (2.6)

To make the above equations to describe a valid FRLW dynamic, the curvature term K̃ has to
be conserved [for demonstration and generalizations, see e.g. 91], so it is possible to evaluate
it at an early time, when the cosmological constant contribute is negligible and the universe is
matter dominated. In this regime ∆(t) ≪ 1 and the evolution is proportional to the scale factor
(see Sect. 1.2.2), so

∆(t) = ∆i
a
ai

∆̇ = ∆iH
for t ≪ 1/H0 (2.7)

Substituting these quantities in Equation (2.5) we get

K̃ =
5
3
∆i

8πG
3
ρma−3R2

i , (2.8)

that can be rewritten as
K̃
H2

0

=
5
3
Ωm,i∆iR2

i , (2.9)

where Ωm,i = Ωm,0a−3
i . Alternatively, one can consider the fluctuation mass M Eq. (2.1) and

obtain
K̃ =

5
3

2GM
Ri
∆i , (2.10)

with an explicit appearance of the Newtonian potential term. It is now possible to solve the
differential equations that describe the evolution of a spherical perturbation. In the following,
we will study the evolution of a top-hat perturbation in a flat matter dominated universe. This
choice is for two reasons. First, in the matter dominated universe the above equations are an-
alytically solvable, allowing to give an insight on the nonlinear dynamics. Second, the main
quantity we are interested in, i.e. the map between linear and nonlinear density contrast evo-
lution, is almost insensitive to cosmology [96, 97]. This map derived in the matter dominated
universe accurately approximates the one for ΛCDM and its extension (see Sect. 1.4).

In the matter dominated universe Eq. (2.5), after having subtracted the contribution of the
background, becomes (︄

Ṙ(t)
R(t)

)︄2

= H2
i

⎡⎢⎢⎢⎢⎣(1 + ∆i)
(︄

Ri

R(t)

)︄3

−
5
3
∆i

(︄
Ri

R(t)

)︄2⎤⎥⎥⎥⎥⎦ , (2.11)

where Hi = H(ti), which admits a parametric solution. To obtain this equation, we have con-
sidered mass conservation, expressed by the equivalence

1 + ∆(t) = (1 + ∆i)
(︄

Ri

R(t)

)︄3

. (2.12)

Let us consider the parameter η,

dη =
Ri

R

√︃⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓
Hidt , (2.13)
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that allows to rewrite Eq. (2.11) in the parametric form

R(η)
Ri
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−1

(cosh η − 1) ∆i < 0

1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−1

(1 − cos η) ∆i > 0 ,

(2.14)

and

Hit(η) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−3/2

(sinh η − η) ∆i < 0

1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−3/2

(η − sin η) ∆i > 0 .

(2.15)

These are the well known solutions of the Friedmann equations for closed and open universes
containing matter only [3]. The evolution of the density contrast can be obtained by considering

ρ̃m(t) = ρm(t)(1 + ∆(t)) =
3

4π
M

R(t)3 (2.16)

and expressing the background density evolution as a function of time ρm(t) = 1/(6πGt2) (see
Sect. 1.2.2), obtaining

1 + ∆(η) =
9
2

GMt2

R(t)2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
9
2

(sinh η − η)2

(cosh η − 1)3 ∆ < 0

9
2

(η − sin η)2

(1 − cos η)3 ∆ > 0
. (2.17)

This result can be generalized for the evolution of a spherical perturbation in a background
universe with matter and non-vanishing curvature [see e.g. Appendix A in 98].

The peculiar velocity of the spherical shell is given by

vp = v − HR(t) , (2.18)

where
v =

dR(t)
dt
=

dR(t)
dη

dη
dt
. (2.19)

Substituting Eq. (2.11) into this equation, we obtain

vp = HR
[︄
3
2
g(η) − 1

]︄
, (2.20)

where

g(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
sinh η (sinh η − η)

(cosh η − 1)2 ∆ < 0

sin η (η − sin η)
(1 − cos η)2 ∆ > 0 .

(2.21)

The above equations describe the full nonlinear dynamics of a spherical fluctuation. Note
that if we consider the corresponding linear dynamics, it is possible to map the nonlinear evo-
lution into the corresponding linear one and vice versa. In the matter dominated universe
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the linear growth of perturbations is proportional to the scale factor, ∆L(a) = ∆ia/ai, and
a/ai = ( 3

2 Hit)2/3. Substituting the parametric expression for the time of Eq. (2.15), we ob-
tain

∆L(η) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
3
20

[︁
6(sinh η − η)

]︁2/3
∆i < 0

3
20

[︁
6(η − sin η)

]︁2/3
∆i > 0 .

(2.22)

In this way, considering the evolution of the linear and nonlinear density contrast at the same
η, it is possible to recover the linear density contrast value corresponding to the nonlinear one
and vice versa. Therefore, we can map the nonlinear halo and void formation in linear theory.

2.1.1 The spherical collapse model for halo formation
Let us rewrite the nonlinear dynamics of overdensity to express it in a form that emphasizes
the crucial events occurring in spherical halo formation. The second Friedmann equation for
the spherical perturbation is

R̈
R
= −

4πG
3
ρm,i(1 + ∆i)

(︃Ri

R

)︃3

, (2.23)

via Equation (2.1) it can be rewritten as

d2R
dt2 = −

GM
R2 , (2.24)

making an explicit link to Newtonian mechanics. Integrating once the equation of motion over
time, we obtain the energy conservation equation

1
2

Ṙ2
−

GM
R
= const = E . (2.25)

Note that GM = H2
i R3

i (1 + ∆i)/2, therefore, considering Eq. (2.11), we can express Ṙi =

HiRi(1 − ∆i/3), and the conservation of energy allows to evaluate it at ti

E = −
3
5

(HiRi)2

2
∆i . (2.26)

The evolution of the fluctuation’s radius is given by Equation (2.11), which describes a cycloid.
The maximum radius is reached at η = π, where Ṙ vanishes. It follows that

E = −
GM
Rmax

⇒ Rmax =

(︄
1 +

1
∆i

)︄
Ri . (2.27)

At η = 2π, the solution of Eqs. (2.11) and (2.17) formally collapses to a point, R→ 0 and ∆→
∞. In practice, however, a small deviation from sphericity is enough to break the symmetries,
leading the perturbation to a non-collisional collapse and virialization [99]. The dimension
and density contrast of the virialized object can be calculated using the virial theorem E =
T + W = W/2, where T is the kinetic energy, while W is the potential energy. It follows that
Rvir ≃ Rmax/2. Assuming that tvir = t(η = 2π), this implies that tvir = 2tmax. Note that Rvir and
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Rmax are the physical radii of the fluctuation, the corresponding comoving radius is obtained by
dividing these quantities by the scale factor a. It follows that the density at virialization is

1 + ∆vir =
9π2

16

(︄
Rmax

Rvir

)︄3 (︄
ρm(tmax)
ρm(tvir)

)︄
=

9π2

16
× 8 × 16 ≃ 178 . (2.28)

When an object starts to virialize, the fluid elements are no more in the single stream regime
but various streams cross each other: the shell crossing condition is reached.

The above equations have several consequences in describing the spherical halo formation
model. The result of Eq. (2.28) is the reason why the virialized region of a cluster is considered
as the sphere with average density ∼ 200 times the critical density of the universe, moreover
this is why ∆ ∼ 200 is the typical value used in spherical halo finders, described in Sect. 1.3.5.
The second point concerns the radius. In all previous computations, R is the physical radius of
the fluctuation, whereas Eq. (2.28) gives a simple method to link the comoving radius of an halo
to the dimension of the primordial patch: Rc

i = Rc
halo×1781/3 ≃ Rc

halo×5.6, where the superscript
stands for comoving. The last important point is that we can map the nonlinear evolution and
virialization in linear theory. In particular, the linear density contrast corresponding to full
collapse can be obtained by Eq. (2.22) evaluated at the virialization time, η = 2π,

δc =
3
5

(︄
3π
2

)︄2/3

= 1.68647 . (2.29)

Note that to recover the notation commonly used in the literature, we use δc to indicate the linear
collapsing threshold instead of ∆L

c , which in this section is used to describe the mean linear
density contrast within a shell. This quantity is the critical threshold for spherical collapse, and
it is almost cosmology independent. This threshold plays a central role in models that use the
statistics of the initial density fluctuation field to describe the clustering of virialized objects,
such as in the excursion-set framework. The power of this simple model is that the linear theory
can state when spherical collapse will eventually occur. The initial density fluctuation can be
linearly extrapolated at any initial density fluctuation ∆i(ti),

∆L = ∆iD(t) = ∆i

(︄
t
ti

)︄2/3

. (2.30)

This region will collapse and virialize at a time tvir such that ∆L(tvir) = δc. This expression can
be generalized to any cosmological model substituting the corresponding expression for the
linear growth factor D(t), instead of the (t/ti)2/3 term, i.e. the linear growth factor of the matter
dominated universe.

2.1.2 The spherical model for void formation
Void formation in the excursion-set framework, and more generally in frameworks that use
statistics of the initial density fluctuation field to describe the statistical properties of evolved
objects, greatly differs from halo formation. This is due to the fact that the evolution of a
spherical underdensity differs from the overdense counterpart; consequently, the events charac-
terizing their evolution are not the same. An overdense fluctuation starts evolving slower than
the background, it reaches its maximal physical size and then begins to contract until it col-
lapses into a virialized object. This evolution is characterized by two main events, turn around
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and full collapse, to which correspond two specific linear density contrast values. In particular,
the spherical halo formation model provides the linear threshold value corresponding to a full
collapse, allowing to map virialized objects, i.e. regions that underwent shell crossing, in the
initial linear density field. The evolution of a generic underdense spherical fluctuation is not
characterized by any significant event. It starts to grow faster with respect to the background
and it continues its outward expansion forever. Nevertheless, Sheth & van de Weygaert [98]
showed that under particular conditions of the initial density profile, shell crossing can also
occur for spherical underdensities.

Shell crossing in the evolution of spherical underdensities can be qualitatively described as
follows. The outward peculiar acceleration of of a spherical shell is directly proportional to
the integrated density deficit ∆(r) of the fluctuation. If ∆(r) increases monotonically, the inner
shells feel a stronger deficit, and thus a stronger outward acceleration than the outer shells. It
follows that inner shells grow faster than the outer ones. If the density profile is steep enough,
shells start to accumulate in the outer part of the fluctuation. Shells that were initially close
to the center will ultimately reach shells further outside until they eventually cross them: this
marks the event of shell crossing. The corresponding gradual increase in density would turn
into an infinitely dense ridge. This condition is satisfied for a step-function initial density
profile near the edge of a top-hat void [96, 98].

Consider a family of trajectories ∆(Ri, ηRi) labeled by the initial radius Ri and the corre-
sponding parameter ηRi defined in Eq. (2.15). We consider the step function δ(Ri) = δ0ΘH(Ri −

R0) as the initial density profile, whereΘH(x) is the Heaviside step function. The corresponding
integrated initial density profile is

∆i(Ri) =

⎧⎪⎪⎨⎪⎪⎩δ0 Ri ≤ R0

δ0(R0/Ri)3 Ri > R0 .
(2.31)

To find where and when shell crossing first occurs, we differentiate the family of trajectories(︂
R

Hit

)︂
described by Eqs. (2.14) and (2.15) with respect to the parameters Ri and ηRi and we look

for vanishing solutions. For Ri > R0, ∆i depends on Ri in such a way that Rid∆i/dRi = −3∆i,
while its derivative is 0 for Ri < R0. It follows that the shell crossing equation is[︄

A11 A12

A21 A22

]︄ [︄
dRi/Ri

dη

]︄
= 0 , (2.32)

where

A11 = 2
⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−1

(cosh η − 1) ,

A12 =
1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓−1

sinh η ,

A21 =
9
4

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓− 3
2

(sinh η − η) ,

A22 =
1
2

⃓⃓⃓⃓⃓
5
3
∆i

⃓⃓⃓⃓⃓− 3
2

(cosh η − 1) ,

(2.33)

for Ri > R0. To have a non-zero solution, we must have det A = 0, from this condition follows

sinh η (sinh η − η)
(cosh η − 1)2 =

8
9
. (2.34)
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Solving this equation, we find that shell crossing first occurs at ηsc = 3.488 for Ri = R0. The
density contrast corresponding to shell crossing is

∆sc =
9
2

(sinh ηsc − ηsc)2

(cosh ηsc − 1)3 − 1 = −0.7953 , (2.35)

to which corresponds a liner density contrast of ∆L
sc = −2.717. Assuming mass conservation,

when a spherical fluctuation reaches this level of underdensity, the comoving void radius is
expanded by a factor of (1 + ∆sc)−1/3 = 1.697.

In the literature [96, 98] the shell crossing in void evolution was usually considered as the
event characterizing void formation. Nevertheless, we state that there is no need for this par-
allelism between void and halo formation in the excursion-set framework. We now discuss
that considering shell crossing in void formation and evolution is substantially irrelevant and
practically useless. First of all, even if shell crossing can in principle occur in spherical void
evolution, this event remains substantially different from the full collapse of overdensities.
Contrary to halos, the shell crossing occurrence and the epoch at which it possibly happens
strictly depend on the initial density profile of the fluctuation. Therefore, the linear density
contrast corresponding to this event is not universal as the collapsing threshold for halo for-
mation, and thus it has to be determined case by case. Moreover, shell crossing is unlikely to
occur for more realistic density profiles in the initial density field. For the steepest possible
profile, described by a step function, shell crossing occurs at the radius of the discontinuity of
the initial density profile when the nonlinear density contrast reaches ∆ ≃ −0.8, corresponding
to the linear value ∆L ≃ −2.7. Hence, we can consider this value as the upper density contrast
limit at which shell crossing eventually occurs in the general case. Moreover, it is interesting to
note that the linear density contrast required to reach shell crossing in spherical underdensities
is much higher in module with respect to the collapsing case, 1.686 against ≤ −2.717. This
means that an initial underdensity (with a step density profile) requires much more time to reach
shell crossing than overdensities with the same initial amplitude. In the matter dominated uni-
verse, the growth factor D(a) ∝ a ∝ t2/3, therefore, the corresponding shell crossing epochs are
related by asc

v ≃ 1.6 × asc
h and tsc

v ≃ 2 × tsc
h . In addition, it is worth noting that these calculations

are exact for spherical fluctuations in a homogeneous background; qualitative arguments show
that in the collapsing case the breaking of symmetries leads to virialization, on the other hand,
it has not been explored what this entails for void formation, but reasonably the shell crossing
would require even harsher conditions to occur. More importantly, the formal derivation of the
shell crossing condition in underdensities shows that this event strictly depends on the presence
of a discontinuity in the initial density profile, which is unphysical for real fluctuations.

A second point in considering the shell crossing in void evolution as the event at which a
void is considered formed concerns the detection and practical treatment of voids and halos
for cosmological purposes and their link to the initial density field. Detecting halos means to
find virialized objects. This gives a physical meaning to the linear collapsing threshold in the
theoretical description of the statistical properties of halos, since this threshold maps the viri-
alization event in linear theory: an halo is a virialized object, the density contrast for collapse
identifies the regions in the initial density field that will virialize in a specific epoch. The void
case is different, initial underdense regions reaching the linear threshold for void formation
evolve in larger underdensities, i.e. voids are extended objects. A nonlinear density contrast of
∼ −0.8, i.e. the upper limit at which shell crossing possibly occurs, would correspond to small
regions in the core of the deepest underdensity basins in the matter distribution. In galaxy



2.2. EXCURSION-SET APPROACH: BUILDING BLOCKS 45

surveys, a so negative threshold cannot be traced by galaxies, therefore it is not observable,
neither in the galaxy distribution of the Universe nor in the halo distribution of simulations. In
other words, the shell crossing event is useless in identifying voids, and a perfect parallelism
between halo and void formation cannot be considered.

The main conclusion that we can infer from these arguments is the following: shell crossing
is the event that breaks the map between linear and nonlinear theory; nevertheless cosmic voids
do not experience shell crossing, at least at the scales where they are observable. This ensures
that a map from the linear Lagrangian threshold δv

1 to the nonlinear Eulerian density contrast
of voids always exists, at least for linear density contrast threshold δv ≥ −2.717. This condition
ensures that the density profile of evolved voids (detected in various tracer distributions) can
always be mapped in the linear theory. In this perspective, the linear void formation threshold δv

can assume any negative value and does not correspond to any specific event in void evolution.
The major difference between halo and void formation can be summarized as follows. A halo
is formed when a region undergoes full collapse and virialization, this fully nonlinear event
can be mapped to linear theory with the collapsing threshold δc. A void is a region that, in its
evolution, has reached a fixed mean density contrast value. The corresponding linear threshold
value does not refer to any specific event; nevertheless, since shell crossing has not occurred (at
least for ∆(R) ≥ −0.7953), it is always possible to map the Eulerian density contrast of voids
into the linear theory.

2.2 Excursion-set approach: building blocks
The fundamental quantity of the excursion-set formalism is the smoothed, linearly evolved
initial density field at comoving coordinate q

δ(q,R) =
∫︂

d3xW(|x|,R)δ(q + x)

=

∫︂
d3k

(2π)3 W(kR)δ(k)e−ik·q
(2.36)

where W(|x|,R) and W(kR) are the smoothing filter in configuration and Fourier space, respec-
tively. We recall that the linearly evolved initial density field is commonly called Lagrangian
space, while the fully evolved system in comoving coordinates is called Eulerian space. The
Lagrangian density contrast field δ(q) can be extrapolated at the desired redshift via the lin-
ear growth factor, in this way the redshift dependence can be factorized out via the identity
δ(q, z) = D(z)δ(q), with normalization D(z = 0) = 1. The statistical properties of the smoothed
density field δ(q,R) are entirely specified by its correlation functions. In particular, we assume
that the initial density contrast field follows Gaussian statistics, so that the linear matter power
spectrum extrapolated to the present epoch P(k) encodes the entire statistics. Note that ac-
cording to the latest measurements of primordial non-Gaussianity [100], the assumption of a
Gaussian initial density field is an accurate description of its actual statistical properties. The
key assumption of the excursion-set formalism for halo and void statistics is that at a given
redshift z, a Lagrangian point q belongs to a halo (void) of size R if R is the maximum smooth-
ing scale at which the smoothed linear density contrast δ(q,R) exceeds the linear extrapolated

1As for the halo case, to recover the notation commonly used in the literature, we use the notation δv to indicate
the linear threshold of void formation instead of ∆L

v used thorough this section to describe the mean linear density
contrast within a shell.



46 CHAPTER 2. COSMIC VOIDS IN THE EXCURSION-SET FRAMEWORK

Filter Configuration Fourier

Top-hat
3

4πR3ΘH(1 − x/R) 3
j1(kR)

kR

Gaussian
e−

1
2 x2/R2

(2πR2)3/2 e−
1
2 x2k2

Sharp-k
3

4πR3

[︄
3

j1(x/R)
x/R

]︄
ΘH(1 − kR)

Table 2.1: The three most popular filtering kernels in configuration space and their Fourier transform.

critical density contrast δc (δv). The voids case has the additional condition that the filtered
field that reached δv at a given smoothing length has not crossed the collapsing threshold at
larger scales.

The detailed properties of δ(q,R) depend on the choice of the specific filter function. Ta-
ble 2.1 lists the most commonly used smoothing filters. The spherical top-hat filter is the one
that provides the best possible link to the spherical model of halo and void formation discussed
in Sect. 2.1. This filter is a top-hat in real space, so it provides a well defined boundary of
the patch considered and consequently a well defined mass enclosed within the filter, i.e. in
the fluctuation. The corresponding mass is MTH = 4πR3ρm / 3, where both R and ρ are co-
moving quantities, i.e. ρm = ρm(z = 0). The disadvantage of this filter is that its Fourier
transform is numerically heavy to handle, since it is a slow decreasing oscillating function:
WTH(kR) = 3 j1(kR)/kR, where j1(x) = (sin x − x cos x)/x2 is the spherical Bessel function of
order 1. The Gaussian filter is commonly used too, because it is numerically more stable than
the top-hat filter and it simplifies some analytical computations. On the other hand, the bound-
ary of the fluctuation is not precise, the outer part weights less and less without a truncation.
The mass is computed as the spherical integral of the Gaussian kernel multiplied by the mean
comoving mass density, obtaining MG = (2π)3/2ρmR3. The last filter we consider is the sharp-k
filter, that is a top-hat in Fourier space. It became popular because it greatly simplifies many
computations, as we will see later. On the other hand, its physical interpretation is not clear,
since in configuration space the sharp-k filter is a slow decreasing oscillating function that takes
both positive and negative values, therefore, the amount of mass enclosed in the filter is ill de-
fined. One possibility to evaluate it is to compute the spherical integral of the filter and multiply
it by the mean matter density, obtaining Msk = 6π2ρmk−3 [101, 102]. An alternative procedure
consists of defining Msk = 4πR3

THρm/3, where RTH is fixed requiting σ2
sk(k) = σ2

TH(RTH). Here
σ2

sk(k) indicates the variance of the density field smoothed with a sharp-k filter, and σ2
TH(RTH)

is the same quantity computed using the top-hat filter. This definition introduced by Bardeen
et al. [18], is implicitly used in the great majority of later works on the excursion-set and in all
theoretical frameworks that use the statistics of the initial density fluctuation field to describe
the statistical properties of evolved objects [see e.g. 15, 96, 98, 102].

The excursion-set formalism describes halo and void formation and their statistics from the
trajectory in the (δ,R) plane given by the density contrast field δ(q,R) filtered at decreasing R
scales. We start from an infinitely large smoothing radius around a given point q in Lagrangian
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space. Since the density averaged over this region is the mean density of the universe, the
density contrast must vanish as R → ∞. We then gradually decrease the smoothing radius
and follow the trajectory δ(q,R) in the (δ,R) plane. We consider that the Lagrangian point q
belongs to a halo of mass M(R×) if the trajectory of δ(q,R) first crosses the halo formation
threshold δc at R×. The behavior of the trajectory at R < R× does not matter in halo formation,
since any scale smaller than the first crossing scale will collapse inside the halo. So, even
if the trajectory would decrease under the threshold value and then up-crosses the threshold
again, we do not consider this second cross as the formation of another halo. In this way, the
excursion-set mechanism solves the “cloud-in-cluod” problem [see Sect. 1.3.1, 11, 12]. Void
formation is analogous, but involves two thresholds, the threshold of void formation δv and the
threshold of collapse δc. We consider that the point q belongs to a void with Lagrangian radius
R×, if the trajectory δ(q,R) first crosses the void formation threshold at R× without having
crossed the collapsing threshold at any larger scale. The reason for this additional condition is
that if the trajectory δc reaches the void threshold after having crossed the collapsing threshold,
the underdense fluctuation would be located within a larger overdensity that will collapse,
squeezing the initial underdensity in a virialized halo. This case is called “void-in-cloud”, in
analogy to the “cloud-in-cloud” [98]. Even for voids, the behavior of the trajectory for R < R×
does not have any impact on void formation in the excursion-set framework; it describes the
density contrast within the void at smaller scales, centered in q.

Formally, halo and void formation in the excursion-set framework is described by an un-
conditional and conditional first crossing problem, respectively, of the path δ(q,R), for which
the stochastic evolution depends only on its statistical properties.

2.3 Stochastic evolution of the Lagrangian density contrast
field

The mechanism introduced qualitatively in the previous subsection is described formally by
the Langevin equation [12, 101–103]. In this section we will introduce the Langevin equations
that describe the evolution of the single field δ(q,R), Sect. 2.3.1, and of the spatially correlated
pair δ(q1,R1) and δ(q2,R2), Sect. 2.3.2.

2.3.1 The Langevin equation in the single field case
In studying the 0th order statistics of the density contrast field, the exact position of the field
is not important, as a consequence of the background homogeneity of the universe, so we will
omit to write the explicit dependence and simply use δ(R) = δ(q,R). The effect of varying the
smoothing scale R can be obtained by differentiating Eq. (2.36):

∂δ(R)
∂R

=

∫︂
d3k

(2π)3

∂W(kR)
∂R

δ(k)e−ik·q = Q(R) . (2.37)

This has the form of the Langevin equation, which shows how an infinitesimal change of the
scale R affects the smoothed field as a function of the stochastic force Q(R). The initial condi-
tion of this first-order stochastic differential equation is given by

R→ ∞ , δ(R)→ 0 . (2.38)
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Since Eq. (2.37) is linear, the stochastic force is also a Gaussian random field with a vanish-
ing expectation value, ⟨Q(R)⟩ = 0, it is uniquely described by its correlation function, so the
Langevin equation is fully described by the system [102]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂δ(R)
∂R

=

∫︂
d3k

(2π)3

∂W(kR)
∂R

δ(k)e−ik·q = Q(R)

⟨Q(R1)Q(R2)⟩ =
1

2π2

∫︂ ∞

0
dk k2P(k)

∂W(kR1)
∂R1

∂W∗(kR2)
∂R2

.

(2.39)

The coherence of each trajectory along R depends only on the form of the filter function. This
coherence vanishes for the sharp-k filter. We now focus on this filter, since it provides simpli-
fications that allow to solve the Langevin equation analytically, giving a useful insight on how
the excursion-set mechanism works.

With sharp-k filter, the stochastic force at each step is independent of all the previous ones:
decreasing the smoothing scale R a new set of Fourier modes of the unsmoothed distribution
is added to the filtered field δ(R), consequently the stochastic evolution of the filtered field is
Markovian

∂W(kR)
∂R

=
∂Θ(1 − kR)

∂R
= −

k
R
δD(k − 1/R) , (2.40)

where δD(x) is the Dirac delta. We can use the variance of the filtered density field as the time
variable, since it is a monotonic function of R,

S = σ2(R) = ⟨δ(R)2⟩ =
1

2π2

∫︂ 1/R

0
d kk2P(k) (2.41)

obtaining ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂δ(S )
∂S

= Q(S ) ⟨Q(S )⟩ = 0

⟨Q(S 1)Q(S 2)⟩ = δD(S 1 − S 2) .
(2.42)

The solution of the Langevin equation Eq. (2.42) at any arbitrary point of space, with the initial
condition δ(S = 0) = 0, is δ(S ) =

∫︁ S

0
dS ′ Q(S ′) . The properties of the stochastic realization of

this process are those of the Wiener processes [104, 105]:

⟨δ(S )⟩ = 0 ⟨(δ(S 1)δ(S 2)⟩ = min(S 1, S 2) (2.43)

i.e., the field δ(S ) can be described as a Markovian random-walk, where S is the time variable.
We are now interested in solving the first crossing distribution of the threshold δc, due to

its link to halo formation. In the sharp-k filter case, this distribution is analytical and was first
found by Chandrasekhar [106]. The Langevin equation is always associated with a Fokker-
Planck equation for the probability density Π(δ, S ),

∂Π(δ, S )
∂S

=
1
2
∂2Π(δ, S )
∂δ2 . (2.44)

with the initial condition Π(δ, S = 0) = δD(0) and the boundary condition Π(δc, S ) = 0. The
solution to this equation is [106]

Π(δ, S ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
√

2πS

[︂
e−δ

2/2S − e−(2δc−δ)2/2S
]︂

δ < δc

0 δ ≥ δc .
(2.45)
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This solution is known as the differential survival probability, since it describes the probability
distribution of random walks (δ, S ) that do not cross the barrier δc. This solution can be found
using the image method. The density distribution of trajectories (δ, S ) given by Equation (2.44)
in the unconstrained case is a Gaussian with variance equal to the time variable S . To obtain
the differential survival probability at time S , we must subtract all the paths that crossed the
threshold δc at S ′ < S . To do that, consider a path that arrives in (δ, S ) after having crossed the
barrier δc at S ′ < S . We can construct a path that at time > S ′ is the reflection of the original
one with respect to the barrier δc, i.e. (S , δc − (δ − δc)) and subtract it. This means that to take
into account the absorbing barrier effect, we have to subtract a Gaussian centered in 2δc with
the time variable S as variance, which is exactly Eq. (2.44). Therefore, the survival probability
is given by integrating Eq. (2.44), and the fraction of trajectories that hit the barrier at scales
< S is

Fc(< S ) = 1 −
∫︂ δc

−∞

dδΠ(δ, S ) = erfc
[︄
δc
√

2S

]︄
. (2.46)

Deriving this quantity, we obtain the density probability distribution of the first crossing, i.e.
the multiplicity function [103]:

fc(S ) = −
∂Fc(< S )

∂S
=

δc
√

2πS 3
e−δ

2
c/2S . (2.47)

The multiplicity function is a differential quantity, so to change the variable, we consider

fc(S )dS = fc(σ)dσ = fc(ν)dν = fc(M)dM = fc(R)dR . (2.48)

Substituting S with νc = δc/S we can express it in the more familiar form

fc(νc) =

√︃
2
π

e−ν
2
c/2 , (2.49)

that is exactly what we found in Eq. (1.107) for the Press-Schechter model, without the need to
correct the normalization: the “cloud-in-cloud” problem is solved by the excursion-set mecha-
nism (see Sect. 1.3.1).

As we described in the previous subsection, void formation can be treated as a double
barrier problem. The corresponding multiplicity function can be derived from the single barrier
case [98], and can be written as

f (S , δv, δc) = f (S , δv) −
∫︂ S

0
ds f (s, δc, δv) f (S , δv|s, δc) (2.50)

where the first term on the right-hand side is the first crossing distribution of the barrier δv, and
the second term subtracts from it the subset of trajectories that have crossed δc before having
reached δv. Note that since we are considering a Markovian process, this term can be rewritten
as f (S , δv|s, δc) = f (S − s, δc − δv). The Laplace transform of Eq. (2.50) is

L(t, δv, δc) = L(t, δv) −
∫︂ ∞

0
ds f (s, δc, δv)e−ts

∫︂ ∞

S−s
dS f (S − s, δc − δv)e−t(S−s)

= L(t, δv) − L(t, δc, δv)L(t, δc − δv) .
(2.51)
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By symmetries, we can derive L(t, δc, δv), from which follows

L(t, δv, δc) =
L(t, δv) − L(t, δc)L(t, δc − δv)
1 − L(t, δv − δc)L(t, δc − δv)

=
sinh

(︂
δc
√

2t
)︂

sinh
(︂
(δc − δv)

√
2t

)︂ . (2.52)

Now, inverting the Laplace transformation, we obtain [96, 98]

S fv(S ) =
∞∑︂
j=1

e−
( jπx)2

2 jπx2 sin ( jπD) with D =
|δv|

δc + |δv|
, x =

D

|δv|

√
S , (2.53)

that is the Sheth & van de Weygaert [98] multiplicity function for void formation.
Note that the above results refer to the implementation of the sharp-k filter, that allow to

consider each step of the path δ(R) uncorrelated to all the previous ones. Even if this allows an-
alytic solutions, the sharp-k has an obscure physical meaning. To solve the Langevin equation
for the general case, we have to account for the effects of correlated steps, that we will address
in Sect. 2.4.1.

In this subsection, we implemented the spherical formation of halo in the excursion-set
formalism. This is done by studying the first crossing problem with the constant threshold
δc = 1.686. However, the actual general dynamic of collapse is not spherical. In the literature,
it has been shown that the tidal shear Ki j, i.e. the traceless part of ∂i∂ jΦ, plays a crucial role
in the formation of nonlinear structures. A step further with respect to the spherical model
in approximating the dynamics of halo formation is to consider the collapse of triaxial mat-
ter distribution [107–111]. In first approximation, the dynamics of ellipsoidal collapse can be
effectively incorporated into the excursion-set approach through a scale-dependent threshold
B(S ), usually called moving barrier. In this way, the critical density for non-spherical collapse
also depends on ∂i∂ jΦ, in particular it can be shown that it depends on two invariants of this
tensor [19, 112–114]. Note that any additional variable adds a dimension to the first-crossing
problem. Nevertheless, with good approximation to the exact result, the problem can be re-
duced to the a monodimensional one considering the barrier

B(S ) =
√

qδc

⎡⎢⎢⎢⎢⎢⎣1 + β ⎛⎜⎜⎜⎜⎝q
√

S
δc

⎞⎟⎟⎟⎟⎠−α⎤⎥⎥⎥⎥⎥⎦ , (2.54)

where α and β come from ellipsoidal dynamics [15]. In the case where a sharp-k case is
adopted, this leads to the Sheth-Tormen multiplicity function, Eq. (1.108). From a practical
point of view, it can be considered the moving barrier

B(S ) = δc

[︂
1 + β

√
S /δc

]︂
, (2.55)

with β fitted on cosmological simulations [115].

2.3.2 Lagrangian clustering in the excursion-set framework
Studying the correlated Langevin equations in the excursion-set framework, it is possible to de-
scribe the two-point, and more generally, the n-point statistics of halos and voids in Lagrangian
space [102].

Let us consider two points in Lagrangian space q1 and q2 = q1 + r; δ1(R) = δ(q1,R) and
δ2(R) = δ(q2,R) are the density contrast fields filtered on scale R with a filter function. We
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are interested in studying the joint probability distribution Pi j(R1,R2; q1, r) of those pairs δ1(R)
and δ2(R) that first cross the threshold respectively at R1 and R2, i.e the density probability that
two points separated by r are contained within a halo or a voids. The indices i and j stand
for halos or voids, so Phh(R1,R2; q1, r)dS 1dS 2 is the probability of finding the points q1 and
q1 + r in two halos with Lagrangian radius in the range (R1,R1 + dR1) and (R2,R2 + dR2),
while PvhdS 1dS 2 and PvvdS 1dS 2 are the probability to find the two points in a void and in
a halo and in a pair of voids, respectively. Due to the underlying homogeneity and isotropy,
the probability density cannot depend neither on the position q1 nor on the orientation of r, so
Pi j(R1,R2; q1, r) = Pi j(R1,R2, r).

To compute the correlation function in Lagrangian space for the i and j object, i.e. the halo
and void auto-correlation function and the void-halo cross-correlation, we first select the scale
of the object we want to correlate, I = [Rmin,Rmax], where usually Rmax → ∞. This corresponds
to a mass cut in studying halos and to a minimum radius in selecting voids. The probability of
determining two points separated by r contained within i and j objects is

P
I1I2
i j (r) =

∫︂
I1

∫︂
I2

dR1dR2Pi j(R1,R2, r) . (2.56)

Note that this is the probability of finding two mass elements in a pair of Lagrangian ha-
los/voids of scale in the range I separated by distance r. To obtain the correlation function of
the objects, we have to properly weigh the statistical contribution for each extended halo/void.
Each mass element contributes to originate a halo or void in a statistical sense, with a weight
of 1/V(R), where V(R) = M(R)/ρm is the volume associated with the filter used. Note that
this term is the same that enters in the halo mass function to get the number density of halos
from the multiplicity function (see Sect. 1.3.1). It follows that the number density of halos or
voids is n(R) = f (R)/V(R), i.e. the integration of Eq. (1.103), and the joint number density is
ni j(R1,R2, r) = Pi j(R1,R2, r)/V(R1)V(R2), therefore, the correlation function of halos/voids can
be expressed as

ξI1I2
i j (r) =

∫︁
I1

∫︁
I2

dR1dR2 ni j(R1,R2, r)∫︁
I1

dR ni(R)
∫︁

I2
dR n j(R)

− 1 . (2.57)

In analogy to the single field case, the joint density distribution can be obtained by integrat-
ing the system of correlated Langevin equations that describes the evolution of the spatially
correlated processes δ1(R) and δ2(R). Let us now consider the R-evolution of two spatially cor-
related density contrast fields at distance r, the full system of Langevin equations is derived as
in the single field case [102]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂δ1(R)
∂R

= Q1(R)

∂δ2(R)
∂R

= Q2(R)

⟨Q1(R)⟩ = ⟨Q2(R)⟩ = 0

⟨Q1(R)Q1(R′)⟩ = ⟨Q2(R)Q2(R′)⟩ =
∫︂ ∞

0

dk
2π2 k2P(k)

∂W(kR)
∂R

∂W∗(kR′)
∂R′

⟨Q1(R)Q2(R′)⟩ =
∫︂ ∞

0

dk
2π2 k2P(k) j0(kr)

∂W(kR)
∂R

∂W∗(kR′)
∂R′

,

(2.58)
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where j0(x) = sin x/x is the spherical Bessel function of order 0 and ⟨δ1(R)⟩ = ⟨δ2(R)⟩ = 0.
As in the single field case, the sharp-k filter allows to solve the correlated Langevin equa-

tions analytically. We change the time variable from R to the variance S as before, and in this
way Eq. (2.58) simplifies as follows [102]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂δ1(S )
∂S

= Q1(S ) ⟨δ1(S )⟩ = 0

∂δ2(S )
∂S

= Q2(S ) ⟨δ2(S )⟩ = 0

⟨Q1(S )⟩ = ⟨Q2(S )⟩ = 0

⟨Q1(S )Q1(S ′)⟩ = ⟨Q2(S )Q2(S ′)⟩ = δD(S − S ′)

⟨Q1(S )Q2(S ′)⟩ =
∂ξ(r, S )
∂S

δD(S − S ′) = j0
(︁
k f (S )r

)︁
δD(S − S ′) .

(2.59)

The last equation is obtained in the following way. The quantity ξ(r, S ) is the linear two-point
correlation function of matter filtered on the scale k(S ) = 1/R(S ) with the sharp-k filter

ξ(r, S ) =
1

2π2

∫︂ k(S )

0
dkk2P(k) j0(kr) , (2.60)

and S (k) = 1/2π2
∫︁ k

0
dkk2P(k), it follows that

∂ξ(r, S )
∂S

= j0(kr) . (2.61)

The associated Fokker-Planck equation for the unconstrained case is [102]

∂Πr(δ1, δ2, S )
∂S

=
1
2

[︄
∂2

∂δ2
1

+
∂2

∂δ2
2

+ 2
∂ξ(r, S )
∂S

∂2

∂δ1∂δ2

]︄
Πr(δ1, δ2, S ) , (2.62)

with initial conditions Πr(δ1, δ2, S = 0) = δD(δ1)δD(δ2) and boundary conditions vanishing at
infinity. To find the first crossing joint distribution, we adopt the absorbing barrier approach.
We consider the halo-halo case. The problem is to solve the Fokker–Planck equation with
absorbing barriers at δ1 = δc and δ2 = δc, thus finding the survival probability density for pairs
that have never crossed the threshold. Nevertheless, the problem is now bi-dimensional and
the absorbing barrier is formed by two perpendicular planes. We can address the problem by
considering the probability current at each point [102]

J(δ1, δ2, S ) = −
1
2

[︄
∂Πr

∂δ1
+
∂ξ(r, S )
∂S

∂Πr

∂δ2
,
∂ξ(r, S )
∂S

∂Πr

∂δ1
+
∂Πr

∂δ2

]︄
. (2.63)

On the boundary δ1 = δc, Π(δc, δ2, S ) = 0 implying ∂Πr/∂δ2 = 0, this reduces the current to

J(δc, δ2, S ) = −
1
2

[︄
∂Πr

∂δ1

⃓⃓⃓⃓⃓
δ1=δc

,
∂ξ(r, S )
∂S

∂Πr

∂δ1

⃓⃓⃓⃓⃓
δ1=δc

]︄
, (2.64)

and analogously for δ2 = δc. The probability flux along the barrier δ1 = δc is given by the scalar
product J · n, where n = (1, 0) is the normal of the absorbing plane,

Fr(δc, δ2, S ) = −
1
2
∂Πr

δ1

⃓⃓⃓⃓⃓
δ1=δc

. (2.65)
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This quantity describes the density probability of the pair (δ1, δ2) to hit the barrier at (δc, δ2)
at a given time S . After that δ1 crosses the barrier at S 1, the problem reduces to the one-
dimensional case, finding the survival probability of δ2 with initial conditions S = S 1 and
δ1×

2 = δ2(S 1| δ1 = δc). From Eq. (2.47) the survival probability is

P1(S 2 − S 1, δc − δ
1×
2 ) =

δc − δ
1×
2

√
2π(S 2 − S 1)

exp

⎡⎢⎢⎢⎢⎢⎣− (δc − δ
1×
2 )2

2(S 2 − S 1)

⎤⎥⎥⎥⎥⎥⎦ , (2.66)

and the joint probability distribution is the convolution

Phh(S 1, S 2, r) =
∫︂ δc

−∞

dδ2Fr(δc, δ2, S 1)P1(S 2 − S 1, δc − δ2)+∫︂ δc

−∞

dδ1Fr(δ1, δc, S 2)P1(S 1 − S 2, δc − δ1) .
(2.67)

However, this expression requires to solve the probability density Πr(δ1, δ2, S ), which can be
done analytically for r → ∞ and r → 0, while for the general case there exists an approximate
analytical solution [102].

At infinity, r → ∞, the correlation of the two processes vanishes, so the solution of the
Fokker-Planck equation is

Π∞(δ1, δ2, S ) = Π(δ1, S )Π(δ2, S ) , (2.68)

where Π(δ, S ) is the probability distribution for the one-dimensional process with an absorbing
barrier described by Eq. (2.44), so

Π∞(δ1, δ2, S ) = G(δ1, δ2, S )−G(δ1−δc, δ2, S )−G(δ1, δ2−δc, S )+G(δ1−δc, δ2−δc, S ) , (2.69)

where G(δ1, δ2, S ) = (2πS )−1 exp[−(δ2
1 + δ

2
2)/2S ] is the solution of the Fokker-Planck equation

without barriers. It is now straightforward to show that Phh(S 1, S 2, r → ∞) = f (S 1) f (S 2), from
which follows ξi j(r)→ 0 as r → ∞, as expected.

The limit r → 0 is described by the perfectly correlated case [102]. Let us change the
base of the stochastic process, choosing Σ(S ) = δ1(S ) + δ2(S ) and ∆(S ) = δ1(S ) − δ2(S ),
which are independent, i.e. ⟨Σ(S )∆(S )⟩ = 0. The variances of the corresponding unconstrained
probability distributions are σ2

Σ
= 2[S + ξ(r, S )] and σ2

∆
= 2[S − ξ(r, S )]. For r ≪ R(S ) we

have ξ(r, S ) ≃ S , therefore σ2
Σ
≃ 4S and σ2

∆
≃ 0. This means that the distribution of ∆(S ) can

be approximated by a Dirac delta centered in 0. The solution of the Fokker-Planck equation
without absorbing barrier in the r → 0 case follows from Eq. (2.44),

Π0(δ1, δ2, S ) = Π(δ1 + δ2, 4S )δD(δ1 − δ2) . (2.70)

From this equation, we obtain Phh(S 1, S 2, r → 0) = f (S 1)δD(S 1 − S 2), and consequently
ξhh(r)→ 0 as r → 0. This is due to the fact that two mass elements separated by r → 0, belong
to the same halo or void.

The approximated general solution can be obtained with the ansatz [102]

Πr(δ1, δ2, S ) = G+r (δ1, δ2, S )−G−r (δ1−δc, δ2, S )−G−r (δ1, δ2−δc, S )+G+r (δ1−δc, δ2−δc, S ) , (2.71)

where

G±r (δ1, δ2, S ) =
1

2π
√︁

S 2 + ξ2(r, S )
exp

[︄
S (δ2

1 + δ
2
2) ∓ 2ξ(r, S )δ1δ2

2
(︁
S 2 − ξ2(r, S )

)︁ ]︄
. (2.72)
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Note that only G+r is a solution of the Fokker-Planck equation with an absorbing barrier. Sub-
stituting this ansatz into Eq. (2.62), we find that the approximation is valid for

2
∂ξ(r, S )
∂S

∂2

∂δ1∂δ2
[G−r (δ1 − δc, δ2, S ) +G−r (δ1, δ2 − δc, S )] ≪

∂Πr(δ1, δ2, S )
∂S

, (2.73)

and the approximated general joint distribution reads

Phh(S 1, S 2, r) =
δcS 1S 2 + [S 1S 2 − δc(S 1 + S 2)]ξ(r, S min) + δ2

cξ
2(r, S min) + ξ3(r, S min)

2π[S 1S 2ξ2(r, S )]5/2

× exp
[︄
−
δ2

c

2
S 1 + S 2 − 2ξ(r, S min)

S 1S 2 − ξ2(r, S min)

]︄
.

(2.74)

where S min = min(S 1, S 2). Using Eq. (2.57) it is now possible to obtain ξhh(r) [102].

2.4 Numerical solution of the Langevin equations
In the previous section, we introduced the Langevin equations that describe the evolution of
the stochastic field δ(q,R) as a function of the filtering radius R. We showed that with the
sharp-k filter, these equations admit analytical solutions. This is because the process they
describe reduces to a Wiener one, so at each step the trajectory value δ(q,R) is uncorrelated
from all the previous ones. Nevertheless, to describe properly the halo and void formation in
the excursion-set framework, we should use a filter with a clear link to the physical quantity
we want to describe, i.e. Lagrangian halos and voids. To analytically solve the Langevin
equations in the excursion-set framework with correlated steps, approximate methods must
be used [12, 115–124]. Moreover, the first crossing distribution for the single field can be
written as a formal expansion in an infinite series [125–127], but summing this series requires
approximations. Numerical methods are actually the only way to obtain an exact solution of the
general Langevin equations for the single field, spatially correlated pairs, and more generally
for N correlated fields in Lagrangian space.

2.4.1 Numerical implementation: the sharp-k filter case
In this subsection, we describe the numerical procedure used to solve the Langevin equations
and to compute both the first-crossing distribution in the single field case and the two-point
correlation functions using the sharp-k filter. Even if this filter allows to solve analytically the
Langevin equations, it is important to explore its numerical implementation for at least two
reasons. First, the numerical solution of this case is the basis to solve the Langevin equations
with correlated time steps. Second, the sharp-k filter does not provide an exact analytical
solution for the joint distribution in both the single and double barrier case.

Single field implementation: the first crossing distribution

The stochastic differential equation Eq. (2.42) is equivalent to the integral equation

δ(S + ∆S ) = δ(S ) +
∫︂ S+∆S

S
d S ′Q(S ′) . (2.75)
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Given the fact that this is a Wiener process,

δ(S + ∆S ) = δ(S ) +
√
∆S G(0, 1) , (2.76)

where G(0, 1) is a Gaussian variable that follows a Gaussian distribution with zero mean and
unit variance. The evolution of the density contrast with respect to the filtering scale is a random
walk that can be numerically implemented as

δ(S ) =
∑︂

i

√︁
∆S iGi(0, 1) , (2.77)

where Gis are independent Gaussian variables and S =
∑︁

i ∆S i. After several realizations of
this stochastic process, the first-passage time distribution can be estimated by recording the
scale at which the trajectory reaches the barrier for the first time. The resulting first crossing
distribution can be obtained as

F(< S ) =
N×(< S )
Nsample

→

∫︂ S

0
fc(S ′)dS ′ for Nsample → ∞ . (2.78)

where fc(S ′) is the multiplicity function. Nevertheless, the numerical implementation of this
equation will produce a suppressed multiplicity function with respect to the analytical solution
of Eqs. (2.49) and (2.53). This is due to the discretization of the time variable S . Note that
the numerical implementation of the random walk can be seen as a discrete subsampling of
a continuous random walk, increasing the step resolution, the random walk would continue
to appear jagged. Fig. 2.1 visually represents the effect of increasing the resolution of the
numerical realization of a random walk. Increasing the resolution, the same realization of a
random walk (blue jagged line) may cross the barrier between two non-crossing steps of the
worse resolved case (orange dots). This is known as inter-step crossing, and we have to account
for it to find the exact first crossing distribution numerically. The probability of this event can
be computed considering the first-crossing distribution of a Wiener process pinned at both t = 0
and t = T , i.e. a Brownian bridge, where t is the time variable of the process [104, 105].

Let B(t) be a Brownian bridge, i.e. a Wiener process such that B(0) = B0, B(T ) = BT ,
and 0 < t < T . The random variables B(t) and B(T ) − B(t) are independent and normally
distributed according to the definition of Wiener processes. Thus, X = B(t) and Y = B(T ) =
B(t) + (B(T ) − B(t)) follow a bivariate normal distribution that can be written as

PX,Y (x, y) =
1

2πσXσY
√︁

1 − ρ2
exp

⎧⎪⎪⎨⎪⎪⎩− 1
2(1 − ρ2)

⎡⎢⎢⎢⎢⎣ (x − µX)2

σ2
X

(y − µY )2

σ2
Y

−
2ρ(x − µX)(y − µY )

σXσY

⎤⎥⎥⎥⎥⎦⎫⎪⎪⎬⎪⎪⎭ , (2.79)

with µX = µY = B(0), σX =
√

t, and σY =
√

T . The correlation ρ can easily be derived from

⟨X,Y⟩ = σXσYρ = ⟨B(t)
(︁
B(t) + [B(T ) − B(t)]

)︁
⟩

= ⟨B(t)2⟩ +˂˂˂˂˂˂˂˂˂˂
⟨B(t)

(︁
B(T ) − B(t)

)︁
⟩

= σ2
X ,

(2.80)

it follows that

ρ =
σX

σY
=

√︃
t
T
. (2.81)
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Figure 2.1: Inter-step crossing in Markovian random walk. The orange dots represent a low-resolution
realization of the random walk, the blue jagged line is a realization of the Brownian bridge pinned at
each point of the original random walk. It can be seen the effect of inter-step crossing due to higher
resolution.

Fixing y = B(T ) = BT , the conditional distribution of X is the normal distribution

PX|Y(x|y) =
PX,Y(x, y)

P(y)
=

1
√

2πσX|Y

exp

⎡⎢⎢⎢⎢⎢⎣−1
2

(x − µX|Y)2

σ2
X|Y

⎤⎥⎥⎥⎥⎥⎦ , (2.82)

with
µX|Y = µX +

σX

σY
ρ(y − µY) = B0 +

t
T

(BT − B0) (2.83)

and

σX|Y = σX

√︁
1 − ρ2 =

√︃
t
(︃
1 −

t
T

)︃
. (2.84)

These equations show that the Brownian bridge is a Brownian motion with expectation value
µX|Y and variance σ2

X|Y . Note that, as expected, the variance vanishes at t = 0 and t = T
according to the constraints and reaches its maximum value at t = T/2, while the expectation
value µX|Y is the linear interpolation of the initial and final points. The stochastic properties of
the Brownian bridge allow to calculate the probability of inter-step crossing [104, 128, 129],
which is given by

PBB−×(B0, BT , Bb,T ) = exp
[︄
−2

(Bb − B0)(Bb − BT )
T

]︄
, (2.85)

where Bb = δc is the boundary. The numerical solution of the Langevin equations with sharp-k
filter can be obtained as follows. For each new ith step of the random walk, we compute the
inter-step crossing probability PBB−×(δi−1, δi, δc,∆S ). Then we perform a little Monte Carlo by
generating a random number from a flat distribution over (0, 1). If the generated number is
smaller than PBB−×(δi−1, δi, δc,∆S ), we consider that an inter-step crossing has occurred, and
so the random walk has first crossed the boundary in the time step (S i−1, S i). In this way,
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the numerical implementation is exact and does not depend on the time-step resolution, so the
numerical solution will converge to the analytical result as the number of stochastic realizations
grows.

Spatially correlated fields and the joint distribution

Analogously to the single field case, the correlated Langevin equations with sharp-k filter,
Eq. (2.59), can be numerically solved considering their integral equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ1(S + ∆S ) = δ1(S ) +
∫︂ S+∆S

S
dS ′ Q1(S ′) δ1(0) = 0

δ2(S + ∆S ) = δ2(S ) +
∫︂ S+∆S

S
dS ′ Q2(S ′) δ2(0) = 0 ,

(2.86)

where the stochastic forces Q1(S ) and Q2(S ) are correlated and their properties are given by
Eq. (2.59). To solve this system, we want to decouple the integral of the first stochastic force
from the second one. We can do that by exploiting the Gaussianity of the fields. Any M-
dimensional random vector δ with correlation matrix C of components ci j = ⟨δiδ j⟩, can be
written as a lineal combination of another Gaussian random vector X with a diagonal corre-
lation matrix, that can be the identity without any loss of generality [130]. Consider now the
linear system δ = AX, where A is a (M × M) matrix with components αi j. This system in
components reads δi =

∑︁
j αi jX j. It follows that the correlation matrix can be rewritten as

C = AAT , in components ci j =
∑︁

k αikαk j. We apply this decomposition to our problem that
involves a 2-dimensional random field,

δi =

2∑︂
j=1

αi jX j ci j =

2∑︂
k=1

αikα jk . (2.87)

The second equation fixes three of the four αi j, so we have the freedom to fix one of them.
Choosing α12 = 0 we obtain:

α2
11 = c11 α12 = 0 (2.88)

α11α21 = c21 = c12 α2
22 + α

2
21 = c22 . (2.89)

This way of triangulating the covariance matrix is also known as Cholesky decomposition
(see Sect. 2.4.3). Exploiting this parameterization, Eq. (2.86) together with Eq. (2.58) can be
rewritten as [102]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1(S + ∆S ) = δ1(S ) + α11(∆S , S ) G1(0, 1) δ1(0) = 0
δ2(S + ∆S ) = δ2(S ) + α21(∆S , S ) G1(0, 1) + α22(∆S , S ) G2(0, 1) δ2(0) = 0
α11(∆S , S )2 = α21(∆S , S )2 + α22(∆S , S )2 = ∆S
α11(∆S , S )α21(∆S , S ) = ξ(r; S + ∆S ) − ξ(r; S ) ,

(2.90)

where G1(0, 1) and G2(0, 1) are two independent Gaussian variables with zero mean and unit
variance. In the last equation, we can exploit the fact that

ξ(r; S + ∆S ) − ξ(r; S ) =
∫︂ S+∆S

S

∂ξ(r; S ′)
∂S ′

dS ′ =
∫︂ S+∆S

S
j0
(︁
k f (S ′)r

)︁
dS ′ , (2.91)
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thus for ∆S ≪ 1, α11(∆S , S )α21(∆S , S ) ≃ j0
(︁
k f (S )r

)︁
∆S .

The first equation of the system Eq. (2.90) is formally equal to Eq. (2.76). To numerically
solve the second equation, we consider the corresponding inter-step crossing probability. This
is analogous to Eq. (2.76), but with:

σ2
X = α

2
21(t) + α2

22(t), σ2
Y = α

2
21(T ) + α2

22(T ) . (2.92)

This gives the inter-step expectation value and variance

µX|Y = B0 + ρ
2(t)(BT − B0), σX|Y = σX

√︁
1 − ρ2(t) (2.93)

with

ρ(t) =

√︄
α2

21(t) + α2
22(t)

α2
21(T ) + α2

22(T )
. (2.94)

Thus, the probability of inter-step crossing is

Pcrossing = exp
[︄
−2

(Bb − B0)(Bb − BT )
α2

21(T ) + α2
22(T )

]︄
, (2.95)

where Bb is the boundary value.

2.4.2 General filter: standard implementation
In this subsection, we describe the classical method used to solve the Langevin equation in the
general filter case for both the single field and spatially correlated fields.

The Langevin equation for the single field with a generic filter is given by Eq. (2.37).
To solve it numerically, we discretize the time variable R, i.e. the smoothing scale, in a set
{R0 . . .Ri . . .RN}, with Ri > Ri+1. Differently from the sharp-k case, the stochastic forces at
different smoothing lengths are no longer independent to each other. The stochastic force Q(Ri)
at a given smoothing length Ri depends on the entire set of previous steps R j > Ri. To solve this
equation by brute force, it is possible to draw a random Gaussian realization of Q(Ri) from the
covariance matrix ⟨Q(Ri)Q(R j)⟩ for each realization of the trajectory δ(R). A numerically more
convenient alternative is to solve these equations by exploiting the Gaussianity of the unfiltered
field δ(k), which implies that Fourier amplitudes of different wavenumbers are independent
[19]. Let us consider the smoothed density field

δ(q,R) =
∫︂

d3k
(2π)3 e−k·q δ(k)W(kR)

=

∫︂ ∞

0
dkW(kR)

[︄
1

(2π)3 k2
∫︂

dΩke−k·q δ(k)
]︄
.

(2.96)

The integral in the second line is rewritten in spherical coordinates, dividing the angular part
from the radial part. Consider now the density contrast filtered with the sharp-k filter, i.e. the
density contrast integrated over a sphere in k space,

δsk(q,R) =
∫︂ k=1/R

0

dk′

(2π)3 k′2
∫︂

dΩk′e−k′·q δ(k′) . (2.97)
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The stochastic force corresponding to a sharp-k filter, that we call Qsk, can be obtained by
deriving the previous equation,

∂δsk(q,R)
∂R

=
∂k
∂R

∂

∂k
δsk(q,R = 1/k) =

∂

∂k
δsk(q,R = 1/k) = Qsk(k) , (2.98)

where Qsk(k) = Qsk(R = 1/k). Comparing this last expression with Eq. (2.97), it is clear that
the sharp-k stochastic force Qsk(k) is equal to the term in the square brackets of Eq. (2.96), that
can be written as [19]

δ(q,R) =
∫︂ ∞

0
dkW(kR)Qsk(k) . (2.99)

This equation shows that a stochastic realization of the Langevin equation with a standard filter
W(kR), corresponds to a realization of the sharp-k case filtered at different filtering radii R with
W(kR). This methodology was exploited in the literature to compute the multiplicity function
with various filters [115, 131, 132]. This stochastic integral can be solved numerically given a
realization of a set of sharp-k stochastic force Qsk(ki). In particular, assuming small enough k

steps, the stochastic force can be written as Qsk(ki) = Gi

√︂
k2

i P(ki)∆k/2π2, where Gi is a random
number drawn from a Gaussian distribution with zero mean and unit variance; this stochastic
integral can be numerically solved as [19]

δ(R) =
∑︂

i

GiW(kiR)

√︄
k2

i P(ki)
2π2 ∆k . (2.100)

This equation is exact in the limit ∆k = (ki+1 − ki)→ 0, but a finite ∆k value becomes a source
of biases in the final results, strongly dependent on the size of the steps. In the following, we
propose a more stable numerical solution that is almost independent of the discretization of
the k step. The integral in k of Eq. (2.99) can be split into many integrals with the integration
interval given by the numerical steps ki,

δ(R) =
∑︂

i

∫︂ ki+1

ki

dkW(kR)Qsk(k) . (2.101)

If ∆k/k ≪ 1, then W(kiR) ≃ W(ki+1R). Since the value of the filter is slowly varying in the
(ki, ki+1) interval, it can be evaluated at the mean k-value, k = (ki+1 + ki)/2, and moved out of
the integration sign. The numerical integration of the stochastic force Qsk(k) in the interval
(ki, ki+1), is better estimated changing variable from k to S = σ2(k), and the result is Gi

√
∆S ,

where ∆S = S (ki+1) − S (ki) and Gi is a random number drawn from a Gaussian distribution
with zero mean and unit variance. This result is exact and does not depend on the integration
extrema. For ∆k ≪ 1, ∆S = k2

i P(k)∆k/(2π2) recovering Eq. 2.100. Finally, the numerical
estimate of δ(R) implemented in this work is

δ(R) =
∑︂

i

GiW
(︄
ki+1 + ki

2
R
)︄ √︁
∆S i . (2.102)

The correlation between the different smoothing lengths changes the way to solve the first
crossing distribution. The Markovian random walk solving the Langevin equation in the sharp-
k case is jagged, and the inter-step crossing has to be taken into account to numerically find the
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Figure 2.2: Two stochastic evolution of the Lagrangian filtered δ(R) field, represented by a different line
width. The same stochastic realization is represented considering the sharp-k (black), top-hat (blue) and
Gaussian (orange) filter. It can be noted that the filter impacts the scale of the first crossing occurrence.

first crossing distribution. In the general filter case, on the contrary, more the steps are close to
each other and more the correlation is strong. It follows that the realizations of trajectories solv-
ing the Langevin equations are smooth, and to obtain the first crossing distribution is enough to
follow the evolution of the field δ(R) at each Ri, finding where it crosses the threshold. Fig. 2.2
shows the impact of the filtering kernel on the same stochastic realization, note that the first
crossing scale can be strongly impacted.

Let us now consider the R-evolution of two spatially correlated density contrast fields at
distance r, δ1(R1) and δ2(R2), for which the stochastic evolution is described by the spatially
correlated Langevin equations Equation (2.58). We can exploit Eq. (2.99) both the first and the
second field, where we substitute

√
∆S i with the sharp-k realization defined by Eq. (2.90),⎧⎪⎪⎪⎨⎪⎪⎪⎩δ1(R) =

∑︁
i W

(︂
⟨k⟩iR

)︂
α11

(︂
⟨S ⟩i,∆S i

)︂
G(1)

i

δ1(R) =
∑︁

i W
(︂
⟨k⟩iR

)︂[︂
α21

(︂
⟨S ⟩i,∆S i

)︂
G(1)

i + α22

(︂
⟨S ⟩i,∆S i

)︂
G(2)

i

]︂
,

(2.103)

where ⟨S ⟩i = (S i+1 + S i)/2 and ⟨k⟩i = (ki+1 + ki)/2.

2.4.3 General filter: Cholesky decomposition

The use of Cholesky decomposition in solving the Langevin equations in the excursion-set
framework was first proposed in [127]. This decomposition has the advantage of greatly speed-
ing up the computation of the realization of stochastic trajectories δ(R).

Let us consider the correlation of the field δ(R) filtered at different smoothing lengths R,

⟨δ(Ri)δ(R j)⟩ = Ci j =

∫︂
dk
2π2 k2P(k)W(kRi)W∗(kR j) . (2.104)
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The matrix C is real, symmetric and positive-definite, so it has a unique decomposition C =
LLT , where L is a lower triangular matrix. It is now possible to construct a stochastic numerical
realization of δ(R) as

δ(Ri) =
∑︂

j

Li jG j , (2.105)

where G j is the jth element of a vector of Gaussian variables, following a distribution with
0 mean and unit variance. Note that since L is triangular, each δi requires a sum only over
j ≤ i. From the correlation of δ(R) it is easy to verify that this trajectory satisfies the required
statistical properties,

⟨δ(Ri)δ(R j)⟩ =
∑︂
m,n

LimL jn⟨GiG j⟩ , (2.106)

where GiG j = δ
K
i j, and δK

i j is the Kronecker delta, so

⟨δ(Ri)δ(R j)⟩ =
∑︂

m

LimL jm = LLT = C . (2.107)

The decomposition can be obtained from the following algorithm. We start with the ele-
ments on the diagonal, considering that L is a lower triangular matrix, we can write,

C j j =

j∑︂
k=1

L2
jk = L2

j j +

j−1∑︂
k=1

L2
jk ⇒ L2

j j = C j j −

j−1∑︂
k=1

L2
jk . (2.108)

Let now consider j < i,

Ci j =

j∑︂
k=1

LikL jk , (2.109)

since for j < k < i, L jk = 0, it follows

Ci j = Li jL j j +

j−1∑︂
k=1

LikL jk ⇒ Li j =

⎡⎢⎢⎢⎢⎢⎢⎣Ci j −

j−1∑︂
k=1

LikL jk

⎤⎥⎥⎥⎥⎥⎥⎦ L−1
j j . (2.110)

Starting from i = 0, Eqs. (2.108) and (2.110) provide the Li j values for increasing i and j ≤ i.
We extended the results of [127] showing that this decomposition can also be exploited for

spatially correlated fields [84]. Let us consider the correlation of two fields,

⟨δK(Ri)δL(R j)⟩ =
∫︂

dk
2π2 k2P(k)W(kRi)W∗(kR j) j0(krLK) . (2.111)

In this equation, the labels K and L indicate the field, i.e. δ1 or δ2, and rKL is the separation of
the two fields, in such a way that

rKL =

⎧⎪⎪⎨⎪⎪⎩0 K = L
r K ≠ L .

(2.112)

The full correlation matrix is

C =
[︄
⟨δ1(Ri)δ1(R j)⟩ ⟨δ1(Ri)δ2(R j)⟩
⟨δ2(Ri)δ1(R j)⟩ ⟨δ2(Ri)δ2(R j)⟩

]︄
=

[︄
C0 Cr

Cr C0

]︄
, (2.113)
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where C0 denotes the covariance matrix of the field δ(R) at different smoothing lengths, while
Cr is the covariance matrix of two fields separated by a distance r at various smoothing radii.
The elements of this block matrix can be written as CIJ. The upper case of the indices I and J
stands for the fact that each dimension of CIJ has twice the elements of each dimension of C0

i j

and Cr
i j. The indices run in the following way, CIJ = C0

i j for both I and J running from 1 to n
or both running from n + 1 to 2n, i.e. the diagonal blocks, where n is the number of smoothing
radii Ri considered; CIJ = Cr

i j for I running from 1 to n and J running from n + 1 to 2n or vice
versa, i.e. the anti-diagonal blocks. Both C0

i j and Cr
i j are real, symmetric, and positive definite

matrices, therefore also CIJ has the same properties, allowing the Cholesky decomposition

CIJ =

2n∑︂
K=1

LIKLJK . (2.114)

Note that also the LIJ lower triangular matrix, it can be computed in analogy of Eqs. (2.108)
and (2.110), and it can be expressed as a block matrix,

LIJ =

⎡⎢⎢⎢⎢⎢⎢⎣L(1) 0

L(2) L(3)

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.115)

where the L(1) and L(3) blocks are lower triangular matrices; in particular the first one is exactly
the one derived for the single field case. The upper left block is a zero matrix, while L(2) is a
non-zero (n × n) matrix. A numerical realization of the correlated paths can be obtained via
a 2n dimensional vector of random Gaussian variable with zero mean and unitary variance,
GI = (G(1),G(2)), where GI=i = G(1)

i and GI=n+i = G(2)
i , where i ≤ n,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1(Ri) =
n∑︂

j=1

L(1)
i j G(1)

j

δ2(Ri) =
n∑︂

j=1

L(2)
i j G(1)

j +

n∑︂
j=1

L(3)
i j G(2)

j .

(2.116)

Note that the first equation is exactly Eq. (2.105), so even if the sum runs from 1 to n, it is
non-zero only for j ≤ i. The first term in the right-hand side of the second equation depends
on the Gaussian realizations G1

i , i.e. it is the term correlated to the evolution of the first field.
Note that L(2)

i j is not a triangular matrix, so, for each Ri, the second field depends on the entire
evolution of the first via all the n elements of the G(1)

j set. The second term is a sum over a
lower triangular matrix as for the first field, but with different coefficients. Also in this case
the sum is non-zero only for j ≤ i. It is interesting to note the formal analogy between this
system and the solutions of Equations (2.90) and (2.103). This is due to the fact that in both
cases we decouple the first field from the second one using the Cholesky decomposition. In
Equations (2.90) and (2.103), the correlation matrix reduces to a 2 × 2 matrix, so the Cholesky
decomposition involves just one coefficient for the first field and two for the second one. On
the other hand, by exploiting the decomposition also to decompose the correlation between
different smoothing lengths, the problem is described by a 2n × 2n block matrix of four n × n
matrices.

Both the classical method and the implementation with Cholesky decomposition have their
own advantages and disadvantages. In the top-hat filter case, the computation of the path
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realization is faster using the Cholesky decomposition. This is due to the fact that the operations
involved for each stochastic realization of the field δ(R) using the Cholesky are the generation
of n Gaussian random numbers, multiplications and sums, described in Eq. (2.116). On the
standard method side, for n filtering smoothing lengths, the realization of the sharp-k stochastic
force generally requires ≳ n ki steps and a generation of a random number for each step. When
the full vector of sharp-k stochastic force is generated, it is filtered at each Ri with the top-hat
filter, that is a composition of trigonometric functions, much slower to compute with respect
to summing matrix elements as Eq. (2.105). For spatially correlated fields, the computational
resources saved with the Cholesky decomposition method are even larger with respect to the
single field case. On the other hand, the Cholesky decomposition is a numerically delicate task.
Eq. (2.108) involves the difference of numbers very close to each other, the results are positive
for each j, but very close to 0. If the radius steps are small, numerical errors can be larger
than the value to be computed, so the computation of L2

j j may result to be negative, but Li j is
expected to be real. This requires high control in computing the integrals of Eq. (2.104) and
Eq. (2.111), which involve two 1th order and one 0th order spherical Bessel functions, highly
oscillating and slowly decreasing. Computing these integrals with a high enough accuracy is
heavy, and in some cases the precision required may not be reachable, in particular for small
smoothing radius steps.

2.5 Results
In this section, we discuss the statistical properties of halos and voids obtained by numerically
solving the Langevin equations. In particular, we focus on the multiplicity function, on which
the halo mass function and the void size function depend, and the two-point correlations, i.e.
the halo-halo, void-void, and void-halo Lagrangian correlation functions. The statistics in-
ferred from the solution of the Langevin equations are exact in Lagrangian space and describe
the density and spatial correlations of spherically filtered patches that first reach the threshold
value. Nevertheless, to compare the theoretical results with simulations and to use them in data
analysis, there are two points to be aware of, the first concerning the relationship between the
first crossing problem and the void or halo formation/identification, and the second regarding
the map of the void and halo statistics from Lagrangian to Eulerian space.

Halo definition is a subtle point, since we have to consider how it is defined in the theoret-
ical framework, i.e. the filtered density contrast field that reaches the collapsing threshold at
a given smoothing scale, and how it is defined in observation/simulations. This means that, if
we want to compare the theoretical results with simulations, we must be aware that the halo
definition depends on the halo finder and, vice versa, the halo finder should be consistent with
the theoretical definition of halo. From a practical point of view, halo formation in the theoret-
ical framework and the halo definition implicitly contained in a halo finder can be effectively
matched using a moving barrier on the theoretical side. In the void case, the treatment is similar
but with a peculiarity, since they do not undergo to a full nonlinear collapse, the implementa-
tion of a moving barrier is not necessary. They can be defined both in the Lagrangian and in
the Eulerian space as filtered fluctuations that reach a fixed threshold value. Void finding algo-
rithms used to compare theory with data or simulations have to consider voids accordingly to
this definition. Alternatively, effective modifications to the threshold can be performed, as in
the halo case, but we do not consider this possibility here.

The second point concerns the map from Lagrangian to Eulerian space, which is crucial
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Figure 2.3: The multiplicity function from the first crossing distribution in the single (blue) and double
barrier problem (orange) for theoretical prediction (shaded curve) and numerical computation (solid
line) with the sharp-k filter, and the numerical result with the top-hat filter (dashed line). On the left
panel, the multiplicity function is expressed as a function of the variance σ2, on the right plot as a
function of the smoothing length R. See the text for the conversions from σ2 to R in the sharp-k case.
The collapsing threshold is δc = 1.686 and the void formation threshold considered is δv = −1.796,
corresponding to a nonlinear value of −0.7.

in the excursion-set framework. In particular, voids are greatly impacted by the map from
Eulerian to Lagrangian space, since they expand and both the multiplicity function and the
joint distribution of voids depend on the void radius, as discussed in Sect. 2.1.2. In the halo
case, the Lagrangian to Eulerian map does not explicitly enter in the 0th order statistics, i.e. the
halo mass function and the multiplicity function; nevertheless, it is important in the two-points
statistics, since the relative position between two halos moves in going from Lagrangian to
Eulerian space. Consequently, in this section, aside from presenting the results coming from
the numerical solution of the Langevin equations, we also discuss the impact of the map from
Lagrangian to Eulerian space and the relationship between the first crossing and void/halo
formation.

2.5.1 The multiplicity function
The multiplicity function is the first crossing probability between R and R + dR, and can be
numerically estimated as

f (⟨Ri⟩)∆Ri =
N×(Ri)
Nsample

, (2.117)

where ⟨Ri⟩ = (Ri + Ri−1)/2, ∆Ri = (Ri − Ri−1)/2, N×(Ri) is the number of paths that at Ri have
exceeded the threshold for the first time, and Nsample is the number of stochastic realizations
performed. Fig. 2.3 shows the theoretical multiplicity function for the sharp-k filter and the
numerical realization for the sharp-k and top-hat filter. The multiplicity function is expressed
as a function of σ2 (left panel) and of the smoothing length R (right panel). Note that the mul-
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Figure 2.4: Sharp-k survival probability obtained with 1.2× 107 stochastic realizations against the theo-
retical prediction in Poissonian-sigma units, defined as 1/

√︁
Ftheo(< S )Nsample, where Nsample is number

of realization performed.

tiplicity function is a differential quantity, so we change the variable according to Eq. (2.48).
In the sharp-k case of the right panel, the conversion from σ(k) to R scale is obtained requiring
σ2

sk(k) = σ2
th(R) (see Sect. 2.2 for conversion from k to R or mass scale). Note that an increase

in radius size corresponds to a decrease in σ2, so large smoothing scales correspond to small
σ2. The numerical realization for the sharp-k case is exactly reproduced, thanks to having
considered the inter-step crossing. Fig. 2.4 shows the difference between the numerical and
the theoretical first crossing distribution. The results are expressed in units of the Poissonian
uncertainty given the number of realizations, i.e. the square root of the inverse of the expected
first crossing probability times the number of realizations performed; it can be seen that the
deviation from the theoretical prediction is always of the magnitude of the Poissonian uncer-
tainty. The top-hat multiplicity function is suppressed with respect to the sharp-k one at large
scales (Fig. 2.3), but consider the arbitrary in the conversion from k to R for the sharp-k case,
which translates into some freedom in fixing the x-axis scale.

Fig. 2.5 shows the halo mass function derived from the various multiplicity functions dis-
cussed, compared to the halo mass function measured in DEMNUni simulations for ΛCDM
cosmology at z = 0 (see Sect. 3.1). As can be seen, the halo mass function from the sharp-k fil-
ter (blue lines) overestimates the number of low mass halos and underestimates the number of
the massive ones, for both the k to mass conversion adopted. The top-hat result (orange curve)
is quite accurate at low masses but cannot reproduce massive halos, whereas the Sheth-Tormen
multiplicity function accurately reproduces the measurements.

The void size function, or void abundance, is analogous to the halo mass function for voids,
but it presents some relevant differences. The void size function is the number density of
voids with respect to their radius; in the literature, this is often expressed as a function of the
logarithm of the radius in h−1Mpc units, dn/d lnR. To express it theoretically, we must consider
that mass conservation entails that the void radius evolves going from Lagrangian to Eulerian
space. We define RL the Lagrangian radius and R the corresponding Eulerian value. The void
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Figure 2.5: The halo mass function measured (red error-bars) in DEMNUni simulations for ΛCDM
cosmology at z = 0 versus the prediction from the excursion-set model. The blue lines represent the
predictions for the sharp-k filter where the two possible mass to k conversions are considered, MTH
(dashed line) is obtained requiring σsk(k) = σT H(R) and Msk is the mass enclosed by the sharp-k filter,
as described in Sect. 2.2. The orange and black curves represent the results for the top-hat filter and for
the Sheth-Tormen multiplicity function, respectively.

size function in Lagrangian space is formally analogous to the universal halo mass function of
Eq. (1.106),

dnL

dM
=
ρ

M
f (lnσ)

⃓⃓⃓⃓⃓
d lnσ
dM

⃓⃓⃓⃓⃓
, (2.118)

where M is the mass corresponding to a Lagrangian fluctuation of radius RL. We express the
multiplicity function as a function of lnσ following the notation of Jennings et al. [96], which
addressed the problem of the conversion from Lagrangian to Eulerian space for the first time.
Using lnσ as variable is useful when dealing with the multiplicity function obtained analyti-
cally with the sharp-k filter; nevertheless, for multiplicity functions obtained numerically, there
is no particular reason for this choice. Changing the variable from M to ln RL, we obtain

dnL

d ln RL
=

f (lnσ)
V(RL)

⃓⃓⃓⃓⃓
d lnσ
d ln RL

⃓⃓⃓⃓⃓
, (2.119)

where V(RL) = 4πR3
L/3 is the volume of the sphere with radius RL. If the number of voids is

conserved passing from Lagrangian to Eulerian space, the Eulerian void size function is

dn
d ln R

=
dnL

d ln RL

⃓⃓⃓⃓⃓
RL=RL(R)

, (2.120)

where RL(R) is the Lagrangian radius corresponding to the Eulerian radius R. If we assume
that voids are spherically symmetric, the mass conservation entails that this map reads

R
RL
= (1 + δNL

v )−1/3 , (2.121)
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where δNL
v is the nonlinear, i.e. the Eulerian, density contrast of void formation corresponding

to the linear threshold δv. Note that voids in the excursion-set model are fluctuations filtered
with a spherical filter; this definition does not say anything about the internal symmetry and
mass distribution of voids, which can be any. This is particularly important in considering the
map between Lagrangian and Eulerian space, since the internal structures of voids and the tidal
field sourced by the external mass distribution impact the evolution of voids; therefore, the
map can be more complex than Eq. (2.121) and the ones described in Sect. 2.1. Nevertheless,
in the literature the spherical symmetric map is always assumed, since it should be reasonably
accurate for large enough voids, at least as a first approximation.

Jennings et al. [96] noted that given Eqs. (2.118) and (2.121), the fraction of volume en-
closed in voids with a radius larger than Rmin is

F (Rmin) =
∫︂ ∞

Rmin

dR
R

V(R)
dn

d ln R
, (2.122)

therefore, for the sharp-k multiplicity function of Eq. (2.53) the total volume fraction enclosed
in voids is [96, 98]

F (0) =
1

1 + δNL
v

∫︂ ∞

0

dσ
σ

f (lnσ) =
1 −D

1 + δNL
v
, (2.123)

were D = |δv|/(δc + |δv|). It follows that for various values of δv, this quantity exceeds unity,
meaning that the volume fraction enclosed in voids exceeds the volume of the universe, which
is impossible. To avoid this unphysical result, Jennings et al. [96] proposed the so called
“volume conserving model”, or Vdn model, to map the Lagrangian void size function into the
Eulerian one. This model imposes the conservation of the volume fraction enclosed in voids
in passing from Lagrangian to Eulerian space, while the total number density of voids is no
longer conserved,

V(R) dn(R) = V(RL) dnL|RL=RL(R) , (2.124)

so that

dn
d ln R

=
V(RL)
V(R)

dnL

d ln RL

d ln RL

d ln R

⃓⃓⃓⃓⃓
RL=RL(R)

=
f (lnσ)
V(R)

⃓⃓⃓⃓⃓
d lnσ
d ln RL

⃓⃓⃓⃓⃓ [︄
d ln RL

d ln R

]︄
RL=RL(R)

.

(2.125)

Assuming spherical voids, R/RL = const according to Eq. (2.121), so d ln RL/d ln R = 1 and
the Vdn model for the void size function reads [96]

dn
d ln R

=
f (lnσ)
V(R)

⃓⃓⃓⃓⃓
d lnσ
d ln RL

⃓⃓⃓⃓⃓
. (2.126)

Note, however, that this result is motivated by unphysical assumptions in considering both
the multiplicity function and the map from Lagrangian to Eulerian space. Moreover, the extra
assumption that the number density of voids is not conserved going from Lagrangian to Eule-
rian space and uniformly suppressed is strong; this would mean that only a fraction of voids
in Lagrangian space will form a void in Eulerian space, independently of the size. One of the
criticalities arising from the total volume problem is that voids are considered to evolve as per-
fect spheres, in the Lagrangian to Eulerian map. It follows that the map from Lagrangian to
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Figure 2.6: void size function for voids with nonlinear density contrast δNL
v = −0.7 corresponding to

a linear threshold δv = −1.796. The blue lines represent the Lagrangian (solid) and Eulerian (dashed)
void abundances, while the black line represents the Vdn model. The orange curves correspond to the
top-hat results for Lagrangian (solid) and Eulerian space (dashed).

Eulerian radius is given by the relation Eq. (2.121), that does not depend on the void size. In ad-
dition to this, if a sharp-k filter is assumed, the volume fraction of voids may exceed the volume
of the universe, as described by Eq. (2.123). Let us forget for a moment the problems related
to the sharp-k multiplicity function and consider the Lagrangian to Eulerian map only to solve
the total volume problem; then instead of imposing a uniform suppression on the void number
density by a factor of (1 + δNL

v ), it makes more sense to consider an effective radius mapping,
relaxing the non-overlapping hard sphere idealization. In this direction, a first approximation
can be to consider the spherical approximation in the Lagrangian to Eulerian map valid only
for voids larger than a given minimum radius, since for small voids tidal fields and nonlinear
effects due to the background environment reasonably break the spherical evolution. In other
words, we can assume that Eq. (2.120) together with Eq. (2.121) is valid for R > Rmin, with Rmin

to be empirically determined. Note, however, that even if we assume Eq. (2.121) as a first ap-
proximation, the volume fraction of voids expressed by Eq. (2.123) is valid only for the sharp-k
filter, for which the k to radius conversion is ill defined, so the volume itself is ill defined. Note
that the multiplicity function for the top-hat filter assumes lower values with respect to the
sharp-k one (see Fig. 2.3), and in the top-hat case we do not find that the integral Eq. (2.122)
exceeds unity, at least for the threshold values considered, δv = [−2.7,−2,−1.796,−1,−0.6],
and for the radii explored, i.e. Rmin = 1h−1Mpc.

To conclude, we can resume the treatment of the volume fraction problem raised by Jen-
nings et al. [96] in two points. The problem is sourced by the sharp-k multiplicity function and
by the map between Lagrangian and Eulerian space. Our suggestion is that, first, there is no
need of this correction when a multiplicity function with physical meaning is considered, such
as for a top-hat filtering kernel; second, breaking the conservation of the number of voids (in-
dependently on their size) in passing from Lagrangian to Eulerian space is an extremely strong
assumption. The spherical approximation may be not accurate enough; nevertheless, even if
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Figure 2.7: Lagrangian halo-halo correlation function obtained with the top-hat filter for various min-
imum mass (left panel). The right panel shows different ways of handling the exclusion effect in the
correlation function with a minimum halo mass of 1014h−1M⊙, corresponding to a Lagrangian radius of
∼ 6.45h−1Mpc. The exclusion effect in the right panel is not considered for the blue curve, implemented
requiring R1 + R2 < rcorr (orange), and requiring max(R1,R2) < rcorr, where R1 and R2 are the filtering
smoothing radii at which the halos form.

its accuracy should be investigated both theoretically and with simulation, fixing the volume
fraction is unphysical.

Fig. 2.6 shows the void size function with nonlinear density contrast of δNL
v = −0.7 corre-

sponding to a linear threshold of δv = −1.796, obtained with the sharp-k filter (blue) and top-hat
filter (orange), for both Lagrangian (solid) and Eulerian (dashed) space; the Vdn model (black)
is considered only in the sharp-k filter case. The Lagrangian to Eulerian map for void radius is
the spherical one of Eq. (2.121). As can be seen, the top-hat void size function is lower than
the sharp-k one, and the Eulerian top-hat void size function predicts more small voids and less
large voids with respect to the Vdn sharp-k model.

2.5.2 Lagrangian correlation functions
The Lagrangian correlation function is obtained via Eq. (2.57), where the joint distribution is
computed as

Phh(⟨Ri⟩, ⟨R j⟩, r)∆Ri∆R j =
N×(Ri,R j, r)
N(1)N(2|1)

, (2.127)

where, as usual, ⟨Ri⟩ = (Ri + Ri−1)/2 and ∆Ri = (Ri − Ri−1)/2. The quantity N×(Ri,R j, r) is the
number of pairs that have exceeded the threshold for the first time at Ri and R j, respectively,
N(1) is the number of realizations of the first field, and N(2|1) is the number of realizations of
the correlated second field for each realization of the first one. The number of pairs N×(Ri,R j, r)
that first exceed the threshold is obtained by counting the first crossing of several numerical
realizations of the spatially correlated fields, via Eq. (2.103) or Eq. (2.116). In this subsection,
we consider the implementation of top-hat filter only.

We start by considering the halo-halo correlation function. The left panel of Fig. 2.7 shows
the results for three minimum halo masses, 2.5× 1012h−1M⊙, 2.5× 1013h−1M⊙, and 1014h−1M⊙,
respectively, which correspond to Lagrangian fluctuations with radius 1.88, 4.07, and 6.45
h−1Mpc. The black curve represents the unfiltered linear correlation function of matter. Note
that direct solution of neither the joint distribution Eq. (2.127) nor the statistical realization of
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Figure 2.8: Eulerian halo-halo correlation function obtained with the top-hat for various minimum mass
(solid curves) compared with measurements from DEMNUni simulations (scatters). See text for details.

the pairs (Eqs. (2.103) and (2.116)) automatically accounts for the exclusion effect, i.e. the
exclusion of pairs that correspond to mass elements of the same halo in the computation of the
correlation function. A simple way to account for it is not to consider pairs for which the sum
of the smoothing radii is larger than the correlation distance, i.e. R1 + R2 < r. This is shown
in the right panel of Fig. 2.7, where it can be seen that the impact is quite large. The basis
of this argument is that halos are considered as non-overlapping spheres in Lagrangian space.
Another possibility is to not consider pairs for which the Lagrangian radius of the largest halo
in the pair is larger than the correlation length [133], i.e. max(R1,R2) < rcorr, represented by
the green curve in Fig. 2.7. This is motivated by the fact that if the correlation is within the size
of the halo, it will collapse within the same virialized object. Nevertheless, collapsed objects
do not show a spherical radius in Lagrangian space, so other possibilities should be explored.
The exclusion effect has important consequences [see e.g. 134] and the two previous definitions
provide the scale at which this should happen, without entering in the details. More physical
definition can be adopted considering simulations [see e.g. 135, 136].

The solution of the Langevin equations provides the Lagrangian correlation function of
filtered fluctuations that first reach the collapsing threshold. This result has to be converted into
a Eulerian quantity to be comparable with the observed halo distribution in the real Universe
or in simulations. The map of the Lagrangian correlation function into the Eulerian one is not
an easy task. A possible way to do this map is to use the perturbative approach introduced in
Sect. 1.3.4. We consider the Eulerian halo density contrast truncated at the first order δE

h ≃

δL
h + δbg, since on large scale δh ≪ 1 and δbg

h ≪ 1, correlating this quantity we obtain

ξE
hh(r) ≃ ξL

hh(r) +
√︂
ξL

hh(r)ξ(r) + ξ(r) , (2.128)

where ξ(r) is the linear correlation function of matter. Fig. 2.8 shows the results of Eq. (2.128)
using the Lagrangian correlation function obtained with the top-hat filter and constant barrier,
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Figure 2.9: Lagrangian void-void correlation function with radius larger than 10 h−1Mpc (blue) and 30
h−1Mpc (orange). The linear void formation threshold considered is δv = −0.6. The line style labels the
modelization of the exclusion effect.

together with the measured two-point correlation function of FoF halos in DEMNUni simula-
tions. It can be seen that the numerical result fits the measurements quite well in the range of
validity of the linear approximation, i.e. r ≫ max(R1,R2) and far from the baryonic acous-
tic oscillation (BAO) feature, even if the simplification of considering a constant barrier. The
small overestimation of the theoretical correlation function is probably due to the constant bar-
rier implementation with the top-hat kernel. As can be seen in Fig. 2.5, the top-hat filter with
a constant barrier underestimates the number of massive halos, so the bias is overestimated
with respect to the true one, and the correlation function reflects this behavior. The deviation
with respect to simulations around the BAO dip is mainly due to the fact that there are not
enough numerical realizations. Nevertheless the BAO feature is not expected to be accurately
reproduced because nonlinearities and nonlocalities that affect the BAO feature [19] are not
considered in the modeling.

The void-void Lagrangian correlation function is obtained analogously to the halo-halo cor-
relation, and the considerations concerning the exclusion effect are the same. Fig. 2.9 shows
the results obtained at z = 0 in Lagrangian space for voids with minimum Lagrangian radius
of 10 h−1Mpc and 30 h−1Mpc, represented by the blue and orange curves, respectively. The
exclusion effect is implemented as in the halo-halo case. The solid lines represent the results
for which no exclusion is considered, the dashed lines represent the results for which the ex-
clusion is considered requiring R1 + R2 < rcorr, while the dotted lines represent the exclusion
implemented as max(R1,R2) < rcorr. Note that voids are larger than halos. This in Lagrangian
space is true if we consider a void formation threshold lower in magnitude with respect to the
one for collapse, i.e. −δv < δc, and in Eulerian space because of void expansion. Note that the
main feature in the observed void-void correlation function is the exclusion effect that produces
a peak. The exact implementation is not explored here, but we note the order of magnitude of
its impact, which is relevant, since it can reach the BAO scales.

The void-halo cross-correlation function is an important quantity in analysis focused on
cosmic voids. It represents the probability of finding a halo at a distance r from the void,
therefore it is the expectation value of the density profile of voids in the halo distribution. This
quantity is important on its own in studying redshift-space distortions and Alcock-Paczyński
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effect around voids. Moreover, if combined with the void density profile in matter distribution
(discussed later), it can provide a link between the matter distribution and the halo distribution
in and around voids, useful for various cosmological analysis, such as the void size function,
void-galaxy lensing, integrated Sachs-Wolfe in voids etc. [see e.g. 137–144].

The Lagrangian void-halo cross-correlation is obtained as usual, except for the exclusion
effect, which has not to be considered since we are correlating different objects, and double
counting is not possible. Note indeed that a fluid element can be part of a void and a halo at the
same time; for instance, a halo within a void shares all its fluid elements with the void. Fig. 2.10
shows the results for voids larger than 10 h−1Mpc (left panel) and 20 h−1Mpc (right panel),
correlated with halos with different minimum masses. The linear void formation threshold
considered here is δv = −0.6, which corresponds to a nonlinear threshold of δNL

v ≃ −0.4.
This value is chosen because it can be practically considered as the lowest dark matter density
contrast value that can be traced by galaxies to the end of cosmological analysis of galaxy
surveys (see Chapter 3 for details). The void-halo cross-correlation function is the probability
of finding a halo at distance r from a void. As expected, in the inner region of voids it is very
unlikely that halos can be found, then the probability increases and reaches zero at large radii.
The halo mass impacts the void-halo cross-correlation, it is less probable to find a massive halo
near or within a void with respect to a smaller one. This is intuitive for the inner region of voids;
nevertheless, even in the outer part, it is more probable to find less massive halos because they
are more abundant than the more massive ones. The map from Lagrangian to Eulerian cross-
correlation is not trivial since, differently from the halo-halo case, we are interested in the
range where the correlation function, and consequently the density contrast, is of order 1, i.e.
|ξvh| ∼ 1, therefore the implementation of Eq. (2.128) is not optimal. We can explore other
possibilities, in particular, since we are considering the position of halos with respect voids, we
can exploit the Lagrangian void density profile and their expansion in Eulerian space, which is
the topic of the next subsection.
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filter. The upper plot of both panels shows the mean path (black curve) and the distribution around
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distribution (see text). The lower panels show the Lagrangian results mapped in the Eulerian space
assuming spherical symmetry; the black dashed curve represents the mean Lagrangian path mapped in
Eulerian space, the solid curve is the mean path inferred from the path distribution mapped in Eulerian
space.

2.5.3 Lagrangian void density profile

The Langevin equations give the possibility to follow the path δ(R) along R for each stochastic
realization. This allows to consider the whole trajectory δ(R) that at a given R× forms a void
in Lagrangian space. This quantity represents the extrapolated Lagrangian density contrast
filtered on a sphere with radius R (in the top-hat case) around the position q, that is the void
position in the excursion-set framework. From the sample of the paths forming voids between
R× and R× + dR, i.e. δ(R|R×) we can obtain the expectation path and the distribution around
it. Fig. 2.11 shows the results for paths forming voids at two different Lagrangian radius bins,
around 10 and 30 h−1Mpc. The black curve of the upper plot of each panel shows the mean
density contrast path in Lagrangian space, while the orange area shows the distribution of all
the paths that satisfy the void formation condition in the given radius bin. Note that the den-
sity contrast can assume values lower than −1, this is because we are considering the linear
extrapolated density contrast. The orange distribution is a histogram for each radius bin R,
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with a resolution of 0.1 in density contrast. The middle plot of each panel shows the standard
deviation around the mean path in Lagrangian space, σδ(R), computed fitting a Gaussian dis-
tribution, that, given the resolution of the histogram, well reproduces the distribution around
the mean path for each R value. Note that the distribution of paths cannot exceed δv and δc

values for R > R× by construction. It follows that the standard deviation around the mean path
reaches the minimum value in the radius bin of the crossing, since all the paths considered have
reached the threshold value between R× − ∆R and R×. In this bin σ(δ) → 0 as ∆R → 0. After
the threshold crossing, σ(δ) increases in quasi-logarithmic behavior with respect to R.

The lower panels show the Lagrangian results mapped in Eulerian space assuming spherical
symmetry. The map is a nonlinear function of both density contrast and radius. Note that the
first crossing radius expands from 10 to 11.6 h−1Mpc and from 30 to 35.6 h−1Mpc respectively,
due to mass conservation expressed via Eq. (2.121). The linear threshold δv = −0.6 is mapped
in δNL

v ≃ −0.4 via Eq. (2.17) and Eq. (2.22). The Lagrangian to Eulerian map greatly modifies
the distribution of paths. In Lagrangian space, at each radius bin, the distribution is well fitted
by a Gaussian; nevertheless, the Lagrangian negative values in the range (0,-∞) are compressed
into the Eulerian range between 0 and -1, while the positive values are stretched from (0,1.686)
to (0,∞), ending in a strongly skewed distribution. At the same time, the corresponding radius
is stretched for underdensities and decreased for overdensities. The combination of these two
effects maps the Lagrangian density contrast distribution at fixed RL in a distribution along a
curved set of points in the Eulerian (δ,R) plane. Note that the path distribution changes accord-
ing to PL(δL,RL)dδLdRL = PE(δE,RE)dδEdRE. The black curves in the lower panels show the
mean density contrast path. More specifically, the dashed line shows the mean Lagrangian path
mapped in Eulerian space, the solid curve is the mean path computed from the path distribution
obtained after the Lagrangian to Eulerian mapping. It can be seen that for radii smaller than
the crossing radius, the two ways to compute the expected density contrast path start to provide
different results, and the difference progressively grows as the radius decreases. This shows
that the averaging procedure and the Lagrangian to Eulerian map do not commute.

This result shows how powerful the excursion-set framework is: by solving the Langevin
equations it can predict the void density profile of voids. Note that this result, together with
the void-halo correlation function, it can provide the relationship between the halo distribution
in voids and the void density profile. However, there are at least two subtleties to be aware
of. The first concerns the excursion-set void center position in Lagrangian space. According
to void definition in the excursion-set framework, this position is not the minimum of the
filtered density field, not even other typical void center definitions, such as the barycenter. The
excursion-set void position is correlated with the minimum of the filtered field; nevertheless,
this correlation has to be investigated. The second point is related to the first one and concerns
the Lagrangian to Eulerian map. The spherical symmetry used in Eq. (2.121) and in Sect. 2.1
is accurate for large radii, but it becomes less and less accurate for radii smaller than R×.

2.6 Conclusion
In this chapter, we explored the void and halo statistical properties derived within the excursion-
set framework; in particular, we discussed and presented the original results of our work. First
of all, in Sect. 2.1, we considered the analogies and differences of the evolution and treat-
ment of voids with respect to halos. For the first time in the literature, we showed that the
shell crossing in void formation and treatment is almost irrelevant, and a perfect parallelism
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between void and halo is not doable. This has consequences in detecting voids and in using
theoretical predictions for observations, since the density contrast field describing a void in the
Eulerian space can in principle always be mapped in the Lagrangian one, where we developed
our theory. In Sect. 2.2, we introduced the fundamental quantity of the excursion-set approach,
i.e. the filtered density contrast in Lagrangian space and its link to halos and voids. In that
section, we discussed the meaning of the filtering function, pointing out the problems of using
the sharp-k filtering function, on which the great majority of the literature is based. We then
introduced the Langevin equations and their meaning in describing the statistical properties of
halos and voids in Sect. 2.3, presenting some analytical results. In Sect. 2.4.1 we discussed how
to numerically solve the Langevin equations for the general case, presenting our original im-
plementation for the single and spatially correlated fields for the sharp-k filter case, considering
the inter-step crossing, and for the general case, considering two different numerical implemen-
tations for which we explore the numerical stability. In particular, we extended the Cholesky
decomposition to account for spatial correlation and discussed the numerical advantages and
disadvantages of each presented method. At the end, in Sect. 2.5, we showed and discussed the
results concerning the void size function, the halo mass function, and the two-point correlation
functions. We focused on the results in the Lagrangian space obtained by solving the Langevin
equations. Nevertheless, we also provided insights on the Eulerian mapping of these results.
Concerning the void size function, we widely discussed the problem of the models available in
the literature, showing that they rely on unphysical considerations, both in their formulation of
the theory in Lagrangian space and in the Lagrangian to Eulerian mapping. For the first time
in the literature, we used the top-hat filter within the excursion-set framework to model the
Lagrangian halo-halo, void-void and void-halo correlation functions. We also provide a simple
way to pass from the Lagrangian to Eulerian halo-halo correlation function. As a last point, for
the first time we showed that the Langevin equations allow us to go beyond the 1- and 2-point
statistics, predicting the Lagrangian profile for voids defined according to the excursion-set
framework.

In this work, we widely explored the statistical properties of voids and halos in the La-
grangian space, whereas their map to the Eulerian space is at an initial stage. The following
steps consist in exploring the Lagrangian to Eulerian map for voids, both theoretically, con-
sidering approximations beyond the spherical symmetry and using cosmological simulations
to directly track dark matter particles in voids from their initial position and shape to the final
ones.
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Chapter 3

Cosmic voids in simulations

The primary aim of modern and future galaxy surveys is to investigate the late time acceleration
of the Universe, with the goal to better understand what causes it. Aside from the dark energy
problem, future cosmological surveys will reach an unprecedented precision in measuring the
cosmological parameters, allowing to detect the effects of neutrino mass on the evolution and
distribution of perturbations in the Universe. These effects are related to the total neutrino mass,
i.e. the sum of the neutrino mass eigenvalues, and we are close to measure it with cosmological
observations.

Both dark energy1 and massive neutrinos impact the expansion of the background homo-
geneous Universe and the growth of perturbations. Cosmic voids are a specific kind of matter
density perturbations, constituting a unique cosmological probe. They span a large range of
scales and are underdense in matter density, these features make them suited to study dark en-
ergy and massive neutrinos as well. Moreover, they do not undergo extremely nonlinear gravi-
tational evolution, as halos. It follows that the fingerprint of the physics driving their evolution
is not erased by virialization. The cosmological exploitation of cosmic voids is also promising
for another reason. The constraining power of voids is currently limited by the geometry and
volume of surveys: voids are large, and in order to have enough statistics we need an extremely
large continuous survey volume. Moreover, to study in detail the clustering properties of cos-
mic voids, we need spectroscopic surveys with high enough galaxy density detected, which
translates in good enough spatial resolution, capable of mapping the distribution of galaxies
within voids. Future galaxy surveys, such as Euclid, will make available a large contiguous
fraction of the sky area and redshift detection up to high redshift, fulfilling the requirements to
make cosmic voids an effective novel powerful cosmological probe.

The extraction of cosmological information from voids requires a detailed study of their
properties and of their sensitivity to cosmological models and parameters. For this reason, in
this chapter we investigate the properties of cosmic voids in large cosmological simulations, re-
producing the volume and tracer distribution of a Euclid like survey. In this study, we consider
various void observables, exploring their sensitivity to dark energy and massive neutrinos, how
they are impacted by the tracer, and how to theoretically model their features. In particular, we
focus on the void size function and the void density profile. We choose these two observables
because they are the most simple to measure, they are widely used in the literature, they have a

1In this section we use the term “dark energy” in the wide sense of what causes the late time acceleration of the
Universe, including under this term the cosmological constant, the vacuum energy, the proper dark energy field,
and modified theories of gravity.
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∑︁
mν [eV] fν mcdm

p [h−1M⊙ ] mν
p [h−1M⊙ ]

0 0 8.27 × 1010 0
0.16 0.012 8.17 × 1010 0.99 × 109

0.32 0.024 8.07 × 1010 1.98 × 109

Table 3.1: Summary of cosmological parameters and derived quantities for DEMNUni simulation con-
cerning the total neutrino masses implemented. The values Ωb = 0.05, Ωm = 0.32, h = 0.67, ns = 0.96
are shared by all the models.

clear physical interpretation, and, therefore, are easier to theoretically model.
This chapter is organized as follows. We present the set of simulations and the void finding

algorithm used in Sect. 3.1; we then consider the abundance of voids in Sect. 3.2, discussing its
general properties and the dependence on the tracer (Sect. 3.2.1), we then explore its sensitivity
to the dark energy equation of state and the total neutrino mass, considering also geometrical
effects (Sect. 3.2.2), and we present a possibility to connect the theory developed in Chapter 2
to observed voids (Sect. 3.2.3). In Sect. 3.3 we focus on the density profile of voids, extensively
discussing how to estimate it in a discrete tracer distribution (Sect. 3.3.1), we then consider the
relationship between matter and halo within voids, showing the properties of halos in voids and
theoretically modeling halo bias in voids (Sect. 3.3.2), we conclude the section considering the
sensitivity of the void density profile to dark energy and massive neutrinos Sect. 3.3.3; we then
draw our conclusions in Sect. 3.4.

3.1 Voids in cosmological simulations
This work is based on the analysis of “Dark Energy and Massive Neutrino Universe” set of
simulations2 (DEMNUni) [145, 146]. The DEMNUni simulations have been conceived for the
testing of different probes, including galaxy surveys, CMB lensing, and their cross-correlations,
in the presence of massive neutrinos and dynamical dark energy. To this aim, this set of sim-
ulations is characterized by a volume big enough to include the very large-scale perturbation
modes, and, at the same time, by a good mass resolution to investigate small-scales nonlinear-
ities and neutrino free streaming. Moreover, for the accurate reconstruction of the light-cone
back to the starting redshift of the simulations, it has been used an output time spacing small
enough that possible systematic errors, due to the interpolation between neighboring redshifts
along the line of sight, result to be negligible. We note that the DEMNUni simulations have
a volume and resolution mimicking the data expected from large surveys such as the spectro-
scopic Euclid wide survey, hence allowing to explore the population of relatively large voids
(which are not captured by smaller simulations), and assess their constraining power for cos-
mology. For this reason, in the last few years they have been used to explore the applications
of cosmic voids for cosmology [97, 147, 148]. This work aims to capitalize on cosmic void
properties measured in simulations and to their sensitivity to the dark energy equation of state
and to the sum of neutrino masses.

The simulations were performed using the TreePM-SPH code Gadget-3, an improved ver-

2https://www.researchgate.net/project/DEMN-Universe-DEMNUni

https://www.researchgate.net/project/DEMN-Universe-DEMNUni
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Figure 3.1: Evolution of the dark energy equation of state (left panel) and of the dark energy density ρDE
(right panel), both as a function of redshift z. The parameter ρm is the matter density. In both panels the
vertical lines represent respectively the redshift value at which the ΛCDM universe begins to accelerate
its expansion (dotted line, zΛCDM

acc = 0.620), and the redshift of the matter-dark energy density equality
(dash dotted line, zΛCDM

eq = 0.286), both for the ΛCDM model. Image from [97].

sion of Gadget-2 [149], modified to account for the presence of massive neutrinos [150]. The
simulations are characterized by a softening length ϵ = 20 h−1Kpc, and a comoving volume of
(2 h−1Gpc)3 filled with 20483 dark matter particles and, when present, 20483 neutrino particles.
All simulations started at redshift z = 99, producing 62 different time outputs, logarithmically
spaced in the scale factor a = 1/(1 + z), down to z = 0. The simulations have a Planck 2013
[151] baseline ΛCDM reference cosmology and flat geometry. The set is composed of 15 sim-
ulations, considering 5 different dark energy equations of state, for the cosmological constant
plus 4 dynamical equations of state for each neutrino mass considered, i.e.

∑︁
mν = 0, 0.16,

0.32 eV. The four dark energy variants are parameterized with the Chevallier–Polarski–Linder
(CPL) parameterization [58, 59]

w(a) = w0 + (1 − a)wa ⇒ w(z) = w0 +
z

1 + z
wa , (3.1)

with parameter values chosen on the boundaries of the 2015 Planck constraints [152]: the 4
combinations of (w0, wa) with w0 = [−0.9, −1.1] and wa = [−0.3, 0.3]. The redshift evolution
of the dark energy equations of state density, for the parameters implemented in DEMNUni
simulations, are represented in Fig. 3.1. The cosmological parameters are based on ΛCDM
cosmology, the entire set hasΩm = Ωcdm+Ωb+Ων = 0.32, in the presence of massive neutrinos
the baryon density is kept fixed Ωb = 0.05 and the other two density parameters are changed
accordingly. Table 3.1 resumes the parameters used in the presence of massless and massive
neutrinos, where fν = Ων/Ωm.

Dark matter halos are identified using a friends-of-friends (FoF) algorithm [31] applied to
dark matter particles only, with minimum number of particles fixed to 32, corresponding to a
mass of ∼ 2.5 × 1012 h−1M⊙, and a linking length of 0.2 times the mean particle separation.
FoF halos are further processed with the subfind algorithm [153, 154] to get a subhalo catalog.
With this procedure, some of the initial FoF parent halos are split into multiple sub-halos, with
the result of an increase of the total number of identified objects, and of a lower minimum mass
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Figure 3.2: Projected void boundaries (colored lines) and halo field (blue dots represent halos, darkness
is a function of halo mass) in a slice of the ΛCDM simulation at z=1.05. Image from [97].

limit. The minimum number for a subhalo is set to 20 particles in order to constitute a valid
subhalo catalog, corresponding to ∼ 1.7 × 1012 h−1M⊙. Note that the subfind algorithm is an
estimator of physical halos, therefore in the following with the term “halo” we will refer to the
objects identified by subfind algorithm.

To identify voids and build void catalogs, we used the second version of “Void IDentifi-
cation and Examination” (VIDE)3 public toolkit [155]. VIDE is based on the tessellation plus
watershed void finding formalism [156] with the Delaunay tessellation/DTFE [157] and subse-
quently used by ZOBOV [158] with the Voronoi tessellation of the tracer particle population, to
estimate the density field based on the underlying particle positions. The algorithm first groups
nearby Voronoi cells into zones, corresponding to local catchment “basins", that are identified
as voids. VIDE can optionally merge basins to form larger voids with the watershed trans-
form, we choose to do not explore this possibility in order to leave the void finding algorithm
parameter free.

For each simulation, we launched VIDE on 5 different snapshots, corresponding to z = 0,
0.48, 1.05, 1.46, 2.05, on the particle and subhalo distribution. To find voids in dark matter
particle distribution, we randomly diluted the original catalogs at 1.5%, ending up in ∼ 1.29 ×
108 particles, to save computational resources. Moreover, since the void sizes we want to study
are the ones detectable in upcoming galaxy surveys, such as Euclid, the dilution does not impact
the spatial resolution required for the analysis. We then build four different catalogs for voids
detected in halos, fixing four different minimum masses to the halo distribution, corresponding
to 2.5 × 1012h−1M⊙, 1013h−1M⊙, 2.5 × 1013h−1M⊙, and 1014h−1M⊙.

Watershed voids are not spherical, they correspond to a relative minimum in the density
field estimated via the Voronoi tessellation, and they extend within the watershed formed by
the ridge around it (see the representation of Fig. 3.2). Therefore, this void definition is sensi-
tive to the tracer density. It is worth noting that this is not a source of ambiguity or arbitrariness

3http:www.cosmicvoids.net

http:www.cosmicvoids.net
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for voids detected in halo distributions, because the discreteness of tracers and its number den-
sity have a physical origin. This is valid for any discrete tracer with physical origin, such as
galaxies, clusters, etc. On the other hand, voids detected in the dark matter particle distribu-
tion depend on the spatial resolution given by the particle density, which is numerical and not
physical. Since the void finder identifies each relative minimum of the density field, the higher
spatial resolution entails better identification of substructures and, therefore, a higher number
of relative minima. Therefore, in the dark matter particle case, we must consider that the void
scale is impacted on the numerical spatial resolution. To face this problem, it is possible to
consider a threshold in VIDE in order to merge basins into parent voids, nevertheless, since we
are more interested in voids detected in halo distribution, we do not explore this possibility.

We describe the void properties according to three parameters given by VIDE output. The
first is the void size, that is measured via the effective radius, i.e. the radius corresponding to a
sphere with the same volume of the void,

Reff =
3

4π

⎡⎢⎢⎢⎢⎢⎣∑︂
i

Vi

⎤⎥⎥⎥⎥⎥⎦1/3

, (3.2)

where Vi is the volume of the ith Voronoi cell building up the void. The other quantity is the
void center. In the literature there are two approaches to define the void position for watershed
voids: the location of the density minimum, estimated in various ways, or the barycenter. We
prefer the second option for various reasons. First, the position of the minimum of a void is
numerically unstable, since it depends on few or only one particle, depending on the method-
ology used, so it can be more affected by sampling artifacts and the resulting position may be
Poissonian dominated. On the other hand, the void is identified by all the particles belonging
to it, the use of information from the whole object allows for a more robust identification of
the void center. This is particularly important for the analysis we want to perform; in partic-
ular, a robust study of the density profile and statistics of voids requires a robust void center
definition. Moreover, for void profiles, the barycenter is a more suitable point of reference to
measure it, as we discuss in 3.3. VIDE estimates the barycenter by weighting the volumes of
the contributing Voronoi cells:

Xv =
1∑︁
i Vi

∑︂
i

xiVi , (3.3)

where xi and Vi are the position and Voronoi volume of each tracer particle i within the void.
The last quantity used in our analysis is the central density ρc, defined as the mean tracer

density within a sphere of radius Reff/4 around the volume-weighted barycenter. Since VIDE
detects all the relative minima, we decided to keep only the ones that correspond to underden-
sities, therefore we pruned the void catalog requiring ρc < 1.

3.2 The void size function
The void size function, or void abundance, is the number density of voids as a function of their
size. It is sensitive to cosmological parameters [97, 147, 159–162], and it can contribute in
breaking the degeneracy between different models as they are subject to different systemat-
ics with respect to the halo mass function and the two-point halo/galaxy statistics. Moreover,
the void size function is potentially more sensitive since voids are dark energy dominated ob-
jects [163, 164]. In Chapter 2 we widely discussed the theoretical void size function in the



82 CHAPTER 3. COSMIC VOIDS IN SIMULATIONS

10 100

R [h−1Mpc]

10−9

10−8

10−7

10−6

10−5

10−4

d
n

(R
)/

d
ln
R

[h
−

1
M

p
c]
−

4

Msub ≥ 2.5× 1012M�/h

Msub ≥ ×1013M�/h

Msub ≥ 2.5× 1013M�/h

Msub ≥ ×1014M�/h

cdm

0.5 0.7 1.0 2.0 3.0 4.0 5.0 7.0 9.0

R/mps

Figure 3.3: Tracer impact on the void size function. Both panels show the void size function measured
in ΛCDM simulation in the z = 0 snapshot for voids detected in dark matter distribution (black), and
halo distribution with various minimum subhalo mass, 2.5 × 1012h−1M⊙ (blue), 1013h−1M⊙ (orange),
2.5 × 1013h−1M⊙ (green), 1014h−1M⊙ (red). The error bars are Poissonian. The left panel shows the
void abundances as a function of void effective radius considering voids with R ≥ 2.5 × mps, the right
panel shows the void abundances for all detected voids where the x-axis is in unit of the mean particle
separation.

excursion-set framework, in this section we will mainly focus on the measured void size func-
tion in simulations (Sect. 3.2.1), to directly focus on its sensitivity to dark energy and neutrino
total mass (Sect. 3.2.2), and at the end we discuss its relations with the theoretical model
(Sect. 3.2.3).

3.2.1 General properties

In this subsection, we discuss how the void size function depends on the tracers and on the
redshift. Fig. 3.3 shows the void size function measured in the snapshot at z = 0 in ΛCDM
cosmology, for various tracers: dark matter particles (black) and halos with different mass
cuts, 2.5 × 1012h−1M⊙ (blue), 1013h−1M⊙ (orange), 2.5 × 1013h−1M⊙ (green), and 1014h−1M⊙
(red). The mean particle separation (mps) is defined as (Np/L3

box)−1/3, the value is ∼ 4h−1Mpc
for diluted dark matter particles and ∼ 8, ∼ 12, ∼ 17, and ∼ 32h−1Mpc for the halo density
field, with the corresponding minimum halo mass listed above, respectively. On the left panel,
the void abundances are represented as a function of the effective radius. Each population
of tracers entails a different spatial resolution in mapping the underlying density fluctuations.
More massive halos trace the background density field on larger scales, therefore more massive
halos detect larger voids. The right panel shows the void size function as a function of the
effective radius in units of the mps. This allows to better understand the impact on the spatial
resolution. It can be seen that the peak of the void size function is around 3 × mps for each
tracer considered. We stress the fact that this is due to the sparsity of tracers, but since the
number density of halos depends on the physics behind the halo formation, the suppression of
small voids in the halo field has a physical origin. This is not true for voids in the dark matter
particle distribution, where the number density is fixed numerically.

Fig. 3.4 shows the redshift dependence of the void size function in the halo distribution with
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Figure 3.4: Redshift evolution of the void size function measured in the halo distribution with minimum
mass of 2.5 × 1012h−1M⊙ in ΛCDM simulation. The x-axis of the left panel is in h−1Mpc units, while
the left panel is in mps units.

a minimum halo mass of 2.5 × 1012h−1M⊙ for voids with R ≥ 2.5 ×mps in ΛCDM cosmology.
As before, the left panel shows the void size function as a function of the void effective radius
in h−1Mpc, while the right panel in mps units. This double representation helps to distinguish
the two effects driving the evolution of the void size function with redshift. The first is that
fixing the mass, halos at higher redshift are more biased with respect the ones at lower redshift,
this means that they trace the underlying mass distribution at larger scales. This effect is visible
in the left panel. On the other hand, perturbations, and so voids, grow as the redshift decreases,
this is well visible expressing the void radius in mps units (right panel).

3.2.2 Sensitivity to dark energy and total neutrino mass
In this subsection we explore the sensitivity of the void size function of watershed voids to
dark energy and to the total mass of neutrinos. The investigation of these effects on the void
size function in DEMNUni simulations was explored in [97, 147], considering the impact of
massive neutrinos [147] and dark energy [97] separately, both works without considering the
redshift evolution. We now extend these studies by considering the combination of these ef-
fects, the impact of tracers, the redshift dependence, and geometrical distortions modifying the
observed void size function.

We start considering the effect of the neutrino mass on the void abundance for voids de-
tected in the dark matter distribution. Fig. 3.5 shows the comparison of void size function
measured in the presence of massive neutrinos,

∑︁
mν = 0.16 and 0.32 eV, for cosmology with

cosmological constant, i.e. (w0, wa) = (−1, 0), with respect to the void size function of ΛCDM.
This is done for the five redshift snapshots analyzed. The quantity represented is[︄

dn
d ln R

]︄
∑︁

mν

[︄
dn

d ln R

]︄−1

ΛCDM
− 1 (3.4)

and the error bars are Poissonian, i.e. they are estimated by counts. For a rough comparison
with the upcoming data, note that a box has a volume of 8 (h−1Gpc)3, corresponding to the
volume of a shell in the Euclid survey centered at z ∼ 1 and spanning ±∆z with ∆z = 0.1. Note
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that the ratio of the two void size functions is equal to the ratio of the number of voids in the
same radius bin. Nevertheless, this is not true when geometrical distortions are considered, as
we will discuss later, therefore we prefer to express this quantity as the ratio of the void size
functions from now.

It can be seen that the presence of massive neutrinos suppresses the number of large voids
and enhances the number of smaller ones. To correctly interpret this result, we recall that
the objects we are considering are the relative minima of the density field and the basins to
which they belong. Massive neutrinos suppress perturbations on scales smaller than the free-
streaming length, so the mean density contrast of fluctuations is lower in the presence of mas-
sive neutrinos with respect to the massless case. Nevertheless, their impact on the number
density of relative minima in the dark matter density field and on the size of the corresponding
basins is not a direct consequence, therefore it is not easy to infer. The suppression or enhance-
ment in number does not refer to the density contrast of these objects, but to the number density
of minima and the size of their basins. There is no direct relationship between the number of
minima and the depth of voids. We will explore the relationship between watershed voids and
the density contrast of the corresponding fluctuations in Sect. 3.2.3 and in Chapter 4. Note that
the void size function in the presence of massive neutrinos is distinguishable from the massless
case for each redshift. This result is particularly interesting given the fact that the minimum
total neutrino mass allowed by oscillations is roughly one-third of the minimum neutrino mass
implemented in DEMNUni simulations [51–53]. Moreover, the minimum mass considered
in DEMNUni simulations is close to the upper limit measured by Planck [50], showing the
importance of studying voids in the upcoming galaxy surveys.

Fig. 3.6 shows the ratio of the void size functions measured in the dark matter distribution
for the four parameterizations of the CPL dark energy equation of state and massless neutrinos
with respect to ΛCDM. The plot is organized as the previous one. Note that only two out of the
four parameterizations are distinguishable from ΛCDM. Comparing these results with Fig. 3.1
it can be seen that the void size functions for cosmology with a dark energy equation of state
and density that is more close to ΛCDM remain degenerate, the other two are distinguishable.

We consider now the effect of massive neutrinos and dark energy equation of state on the
void size function for voids detected in the halo distribution. Fig. 3.7 and Fig. 3.8 show re-
spectively the comparison of the void size functions in the presence of massive neutrinos and
(w0, wa) = (−1, 0) with respect to the ΛCDM case and of the void abundances in presence of
dynamical dark energy and massless neutrinos with respect to ΛCDM. We report here only the
results for halos with M ≥ 2.5×1012h−1M⊙, since the other mass cuts show analogous features.
The first thing to notice is that the behavior of the relative void size functions is inverted with
respect to voids detected in the dark matter distribution. Since we are considering watershed
voids, where the void depth does not enter in the void definition, an insight of the physics
driving this behaviors is complex. First of all, we notice that voids detected in dark matter dis-
tribution are a different class of objects with respect to the ones in halos distribution, note that
the typical scale of watershed voids is very different for instance. One of the processes driving
this behavior can be addressed to the change in the number of halos formed. A different number
density of halos with respect to ΛCDM corresponds to a different bias, in this way halos with
the same minimum mass, but in the presence of different dark energy equations of state, track
the underlying matter density at different scales. This probably is not the only reason of the
void size functions behavior, more considerations will be investigated in considering the void
density profiles, Sect. 3.3. Note that the impact of the neutrino mass is always detectable for
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the neutrino masses considered. On the dark energy side, the impact on the void size function
is reduced in the halos distribution with respect to dark matter voids, nevertheless the two dark
energy equations of state that are distinguishable in the dark matter distribution remain distin-
guishable also in the halos distribution, even if the relative difference is reduced. Note that in
the presence of dark energy, all the void size functions remain degenerate with ΛCDM at low
redshift. The physical origin of this behavior is complex, since the watershed voids detected
in the halo distribution depend both on void formation in dark matter distribution and halo for-
mation, that trace the underlying dark matter voids, both impacted by dark energy. A partial
explanation of this behavior is probably related to the fact that the initial scalar amplitude for
simulations with dynamical dark energy is set to keep the same σ8 at z = 0, together with all
the cosmological density parameters. This means that at z = 0 the linear power spectrum is
expected to be the same for each dark energy equation of state implemented, while at higher
redshift the relative differences increase. As a consequence, note that the degeneracy of the
void size function corresponding to the two sets of CPL parameters more distant from ΛCDM
breaks as the redshift increases. This shows the importance of studying the redshift evolution.

When analyzing real data, the void size function is impacted by geometrical effects. The
position of tracers on which the void finder would be launched, is measured in spherical coor-
dinates, where the distance variable is the redshift. The conversion from redshift to comoving
position depends on the cosmological model and the parameters assumed. A wrong cosmology
reflects in geometrical distortions, known as Alcock-Paczyński effect [165]. The impact of the
distortion can be easily derived as [141, 166–170]

r′∥ =
H(z)
H′(z)

r∥ = q−1
∥ r∥ , r′⊥ =

χ′(z)
χ(z)

r⊥ = q−1
⊥ r⊥ ; (3.5)

where r∥ and r⊥ are the comoving distances between two objects at redshift z projected along
the parallel and perpendicular direction with respect to the line-of-sight, H(z) is the Hubble
parameter and χ(z) the comoving distance defined in Eq. (1.48). The primed quantities refer to
the calculation at the fiducial cosmology, assumed to map redshifts to comoving distances, the
non-primed to the true cosmology. The first step of ZOBOV based void finders, such as VIDE,
is to estimate the density field via the Voronoi tessellation. Note that the redshift positions of
the minima and the cells belonging to each basin do not vary under a smooth monotonic map
of the redshift position. This means that the redshift position of each void does not change
with the cosmological models and parameters used to map redshifts in comoving distances.
Furthermore, the volume of each Voronoi cell estimated in a fiducial cosmology is modified
according to V ′i = q−1

∥
q−2
⊥ Vi. It follows that the void number does not change when a wrong

cosmology is used to infer distances and the void effective radius R appears modified according
to R′ = q−1/3

∥
q−2/3
⊥ R. The map from redshift to comoving distance impacts the inferred survey

volume and consequently the estimation of the number density of detected voids. The survey
volume is defined as Ω[rad][χ(zout)3 − χ(zin)3]/3, where Ω[rad] is the solid angle of the survey
in steradian while zin and zout is the redshift range considered. Since we work with snapshot
boxes, we take into account the change in volume effectively, considering the distortion along
one Cartesian axis, so the volume correction is implemented as

V ′box

Vbox
=
χ′2(z)
χ2(z)

H(z)
H′(z)

. (3.6)

Fig. 3.9 shows the impact geometrical distortions in the void size function measured in halo dis-
tribution assuming a ΛCDM fiducial cosmology with cosmological parameters of the ΛCDM
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Figure 3.5: Relative void size function for voids detected in the presence of massive neutrino and cos-
mological constant with respect to the massless case. The voids at various redshifts are detected in dark
matter distribution. “VSF” in the y-axis label stands for “void size function”. The error bars are Poisso-
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distribution. “VSF” in the y-axis label stands for “void size function”. The error bars are Poissonian.
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Figure 3.7: Relative void size function for voids detected in the presence of massive neutrino and cos-
mological constant with respect to the massless case. The voids at various redshifts are detected in the
halo distribution with minimum subhalo mass of 2.5 × 1012h−1M⊙. “VSF” in the y-axis label stands for
“void size function”. The error bars are Poissonian.
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Figure 3.8: Relative void size function for voids detected in the presence of dynamical dark energy
and massless neutrinos with respect to ΛCDM. The voids at various redshifts are detected in the halo
distribution with minimum subhalo mass of 2.5×1012h−1M⊙. “VSF” in the y-axis label stands for “void
size function”. The error bars are Poissonian.
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Figure 3.9: Relative void size function for voids detected in the presence of dynamical dark energy
and massless neutrinos with respect to ΛCDM. The voids at various redshifts are detected in the halo
distribution with minimum subhalo mass of 2.5×1012h−1M⊙ and geometrical distortions are considered.
“VSF” in the y-axis label stands for “void size function”. The error bars are Poissonian.
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Figure 3.10: Separability of massive neutrinos effects from dark energy effects on the void size function
in dark matter distribution at z = 0. For each fixed neutrino mass, the left panel shows the relative
void size function with respect to (w0, wa) = (−1, 0) equation of state. The color represents the dark
energy equation of state, the line style the total neutrino mass to which they refer, i.e. massless (solid),
0.16 eV (dashed), 0.32 eV (dash-dotted). The right panel is analogous to the left, but fixes the dark
energy equation of state and considers the relative void size function for the massive neutrinos case with
respect to the massless case. The color labels the total neutrino mass, while the line style the dark energy
equation of state to which they refer.

simulation. The changes in the observed void size function measured in various dark energy
equations of state induced by geometrical distortions break the degeneracy. At redshift z = 0
there is no geometrical distortion, this is because the map between redshift and comoving dis-
tance converges to χ(z) ≃ cH0z and the entire DEMNUni set has H0 = 67km s−1Mpc−1. The
effect of geometrical distortions grows with redshift, enhancing the impact on the observed
void size function where a fiducial cosmology is assumed. Note from Eq. (1.48) that mas-
sive neutrinos impact the comoving diameter distance through the Hubble factor defined by
the first Friedmann equation, Eq. (1.26). At low redshift, when the radiation energy density
contribution is negligible, massive neutrinos impact the Hubble factor via the matter param-
eter Ωm(z), changing its value when they become non-relativistic. The transition happens at
1 + z = 1860 mν/1eV [51, 52], so even for the minimum possible total neutrino mass, i.e.∑︁

mν ≳ 0.06 eV, the transition occurs beyond the redshift range of galaxy surveys; therefore,
the density of massive neutrinos contributes to the matter density parameter for all the redshift
considered, i.e. Ωm = Ωcdm +Ωb +Ωmν

, with Ωmν
fixed after the transition. Since in DEMNUni

simulations Ωm is fixed to 0.32 in the entire set, massive neutrinos do not source geometrical
distortions.

As a last point, we consider the combination of dark energy and massive neutrinos effects
on the void size function. Fig. 3.10 shows that these two effects are separable. Since we are
interested in the intrinsic physical modification of the void size function due to dark energy
and massive neutrinos, we do not consider the geometrical observational effects that can be
misleading here. Moreover, we show the results for dark matter voids to have larger statistics
and more distinguishable behavior of the relative void size functions, nevertheless the halo
case shows analogous results for each minimum mass considered. The left panel of this figure
shows the relative void size function in the presence of dynamical dark energy with respect to
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(w0, wa) = (−1, 0) equation of state, for a fixed total neutrino mass separately. The various dark
energy equations of state are represented with different colors, following the legend, while the
neutrino mass for which the relative difference is considered is represented with different line
styles. As can be seen, the relative void size function for each dark energy equation of state
with respect to (w0, wa) = (−1, 0) is the same for each neutrino mass, within the Poissonian
uncertainty. It follows that dark energy and neutrino mass effects on the void size function
are separable. The right panel shows the relative void size function in the presence of massive
neutrinos with respect to the massless case, for each dark energy equation of state separately.
Also in this case, the relative void size functions show the same behavior independently on the
dark energy equation of state.

3.2.3 Matching theory with measurements
In this subsection, we address the problem of connecting the observed void size function with
the theoretical prediction of the excursion-set framework discussed in Chapter 2. This connec-
tion was explored in the last few years in various works [96, 97, 161, 171, 172], nevertheless
we will refer to [97] since is the only one that considers a fully theoretical treatment in link-
ing voids in the tracer distribution to voids in the dark matter distribution, then only this work
shows the critical points on the methodology currently adopted, its limitations, and measures
the systematic effects of the algorithm adopted. The theoretical model for the void size func-
tion used in this work is the Vdn model [96], discussed in Sect. 2.5.1, Eq. (2.126). Even if
further studies are showing that this model is not optimal in describing the void size function
[see Sect. 2.5.1, 84], the uncertainty in the algorithms used for the analysis does not allow to
appreciate what we discussed in Sect. 2.5.1.

Void catalog preparation

The theoretical definition of a void as a dark matter underdensity hardly matches the objects
identified in observations, i.e. the watershed voids found in the distribution of galaxy tracers
[173]. The theoretical void size function relies, in fact, on voids defined as the Lagrangian mat-
ter density field filtered at the Lagrangian position q that first reaches a linear density contrast
value at a given smoothing length, without having reached the collapsing threshold at larger
radii (see Sect. 2.2). To compare observational data with theory, we therefore have to reconcile
these different void descriptions.

A first method to connect theory and observations is to leave the linear threshold of void
formation δv in the theoretical void size function as a free parameter and calibrate it so that the
theoretical void size functions fit the measured void abundance in the considered data set. This
method allows to overcome the problem by parameterizing our ignorance [159, 160, 173–176].
On the other hand, as suggested in [96], it would be interesting to directly connect the top-hat
definition to observed voids, matching the theoretical void size function with the measured
abundances in the data set without any free parameter. This second option is more attractive,
we thus implement it for the given DEMNUni void catalogs.

The most direct way to connect the top-hat void definition with voids found by VIDE is to
reconstruct their density profile and to use the spherical shape approximation in considering
the Lagrangian to Eulerian void evolution. Thus, we find the radius r inside which the mean
density contrast equals the chosen threshold. This is the crucial point in the procedure, as
it re-normalizes the void radii to the same density contrast. To reconstruct the spherically
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averaged void density profile, we rely on the volume-weighted barycenter of VIDE defined
in Eq. (3.3). Even if the void shape is not important in Lagrangian space, where a spherical
filter is adopted, it impacts the void evolution from Lagrangian to Eulerian space, where voids
are detected. We are interested that voids are approximately spherical at least at the radius
where they reach the threshold value. The spherical approximation for void evolution can be
considered accurate enough for three main reasons. First, void ellipticity is low, as discussed
in [97]. We note that the low ellipticity is verified only for relatively large voids, such as
the ones we consider in this work. Small voids are considerably more aspherical as they are
more strongly influenced by external environmental effects such as large scale tidal forces, are
embedded in collapsing overdensities, and are squeezed against neighboring voids [177]—they
would need a more careful consideration that we leave for future work. Second, with our large
volumes and therefore large statistics, voids can be safely considered as spherical on average
[178]. Finally, the abundance is a statistical measure for which in any case individual void
features are averaged out. Summarizing, to first approximation, in deriving the void abundance
we can consider voids evolving as spherical objects.

We then check whether void abundances obtained with resized voids match the theoretical
void size functions. Following [96], we adopt the following strategy:

• We resize all VIDE voids to the fixed threshold, which we call δh
v,NL, where h stands for

halos, the tracer used for the void finding procedure. We apply the resizing using the
code presented in [179], available in the CosmoBolognaLib C++/Python library4 [180].
The subscript NL here and in the following, indicates when we are considering fully
nonlinear quantities.

• The theoretical void size function is referred to the statistical properties of matter, not
of the tracers. We follow [181, 182] to compute the threshold in the matter δm

v,NL, which
corresponds to the one in the halo distribution and then invert the linear bias relation
δh

v,NL = beff × δ
m
v,NL (with beff being the tracer bias).

• In order to calculate the theoretical void size function, we need to express the matter
underdensity threshold in linear theory. This is obtained in the spherical collapse model
by converting the nonlinear density contrast, δm

v,NL, into the corresponding linear one,
δv (see Sect. 2.1 and Sect. 2.1.2). We verified that this conversion is weakly dependent
on the redshift and variations of the dark energy equation of state. This would allow
marginalization over δv, when considering the different equations of state implemented
in the DEMNUni simulations.

• To account for the redshift dependence of the void size function, we extrapolated all
quantities using linear theory to the present time, z = 0, [15], as it is done in the case of
the halo mass function [15, 98]:

δv → δv/D(z)
δc → δc/D(z)
σ→ σ(z = 0) ,

(3.7)

where D(z) is the growth factor in linear theory [9] normalized to unity at z=0.

4https://github.com/federicomarulli/CosmoBolognaLib

https://github.com/federicomarulli/CosmoBolognaLib


94 CHAPTER 3. COSMIC VOIDS IN SIMULATIONS

20 30
Rresized (h−1Mpc)

10−6

d
n

/d
ln

(R
)

(h
−

1
M

p
c)
−

3

ΛCDM δH
v,NL = −0.887+0.038

−0.028 b
S&T
eff =2.296

Vdn(δH
v,NL, b

S&T
eff )

measured δH
v,NL

20 30 40
Rresized (h−1Mpc)

ΛCDM bS&T
eff =2.296

δH
v,NL = −0.809+0.054

−0.041

δH
v,NL = −0.718+0.069

−0.058

δH
v,NL = −0.625+0.088

−0.069

Figure 3.11: Match of the measured abundances of voids (after resizing procedure) with theoretical
predictions. The left panel shows the measurement for δH

v,NL = −0.887 (black curve), and the corre-
sponding theoretical void size function obtained using beff as described in the text (gray curve). The
right panel shows the measured void abundances for various thresholds δH

v,NL (dashed curves), and the
corresponding theoretical void size functions (solid curves). Shaded areas give the uncertainty in the
resizing procedure (see text). Figure from [97].

We now have all the tools to calculate the theoretical void size function and compare it with the
void abundances of the resized void catalogs from the simulations.

Void abundance match: ΛCDM

We follow the strategy described: we obtain the linear threshold δv corresponding to the non-
linear threshold in the matter distribution δm

v,NL, obtained by inverting the linear bias relation:
δh

v,NL = beff × δ
m
v,NL, and considering the conversion between the linear and nonlinear value. The

effective bias beff of the FoF halos is computed using the Sheth-Tormen [14] model, Eq. (1.134)
and Eq. (1.139). We study the corresponding void size function for the ΛCDM case for a fixed
δv value and show our results in Fig. 3.11. In the left panel, the black dashed curve represents
the measured void abundance of the resized void catalog for ΛCDM, while the gray curve rep-
resents the theoretical void size function for one fixed δv value in the halo distribution with beff

the effective halo bias. We note that the radius range of this analysis is different from the one of
the void size functions presented in Sect. 3.2.2, where the effective void radius was defined via
the watershed approach. Here the radius Rresized refers to spherically resized voids, and therefore
is smaller than the effective radius of watershed voids. The resized void range [20−40]h−1Mpc
of Fig. 3.11 corresponds to watershed voids in the range Reff = [35 − 70] h−1Mpc.

The uncertainty in the theoretical void size functions is due to the resizing procedure and
is estimated in the following way. We fix the threshold value δh

v,NL we wish to consider and
we re-scale each void up to the corresponding radius using the algorithm in [179]. We then
calculate independently the actual density contrast within the re-scaled radius for each void,
we use the peak of the distribution of the measured density contrast as the effective threshold
value, and quantify the uncertainty in the resizing procedure via the half-width-half-maximum
of the measured density contrast distribution. Finally, we obtain the corresponding linear values
for matter used to build the theoretical curve: δv = −0.887+0.038

−0.028. While there might be ways
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Figure 3.12: Each panel represents the measured void abundances after applying the resizing proce-
dure (dashed curves), and the corresponding theoretical void size functions (solid curves), for various
threshold values δh

v,NL, and for the four sets of parameters of the CPL dark energy equation of state. The
shaded areas show the uncertainty in the resizing procedure (see text). Figure from [97].

to improve the resizing procedure and reduce this uncertainty, we have focused here on testing
this first version, which relies on simple principles. We will explore possible improvements in
future works.

Within the estimated theoretical errors, we obtain a good agreement between data and the-
ory without the need of free parameters, using only quantities that can be theoretically pre-
dicted: we are able to forecast the void size function with a fully theoretical approach [96, 98].
We note that, for low values of the resized radius, the measured void abundances are below
theoretical predictions. This may be a consequence of the sparse statistics of small voids when
approaching the mean halo separation of the considered simulations; denser surveys will have
access to better void statistics in those ranges (e.g. PFS [183] and the Roman Space Telescope
[184]), likely filling the gap.

Finally, we check how the theoretical void size function depends on the threshold value.
We vary the threshold value δh

v,NL while keeping the effective bias fixed (right panel Fig. 3.11).
All of the measured void abundances are within the uncertainty of the theoretical predictions
(except at very small radii). This result confirms that the theoretical void size function predic-
tion works for many threshold values. We notice that in observations this is a powerful tool to
use, as it will allow to optimize the choice of the threshold to enhance cosmological constraints
from the void size function.
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Void abundance match: varying the dark energy equation of state

We repeat the above procedure for the CPL parameterization with the four sets of (w0, wa)
parameters implemented in DEMNUni suite to check if the theoretical void size function is
able to predict simulations in dynamical dark energy models. The results presented in Fig. 3.12
show that we obtain a good agreement between the measurements and the theoretical void
size functions in the different cosmologies, where the dependence in the void size function is
implicitly contained in the linear growth factor D(z) [9]. As for the ΛCDM case, for all the
analyzed threshold values the agreement is obtained by using the Sheth-Tormen [14] effective
bias, computed for all the different dark energy equations of state. We note also in this case
that the abundance of small voids falls below the theoretical prediction. In addition, mainly for
the (w0, wa) = (−0.9, 0.3) case (upper right panel in Fig. 3.12), the observed void abundance
for two threshold values (green and orange curves) lies somewhat outside the uncertainty of
the theoretical prediction. This mild mismatch could be due both to the non-optimal resizing
procedure and to bias modeling.

Summarizing, we showed that the theoretical void size function agrees, within the er-
rors, with measurements from simulations for different cosmological models, i.e. the standard
ΛCDM model and the CPL parameterization with the four sets of (w0, wa) parameters imple-
mented in DEMNUni. We also obtained a good agreement using various threshold values for
each cosmological model. This allows on the one hand to select the best threshold δv for the
available data, and, on the other hand, to use different threshold values to better constrain cos-
mological parameters with void abundances (even if, of course, measurements in this case will
be correlated).

Although these results are promising, the uncertainty on the theoretical void size function is
much larger than the Poissonian uncertainty in the measured voids. This can be overcome both
on the theoretical side and on the data treatment side. On the theoretical side, we are making
great improvements, as described in Chapter 2, and a more accurate theoretical void size func-
tion model can be tested soon in simulations [84]. On the other hand, a clearer understanding
of the excursion set framework will require a proper void finder or cleaning procedure to match
the voids defined in the excursion-set theory with measurements.

3.3 Void density profile
In this section, we focus on the density profile of voids measured in simulations. The void
density profile can be considered in the differential or integrated version. The differential den-
sity profile is the mean density contrast in a spherical shell at distance r from the void center,
the integrated density profile is the mean density contrast within a sphere of radius r. Each of
these quantities has a proper application in the cosmological exploitation of cosmic voids. If
the spherical approximation is accurate enough, it can be considered as the source of gravita-
tional field, therefore of the velocity field for redshift space distortion, lensing [185–194], and
integrate Sachs-Wolfe effect [140, 143, 189, 195–208]. Moreover, the integrated density profile
is the quantity we used in Sect. 3.2.3 to find the threshold voids to match measurements with
theory. The differential density profile in a given tracer distribution is related to the void-tracer
cross-correlation that can be used extract cosmological information from the Alcock-Paczyński
and redshift-space distortion effects [137–139, 141, 142, 144, 178, 209–223]. In this section,
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Figure 3.13: Distribution of density contrast values and stacked quantities for voids detected in ΛCDM
simulation at z = 1.05 in the halo distribution with a minimum mass of 2.5×1012h−1M⊙. The four panels
show the result for the differential density profile of halos (blue) and dark matter particles (orange) at
four shell radii, estimated in shells of thickness 0.0667/Reff . The vertical lines show the stacked density
contrast value computed by stacking the density contrast via direct counts (mean counting, solid), the
expected value (mean Poisson, dashed), and considering the expected value of the stacked distribution
(mean prob. distr., dash-dotted); the dotted vertical lines represent the mode of the stacked distribution
(mode prob. distr.). The empty histograms represent the distribution of density contrast values in the
various voids estimated via direct counting, the filled histograms show the measured distribution of the
expected density contrast value of each void shell assuming a Poisson statistics, and the solid curves
shows the stacked density probability of density contrast, for which the area filled with diagonal lines
represents the 68% of the area subtended by the shortest interval.

we will consider the statistics that can be extracted on the measured void profile. In particular
we will focus on the stacked profile, i.e. the mean density profile in which the distances are
rescaled by the void effective radius. The differential stacked profile is the void-tracer cross-
correlation, since it estimates the probability to find a tracer at a distance r from the center
of the void. In this section we will consider various possibilities to measure the void density
profile in a discrete distribution and its dependence on the tracers (Sect. 3.3.1), the halo bias
and their distribution in voids (Sect. 3.3.2), and the sensitivity to dark energy and neutrino mass
(Sect. 3.3.3).

3.3.1 Density estimator for a discrete particle distribution

In this subsection, we consider two possible estimators for measuring the void density profile in
discrete tracer distribution and then various methods to estimate the stacked profile and other
void profile related quantities. Moreover, we will consider the tracer impact in the density
profiles obtained considering halos or dark matter particles. In this section we will consider
only voids detected in the halos distribution, and we measure the corresponding density profile
in both halos and dark matter distributions. As before, the void center from which we measure
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Figure 3.14: This figure is organized as Fig. 3.13 but for the density contrast within spheres with four
different radii, shown at the corner of each panel.

the density profile is the volume weighted barycenter, defined in Eq. (3.3). In stacking void
profiles, we renormalize the distance from the void center with respect to the void effective
radius, in this way the characteristic shape of the void profile is retained in the final quantity
[218].

We start by considering two possibilities to measure the density profile of voids in a discrete
distribution. The most direct way to measure the density profile is via counting the number of
tracers in a shell (or sphere), where the density contrast within it is

Ni

Vi

Vbox

Ntot
− 1 , (3.8)

where Ni is the number of tracers contained in the ith shell (or sphere) with volume Vi. For shells
(spheres) in which there are no tracers, the corresponding density contrast obtained with direct
counts is -1. Even if a zero number of halos is reasonable due to the sparsity of tracers, this is
not the case in the dark matter field. Dark matter density is a continuous quantity, discretized
for numerical reasons; the absence of dark matter particles in a given volume in simulations is
usually due to not enough tracers, so to not enough resolution to trace the dark matter distri-
bution and thus in measuring the density profile. In other words, we are measuring the density
profile beyond the resolution provided by the simulation. This opens the problem of how to
estimate the density contrast in the presence of zero or few tracers, and more generally of how
to estimate the density contrast field from a discrete distribution. If the underlying continuous
density contrast of the tracer field considered follows a Gaussian statistics, the corresponding
randomly subsampled discrete distribution follows a Poissonian statistics [224]. Gaussian dis-
tribution is almost exact in the linear regime of the density contrast field [100], nevertheless it
is a rough approximation for both the nonlinearly evolved dark matter and halo density field.
In spite of this approximation, in the following, we assume a Poissonian distribution for both
dark matter particles and halos. This is because the Poissonian distribution allows us a simple
implementation that can be extended to more general distribution functions; moreover, it is ac-
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Figure 3.15: Stacked density profile measured in halo (blue) and dark matter (orange) distribution for
voids detected in ΛCDM simulation at z = 1.05 in the halo distribution with a minimum mass of
2.5 × 1012h−1M⊙. The left panel shows the differential density profile with shell thickness of 0.0667/R,
the right panel represents results for the integrated density profile, the two panels are organized in the
same way. The stacked profile is considered via stacking the density contrast estimated via direct counts
(mean counting, solid), via the expected value from the Poisson distribution (mean Poisson, dashed)
and considering the expected value of the stacked distribution (mean prob. distr, dash-dotted). The two
panels show also the mode of the stacked distribution (mean prob. distr., dotted) and the least interval
subtending 68% of the distribution area (shaded region).

curate enough to show the impact of estimating a density probability of the density profile. The
basic idea is to associate a probability distribution of density contrast values to each number of
tracers N in a given volume V ,

P(N,V, δ) = P
(︁
N, λ(δ)

)︁VNtot

Vbox
, (3.9)

where δ is the density contrast. If P(N, λ) is a Poisson distribution,

P(N, λ) =
λNe−λ

N!
and λ = (1 + δ)

VNtot

Vbox
. (3.10)

In this way, we can associate a distribution of density contrast values to each shell (sphere) of
each void.

From these two estimators of the density profile for a single void, we consider various
possibilities to obtain the stacked density profile and other quantities associated with the distri-
bution of the density contrast along the void profile. Fig. 3.13 and Fig. 3.14 show the stacked
density contrast values and their distribution in four radius bins, for the differential and inte-
grated density profile, respectively. These figures refer to ΛCDM simulation at z = 1.05 for
voids detected in the halos distribution with a minimum mass of 2.5 × 1012h−1M⊙ and a radius
larger than 2.5×mps. The density profile of each void is measured in 60 linearly spaced radial
bins from 0 to 4Reff , it follows that the shell thickness is 0.0667/Reff. The results for the halo
distribution are represented in blue, while in orange the ones for dark matter particles. The first
estimator we consider for the stacked density profile is based on the direct counting method to
evaluate the density profile of each void, Eq. (3.8), and it consider the stacked profile as the
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mean density profile of each void, renormalized with respect to the void radius Reff . This is
represented in Fig. 3.13 and Fig. 3.14 as the vertical solid line, while the distribution of the
values assumed by each void is represented by the filled blue histogram. The second method
to estimate the density profile of each void associates a density distribution to each radius bin,
Eq. (3.9). This opens various ways to consider the stacked density profile. One possibility is
to consider the expected density contrast value for each void and to stack this quantity. For a
Poissonian distribution, the expectation value of the density contrast for each shell (sphere) of
a single void is

⟨P(N,V, δ)⟩ =
N + 1

V
Vbox

Ntot
− 1 . (3.11)

Note that this result is equal to Eq. (3.8), where N is substituted with N + 1. The stacked den-
sity profile of the density contrast expectation value is obtained as the mean of this quantity. In
the figures, this is represented as the vertical dashed line labeled as “mean Poisson”, while the
distribution of values assumed by each void is represented by the empty blue histogram. Note
that the histograms of the density contrast distribution obtained via direct counts and via the ex-
pected Poisson value are different for low density contrast values, where the number of tracers
is low and so N+1 is considerably larger than N, otherwise they converge, since (N+1)/N ≃ 1
for N ≫ 1. Another possibility is to consider the mean density contrast distribution function
given by the mean of the density contrast distributions of each void. In this way, we obtain a
stacked density distribution function for each radius bin. From the stacked density distribution
function, we can compute the expected density contrast. Beyond the stacked density profile,
we can also consider the mode of the stacked distribution and its width. The stacked density
contrast distribution is represented as solid curves, while the expected value is represented by
the vertical dash-dotted line, labeled as “mean. prob. distr”. The mode is represented by the
vertical dotted line and the 68% of the area subtended by the least continuous interval is rep-
resented by the regions filled by diagonal lines. Note that the stacked distribution of density
contrast values and the corresponding histograms overlap for enough large radius bins, where
the number of tracers contained in each shell (sphere) is large enough so that the discrete distri-
bution is well described by the continuous limit. On the other hand, in the inner region of voids,
where the number of tracers is lower, the histograms and the corresponding continuous distri-
butions are not overlapped. This is particularly evident for halos, since they are considerably
less with respect to dark matter particles.

Fig. 3.15 shows the stacked density profile obtained with the various estimators described
above, together with the mode and the 68% of the subtended area of the sacked distribution
for both the differential (left panel) and integrated (right panel) void density profiles, for dark
matter (orange) and halos (blue) density field. First, consider the behavior of the stacked density
profiles at small r/Reff , where the number of tracers is low. The stacked density profile in the
halo distribution obtained from direct counts (blue solid curve), reaches a negative value greater
than -1. This is due to the fact that many voids have no halos in the inner regions, but since
the stacked density contrast is weighted also with void containing tracers in the inner regions,
the result is greater than -1. Nevertheless, the stacked profile from the expected Poissonian
value (blue dashed line), diverges at low radius. This is due to the substitution N → N + 1
in Eq. (3.11), therefore, if the number of tracers in a given shell (sphere) is zero, the expected
density contrast value diverges as ∝ V−1. Note that this is the same behavior shown by the
stacked density distribution of the halo density contrast (blue dash-dotted curve). The mode
(dotted curve) of the density contrast value is -1, while the expected value, i.e. the mean, takes
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large values and the distribution is wide. The different behavior of the mean and the peak of
the distribution is due to the long tail of the Poisson distribution when few tracers are present,
entailing a peak close to -1 and, at the same time, weighting the expected density contrast to
positive values. The density contrast of dark matter particles (orange) shows a similar behavior
but at lower radii, where the mode shows a steep drop and the expected value of the stacked
density contrast distribution presents a fast increase. This is due to the lack of tracer caused by
not enough spatial resolution of dark matter particles. At larger radii, the various estimations
of the stacked density profile converge. Nevertheless, note that the mode of the distribution
is always lower with respect to the mean, showing that the density contrast distribution is
always asymmetric with respect to the peak. The skewness of the density contrast distribution
is clearly visible in Fig. 3.13 and Fig. 3.14. One of the reasons for this asymmetry is that these
distributions have a lower bound fixed by the physical condition δ ≥ −1, nevertheless they do
not have any upper bound, allowing the possibility of long tails for δ > 0.

The differential void density profile presents a peak at r/Reff ∼ 1, this feature, known as the
compensation wall, is useful for cosmological analysis involving redshift-space distortion and
Alcock-Paczyński around cosmic voids [141, 218]. The visibility of this feature depends on the
center definition of voids. In this study we are considering the volume weighet barycenter, so
the void center is considered approximately at the mean distance of the overdensities forming
the watershed, so at r/Reff ∼ 1 we can see the overdensity peak of the watershed. This is not the
case of considering the minimum of the density field, where the density profile reaches δ = 0
without any particular feature [142, 221].

The difference between the density profile in the dark matter distribution with respect to
the corresponding one in the halo distribution is due to halo bias. It can be seen that the halo
density contrast shows the same behavior of the dark matter density contrast, but it is enhanced
according to the minimum halo mass. Fig. 3.16 and Fig. 3.17 show the dependence of the
density profile in halo distribution and the corresponding one in dark matter distribution, for
voids detected in halo distribution with various minimum halo masses. The voids considered
are the one with the effective radius larger than 2.5 × mps, Fig. 3.16 shows the differential
density profile, while Fig. 3.17 the integrated one. Note that, for each redshift, the density
profiles in the halo fields corresponding to the various minimum masses are close to be self-
similar, whereas the corresponding profile in dark matter varies greatly. This is due to the halo
bias that grows with the mass and with the redshift.

3.3.2 Relationship between halos and dark matter in voids
In the previous subsection, we explored various ways to estimate the stacked void density
profile, now we focus on the relationship between dark matter density contrast and halos, i.e.
the bias of the tracer with voids, and on the properties of halos in voids and we focus on two
possible ways to model it. In this subsection, we estimate the stacked density profile using the
direct counts of tracers within voids, i.e. Eq. (3.8).

Linear bias and extrapolation

In Sect. 1.3 we introduced halo bias, showing how this phenomenon emerges in the correlation
function and from the multiplicity function. Moreover, the peak-background split argument
shows that halo bias depends on the background density contrast field. A comprehension of
how halo (and galaxy) bias works in voids is important for many cosmological analyses with
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voids detected in the halo distribution, for minimum mass of 2.5 × 1012, 1013, and 2.5 × 1013h−1M⊙,
represented with the blue, orange, and green curves, respectively.
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cosmic voids, listed at the beginning of this section. The problem of how halos, galaxies, and
other kinds of objects trace the underlying matter density in cosmic voids has been widely
explored in the literature [137, 172–174, 181, 182, 186, 225, 226]. For practical purposes,
halo density contrast is usually modeled in linear relation with respect to the underlying matter
density contrast, as described in [181]. In this subsection we will revisit the modeling proposed
in [181], showing that even if a linear relation between halos and dark matter density contrast
can be an effective approximation to parameterize our ignorance, the resulting halo bias is
different from the linear effective bias term. Moreover, we explore the limit in which a linear
modelization is valid.

To estimate a linear relation between dark matter density and halos in the stacked void
density profile, we perform a linear fit, considering the relation

δsub = bslope × δcdm + offset , (3.12)

where δsub is the subhalo density contrast and δcdm is the density contrast of the underlying dark
matter. Looking at Fig. 3.16, we note that at large distance from the void center, the density
profile is very close to zeros. In order to avoid the result from being unphysically driven by the
vanishing density contrast at large scale, we decided to consider the differential density profile
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in the range 0 − 2 Reff . The error of δh and δcdm is estimated using the jackknife method [227].
We use these data to perform a Bayesian fit, considering uniform priors for the slope and offset
parameters. Fig. 3.18 shows the results for voids detected in halo distribution with minimum
mass of 1013h−1M⊙ in the z = 0 and z = 1.05 snapshots for ΛCDM cosmology. The upper
plot shows the (δcdm, δsub) plane, the two-dimensional error-bars correspond to measurements
while the solid lines represent the best fit of the linear relation Eq. (3.12). The lower plot shows
the residuals, computed as data/model − 1. It can be noted that the linear parameterization
of Eq. (3.12) fits quite well the relationship between halo and dark matter density contrast in
stacked voids. This is particularly true for the z = 0 snapshots in the underdense region. The
linear model works worse for the z = 1.05 snapshot, nevertheless the halo density profile is
recovered within 10% of precision. Note that the scatter of the residuals around δcdm = 0
diverge, due to the ratio with respect to values very close to 0, so they are outside the y-axis
boundary of the lower panel. Interestingly, the offset is always very close to zero, and in most
of the cases is consistent with zero.

The linear model for Eq. (3.12) recalls the bias expansion truncated to the first order, i.e.
linear bias, described by Eq. (1.141), so we compared the linear bias relation theoretically de-
rived with the Sheth-Tormen model, from Eq. (1.134) and Eq. (1.141). To accurately compute
the Sheth-Tormen bias, we fit the p and q parameters of Sheth-Tormen multiplicity function
on the halo mass function measured in each snapshot, performing a Bayesian Markov-Chain
Monte Carlo (MCMC). We recall that p and q parameters model the deviation from sphericity
in halo formation. We found that the theoretical linear bias does not match the measurements,
nor the linear fit. It can be seen from Fig. 3.16 that the theoretical prediction and the linear fit
differ for more then 10% in the z = 0 snapshot and around 5% in the z = 1.05 one.

Fig. 3.19 represents the comparison between the measured ratio δsub/δcdm (solid curves), the
slope of the linear fit (dotted horizontal lines), and the theoretical linear bias (dashed horizontal
lines). It can be noticed that the theoretical linear bias never provides a good modelization of the
bias of halos in voids. Moreover, even if the linear empirical fit provides a good modelization
at low redshift, this is not true for z ≳ 1, where the linear relation does not reproduce the
general behavior of the relationship between halos and dark matter in the underdensity region,
corresponding to r/Reff ≲ 0.75 (compare with Fig. 3.16). The discontinuity at r/Reff ∼ 0.75 is
due to the vanishing denominator.

Halo mass function within voids and theoretical bias recovered

From a theoretical point of view, it is expected that the theoretical linear bias relation cannot
provide a good model for the relationship between halo and dark matter density contrast in
voids. This is due to the fact that the density contrast of matter in voids is negative enough
to break the linear approximation of Eq. (1.139), i.e. |δcdm| ∼ 1, and a polynomial expansion
should be more representative of the halo density contrast behavior within voids, Eq. (1.141).
From the peak-background split argument, we are able to exactly model the density contrast of
halo in voids from the relation

δh =
nh(Mmin, r)
⟨nh(Mmin)⟩

− 1 , (3.13)

where nh(Mmin, r) is the number density of halos with minimum mass Mmin in the shell at
distance r from the void center, and ⟨nh(Mmin)⟩ is the mean density of halos with minimum
mass Mmin in the Universe. The number density of halos is derived from the halo mass function



3.3. VOID DENSITY PROFILE 107

via
nh(Mmin) =

∫︂ ∞

Mmin

dn
dM

dM , (3.14)

where dn/dM is the halo mass function that can be theoretically modeled with a multiplicity
function, Eq. (1.106). As discussed in Sect. 2.5, the halo mass function is the same in both
Eulerian and Lagrangian space. This is true for the halo mass function in the entire volume of
the Universe, but now we are interested in how the halo mass function behaves in patches with
various background mean density, i.e. in spherical shells around voids. The number density
changes according to the evolution of the background patch, as described in Sect. 1.3.3, so the
halo mass function of Eq. (1.106) evolves in Eulerian space as

dn
dM
= (1 + δNL

bg )
ρ

M

[︄
f (ν, p, q)

dν
dM

]︄
δL

bg

. (3.15)

In this equation, δNL
bg is the background matter density in the evolved patch, and δL

bg the cor-
responding linear value, obtained with Eq. (2.17) and Eq. (2.22). Note that these equations
describe the evolution of a spherical fluctuation, since the patch dimension is larger than the
Lagrangian dimension of halos within it, and since we are not considering extremely high
density contrast values, the spherical evolution provides an accurate modeling. However, a
treatment at higher order can also consider the tidal field [19]. The quantity in square brackets
is evaluated at δL

bg, this means that the significance of the critical density ν is treated according
to the peak-background split, ν = (δc − δ

L
bg)/σ(M).

To accurately reproduce the halo mass function, we fit the parameters p and q on the mea-
sured mass function. The halo mass function is a differential quantity; therefore, to estimate it,
we divide the halo catalog into mass bins ∆M, to obtain the number of halos with mass between
M and M + ∆M, i.e. N(M,M + ∆M). Note that the mass function is a rapidly decreasing func-
tion, so if the mass bins are not thin enough, a direct comparison between the theoretical mass
function evaluated in the center of the mass bins, i.e. dn(M + ∆M/2)/dM, and the measured
N(M,M +∆M)/(∆M Vbox) may induce biases in the estimation of the parameters p and q. This
leads to an error in the mean density of halos Eq. (3.14) of ∼ 10% for the thicknesses of the
mass bins considered in this work. To avoid biases in the results, we compared the measured
differential number density of halos with the theoretical mass function integrated in the mass
bin, for each bin, i.e.

data :
N(M,M + ∆M)

Vbox
←→ theory :

∫︂ M+∆M

M

dn(M′, p, q)
dM′

dM′ . (3.16)

Even in this approach, the theoretical modelization cannot reproduce the measurements,
as can be seen from Fig. 3.22. Moreover, the disagreement between theory and data is even
larger for the full nonlinear treatment (orange solid line) with respect to the linear approxi-
mation (orange dashed line). Nevertheless, this result is important for at least two reasons.
First, it shows where the linear bias approximation breaks. The linear bias is a good approx-
imation for r/Reff ≳ 1.5, where the density contrast of matter is very close to zero. In the
ridge, r/Reff between ∼ 0.75 and ∼ 1.5 the linear approximation is well distinguishable with
respect to the exact peak-background split implementation, while in the underdensity region,
i.e. r/Reff ≲ 0.75, the difference between the two results increases as the matter density contrast
field becomes more negative. The second reason is that, even if the linear bias approximation
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Figure 3.20: Differential number density of halos in the stacked spherical shell centered at r/Reff =

0.233 and with 0.0667/Reff of thickness, for voids detected in subhalo distribution with a minimum
mass of 1013h−1M⊙ at z = 1.05. The blue error-bars represent the measured differential halo number
density function within the shell, the red ones in the entire distribution. The blue dots correspond to the
theoretical differential halo number density given the background of the shell and p and p fitted within
the shell, the orange dots represent the theoretical prediction given the dark matter background of the
shell and p and q fitted on the large-scale halo mass function, i.e. in the entire box, the red ones the
theoretical prediction with the background matter density contrast equal to zero, and large-scale values
for p and q.

may better reproduce the observed density contrast, it is out of the range of its validity and thus
physically unmotivated.

This result suggests that the halo mass function within voids is not universal. Exploring
the halo mass function (Eq. 3.15) along the void density profile, we note that the multiplicity
function modulates to reproduce measurements: the parameters p and q vary with respect to the
large-scale values, i.e. the ones corresponding to the universal mass function from the entire
simulation box. We measured them considering the halo mass function in each shell, following
the same procedure used for the large-scale p and q values described above. Fig. 3.20 shows
the differential halo number density in a representative stacked spherical shell. The error-bars
represent the measurements, for the differential halo number density in shell (blue) and for the
differential number density considering all the halos of the simulation (red). The dots represent
the theoretical model. In particular, blue and orange dots represent the theoretical prediction
of the differential halo number density given the dark matter density contrast of the shell as
background, for p and q fitted on the halo distribution in the shell (blue) and using the large-
scale fit values for p and q. The red dots represent the theoretical prediction with large-scale p
and q and without the background, fitted on the red error-bars. Note that considering the only
background in the peak-background split approach, the theoretical halo mass function does not
fit the data. To reproduce the halo mass function in the shell, we must also vary p and q along
the stacked void density profile. We found that the p and q values depend on the shell radius,
suggesting that halo formation is environment dependent.
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Figure 3.21: 68% and 95% confidence level for the p and q parameters of the Sheth-Tormen multiplicity
function measured in stacked shells around voids, for voids detected in the subhalo distributions with
minimum mass of 1013h−1M⊙ at z = 1.05. The black cross represents the universal p and q, measured
in the entire box.

Fig. 3.21 shows that p and q parameters move in the (p, q) plane following a continuous path
and converging to the large-scale values at large r, represented as the black cross. This behavior
is reproduced in all the redshift snapshots and for each of the minimum halo masses considered.
Moreover, this behavior is retained for each of the minimum void radii explored in the stacking
procedure and also when we stack voids in bins of Reff. This result gives insight into the
dynamics of halo collapse within voids. The parameter q refers directly to the ellipticity of the
collapse [15], and q = 1 corresponds to spherical collapse. This allows to interpret Fig. 3.21:
the q parameter approaches 1 in the inner shells, suggesting that halo collapse is more spherical
in the central region of voids with respect to the outer regions. The dynamics of halo collapse
modifies the multiplicity function, and in this way halo bias. It is now possible to use the
corresponding halo mass function measured in each shell to model the halo distribution in the
stacked void profile. To reproduce the halo density contrast with the peak-background split, we
must consider that at various shells p and q varies together with the background density,

δh(r) =
nh(Mmin)

⃓⃓⃓
δbg,p(r),q(r)

nh(Mmin)
⃓⃓⃓
δbg=0,pLSS,qLSS

− 1 . (3.17)

where pLSS and qLSS are the values of the universal halo mass function. The resulting density
profile in halo distribution accurately reproduces the observed one, as shown in Fig. 3.22 by
the blue curve.

These results show that the peak-background split allows to accurately model the halo dis-
tribution in cosmic voids, demonstrating that the halo bias behavior in voids is sourced by the
halo mass function behavior, modified both by the background underdensity and by the dynam-
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Figure 3.22: Relationship between dark matter and halo density contrast along the stacked void density
profile for voids detected in the subhalo distribution with a minimum mass of 1013h−1M⊙ at z = 1.05.
The upper panel shows the measured halo density profile (black) and the reconstructed density profile
given the dark matter density obtained in the peak-background split framework with p and q depending
on the distance from the void center (blue), for p and q measured at large-scale (orange, solid) and for
the corresponding bias expansion truncated at the first order (orange, dashed), and reproduced by the
linear fit (green). The lower panel shows the relative values.

ics of the collapse. The latter, which tends towards sphericity in the inner regions of voids, can
be effectively described by the p and q parameters of the Sheth-Tormen model.

3.3.3 Sensitivity to dark energy and neutrino mass

In this subsection we explore the sensitivity of the void density profile to dark energy and
massive neutrinos. Contrary to the void size function, the density profile of watershed voids
is almost insensitive to both dark energy and massive neutrinos, in particular concerning voids
detected in the halo distribution. Fig. 3.23 and Fig. 3.24 show the comparison of the stacked
void density profile in halo distribution with respect to ΛCDM, for voids detected in the halo
distribution with a minimum radius of 2.5×mps, and minimum halo mass of 2.5×1012h−1M⊙ at
z = 1.05, for the differential and integrated profiles, respectively. The uncertainty of the profile
is computed using the jackknife method. In these figures, we refer to one redshift snapshot
and one minimum halo mass only since in all the other cases the results are analogous. In
particular, for the differential void density profile, shown in Fig. 3.23, we show the comparison
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Figure 3.23: Comparison of the void stacked differential density profile in halo distribution with respect
to ΛCDM, for voids with minimum radius of 2.5×mps detected in the halo distribution at z = 1.05, with
minimum subhalo mass of 2.5 × 1012h−1M⊙. The left panel shows the comparison between ΛCDM and
the four sets of parameters of the CPL equation of state in the massless neutrinos case, the right panel
shows the comparison in the presence of massive neutrinos and cosmological constant with respect to
ΛCDM.
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Figure 3.24: Comparison of the void stacked integrated density profile in halo distribution with respect
to ΛCDM, for voids with minimum radius of 2.5 × mps detected in the halo distribution at z = 1.05,
with minimum subhalo mass of 2.5 × 1012h−1M⊙. The plot is organized as Fig. 3.23

only up to ∼ 1.5 r/Reff because beyond this radius the profiles are very close to zero and their
ratio becomes numerically uncontrolled. Concerning the integrated profiles, we explore the
ratio at all radii, since integrated profiles involve an increasing number of tracers as the density
profile is estimated at increasing larger radii, allowing high numerical precision and stability
in computing the ratio. In both figures, the discontinuity and the peak of uncertainty occur
when the profiles cross zero. Note that the profile for different dark energy equations of state
is always degenerate with respect to the ΛCDM one. On the other hand, in the presence of
massive neutrinos, the profile seems to distinguish from the ΛCDM one at larger scales, at
least in the most massive case. However, note that this ratio is evaluated at large radii, where
the absolute value of the density profile is very close to zero. In particular, for the massive
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neutrinos case, the profiles remain indistinguishable in the whole underdensity region up to the
ridge peak, r/Reff ≃ 1. Then the density profile in the presence of massive neutrinos reaches
zero values slower with respect to ΛCDM. However, comparing this plot with Fig. 3.16, note
that the increase in relative difference starts where the profiles are very close to zero. The same
features are present in the integrated profile case.

Note that even if the density profile in the halo distribution remains indistinguishable in the
set of cosmological parameters explored, this is not the same for the corresponding dark matter
one, due to the difference value of the halo bias corresponding to the various dark energy
equations of state and neutrino masses considered. A cosmology independent void density
profile in the halo/galaxy distribution can be usefull in analysis involving void density profiles,
such as redshift-space distortion around voids or Alcock-Paczyński test. The density profile
can be modeled without considering the background cosmology, assuming an empirical fit
such as [228]. The dark energy, massive neutrino and other effects would not directly modify
the halo/galaxy density profile, but they would impact it via observational geometrical effects,
i.e. Alcock-Paczyński, and other observable related to the density profile would be impacted,
such as the velocity profile and, consequently, redshift-space distortions sourced both by the
dark matter density profile and the background cosmology [141].

3.4 Conclusion
In this chapter, we explored the properties of cosmic voids measured in DEMNUni simulations
with the aim of investigating their exploitation as cosmological probes. We focused on the
void abundance and the void density profile. For both these quantities, we have extensively
discussed their estimation, the tracer impact, the role of the void finder, and their physical
properties. More specifically, we investigated the impact of the number density of tracers on
the detection of voids and the physical meaning of small voids depending on the tracer type
considered, distinguishing between physical and numerical effects. We then also considered
the impact of the discreteness of tracers in measuring the void density profile.

For both the void size function and void density profiles, we considered how to theoretically
model them, focusing on the properties in the halo distribution since it is closer to cosmolog-
ical observations. In particular, we consider how the excursion-set void size function can be
connected to the observed void abundance for voids in the halo distribution, following [97].
Concerning the void density profile, we reviewed the empirical way to parameterize the halo
void density profile with respect to the corresponding stacked dark matter density contrast pro-
file and we presented a theoretical modelization based on the halo mass function in voids. This
unprecedented modelization shows that halos collapse in a different way within cosmic voids
with respect to the rest of the Universe, and it provides a physical explanation of the relation-
ship between the void density profile in dark matter and in halo distribution, for voids detected
in the halo distribution.

We considered the sensitivity of the void size function and void density profiles to the dark
energy equation of state and to the total neutrinos mass. In particular, we focused on voids
detected in the halo distribution, since they are close to observation. We found that the void
abundance is particularly sensitive to the neutrino mass. Concerning dark energy, the sets of
parameters of the CPL parameterization producing an equation of state more degenerate with
respect to w = −1 among the four explored, do not produce detectable effects on the void size
function. However, the presence of geometrical distortion in cosmological analysis will greatly
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enhance the differences with respect to theΛCDM case. We showed that since cosmic voids are
extended objects, the Alcock-Paczyński effect, together with volume effects, provides a great
contribution to distinguishing void abundance in different cosmologies. Moreover, we showed
the importance of studying the redshift evolution of voids and that dark energy and massive
neutrinos produce separable effects.

In this work, we consider the void size function and the void density profile, since they
represent the principal statistical properties of voids and the most directly measurable. In future
work, it will be interesting to explore other properties of voids. In particular, a detailed study of
the radial void velocity profile and the distribution of velocities would be relevant for redshift-
space distortion analyses around voids. The ellipticity of voids is shown to be a cosmological
probe [229], so a detailed study of the intrinsic ellipticity of voids and the ellipticity profile of
voids will be investigated, together to explore ways to extract this cosmological information
from cosmological surveys. Another quantity that will be explored is the void-void correlation
function.

In this chapter we explored the sensitivity of voids on dark energy and massive neutri-
nos, nevertheless, the void sizes make them an interesting probe also for primordial non-
Gaussianity. The study of cosmic voids sensitivity to primordial non-Gaussianity is just at
its beginning [230], so it would be a relevant new field of voids application to be considered.
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Chapter 4

Cosmology with cosmic voids in the Euclid
survey

Cosmic voids are vast under-dense regions filling most of the volume of the present-day Uni-
verse. With sizes up to hundreds of megaparsec [231–234] they are the largest observable
structures in the cosmic web [235, 236] – the pattern arising in the galaxy distribution. As we
discussed in the previous chapters, voids constitute a unique cosmological probe: their interi-
ors, spanning a large range of scales and featuring low matter density, make them particularly
suited to study dark energy and modified gravity [97, 159, 161, 175, 176, 237–248], as well
as massive neutrinos [147, 148, 160, 164, 249, 250], primordial non-Gaussianity [230], and
physics beyond the standard model [251–255]. Cosmic voids are becoming an effective and
competitive new probe of cosmology thanks to the advent of current and upcoming sky surveys
such as 6dFGS [256], VIPERS [257], BOSS [258] and eBOSS [259] from the SDSS [260],
DES [261], DESI [262], PSF [183], the Roman Space Telescope [184], SPHEREx [263], and
LSST [264]. Studying voids requires redshift surveys of very large volume, deep enough in
the red band to measure a huge number of redshifts also for low-mass galaxies, and to map in
detail significant contiguous fractions of the observable Universe. The Euclid survey, expected
to sample the sky over 15 000 deg2, will provide a unique opportunity to capitalize on cosmic
voids, to leverage on measurements of the galaxy distribution at large scales and to improve
our knowledge on cosmology and fundamental physics. Voids may hold the keys to shed light
on some of today’s open problems in cosmology [85, and references therein].

Cosmic voids from recent galaxy surveys have been used in a wide range of cosmolog-
ical applications. They are sensitive to geometric effects, such as the Alcock-Paczyński ef-
fect [139, 165, 178, 209, 211, 213] and baryonic acoustic oscillations (BAO) [265–268], as
well as redshift-space distortions [RSD, 137, 141, 142, 170, 210, 212, 214–223], weak lensing
[169, 185–189, 191–194], and the integrated Sachs–Wolfe effect [140, 143, 189, 195–208].

In this chapter, we consider the void size function, which describes the number density
of voids as a function of their size. Over the last two decades, studies of the hierarchical
evolution of the void population in the excursion-set framework have allowed the construction
of a theoretical void size function model built from first principles, the so-called Sheth & van
de Weygaert model [98], later extended by Jennings et al. [96] (see Chapter 2). The void
size function and its link to voids detected in galaxy surveys have been explored in depth with
cosmological simulations [96, 97, 131, 156, 159, 161, 171–173]: it has proved to be a promising
tool to constrain cosmology [97, 159, 160, 164, 172, see also Sect. 3.2.2 and Sect. 3.2.3]. The
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void size function has already been measured in surveys [see e.g. 141, 223, 269–271], but it
has not yet been used as a stand-alone probe to derive cosmological constraints.

This work is based on the research activities we co-led within the cosmic voids sub-group of
the galaxy clustering science working group of the Euclid consortium, many of them presented
in [162]. This study relies on the largest Euclid-like light-cone, the Flagship simulation [272],
and it belongs to a series of companion projects investigating the scientific return that can be
expected from voids observed by the Euclid mission. The purpose of this project is to measure
and theoretically model the void size function from the Flagship simulation, providing a state-
of-the-art forecast for void numbers to be expected from the Euclid survey. Our model allows
us to estimate the constraining power of the void size function on the dark energy equation of
state while also varying the assumed total matter density of the Universe and the total mass of
neutrinos. This analysis is focused on voids found in the spectroscopic galaxy distribution, for
which the identification of voids is particularly accurate and reliable. We leave for future work
the measurement of the void size function in the photometric galaxy distribution from Euclid,
for which the data treatment greatly differs from the spectroscopic one [see e.g. 182].

This chapter is organized as follows: in Sect. 4.1 we describe the Euclid mission; in
Sect. 4.2 we introduce the Flagship simulation and describe the void finder and the clean-
ing algorithm used to obtain the void catalog; in Sect. 4.3 we present the theoretical model of
the void size function (Sect. 4.3.1), in particular we describe how to self-consistently align the
measured void catalog with the theoretical description (Sect. 4.3.2), we discuss the Bayesian
statistical analysis used to perform the cosmological forecasts (Sect. 4.3.3), and finally we in-
troduce the cosmological models considered in this work (Sect. 4.3.4). In Sect. 4.4, we fit the
theoretical model to the measured void size function in the Flagship simulation (Sect. 4.4.1) to
obtain constraints on the dark energy equation of state and the remaining considered cosmo-
logical parameters, with different approaches (Sect. 4.4.2); we conclude by giving a discussion
and a summary of our results in Sect. 4.5.

4.1 The Euclid mission
The Euclid mission is designed to investigate the origin of the late time acceleration of the
Universe, shedding new light on the dark energy problem. More specifically, the main scientific
objectives of the Euclid mission are [273]:

• Search for a dark energy evolving equation of state, reaching a figure of merit (FoM)
higher than 400 concerning the CPL parameterization, Eq. (1.148), see Sect. 4.4.2 for
FoM details.

• Measure the growth factor index γ, Eq. (1.98), with a 1-σ precision of < 0.02, allowing to
distinguish between General Relativity and a broad class of theories of modified gravity.

• Measure the sum of neutrino masses with a 1-σ better than 0.03 eV.

• Constraint the spectral index of the primordial fluctuation ns, Eq. (1.146), with percent
accuracy when combined with Planck [50] and to constrain primordial non-Gaussianity.

In order to reach these objectives, Euclid will measure the expansion rate of the Universe
and the growth of cosmic structures using two main probes: weak gravitational lensing and
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galaxy clustering, more specifically measuring the BAO pattern. These two probes require
two different types of data. Weak lensing analysis relies on photometric measurements to
probe the shear field sourcing the distortion of galaxies shape, dimension, and orientation and
(de)magnification of their light. Galaxy clustering analyses are performed exploiting redshift
measurements that provide an extremely accurate position of galaxies in redshift-space, re-
quired to measure the tridimensional galaxy correlation function and power spectrum. These
two types of measurements allow to explore the Euclid outcome with many other additional
cosmological probes.

The two primary probes require two different types of data that will be measured with
two instruments: the visible imager (VIS) [274] and the Near Infrared Spectro-Photometer
(NISP) [275]. The VIS focal plane is composed by a 6×6 matrix of 12-micron CCDs with
a resolution of 4096 × 4132 pixels, covering a field of view of 0.57 square degrees with 0.1
arc-second pixels. VIS is equipped with one single broad band filter covering the wavelength
range from 550 nm to 900 nm with a mean image quality of about 0.23 arc-seconds of angular
resolution. The NISP instrument covers a wavelength range between 920 nm and 2000 nm.
The NISP focal plane is composed of a 4 × 4 array of 2048 × 2048 pixel detectors, and it will
cover a field of view of 0.53 square degrees, this results in a pixel scale of 0.3 arcsec. NISP
will provide photometric measurements for all the galaxies observed by VIS, and near-infrared
slitless spectroscopy. The NISP Photometric Channel (NISP-P) will image the sky with three
near-infrared broad band filters: Y (600 − 1192) nm, J (1192 − 1544) nm and H (1544 − 2000)
nm. The resulting dataset will have a point source detection limit (5σ) of 24 mag. The NISP
Spectroscopic Channel (NISP-S) will perform slitless spectroscopy in two bands: three red
grisms allow selection between the 1250 nm and 1850 nm and one blue grism for the 920−1250
nm wavelength range. The channel is a slitless spectrometer, so to help distinguish between
different sources, the three red grisms will cover the same wavelength range but will provide
spectra with different orientations, so that the spectrometer dispersion direction can be changed
to help distinguish overlapping spectra. The channel will be sensitive enough to detect (3.5σ)
a 3 × 10−16 erg cm−2s−1 line flux [273].

The Euclid is a 3-mirror telescope in Korsch configuration, three mirrors allow enough
degrees of freedom (three curvatures, three conic constants and two distances between mirrors)
to achieve a good level of aberration correction (quasi diffraction limited images), the required
image scale, and low distortion along all the Euclid field of view of 1.25×0.727 square degree.
The primary mirror is on-axis concave with 1.25 m of diameter and will be kept below 130 K
with a thermal stability better than 50 mK, the secondary mirror is an off-axis convex, the last
mirror is an off-axis concave [273].

Euclid satellite will orbit around the second Lagrangian point of the Sun-Earth orbit. The
survey is planned to have a nominal duration of 6 years and is subdivided into two survey
types. The first one, known as the Euclid Wide Survey, will cover 15 000 square degrees, i.e.
about one third of the sky, observing galaxies with a minimum magnitude of 24.5 for VIS and
24 for NISP. This sky area corresponds to the one out from the Galactic plane, contaminated
by gas and dust of the Milky Way, and out from the Ecliptic plane, impacted by the strong
Zodiacal infrared light contamination due to the dust of the Solar System plane. In the wide
survey, Euclid will observe a strip of about 15 square degrees per day, which implies patches of
about 400 square degrees per month. At the end of the mission, it is expected that Euclid will
have measured tens of millions of galaxy spectra and billions of photometric galaxies. This is
the main part of the mission, which will enable cosmological analysis of weak lensing, galaxy
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clustering, and their combination. The second one will be composed of 2 Euclid Deep Fields
which will observe objects two magnitudes fainter than the Wide survey and will cover about
40 square degrees. The Deep surveys will be used also to assess the purity and completeness
of the wide surveys and calibrate their data.

4.2 Galaxy and void catalogs
We now introduce the main tools for our work: the simulation and the void catalogs. This
section also includes a brief description of the void finder and of the void catalog preparation.

4.2.1 Flagship simulation
In this work we employ the version 1.8.4 of the Euclid Flagship mock galaxy catalog [272].
This catalog is created running a simulation of two trillion dark matter particles in a periodic
box of L = 3780 h−1Mpc per side, with a flat ΛCDM cosmology characterized by the param-
eters Ωm = 0.319, Ωb = 0.049, Ωde = 0.681, σ8 = 0.83, ns = 0.96 and h = 0.67, as obtained
by Planck in 2015 [152]. The simulation box has been converted into a light-cone and the
dark matter halos have been identified using the Rockstar halo finder [32]. These halos have
been populated with central and satellite galaxies using a halo occupation distribution (HOD)
method [44], to reproduce all the observables relevant for Euclid ’s main cosmological probes.
Specifically, the HOD algorithm has been calibrated exploiting several local observational con-
straints, using for instance the local luminosity function for the faintest galaxies [276, 277]
and the galaxy clustering as a function of luminosity and color [278]. This galaxy sample is
composed of more than two billion objects and presents a cut at magnitude H < 26 or equiv-
alently on the Hα flux fHα > 2 × 10−16 ergs s−1 cm−2, which mimics the observation range
expected for Euclid. To match the completeness and the spectroscopic performance expected
for the Euclid survey, we uniformly downsample the galaxy catalog to consider only 60% of
the galaxies originally included in it. Furthermore, we associate a Gaussian error of σz = 0.001
to the redshift of each galaxy [279]. The same completeness percentage and the redshift error
were used in all the projects of the Euclid Cosmic Voids group [144]. Even if more accurate
values for these quantities can be explored and implemented, we note that the impact of the
redshift error on the void catalog is very mild, because each void contains many galaxies, so
the uncertainty on the position is averaged; moreover, the typical size of voids is much larger
than the uncertainty of the galaxy position. The full catalog spans a large redshift range, up to
z = 2.3, and covers one octant of the sky (close to 5157 deg2).

The Euclid satellite will observe 15 000 deg2 of the sky with patches that extend up to
6 000 deg2. The total area covered by the satellite will be significantly larger than the available
Flagship area. By rescaling it is possible to compute the full predicting power from Euclid.
The larger Euclid survey coverage will allow us to increase statistics, reducing the size of the
error bar in particular for the high radius end of the void size function, and to better account
for super-sample covariance. On the other hand, the Euclid survey is expected to have a less
regular pattern than the Flagship box, which might impact the void statistics. Conversely to
galaxies, voids are strongly sensitive to survey area specifics because of their extended nature:
while contiguous regions are a great advantage for void search, as they provide larger voids,
void statistics can be reduced in the case of patchy survey coverage, because voids touching
survey edges must be excluded from the analysis. While the interplay between these different
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effects may have a role in final constraints, we do not expect this role to significantly impact
the precision of constraints resulting from Euclid.

We focus our analysis on the expected subsample corresponding to spectroscopic data,
selecting galaxies from redshift 0.9 to 1.8. We obtain a resulting mock catalog composed of
about 6.5 × 106 galaxies, having the spatial distribution of a shell of sphere octant.

4.2.2 Void finding and catalog preparation
We identify cosmic voids in the Flagship light-cone with the public Void IDentification and
Examination toolkit1 [VIDE, 155], descibed in Sect. 3.1. VIDE can be launched on any catalog
of tracers, both on simulation boxes with periodic boundary conditions and on galaxies from
real surveys. It is also capable to handle a survey selection function and a mask. These fea-
tures make VIDE a very flexible tool to study voids in data and simulations. VIDE has been
extensively used for cosmological applications relying on voids in the past decade [see e.g.
141, 182, 193, 209, 211, 213, 218, 222, 280].

We build the void catalogs using VIDE from the galaxy sample both with real and redshift-
space coordinates given by true and observed redshifts. Note that the redshift-space catalog is
identical to the one used in the companion paper of this work [144]. In the true redshift catalog,
the galaxy redshift corresponds to the cosmological one only, in the observed redshift catalog it
corresponds to the cosmological plus Doppler shift due to peculiar velocity. Although VIDE is
a parameter-free algorithm, the theoretical model of the void size function requires voids with
the same level of embedded underdensity, so we further process the void catalog. Therefore,
we apply to both obtained void catalogs a cleaning algorithm2 [179] aimed at resizing voids
around their volume-weighted barycenter in order to match a specific spherical density contrast
within the sphere, δNL

v,tr, in the tracer distribution, as described in Sect. 3.2.3. We modified the
algorithm to be applied to catalogs with comoving coordinates, taking into account the varia-
tion of the tracer density with redshift the void in measuring the void density profile. The goal
of this procedure is to align observed voids with their theoretical counterpart. We underline
that any negative value of this density contrast can in principle be chosen to identify under-
densities, as long as the theoretical model is consistently calculated using the same threshold
(see Sect. 2.1.2 and Sect. 3.2.3, [97]). When dealing with observed voids, the threshold can be
fixed to a suitable value chosen based on survey features [97]. We considered the following
reasoning to select this value: on the one hand, the more negative the threshold, the stronger the
impact of the cosmology on the void size function; on the other hand, an excessively negative
threshold entails both a low statistic and a higher uncertainty in the rescaled void radius, caused
by the sparsity of galaxies tracing such extreme underdense regions. In addition, a void cata-
log build with a shallow threshold is impacted by non-ideal effects, such as overlapping voids,
systematics concerning the void finder and on the void center position, etc. (see [158, 281] for
a discussion on spurious voids and possible treatments). Since, to date, there are no modeliza-
tions in the literature for these non-idealities (see the discussion at the end of Sect. 3.2.3), we
decided to be conservative in this first application of the void size function to the Euclid survey,
considering deep enough voids, selecting a threshold δNL

v,tr = −0.7.
VIDE takes into account the presence of a survey mask, and prevents voids from including

volumes outside the survey extent. We apply the mask selecting the simulated ∼ 5 000 deg2

1https://bitbucket.org/cosmicvoids/vide_public
2https://gitlab.com/federicomarulli/CosmoBolognaLib

https://bitbucket.org/cosmicvoids/vide_public
https://gitlab.com/federicomarulli/CosmoBolognaLib
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z range
shell volume mgs

fcut(z) VIDE voids resized
[(h−1 Gpc)3] [(h−1 Mpc)3]

0.950 − 1.035 1.157 10.28 2.30 4989 343
1.035 − 1.126 1.329 11.02 2.24 4935 343
1.126 − 1.208 1.269 11.74 2.18 4232 342
1.208 − 1.318 1.796 12.63 2.12 5302 341
1.318 − 1.455 2.363 13.51 2.06 5935 342
1.455 − 1.700 4.490 14.45 2.00 8435 343

0.950 − 1.700 12.40 13.69 2.15 33 828 2054

Table 4.1: Void counts measured in the redshift-space mock galaxy catalog considering the redshift
bins and selections used for this analysis. The first column represents the minimum and the maximum
redshift values for each bin, while the second and the third columns provide the volume in units of
(h−1 Gpc)3 corresponding to each shell of the sky octant, and the mean separation between galaxies
(mgs), respectively. The fourth column reports the factor, fcut(z), used to select voids unaffected by
the incompleteness of counts. The last two columns show the number counts of voids identified by
the VIDE void finder with R > fcut(z) × mgs and of voids obtained after the cleaning procedure with
Reff > fcut(z) × mgs, respectively. In the last row we show the total volume of all redshift shells, the
mean mgs, and fcut(z) values and the total void counts corresponding to the entire range of redshifts.
Table 4.2 with equi-spaced redshift bins is provided to serve as a reference for void numbers.

octant. Aiming at a very conservative void selection at the edges of the survey’s footprint, we
apply an additional cut to ensure the mask is not affecting the cleaning procedure: we remove
all voids whose center is closer than 30 h−1 Mpc to the edge and correct the model accordingly
for the selected volume. We then prune voids at low and high redshifts to further avoid selection
effects given by redshift boundaries of the light-cone, and we divide the sample in 6 redshift
bins. This number is found as the optimal compromise between maximizing the number of
redshift shells and keeping void numbers in bins high enough to avoid falling in the shot-noise
dominated regime. In order to have shells with roughly the same number of cleaned voids
identified in redshift space and to avoid border effects at the light-cone redshift boundaries, we
selected the following redshift bin edges: zi = [0.950, 1.035, 1.126, 1.208, 1.318, 1.455, 1.700],
shown in Fig. 4.1. Each shell contains at least 340 voids, within the range of effective radii
considered in the analysis of the measured void size function described in the following.

Tracer sparsity leads to a drop of counts for small voids in the measured void size function
[97, 225], which depends on the mean galaxy separation and therefore on the redshift of the
sample. Modeling the drop in counts for small voids is not trivial. To avoid falling in this
regime, we conservatively exclude from the analysis voids with radii falling in the range of
scales affected by incompleteness. We remove voids with radii smaller than mgs fcut(z), where
mgs is the mean galaxy separation and fcut(z) is a factor dependent on the redshift of the sample.
We computed the value of mean galaxy separation as mgs = (Vshell/Ngal)1/3, where Vshell is the
volume of the redshift shell analyzed and Ngal is the number of galaxies present in it. The factor
fcut(z) is chosen empirically based on the drop of void counts and on the steep departure from
the theoretical model. We find that values spanning from 2.3 (lowest redshift bin) to 2 (highest
redshift bin) for fcut(z) ensure the exclusion of spatially unresolved voids in redshift space.

Since we expect the resulting void size function in redshift space to be shifted towards
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z range
shell volume mgs all voids voids after cleaning
[(h−1 Gpc)3] [(h−1 Mpc)3] R > mgs > 2 mgs Reff > mgs > 2 mgs

0.9 − 1.0 1.308 10.28 8928 6032 4845 726
1.0 − 1.1 1.427 11.02 8987 6637 5253 840
1.1 − 1.2 1.531 11.74 7735 5824 4690 699
1.2 − 1.3 1.622 12.63 7167 5237 4140 500
1.3 − 1.4 1.700 13.51 6575 4756 3703 321
1.4 − 1.5 1.766 14.45 5636 4078 3152 249
1.5 − 1.6 1.821 15.45 5132 3624 2719 160
1.6 − 1.7 1.867 16.48 4389 3049 2286 94
1.7 − 1.8 1.904 17.63 2248 934 851 4

0.9 − 1.8 14.95 13.69 56 797 40 171 31 639 3593

Table 4.2: Void counts in 9 equi-spaced bins in redshift, measured in the redshift-space mock galaxy
catalog, provided as a reference. The first column represents the minimum and the maximum redshift
values for each bin, while the second and the third columns provide the volume in units of (h−1 Gpc)3

corresponding to each shell of the sky octant, and the mean separation between galaxies (mgs), respec-
tively. The next 2 columns show the number of voids identified by the VIDE void finder, selected with
an effective radius greater than 1 and 2 times the mgs, respectively. In the last 2 columns we provide the
void number counts obtained after the cleaning procedure. The latter are reported with the same radius
selections as described before. In the last row we show the total shells’ volume, the mean mgs and the
total void counts corresponding to the entire range of redshifts.

greater effective radii due to the effects of redshift-space distortions [159, 170, 269, 282], we
extend the minimum radius for the real-space case, adding an extra bin at small radii while
keeping the same binning of the redshift-space case for higher bins. We verified that these
choices allow us to be outside of the incompleteness regime, for both the void size function in
real and redshift space.

In Table 4.1 we show the number counts of voids selected from the redshift-space mock
galaxy catalog. For each of the redshift bins with edges zi we report the volume occupied by
the shell and the mgs of the tracers, together with the factor fcut(z) used to compute the min-
imum void radius considered in this analysis. For completeness, we show the void number
counts both before and after the cleaning procedure aimed to line up observed voids to theoret-
ical voids, according to the void size function model. The sharp decrease of the void number is
an expected outcome of the cleaning procedure, that selects the largest and deepest underden-
sities identified by VIDE and rescales their sizes towards smaller values, causing a more severe
rejection of voids during the removal of the spatial scales affected by the incompleteness of
counts. Although this conservative approach leads to a loss of the void size function constrain-
ing power, it ensures the selection of a high-purity void sample and a robust treatment of void
number counts. In future works, different approaches will be explored to improve the void se-
lection also at small radii: among these, the application of machine learning techniques [281] is
promising to carefully remove only spurious voids and consequently enhance the performance
of the void size function as a cosmological tool.

For reference, in Table 4.2 we provide the number of voids identified in the redshift-space
distribution of galaxies, in equi-spaced ∆z = 0.1 bins. Here we report void number counts
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Figure 4.1: Number density of voids as a function of the redshift z for the VIDE redshift-space catalog.
The vertical dashed lines show the division of the 6 redshift bins.

obtained both before and after the application of the cleaning procedure. Moreover, we show
the number of cosmic voids considering both an optimistic and a pessimistic cut on smaller
void radii, that correspond to select voids with radius over 1 × mgs, and voids over 2 × mgs,
respectively. The lowering of void counts in the outermost bins is caused by survey mask
effects at redshift boundaries of the simulated light-cone, as visible also from Fig. 4.1.

4.3 Theory and methods
In this section we first discuss the model of the void size function, then we present the prescrip-
tions applied to extend this model to voids identified in the distribution of biased tracers. We
describe the Bayesian statistical analysis used to provide forecasts on the dark energy equation
of state and on the sum of neutrino masses. Finally, we present the cosmological scenarios
considered in our analysis.

4.3.1 Theoretical void size function
To estimate the constraining power of the void size function, i.e. the distribution function of
void radii, we first need a theoretical model. The void size function model most widely used in
the literature relies on the excursion-set formalism, developed within the framework of the halo
mass function [see Chapter 2, 12, 25, 101, 103]. As widely discussed in Chapter 2, this model
was first proposed by Sheth & van de Weygaert [98] and extended by Jennings et al. [96].
The distribution of fluctuations that become voids, i.e. the multiplicity function, is obtained
as the conditional first crossing distribution of the matter density contrast filtered at decreas-
ing Lagrangian radius in a double barrier problem: a fluctuation becomes a void at a radius
Rv if the filtered density contrast first crosses the void formation threshold δL

v at Rv, without
having crossed the threshold for collapse δL

c at any larger scale [98]. For the sake of clarity,
throughout this chapter, the density contrasts in linear and nonlinear theory are indicated with
the superscripts L and NL, respectively. In the absence of any superscript, we take for granted
the reference to the nonlinear counterpart. The multiplicity function of Sheth & van de Wey-
gaert [98] is derived for spherical fluctuations in Lagrangian space, i.e. the initial density field
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linearly evolved to the epoch of interest, while the observed voids live in the fully nonlinear
evolved density field in comoving coordinates, i.e. the Eulerian space. The spherical approx-
imation allows us to easily go back and forth from Lagrangian to Eulerian space in all the
computations. The void size function probes the inner region of cosmic voids and in contrast
to the collapsing case, i.e. halo formation [14, 15, 283], the spherical approximation is accu-
rate enough for this purpose, at least for voids of scales detectable by Euclid [see Sect. 3.2.3,
97, 110].

The linear threshold for collapse is fixed at δL
c = 1.686, according to the collapse of a

spherical fluctuation. This value corresponds in a matter dominated universe to the full collapse
in linear theory, when the halo virializes. The void case is different: if the initial underdensity
identifying a void is deep enough, its evolution is not marked by any specific event, and it
continues its outward-directed expansion forever. As we widely discussed in Sect. 2.1.2, it is
common to consider the shell-crossing, but this condition strictly depends on the initial density
profile of the underdensity. For an initial density profile represented as a step function, shell-
crossing happens at a nonlinear matter density contrast of δNL

sc ≃ −0.8, corresponding to a
linear threshold of δL

sc ≃ −2.7. Considering more physical density profiles [e.g. 284], shell-
crossing in voids does not necessarily occur and, if it does, it may occur at even lower threshold
values. Given the considered thresholds, our voids remain far from the shell-crossing regime,
therefore, in principle, it is always possible to map the measured Eulerian density profile to
the corresponding Lagrangian one. As we do not reach shell-crossing, we have the freedom to
choose any threshold value to define void formation [97].

The theoretical void size function model that we use for this analysis is the volume con-
serving model (Vdn) [96].

4.3.2 Methodology

To compare the measured and the theoretical void size functions, we need to link objects found
by the void finder in the tracer distribution with the ideal spherical and isolated voids described
by the theoretical model void size function model [96]. Any watershed void finder defines a
region spanning from its density minimum to its over-dense ridge [155, 156, 158, 285]. On the
contrary, theoretical voids are matter density fluctuations for which the mean density contrast
in a sphere reaches a specific threshold value at radius Reff . Previous papers attempted to
mitigate this difference by modifying the threshold of the model [159, 160, 175], in particular
considering marginalization over the threshold, for cosmological uses of the model.

It is useful to recall that the Vdn model describes voids evolving in the total matter density
field, but that in our case (and when dealing with data) we can only identify voids in the galaxy
density field. Therefore, to align these objects with those modeled by the theory, we need to
relate the characteristic density threshold used in the theoretical model, δL

v , to the corresponding
one in the galaxy density field. To accomplish this purpose, we rely on the following two steps
for data preparation: first, we measure the mean density profiles of cosmic voids to find the
radius of the sphere at which the mean density contrast reaches the desired value δv,tr in the
galaxy distribution [96, 97, 171, 172, 179], i.e. the resized radius, Reff. Second, it is necessary
to find the corresponding density contrast in the underlying matter density distribution within
the resized radius. Recently, the properties of voids in the galaxy distribution, as well as of
galaxies and tracer bias within cosmic voids, have been explored extensively [161, 172, 173,
181, 182, 225, 286]. To recover the matter density contrast corresponding to the threshold
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value in the galaxy density field, we need to model the galaxy distribution inside cosmic voids
taking into account tracer bias. To describe tracer bias, i.e the bias of the cosmological objects
chosen to trace voids, various possibilities have been considered, including a full theoretical
description (see discussion in [97]), or modeling the bias inside voids with simulations [161,
172, 181, 182]. In this analysis we chose to rely on the latter, considering a linear relationship
between tracer and matter density contrast in cosmic voids, δNL

v,tr and δNL
v,DM, with a dependence

only on the large-scale effective bias beff [172]:

δNL
v,DM =

δNL
v,tr

F (beff)
, (4.1)

where δNL
v,DM is the value of the threshold in the dark matter field to be used in the Vdn model,

after its conversion in linear theory [96]. For ΛCDM and the dark energy equations of state
considered in this work, the conversion from nonlinear to linear density contrast in the matter
field is cosmology and redshift independent with very high accuracy [96], allowing the use
of Eq. (2.17) and Eq. (2.22). For numerical convenience, we exploit the Bernardeau formula
[287], fitting the map from nonlinear to linear density contrast provided by Eq. (2.17) and
Eq. (2.22):

δL
v = C

[︁
1 − (1 + δNL

v )−1/C]︁ , with C = 1.594 . (4.2)

It was shown that the ratio between the density contrast of friends-of-friends (FoF) halos in
spheres centered in the barycenter of watershed voids and with fixed density contrast and the
underlying dark matter density contrast, can be modeled using a linear relation of the large-
scale effective bias beff [172]:

F (beff) = Bslope beff + Boffset , (4.3)

where Bslope and Boffset are the values of the first and second coefficients of the linear function,
respectively. Moreover, the cosmological dependence of the Bslope and Bslope parameters are
negligible with respect to the precision in the void size function measurements [161]. In this
chapter, we will denote the linear model with the function F (beff), used to parameterize the
value of the tracer effective bias measured inside cosmic voids, where the measured values are
denoted as bpunct.

To convert the underdensity threshold of the Vdn model according to the function F (beff),
we first need to compute accurately the large-scale effective linear bias of our galaxy sample.
For this estimate, we exploit the galaxy two-point correlation function, performing a Bayesian
statistical analysis to infer the effective bias, beff. We compute the angle-averaged galaxy two-
point correlation function ξ̂(r) in real space creating a random catalog 10 times larger than the
original one and using the Landy & Szalay estimator [288]. We then estimate the covariance
matrix, which measures the variance and correlation between the different bins of the two-point
correlation function. For this purpose we apply the Bootstrap method, dividing the original
catalogs in 125 sub-catalogs and constructing 100 realizations by resampling from the sub-
catalogs, with replacement. In the end we perform a full Markov chain Monte Carlo (MCMC)
analysis of the two-point correlation function, using a Gaussian likelihood function [289, 290].
The two-point correlation function model, ξmod(r), is computed as follows:

ξmod(r) = b2
eff ξm(r) , (4.4)
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where ξm(r) is the matter two-point correlation function, which is estimated by Fourier trans-
forming the matter power spectrum, Pm(k), computed with the Code for Anisotropies in the Mi-
crowave Background [CAMB3, 291]. The effective bias parameter beff is then estimated accu-
rately by sampling its posterior distribution with the MCMC modeling in the range of scales of
[20 − 40] h−1 Mpc.

We underline that the relative error associated to beff is expected to be relatively small
because of the strategy used to compute this quantity relying on the galaxy catalog in real
space and assuming the true cosmological parameters of the simulation. A more complete and
realistic treatment will be performed in the future, including in the analysis the modeling of the
multipoles of the two-point correlation function, which will allow us to take into account the
effects of redshift-space and geometrical distortions [see e.g. 168, 292–295].

We finally recall that another approach to compute effective bias, analogous to that applied
in this work, is to measure the two-point correlation function in Fourier space and to model
it via the theoretical matter power spectrum Pm(k) [see e.g. 294]. Additionally, an alternative
methodology to extract Flagship galaxy bias is to follow e.g. [296], who parameterized the
Flagship galaxy bias as a function of z, albeit for the photometric redshift selection.

4.3.3 Bayesian statistical analysis
In this work we use a reliable forecast method for the sensitivity of the void size function in
the Euclid survey to constrain the cosmological model, based on a parameter extraction from
Bayesian likelihood analysis with MCMC [297–305].

In order to forecast the sensitivity of void counts with an MCMC analysis in Euclid, we
have to consider that the Flagship simulation covers about one third of the Euclid survey. We
obtain the Euclid predicted void number counts relying on the theoretical void size function
model validated on the Flagship simulation, see Sect. 4.4.1, that is assuming a fiducial ΛCDM
cosmology with the cosmological parameters of the Flagship and the calibration in redshift
space of the Vdn model described in Sect. 4.4.1. We assume the same binning of void radii
employed in our Flagship analysis but consider a survey area matching the one expected for
Euclid (roughly three times the Flagship area), rescaling the Poissonian errors of the void
number counts consistently.

This allows us to use MCMC analysis to explore the likelihood distribution in the param-
eter space without any assumption on the Gaussianity of parameters and local approxima-
tions around the fiducial value, as in Fisher forecasts. Moreover, according to the Cramér–
Rao inequality, the Fisher matrix gives a lower bound on the error on a parameter [306],
while the MCMC is proven to be more realistic, in particular in the presence of degeneracies
[297, 302, 305, 307]. Finally, this kind of approach allows us to compute unbiased constraints,
with confidence contours centered on the cosmological parameters of the Flagship simulation
and on the calibrated nuisance parameters Bslope and Boffset.

According to Bayes’s theorem, given a set of dataD, the distribution of a set of parameters
Θ in the cosmological model considered is given by the posterior probability:

P(Θ|D) ∝ L(D|Θ) p(Θ) , (4.5)

where L(D|Θ) is the likelihood and p(Θ) the prior distribution. Since in this work we consider

3http://camb.info

http://camb.info
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the number counts of cosmic voids, we assume a Poisson likelihood [175]:

L(D|Θ) =
∏︂

i, j

N(ri, z j|Θ)N(ri,z j |D) exp
[︂
−N(ri, z j|Θ)

]︂
N(ri, z j|D)!

, (4.6)

where the product is over the radius and redshift bins, labeled as i and j respectively. The
N(ri, z j|D) quantity corresponds to the number of voids in the ith radius bin and jth redshift
bin, while N(ri, z j|Θ) corresponds to the expected value in the cosmological model considered,
given a set of parameters Θ. In our work, the former is obtained from the Flagship analysis
(with the void size function model validated on the Flagship simulation, but considering that
the Euclid area will be three times larger), while the latter is given by the predictions of the
void size function model varying the considered cosmological parameters Θ.

In performing the MCMC analysis, the mapping between redshift and comoving distance
changes with the cosmological parameters assumed at each step of the chain. This introduces
geometrical distortions for all the considered sets of cosmological parameters (different from
the true one), as discussed in Sect. 3.2.2. We used a fiducial cosmology to build up the void
catalog, and, in computing the likelihood, we theoretically account for the distortion effects
on the quantities we measured. In particular, geometrical distortions can be modeled with two
effects: they vary the inferred survey comoving volume and introduce the Alcock-Paczyński
distortion [165]. The effect on the survey volume impacts the number of voids expected in the
survey. The theoretical void size function model predicts the number density of voids in each
radius and redshift bin. Therefore, to obtain the total number of voids, the number density has
to be multiplied by the volume, which is impacted by the cosmology. On the other hand, the
Alcock-Paczyński distortion affects the size of voids and introduces an anisotropy between the
orthogonal and the parallel direction with respect to the line-of-sight. These quantities change
according to [169]:

r′∥ =
H(z)
H′(z)

r∥ = q−1
∥ r∥ , r′⊥ =

χ′(z)
χ(z)

r⊥ = q−1
⊥ r⊥ ; (4.7)

where r∥ and r⊥ are the comoving distances between two objects at redshift z projected along
the parallel and perpendicular direction with respect to the line-of-sight, H(z) is the Hubble
parameter, and χ(z) the comoving distance. The primed quantities refer to the calculation at
the fiducial cosmology, the non-primed to the true cosmology, assumed in a MCMC step. It
follows that the volume of a sphere with radius R appears modified according to R = q1/3

∥
q2/3
⊥ R′

[141, 166–170], so the void size function expected in the survey is shifted accordingly. Note
that, differently from watershed voids where the implementation of the Alcock-Paczyński ef-
fect is exact (see Sect. 3.2.2), for threshold voids this is approximated. A selection of tracers in
a sphere estimated in the fiducial cosmology may be mapped in an ellipsoid in the true cosmol-
ogy, but the multiplicity function we rely on for the theoretical model is defined for spherically
filtered fluctuations. Nevertheless, for a wide range of cosmological parameters around the true
cosmology, the main effect of the Alcock-Paczyński is to enlarge/contract homogeneously the
inferred size of spheres, and as a secondary effect it introduces a small amount of ellipticity. It
follows that for our porpoise the Alcock-Paczyński effect can be accurately modeled as modi-
fying the void radius only. We therefore checked the validity of this relationship by varying the
cosmology used to get the comoving distances from redshifts and consequently correcting the
radius Reff at which voids reach the underdensity threshold δNL

v,tr.
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Figure 4.2: Calibration of the relation F (beff) from Eq. (4.3), required for the conversion of the thresh-
old δv,tr in Eq. (4.1). Left: 1σ (68%) and 2σ (95%) confidence levels in the Bslope–Boffset plane for the
void catalogs built both in real (blue) and in redshift space (orange). Right: the solid lines represent the
resulting linear relations F (beff) obtained with the calibrated coefficients Bslope and Boffset for real (blue)
and redshift space (orange), while the shaded regions indicate an uncertainty of 2σ on the relationships.
The markers represent the calibration obtained for each bin of redshift, leaving bpunct as the only free
parameter of the void size function model when fitting the measured void number counts. This alterna-
tive calibration provides a value of bpunct for each redshift of the sample and is associated with the value
of the effective bias beff of the Flagship galaxies at that specific redshift. As a comparison we show the
linear function calibrated using FoF dark matter halos in real space by [172], displayed with a dashed
gray line. Figure from [162].

The redshift positions of the void centers are not affected by the Alcock-Paczyński distor-
tion, as discussed in Sect. 3.2.2. While void shapes can suffer from symmetric geometrical
distortions, this does not affect the identification of void centers. Furthermore, the variation
caused by the change of the cosmological parameters on void radii is taken into account by the
modeling of the Alcock-Paczyński effect, therefore the cleaning procedure (see Sect. 4.2.2) is
applied only once to the void sample, considering a fiducial ΛCDM cosmology.

We note that the combination of the two effects – volume effect acting on the expected
number density, and the Alcock-Paczyński effect acting on the void sizes – enhances the con-
straining power of the void size function.

4.3.4 Cosmological models

The aim of this work is to investigate the constraining power of the void number count statistic
on cosmological parameters, focusing in particular on the dark energy equation-of-state pa-
rameters. We consider two cosmological models, extending the standard ΛCDM with different
dark energy equation of states. The first model, wCDM, implements a constant dark energy
equation of state w; the second one, w0waCDM, parameterizes dynamical dark energy models
with the popular Chevallier–Polarski–Linder (CPL) equation of state [58, 59]:

wCPL(z) = w0 + wa
z

z + 1
. (4.8)
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Figure 4.3: Comparison between the measured void number counts as a function of Reff (the void radii
rescaled by the cleaning algorithm), and the theoretical predictions given by the extended Vdn model,
in 6 different redshift bins. The dark green circles and the dark red diamonds represent the measured
void size functions in real and redshift space, respectively, while the corresponding model predictions
are depicted in light blue and orange. The shaded regions indicate the uncertainty of 2σ assigned to
the model through the calibration of the extended Vdn parameters. Bottom panels report the residuals
computed as the difference of data points from the relative theoretical model, divided by the Poissonian
error associated with each data point. The hatched regions represent a band with amplitude 2 useful
to check if the data points, considered with a 2σ error, are compatible with the main theoretical curve.
Figure from [162].
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Both cosmological models consider a null space curvature. The MCMC analysis of each cos-
mological model is performed focusing on different sets of free cosmological parameters: to-
gether with the dark energy equation of state parameters (i.e. w or w0 and wa, depending on the
cosmological model) the density parameter Ωm or the sum of neutrino masses Mν are allowed
to vary. Moreover, both the cases are analyzed with two different approaches:

1. fixing the parameters of the extended Vdn model, Bslope and Boffset, to the median values
obtained from the calibration performed with Flagship data (label: fixed calibration);

2. allowing Bslope and Boffset to vary in the parameter space described by a 2D Gaussian dis-
tribution centered on their median values and given by the calibration with the Flagship
simulation (label: relaxed calibration);

The two adopted approaches are meant to demonstrate the impact of the calibration that will
be performed in Sect. 4.4.1 on the cosmological forecast. In this work the constraints on the
parameters Bslope and Boffset are indeed limited to the statistical relevance of the number counts
of voids identified by means of the Flagship galaxies. The case in which the cosmological
forecasts are computed fixing Bslope and Boffset to their exact calibrated values represents there-
fore an optimistic evaluation of the results that we may obtain in the future thanks to the usage
of larger mock catalogs, or by means of a fully theoretical modeling of the tracer bias inside
cosmic voids (see Sect. 4.3.2).

The cosmological model considered for the analysis is characterized by a primordial co-
moving curvature power spectrum amplitude fixed to the Flagship simulation value, As =

2.11 × 10−9. We follow the strategy to fix this parameter in order to mimic the future ap-
plication to real data, which will be supported by the impressive constraints obtained from the
study of CMB anisotropies by Planck [50]. Thanks to this approach, for each MCMC step we
can derive σ8, i.e. the root mean square mass fluctuation in spheres with radius 8 h−1 Mpc.
We rely on CAMB to compute this quantity as a derived parameter, which depends on all the
cosmological parameters involved in the evolution of the matter power spectrum Pm(k).

The density parameterΩm is computed as the sum of cold dark matter, baryon, and neutrino
energy densities, Ωm = Ωcdm + Ωb + Ων, and its variation in the Bayesian statistical analysis is
balanced by the changing of the dark energy density parameter, Ωde, to keep flat the geometry
of the space-time, Ωde = 1 −Ωm.

The implementation of massive neutrinos in the MCMC analysis is performed considering
the sum of the mass of neutrinos as a free parameter in the cosmological model. Neutrinos are
modeled with one massive eigenstate and two massless ones, assuming an effective number of
neutrino species Neff = 3.04 [308, 309] and relating the neutrino mass to the neutrino density
parameter as [310]:

Ων =
Mν

93.14 h2 eV
, (4.9)

where we denote Mν =
∑︁

mν as the sum of the neutrino mass eigenstates.
Since thermal free-streaming of massive neutrinos suppresses density fluctuations, the abun-

dance of voids changes with massive neutrinos, with respect to the massless neutrinos case
[see e.g. 147, 148, 161]. We include the variation of the neutrino density parameter, Ων, in the
MCMC analysis, by keeping the value of the total matter density Ωm fixed (see Sect. 4.2.1),
thus rescaling consistently the cold dark matter density parameter Ωcdm.

We rely on CAMB for the computation of the total matter power spectrum used to predict the
theoretical model of the void size function. The region of the parameter space characterized by
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a dark energy equation of state with w0 + wa > 0 is not covered by CAMB, since it corresponds
to a non-vanishing dark energy component at the CMB epoch.

4.4 Results
The aim of this section is to compare our theoretical predictions with the void size function
measured from the Flagship simulation. We then provide forecasts for the Euclid survey, using
a Bayesian statistical analysis to predict constraints on the parameters of the dark energy equa-
tion of state, modeling the void size function according to the theoretical prescriptions reported
in Sect. 4.3.

4.4.1 Void size function analysis
To compare the theoretical void size function with the number counts of voids measured in
the galaxy distribution, we need to convert the threshold δNL

v,tr fixed in measurements to the
corresponding one in the matter distribution, as described in Sect. 4.3.2. First of all, we verify
the calibration of the relation F (beff) reported in Eq. (4.3) using the Flagship simulation. To this
end, we extract the value of Bslope and Boffset by leaving them as free parameters with uniform
priors of the extended Vdn model and fitting the measured void number counts in the selected
redshift bins, considering a Gaussian prior for beff at each redshift. We notice that, since the
error on the effective bias only corresponds to a few percent of its value, the variation allowed
for this parameter during the fit is small. All the remaining cosmological parameters are kept
fixed to the Flagship simulation values during this calibration.

With this prescription we obtain the confidence levels reported on the left panel of Fig. 4.2,
for the void size function measured in both real and redshift space in light blue and orange,
respectively. The resulting coefficients for the calibrated relations are:

F (beff) = (0.96 ± 0.04) beff + (0.44 ± 0.07) and
F (beff) = (0.96 ± 0.03) beff + (0.26 ± 0.06) ,

(4.10)

for the redshift-space and the real-space void abundance, respectively.
We show in the right panel of Fig. 4.2 the corresponding linear relations obtained with

these calibrations, with a shaded area representing an uncertainty of 2σ. As a comparison, we
present in the same plot the values computed for bpunct, leaving it as the only free parameter of
the model and fitting separately the measures at different redshifts. This analysis is aimed at
testing the precision of the calibrated relations for each redshift: in the right plot of Fig. 4.2 the
markers with the best match to the linear relations correspond in Fig. 4.3 to the redshift bins
for which the calibrated model more accurately reproduces the measured void number counts,
while points that depart from the linear relationship in Fig. 4.2 (right plot) will lead to a slightly
worse agreement between theory and model in Fig. 4.3.

Finally, we report also the calibration obtained using the CoDECS dark matter halos [172,
311], represented in gray in the right panel of Fig. 4.2. At lower redshifts the calibration we
measure in this work is in good agreement with the calibration from the CoDECS simulation,
characterized by a WMAP7 cosmology [312], but it slightly deviates from the latter at higher
redshift values. The reason for this deviation may be twofold. First, it is linked to the kind of
cosmic tracers (i.e. dark matter halos or galaxies) and the selection criteria (i.e. minimum mass
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or magnitude) used to identify voids. Second, it may be related to the fact that in [172] the
calibration was performed for redshift from 0 to 1, while here we are testing this relationship
beyond this range.

More importantly, since the void size function will be measured on real data from the Euclid
survey, we have to deal with voids detected in redshift space. The overall effect of redshift-
space distortions on voids, relevant for the void size function, is an apparent enlargement of
the voids’ volume, due to the elongation along the line of sight. This is reflected in a mean
shift of the measured void size function toward larger radii. Even if this effect can in principle
be theoretically modeled [159, 170], we decide to parameterize it empirically as described
below. Indeed, the theoretical approach requires knowledge of the void matter density profile
for the entire void population, which has to be characterized in simulations and may introduce
some model dependencies. We found that the parameterization of F (beff) can be exploited to
encapsulate also the modifications on the void sizes caused by the enlargement of cosmic voids
in redshift space. This approach has the advantage of being both simple to model and robust,
allowing us to take into account, with the same parameter, both the impact of tracer bias in
voids and of the redshift-space distortions. Moreover, this approach is fully agnostic and does
not require any assumption about the void density profile, nor any other modeling, making it
particularly suited to survey analyses.

It is worth noting that the relation obtained for voids in redshift space shows a greater offset
but almost the same slope with respect to its analog in real space. This difference reflects the
increase of void sizes in redshift space. It also opens the way to test theoretical implementations
in future work, indicating that a simple modeling of those effects should suffice to extract robust
constraints.

Equipped with these calibrated relations, we now have all the elements necessary to com-
pare the measured void size function with the theoretical predictions given by the Vdn model
plus the F (beff) relation, in which the underdensity threshold is converted as described in
Sect. 4.3.2. Figure 4.3 provides the main results of our Flagship analysis. We show the com-
parison between the measured void number counts and the corresponding theoretical void size
functions, both in real and redshift space, for the 6 equi-populated bins in redshift. The Poisso-
nian errors related to the data are represented by the error bars, while the uncertainty related to
the theoretical model is shown as a shaded region. The latter is computed associating an error
to F (beff) given by the interval delimited by the colored bands in Fig. 4.2. The residuals are
reported at the bottom of each sub-plot and are calculated as the difference from the theoretical
model, in units of the data errors. The latter show an excellent agreement between simulated
data and theoretical models, even when considering voids identified in the Flagship galaxy cat-
alog in redshift space. The measured void number counts are indeed within an uncertainty of
2σ, shown by the hatched colored bands in the bottom panels, represented in units of the data
errors. To test the goodness of the fits shown in Fig. 4.3 we compute the reduced χ2 using the
weighted sum of squared deviations of the two data sets from their corresponding models and
dividing the results by the degrees of freedom, ν, of the two systems. The results are χ2

ν = 1.60
and χ2

ν = 1.02 for real and redshift space, respectively.

4.4.2 Cosmological forecasts

In this subsection we provide the cosmological forecasts obtained using the void size function
in redshift space in the perspective of the Euclid mission. We apply the statistical analysis
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Figure 4.4: Cosmological forecasts for the Euclid mission from the void size function for the wCDM
model, characterized by a dark energy component described by a constant w. The contours represent
the 1σ (68%) and 2σ (95%) confidence levels obtained by means of the Bayesian statistical analysis
described in Sect. 4.3.3. Left: forecasts for a cosmological model with w and Ωm as free cosmological
parameters. We report the constraints obtained by fixing the calibration parameters with blue contours
marked by a solid line and the results obtained by relaxing the calibration constraints with light-blue
contours marked by a dashed line (see Sect. 4.3.4). Right: forecasts for a cosmological model with w
and Mν as free cosmological parameters. We represent the results of the fixed calibration case as red
confidence contours having solid borders and those of the relaxed calibration case as orange contours
having dashed borders. For each plot we show also the constraints on σ8, computed as a derived param-
eter. The true values of the parameters are shown by a black dashed line. Figure from [162].

described in Sect. 4.3.3 to derive constraints on the parameters of the two cosmological mod-
els analyzed, labeled as wCDM and w0waCDM, following the two approaches described in
Sect. 4.3.4. For the model wCDM we assume a flat prior for all the remaining free cosmo-
logical parameters of the model, and for the model w0waCDM we assume a Gaussian prior
distribution with standard deviation σ = 5 for w0 and σ = 15 for wa, both centered on the true
values of these parameters, given by the Flagship simulation cosmology (w0 = −1, wa = 0). We
preferred to use very wide Gaussian priors instead of uniform ones to improve the numerical
stability of the whole pipeline; nevertheless we tested that uniform priors yield consistent re-
sults. The remaining cosmological parameters analyzed in this work (Ωm and Mν) are included
in the void size function modeling with uniform prior distributions.

In Fig. 4.4 we present the 1σ and 2σ confidence levels of the constraints on the model
wCDM. In the left plot we show the Euclid forecasts from a void size function model char-
acterized by w and Ωm as free cosmological parameters. We represent with different colors
and borders the results obtained with the two approaches described in Sect. 4.3.4: in blue with
solid contours the forecasts obtained by fixing the extended Vdn parameters Bslope and Boffset, in
light-blue with dashed contours those obtained by relaxing the calibration constraints by means
of a 2D Gaussian prior on Bslope and Boffset, which distribution is represented in the left panel
of Fig. 4.2. In the right plot we represent the same forecasts but considering a void size func-
tion model with the neutrino total mass Mν as free parameter instead of the matter density Ωm.
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Figure 4.5: The same as Fig. 4.4 but for the cosmological model labeled as w0waCDM, having a dynam-
ical dark energy component described by the CPL parameterization (see Sect. 4.3.4). Figure from [162].

In this case we show the fixed and the relaxed calibration approach results in red and orange,
respectively. In both cases presented, σ8 is computed as derived parameter. As expected, the
effect of relaxing the calibration constraints is to broaden the confidence contours.

In Fig. 4.5 we show the same contours represented in Fig. 4.4 but considering the w0waCDM
scenario. The free cosmological parameters of the void size function model are the coefficients
of the dark energy equation of state, w0 and wa, together with Ωm (left plot) or Mν (right plot).
Also in this case the relaxation of the constraining condition of the calibration parameters
causes an enlargement of the confidence contours. In this scenario however, the strongest
impact of the calibration constraints is on the w0–wa parameter plane, in particular along the
diagonal where these parameters become degenerate. The effect of the calibration constraints
on Ωm and Mν has a lower impact.

In Tables 4.3 and 4.4 we report the values, with relative 1σ errors, of the cosmological
constraints derived for the wCDM and w0waCDM scenario, respectively. The constraints on
the sum of neutrino masses Mν are expressed as a 1σ upper limit. For each table we show
the results for the two approaches followed in this work: fixing and relaxing the calibration
constraints on the void size function model. The calibration parameters are reported in the
columns Bslope and Boffset for completeness. Notice that each quantity reported without any
uncertainty is considered fixed in the specific scenario presented in that table’s row.

For the w0waCDM scenario, in order to evaluate the constraining power of the void size
function on the dark energy equation of state, we derive the FoM for the coefficients of the
CPL parameterization w0 and wa. We compute this value by following [279]:

FoMw0,wa =
1

√
det Cov(w0, wa)

, (4.11)

where Cov(w0, wa) represents the covariance matrix of the dark energy equation of state param-
eters. We report the FoM values in the last column of Table 4.4.

As a first exploration of the cosmic void statistics combined power, we now compare the
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Model w σ8 Ωm Mν [eV] Bslope Boffset

fixed calib.
−1.01+0.09

−0.11 0.83 ± 0.03 0.319+0.005
−0.004 0 0.96 0.44

−0.99+0.06
−0.04 0.83+0.1

−0.2 0.319 < 0.03 0.96 0.44

relaxed calib.
−1.0 ± 0.1 0.84 ± 0.04 0.318+0.008

−0.005 0 0.96 ± 0.02 0.44 ± 0.04

−0.98+0.10
−0.07 0.83+0.02

−0.03 0.319 < 0.06 0.95 ± 0.02 0.46 ± 0.04

Table 4.3: Cosmological forecasts computed for the Euclid mission from the void size function for the
cosmological model wCDM. In this table we report the results of the two analysis strategies adopted in
this work: considering the parameters Bslope and Boffset fixed to the respective median calibrated values
(label: fixed calib.) or with a multivariate Gaussian with the same median value but a constraining power
given by the calibration procedure with Flagship (label: relaxed calib.). For each of the two cases we
present, in the upper and lower line, the forecasts obtained fixing Mν or Ωm to the Flagship simulation
true values, respectively. All the constraints are reported with errors with a 1σ confidence level.

Model w0 wa σ8 Ωm Mν [eV] Bslope Boffset FoMw0,wa

fixed
−1.0 ± 0.2 −0.1+0.7

−0.9 0.84+0.04
−0.03 0.32 ± 0.01 0 0.96 0.44 4.9

−1.0+0.2
−0.6 −0.1+0.3

−0.8 0.83+0.02
−0.03 0.319 < 0.08 0.96 0.44 17

relaxed
−0.8+1.6

−0.6 −0.9+3.6
−9.6 0.86 ± 0.04 0.32 ± 0.01 0 1.01+0.03

−0.04 0.35+0.08
−0.05 0.78

−0.9+0.3
−0.2 −0.5+0.9

−1.3 0.86+0.02
−0.05 0.319 < 0.08 0.99+0.01

−0.04 0.38+0.07
−0.01 2.3

Table 4.4: The same as Table 4.3 but for the w0waCDM scenario. In this case we present in the last
column also the values computed with Eq. (4.11) to estimate the FoM for the dark energy equation of
state.

forecasts from the void size function provided in this work with other Euclid forecasts. We
present as a first comparison the results of the Ωde–w confidence contour with the model-
calibrated forecasts presented in [144]. The latter are computed by modeling the observable
distortions of average shapes in redshift space via redshift-space distortions and the Alcock-
Paczyński effect, for voids to be measured in the Euclid spectroscopic galaxy distribution.
Contrary to the model-independent case, in the presented approach the nuisance parameters of
the model have been calibrated by means of Flagship data. In this comparison we consider
the wCDM scenario with fixed neutrino mass and we focus on the Ωde–w parameter space.
Given the assumption of flat spatial geometry, to compute the corresponding Ωde forecasts, we
converted Ωm obtained in the MCMC analysis as Ωde = 1 −Ωm.

As a second comparison we take the results of Fisher analysis reported in the IST forecasts
[279] obtained in the optimistic setting for the single weak lensing and galaxy clustering probes.
In this case, we consider the w0wa CDM scenario with fixed neutrino mass and we focus on
the Ωm–σ8 degeneracy. To compute the IST confidence contour we make use of the publicly
available4 Fisher matrices and we marginalize on the parameters not reported in the plot with

4See https://github.com/euclidist-forecasting/fisher_for_public.

https://github.com/euclidist-forecasting/fisher_for_public


4.4. RESULTS 135

Void AP (model-calibrated)

Void size function (fixed calib.)

0.
66

0
0.

67
5

0.
69

0
0.

70
5

Ωde

−1
.4

−1
.2

−1
.0

−0
.8

w

−1
.4

−1
.2

−1
.0

−0
.8

w

IST WL (optimistic)
IST GCs (optimistic)
Void size function (fixed calib.)

0.
28

0.
32

0.
36

Ωm

0.
78

0.
84

0.
90

0.
96

σ
8

0.
78

0.
84

0.
90

0.
96

σ8

Figure 4.6: Comparison between the 1σ (68%) and 2σ (95%) confidence levels computed in this work
with the void size function and different Euclid forecasts. Left: cosmological constraints on the Ωde–w
plane computed in this work (in blue) considering a wCDM scenario with fixed calibration parameters
and in [144] (in magenta), modeling the void-galaxy cross-correlation function in redshift space, with a
model-calibrated approach. Right: cosmological constraints on the Ωm–σ8 plane computed in this work
considering a w0waCDM scenario (in blue) with fixed calibration parameters and the marginalized IST
Fisher forecasts computed in the optimistic setting with spectroscopic galaxy clustering (in purple) and
weak lensing (in orange). Figure from [162].

the code CosmicFish [313]. We recall that the amplitude of density fluctuations at z = 0, σ8, is
computed as a derived parameter in our analysis and its variation is given by the modifications
caused by the free cosmological parameters of the model to the total matter power spectrum.
We also stress the fact that a larger set of cosmological parameters is used in IST forecasts.
This includes in particular the baryon matter energy density, Ωb, the dimensionless Hubble
parameter, h, and the spectral index of the primordial density power spectrum, ns. The impact
on forecasts when including these parameters in the model will be tested in future work.

We show the presented comparisons in Fig. 4.6, representing in blue the forecasts obtained
in this work considering the void size function model with fixed calibrated parameters. In
the left panel we compare our results with the Ωde–w confidence contour computed with the
model-calibrated forecasts presented [144] (in magenta). In the right panel we show instead
the comparison of Ωm–σ8 confidence contour provided by IST forecasts considering the op-
timistic setting for weak lensing (in orange) and galaxy clustering (in purple). We show in
Fig. 4.7 an analogous comparison considering the cosmological forecasts presented above but
with less optimistic settings for the analyses. Also in this more pessimistic scenario, the con-
fidence contours marginalized on the analyzed parameter space are comparable and partially
complementary.

In both panels we can appreciate the comparable extension of the presented contours and
in the latter we can notice in particular the strong complementarity of the void size function
forecasts with those of the Euclid standard probes. Although a more accurate analysis would
require proper accounting of covariance between analyzed cosmological constraints, Fig. 4.6
shows how the presented probes explore the parameter space differently and motivates investi-
gation on combination to be performed in future works.
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Figure 4.7: Same as Fig. 4.6 but for different forecast settings. In this case the confidence contours
obtained in this work from the void size function model (light-blue contours with dashed lines) are com-
puted relaxing the constraints given by calibration parameters. The Euclid forecasts derived with void
cross-correlation are computed with a model-independent approach, while IST forecasts are computed
with the pessimistic setting described [279]. Figure from [162].

4.5 Conclusions and discussion
In this work we presented state-of-the-art forecasts for cosmological constraints from the void
size function to be expected from the Euclid mission. We measured the void number counts
from the Flagship mock galaxy spectroscopic catalog in redshift bins and matched the mea-
surements with the theoretical definition given by the Vdn model [96, 98]. We employed an
extension of the Vdn model that conservatively accounts for the effects of the galaxy large-
scale bias, beff , on the void effective radii. With this method, we parameterized the Vdn model’s
characteristic threshold δL

v , also verifying the calibration of the function F (beff). The param-
eterization method further allows us to account for the modifications on the void sizes caused
by the volume change of cosmic voids in redshift space and to model and mitigate criticalities
of the Vdn model.

We show that this extension of the Vdn model calibrated on Flagship data is effective in
predicting the measured void number counts both in real and redshift space. Indeed, we obtain
a remarkable agreement between the measured and predicted void size functions, for all the
redshift bins and all the spatial scales considered in our analysis. We also perform an MCMC
analysis, estimating the constraints from void number counts on two main cosmological mod-
els: assuming in one case a scenario characterized by a constant equation of state parameter
(wCDM) and in the other case a scenario with a dynamical dark energy component described
by the CPL parameterization (w0waCDM). For each scenario we presented the Euclid cosmo-
logical forecasts considering both approaches: by fixing the extended Vdn model parameters
and by relaxing their boundaries to those provided by the calibration with Flagship mock cat-
alogs. The former represents the ideal situation in which the simulations used to calibrate the
void size function model allow us to have no uncertainties nor systematic errors on the calibra-
tion parameters; or alternatively, the case in which the value of the tracer bias inside voids is
fully determined thanks to theoretical modeling.

In the wCDM scenario we forecasted relative percentage errors on the constant dark energy



4.5. CONCLUSIONS AND DISCUSSION 137

component, w, below the 10% for each analyzed case. In the w0waCDM scenario, with the
optimistic approach of fixing the model calibration parameters, we computed a FoMw0,wa equal
to 4.9 or 17, in the case of leaving Ωm or Mν, respectively, as additional free cosmological
parameters of the model. The marginalized constraints on the derived parameter σ8 are lower
than 5% in every analyzed case, while the relative errors on Ωm are of the order of 2% in the
wCDM scenario and of 3% in the w0waCDM scenario. The 1σ upper limit on Mν is instead of
0.03 eV in the most optimistic case of the wCDM scenario and of 0.08 eV in the w0waCDM
scenario. We recall that, in the cosmological models with free neutrino mass, the total matter
energy density is fixed to the Flagship simulation true value, therefore the degeneracy of Ων
with Ωm is not considered in the results.

Our analysis showcases the constraining power of the void size function from the Euclid
survey, strongly complementing the Euclid primary probes. This complementarity will make
the combination powerful, in particular for weak lensing and galaxy clustering, additionally
enhancing robustness to systematic effects in both cases.

In this work we considered extremely conservative assumptions when analyzing the void
sample. Such conservative assumptions dramatically reduce the statistical power of our void
catalogs, to ensure strong reliability: in the future, modeling improvements will allow a more
efficient void selection, critically enhancing results while maintaining full robustness.

To enhance the constraining power of the void size function, both the theoretical model
and the void identification procedure can be improved. On the theoretical side, in Sect. 2.5 we
extensively discussed the criticalities of the Vdn [96] model, presenting improvements to the
void size function in the excursion-set framework, concerning both the filtering function of the
multiplicity function and the Lagrangian to Eulerian map. Moreover, to recover the void size
function for voids in galaxy distribution, we can explore a fully theoretical approach. We can
follow the same methodology described in Sect. 3.3.2, modeling the halo mass function within
voids. In addition, as shown in Sect. 2.5, the excursion-set mechanism provides a framework
to fully theoretically study the halo bias in voids from first principles. This can be done con-
sidering the void density profile of threshold voids in Lagrangian space, and the Lagrangian
void-halo cross-correlation. In addition to this, studies of the Lagrangian to Eulerian map for
the void profile and the void-halo correlation function can be exploited to theoretically describe
the effect of redshift-space distortion of voids.

Beyond the improvements on the theoretical side, the void identification procedure has to
be optimized to maximize the modelization provided by the theoretical model. In this work, we
identified watershed voids that were then post-processed in order to obtain a catalog of thresh-
old voids. In this procedure, systematics affecting the resulting void catalog may be present,
such as in the dependence on the watershed void center. A void finder designed to directly
detect threshold voids would be an improvement. It would also be interesting to reabsorb the
Alcock-Paczyński effects either in the final void catalog or in the theoretical model.

Such kinds of improvements in both the theoretical and in the void identification proce-
dure will allow to relax the conservative choices we did in this work. Among the conservative
choices in modeling the void size function and in building the likelihood, we recall the treat-
ment of both the threshold value and of the minimum void radius accepted for the analysis.
We strictly restricted the range of considered radii to avoid modeling poorly sampled voids of
the Flagship galaxy catalog, in order to prevent the inclusion of spatial scales affected by a
loss of void counts. Different techniques will be tested in the future to better model the scales
affected by numerical incompleteness [see e.g. 281] and include them in the analysis, safely
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obtaining access to much larger statistics. A better modeling of these effects will lead to further
improvements in the constraining power of the void size function.

Further future prospects to expand this work include exploiting void number count fore-
casts to predict constraints from other void applications (such as the stacked void-galaxy cross-
correlation function, see [144], void lensing, the void-void correlation function, see [164]), and
subsequently combine joint constraints from voids with other Euclid probes (primary and not,
e.g. galaxy clustering, galaxy weak lensing, cluster counts and clustering, BAO, supernova
distance measurements, etc.).

Other areas to explore include considering other cosmological parameters for the likelihood
modeling, a more realistic treatment of observational effects (a more complex survey mask, a
more realistic σz and further survey-related systematic effects).

This work – with a first analysis on a full mock, the Euclid Flagship simulation – shows
the constraining capability of void number counts to tackle the properties of dark energy and
neutrinos, demonstrating for the first time the feasibility of the technique with an end-to-end
data-like application, and setting the ground for a robust use of the void size function for cos-
mology with Euclid.



Conclusions

In this thesis I presented the original work that I conducted during my Ph.D. on cosmic voids
in the large-scale structure of the Universe as a cosmological probe. This field has become
active in the last few years, thanks to the upcoming spectroscopic galaxy surveys that provide
the possibility to use cosmic voids as an effective and competitive new probe for cosmology.
Cosmological experiments are reaching the percent and sub-percent level accuracy in the es-
timation of cosmological parameters; this makes even more relevant the exploration of new
cosmological probes, complementary to the classical ones, possibly producing tighter con-
straints when combined in data analysis. In the rather large field of cosmic void applications in
cosmology, I focused on the statistics and clustering properties of voids detected in the three-
dimensional matter and galaxy/halo distribution. On the theoretical side, I worked on modeling
from first principles the cosmic void abundance, correlations, and cross-correlations within the
excursion-set framework; I then explored and characterized their statistical properties using
large cosmological simulations, evaluating their sensitivity to the dark energy equation of state
and to the total neutrino mass; I then investigated the constraining power from the void abun-
dance applied to the upcoming Euclid spectroscopic data.

Within the theoretical modeling of the statistical properties of voids in the excursion-set for-
malism, presented in Chapter 2, I reached relevant and original conclusions and results. First
of all, I considered void formation in the excursion-set framework, showing that even if the
halo case shows some similarities, a strict parallelism does not allow us to properly describe
the formation of voids. In particular, I showed that the shell crossing condition is not relevant
to define the void formation event; moreover, I showed that, contrary to the halo case, the map
between the evolved density contrast field of voids in the Eulerian space and the correspond-
ing one in the Lagrangian space (almost) always exists. I then discussed the importance of
the filtering function in the Langevin equations to the end of physical describing the statistical
properties of the initial density field forming proto-halos and proto-voids, and their connection
to the fully evolved void and halo distributions. I then provided numerical methods for solving
the Langevin equations used to describe void and halo statistics, discussing the advantages and
disadvantages of each of the methodologies presented. In particular, for the first time in the lit-
erature, I presented how to use the Cholesky decomposition to numerically solve the spatially
correlated Langevin equations. Then a broad class of unprecedented results were presented. I
showed that the popular Vdn model for the void size function in Eulerian space is non-optimal
due to two unphysical assumptions; the first is the filtering kernel adopted, the other concerns
the Lagrangian to Eulerian map. I then presented the void size function model using a proper
filtering function and assuming spherical symmetry in the Lagrangian to Eulerian map, dis-
cussing its range of validity. Subsequently, I explored the two-point correlation functions for
the halo-halo, void-void, and void-halo. I showed that the excursion-set formalism is powerful
also in the two-point statistics of halo, presenting a toy model in the Lagrangian space and
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implementing a linear approximation to consider its Eulerian map. Although the simplifica-
tions, the model shows good agreement with simulations. I then considered the Lagrangian
void-void and void-halo correlation functions. The latter one is particularly interesting, since
it provides a way to model the halo distribution within cosmic voids, which is crucial to the-
oretically describe void statistics in the galaxy distribution. I concluded by presenting how
the Langevin equations allow the modeling of the void density profile in Lagrangian space,
the corresponding expectation values, and the distribution around it. I discussed the physical
meaning of this result and the importance of its application together with the void-halo correla-
tion function; I then considered the corresponding Eulerian map assuming spherical symmetry.
In future works, I plan to explore the Lagrangian to Eulerian map for voids, both from a the-
oretical point of view and using cosmological simulations. In addition, a suitable void finding
algorithm fitted to the excursion-set voids has to be considered and tested.

In the second work presented in this thesis, Chapter 3, I analyzed DEMNUni simulations,
a set of large cosmological simulations, to explore some void properties and their sensitivity to
the dark energy equation of state and to the total neutrino mass. Accurate cosmological sim-
ulations are crucial at the beginning of precision cosmology. In this context, one of the most
promising ways to describe cosmological physics relies on the interplay between analytical
models and simulations. In approaching this study, I followed this strategy, considering the
void size function and the stacked void density profile. On the void abundance side, I discussed
its dependence on the adopted void finder, the impact of various tracers, and the physical mean-
ing of voids detected in halo and dark matter distribution. Then I considered the sensitivity to
dark energy and massive neutrinos. I showed for the first time in the literature that geometric
effects in the observed tracer distribution greatly contribute to enhance the void size function
sensitivity to the dark energy equation of state. Contrary to halos, voids are extended objects,
so even if the intrinsic effect of dark energy on the void size function is not large, geometrical
distortions and volume effects modify the observed void shapes, volumes and number density
when a wrong cosmological model is used to transform galaxy redshifts into comovig posi-
tions. All these geometrical effects greatly impact the observed void size function. Then I
concluded by presenting a way to connect the observed void abundance to the one predicted in
the excursion-set framework. I then explored the void density profile, distinguishing between
the differential and the integrated one. I discussed their physical meaning and their dependence
on the void center definition. Then I investigated various ways to estimate the void density
profile in the tracer distribution. Subsequently, I presented a theoretical model that describes
the halo bias along the stacked void density profile. This modelization is probably the most
important result of this chapter: it provides a physical explanation to the empirical ways used
in the literature to model halo bias in voids; it provides a full and accurate theoretical model
to predict the void density profile depending on the halos properties; it explores the halo distri-
bution within and around voids, showing that the global halo mass function is not an accurate
description of the halo distribution in voids, and suggesting that halo collapse is more spherical
within voids with respect to the rest of the Universe. In future work, I will explore the modeling
of halo bias within voids, looking for a direct relationship between the p and q parameters of
the Sheth-Tormen model and the measured properties of halos, such as halo ellipticity. More-
over, I will explore the accuracy of this model used to extract the stacked dark matter density
profile from the one measured in halo distribution. Beyond the void size function and the void
density profile, various other statistical void properties can be explored to evaluate their possi-
ble exploitation as a cosmological probe. In particular, the radial velocity profile, the velocity
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dispersion along the void profile, and the ellipticity profile are promising targets to be studied
in detail.

The last work presented in this thesis concerns the work I co-led in Euclid, which concerns
the cosmological exploitation of voids in the upcoming Euclid galaxy survey, Chapter 4. This
work explores how the excursion-set model of the void size function can be used to constrain
cosmological parameters. The modeling relies on the Vdn model together with an empirical
formula, which is used to fit the abundance of voids detected in the redshift-space galaxy dis-
tribution. For the first time in the literature, I presented the forecast of the constraining power
of the void size function modeled in this way, focusing in particular on the dark energy equa-
tion of state, the matter density, and the total neutrino mass. One of the most important results
concerns the comparison of the posterior distribution in the parameter space obtained in this
analysis with the forecasts of galaxy clustering, weak lensing, and redshift-space distortions
plus Alcock-Paczyński effect around voids. A high level of orthogonality is present for some
of the explored parameters, showing that the combination of classical cosmological probes to-
gether with cosmic void analysis, and possibly with other emerging cosmological probes, may
greatly tighten the constraints. This work is the first one that uses the theoretical void size
function model for parameter estimation, many further developments are possible. First of all,
a fully theoretical model for the void abundance in the redshift-space galaxy distribution can
be tested, considering the results presented in Chapter 2 and Chapter 3. Second, this analysis
was conducted in a very conservative way, greatly reducing the available statistics. Better mod-
elization would entail better exploitation of the available statistics. As a last point, it would be
interesting to consider joint analysis among other void probes, such as redshift-space distortion
measurements and Alcock-Paczyński around voids, and with other galaxy clustering and weak
lensing probes.

Cosmic voids are a promising probe for cosmology, and a large amount of data will be
available soon. To fully exploit their power in probing cosmology, many research activities
must be carried out, involving theoretical studies in interplay with cosmological simulations,
to better understand their features and systematics to the end of accurate cosmological analysis,
possibly extending our understanding of the physics acting in the Universe.
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