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A B S T R A C T

Geothermal energy has the potential to contribute significantly to the CO2 reduction targets as a renewable
source for building heating and cooling but is yet under exploited, mostly due to its high initial investment
cost. A lot of research is being carried out to optimise Ground Source Heat Pump (GSHP) systems’ design, but
a good control strategy is also fundamental to achieve long-term performance and reduced payback time.

GSHP control optimisation is a non-linear dynamic optimisation problem that is influenced by multiple
parameters. It can thus not be fully optimised with traditional methods. Artificial Intelligence, and in particular
Machine Learning, is suited for this type of optimisation as it can learn implicit relations between parameters
and can address non-linearity.

This paper reviews the challenges of GSHP control and the strategies for control optimisation found in
the literature, from basic rule-based system to artificial neural network-based strategies. Two principal uses of
Artificial Intelligence for ground source heat pump control are identified: building a predictive model of the
system that reflects its real performances and optimising the control decision in real time.

However, the examples found in the literature are limited and the need to further explore the benefits of
Machine Learning is identified. The latest developments in the field are reviewed to explore their potential to
further improve GSHP control. The challenges of the full implementation of such algorithms are also discussed.
. Introduction

In Europe, all new buildings are required to be Nearly Zero Energy
uildings (nZEB) since 2020, roadmaps are implemented to convert
xisting buildings to nZEBs [1], and the trend is towards positive energy
uildings [2]. nZEB, having high energy performance and sourcing the
ittle energy they require mostly from renewable energies, are necessary
o achieve the 2050 CO2 reduction targets.

Geothermal energy is a key source of renewable energy for nZEBs,
ut is still largely underexploited [3]. Ground Source Heat Pumps
GSHP) have been installed in commercial and residential buildings
ecause they present an energy efficient alternative to other Heating
entilation and Air Conditioning (HVAC) systems [4], but the rate of
ew installations is below the desired targets [3]. One of the barriers for
wider implementation of GSHPs is that, although it is economically

iable on the long term and environmentally more interesting than
ther alternatives, it requires a high initial investment due mostly to
rilling costs [5].

∗ Corresponding author.
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Optimal design of GSHPs to obtain good economic and environmen-
tal performances has been studied extensively in the literature [6]. A
less studied aspect is to optimise the control of GSHPs, thus reducing
operating costs by optimising the operation time of the heat pump
and taking full advantage of the building thermal inertia. Indeed,
studies indicate that unsuitable control is one of the reasons GSHPs are
underperforming [7]. Without proper control, there is a risk of GSHP
never providing payback, as shown in [8], where the original Building
Management System (BMS) resulted in the gas boiler being used as a
primary heat source, never triggering the GSHP.

One category of algorithm of special interest are control strategies
based on Artificial Intelligence (AI). Indeed, AI enables to learn optimal
operation considering a vast number of parameters without studying
all the possible cases. AI implementation for HVAC systems has been
studied for the past two decades [9] and control was one of the
applications of AI for GSHP identified by Zhou et al. [10]. To date only
a few of the many AI techniques available have been implemented for
GSHP.
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The aim of this paper is to identify the potential of the latest
developments in the field of AI to improve GSHP operation. The specific
challenges linked with GSHPs are highlighted, setting the requirements
for GSHP control algorithms. The different approaches found in the lit-
erature to provide optimal control for GSHPs, with a special interest for
the ones based on AI, are reviewed and classified, and their advantages
and limitations are discussed. The latest advances in AI and how they
have been used for HVAC or other building energy applications are
reviewed and their relevance for GSHP control is disused. Constrains
linked with their implementation on real buildings are also discussed.

The paper is structured as follows: Section 2 describes GSHP
control’s challenges. Section 3 reviews the different control algo-
rithms found in the literature. Section 4 reviews the potential of fur-
ther AI algorithms for GSHP operation. Section 5 discusses the chal-
lenges liked with the application of AI for GSHP controls and make
recommendations regarding further research.

2. The challenges of GSHP control

A GSHP system can provide heating, cooling and domestic hot water
with a single system and is more efficient than other alternatives [11].
A standalone GSHP system is composed of a Ground Heat Exchanger
(GHE), a Heat Pump (HP), and a distribution system. There are differ-
ent options for each of these elements (e.g. single vs. variable speed
HP, single-U vs. double-U GHE, fan coil or radiant terminal units for
distribution), resulting in a great variety of possible systems.

The HP is responsible for circulating the fluid in the ground and the
distribution loops, and for transferring heat from the warmest side to
the coldest. It is the main controllable element in a standalone GSHP
system, together with the indoor temperature set-point. The Coefficient
Of Performance (COP), representing the ratio of useful heating to the
work provided, is used to characterise the HP’s performance. For opti-
mal operation, the number of times the HP is turned on and off needs
to be limited to avoid accelerating the deterioration of the HP [12].

GSHP systems can be coupled with additional sources for heating
(e.g. solar thermal collectors), for cooling (e.g. cooling towers-CT) or
for both (e.g. air to water HP). Such systems are called Hybrid GSHP
(HGSHP). They can enable to reduce the GHE size by reducing the peak
load. HGSHPs are also useful to balance heating and cooling load to
prevent long-term changes to the temperature of the ground [13,14].
HGSHPs have been demonstrated to reduce payback time [15,16].
Other elements such as thermal or electrical storage, or electrical gen-
eration systems (e.g. photovoltaic (PV) panel), can further improve the
system. The optimisation of a standalone system is relatively straight-
forward, but with increased complexity of the system, the need for an
optimised control strategy also increases. This is particularly true for
HGSHP, where the load is shared between various elements.

The optimisation of a GSHP can be performed at the component
level (local control), or at the system level (supervisory control), where
the interaction between the elements is taken into consideration. A lot
of work has been done at the component level [9,17] and in this paper,
optimal functioning of the components will be assumed. The focus will
be at the system level.

Because sizing is normally realised for the peak load, there is a
need for control strategies that can deliver partial loads to achieve
energy efficiency and comfort for the occupants. Operating costs is
a third objective that need to be taken into account for the system’s
control optimisation. Finding the best equilibrium between those three
objectives requires multi-parameter optimisation. In addition, control
optimisation of complex GSHP systems is a non-linear and dynamic
optimisation problem which tends to be more complex compared to
more traditional HVAC systems.

Another element that needs to be taken into consideration is the
long-term effect of the GSHP system on the ground. The heat injected
and extracted should be adequately balanced to avoid ground thermal
2

drift. According to Atam and Helsen, a lot of studies assume that the
maximum capacity is provided by the geothermal component without
considering the long-term performance [18]. To avoid exhausting the
heat, two traditional hardware measures are usually considered: adding
auxiliary heating or cooling systems, or over-sizing the system, which
both increase operation costs. Alternatively a control system that op-
timise the use of the heat stored in the ground can reduce costs by
reducing the length of borehole [19]. For commercial applications,
where many boreholes are necessary to cover the demand, the inter-
action between the boreholes must also be considered [20]. Presence
of ground water flow can further complicate the account of ground
thermal behaviour [21].

The typologies of GSHP can vary greatly and the optimal control
strategy will not always be the same, as it relies on the combination
of several factors and variables. In addition, external factors such as
weather and user preferences further influence the operation of the
GSHP. Optimal GSHP control, thus, requires advanced and adaptable
control algorithms.

3. State of the art of GSHPs control optimisation

This section reviews the research on GSHP control found in the
literature. It first reviews traditional control strategies before looking
at more complex optimisation techniques, identifying their strengths
and limitations. A classification is proposed, and AI-based research is
examined more in detail.

3.1. GSHP traditional control

The traditional way to control a GSHP is to turn the compressor of
the HP on and off based on a temperature set-point, typically the return
temperature of the distribution loop or the water tank temperature if
there is one. A dead-band is defined around this set-point to prevent the
HP from constantly turning on and off, and is coupled with an operation
schedule. This type of control can be classified as a rule-based control.
Rule-based control systems, also called Expert Rule Systems (ERS) [22],
consist of a set of expert rules that trigger different actuations based
on the system’s state. They emulate the decision-making process of a
human expert based on a set of if-else instructions. For HGSHP, these
rules would orchestrate which heating or cooling source needs to be
used under which conditions. Based on the approaches found in the
literature, there are various possibilities to improve ERSs’ efficiency:
(1) Optimise the set-points, (2) Optimise schedules, (3) Optimise the
parameter used for control, (4) Make more complex rules, (5) Adapt
the architecture of the system.

The first strategy to improve ERS is to optimise the temperature
set-point. For example, Corberan et al. studied the influence of the
distribution loop parameters (set-point and bandwidth of room air
temperature and distribution loop return water temperature) on the
performance of the HP [23].

The second strategy is to improve the control schedule. This is
especially relevant for HGSHPs where the auxiliary system is used to
reload the ground. On an HGSHP with two CTs, Yang et al. studied the
influence of different operating schedules on soil temperature, energy
consumption, and operating costs. The strategies helped balance the
heating and cooling load and reduced payback time [24]. Dai et al.
carried a similar study for a solar-assisted GSHP comparing the influ-
ence of 6 different operation modes on the soil temperature recovery
rate [25]. However, when compared to other strategies, Yavuzturk and
Spitler found that fixed schedules performance is limited as it does not
take advantage of weather conditions [15].

The third strategy to improve ERS is to identify the best control
parameters. This strategy is especially relevant for HGSHPs where a
high number of parameters is involved. Several studies have looked at
the best control strategy for HGSHPs with CTs. When compared to other

traditional rule-based control, Yavuzturk and Spitler [15], Sagia [26],
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Wan et al. [27] all found that strategies based on the wet-bulb temper-
ature perform better as they best take advantage of weather conditions.
Similarly, Gong et al. found fixed temperature difference between the
cooling water leaving the HP and the ambient air dry-bulb temperature
to provide the best COP and heat balance of the ground compared to
more traditional control methods [28]. These four papers considered a
fixed threshold for the control parameter.

Finally, control rules can be made more complex to improve sys-
tem operation. Madani et al. compared floating hysteresis control,
where the dead-band around the set-point is wider after a change
of state of the system and gets smaller overtime, and the degree-
minute strategy which considers the difference between the actual
supply temperature and the required supply temperature over time,
to the traditional set-point and dead-band strategy on a GSHP with
an auxiliary heating system. The degree-minute method gives better
results in terms of energy, as it better considers the dynamic of the
building, when the floating hysteresis enables to stay closer to the
desired temperature [29]. Emmi et al. proposed a decision tree between
different operating mode for a solar-assisted GSHP based on the storage
water tank temperature [30]. Different rules can also be combined to
obtain better system performance. Based on a study of three buildings
in different climates, Hackel and Pertzborn recommended rule based
strategies to improve the operation of HGSHPs including (1) using pre-
cooling in hot climate to cool the ground at night, (2) using HP bypass
for small load management, (3) optimising set-points, and (4) including
a warm up sequence [13]. Fan et al. found that combining traditional
control strategies improved performance. However, the combinations
that resulted in the lowest energy use and the one that best limited the
heating of the ground over time were not the same [31].

To choose the best control strategy, Park et al. proposed a response
surface method, a statistical regression method, to optimise the relation
between GHE length and three rule-based control strategies: set-point
control, differential temperature control and cool storage schedule
control. The chosen design resulted in a slightly higher initial cost, but
reduced energy consumption and net present value [32].

System improvement can also be considered at the design stage
including elements with more control flexibility. To improve efficiency
at partial loads, variable speed HPs can be used to perform variable
capacity control. However, other aspects of the system should be
considered: motor efficiency of the inverter and the compressor, and
control of the pump [33], percentage of the peak load covered by the
GSHP [34], trade-off between HP and system efficiency [35]. Multi-
stage HP with more than one compressor and set-points to control when
to switch them on can also be used to satisfy different building loads.
At the system architecture level, there is also the possibility to have
parallel or serial operation in HGSHPs. Cui et al. found fixed load ratio
worked better for parallel operation while fixed entering temperature
worked better for serial operation [36].

ERSs are commonly used in GSHP and HGSHP systems because they
are easy to implement and to transfer between similar buildings, and
they can be linked with design optimisation. However, the optimisation
of the operation is likely to be minimal, as only a limited number of
scenarios would be considered. In addition, as ERSs lack flexibility, the
schedules and set-points tend to be conservative on the comfort side,
leading to suboptimal operation. ERSs are also unlikely to adapt to
long-term effect on the ground, leading to performance loss overtime.
When systems become complex the ease of transfer and implementa-
tion might get lost. Finally, it is worth noting that rule-based control
presented so far only works on the current state of the system.

3.2. Optimisation of GSHP control

Because of the limitations of ERS mentioned above, methods to
improve GSHP controls have been investigated. This section proposes
a classification of the different methods found in the literature and
reviews traditional control optimisation methods.
3

Fig. 1. Classification of GSHP control optimisation methods in the literature. Element
linked with AI are in bold.

Supervisory control algorithms for GSHP are traditionally classified
in three categories: model-based, model-free, and data-driven [6,18].
Model-based approaches use explicit knowledge to model the behaviour
of the system. The model is then used to inform control decisions.
Model-based methods give good results as they enable to generalise the
behaviours of the system but can be expensive to implement.

In the data-driven approaches, the behaviour of the system is em-
pirically modelled from performance data. Most of the data-driven
approaches found in the literature are based on AI, although statistical
analysis could also be used. Data-driven methods enable to account for
the real behaviours of the system but obtaining good quality data is
not straightforward and the model can only account for the behaviours
observed in the training dataset.

Finally, the model-free approach consists in a control algorithm that
is not based on a model. Although they tend to be classified separately,
it can be argued that the rule-based systems are a subgroup of model-
free approaches. Model-free algorithms have the advantage to be easier
to implement but deliver lower system performance [18].

The classification presented above focuses on whether there is a
model to predict the behaviour of the system and how this model
is obtained (explicit knowledge vs. data). However, the strategy then
used for decision-making also needs to be considered, as most control
optimisation methods could be applied using either a data-driven or a
physical model. Another distinction that need to be made is whether
the optimisation is done once (e.g. during the design or commissioning
phase) or if it is done continuously during operation. A classifica-
tion considering both the type of predictive model and of control
optimisation is proposed in Fig. 1.

Optimisations that are done once are done off-line, and are a direct
evolution of rule-based systems. Fuzzy logic is a model-free approach
that results in a qualitative expression of expert rules and improve on
ERSs as it can handle uncertainty in the transition zones. An example
of fuzzy logic applied to a GSHP and an HGSHP with a photovoltaic
thermal (PVT) panel can be found in [37].

Another off-line approach is to optimise the relation between con-
trol parameters and relevant operating measurements. The resulting
functions can then be implemented in a controller and be used in
combination with traditional set-point controls. Del Col et al. used
simulations, manufacturer information and experimental data to create
lookup tables that maximise the COP of a GSHP system with variable
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speed pumps for different water supply temperatures [38]. De Ridder
et al. used dynamic programming to obtain an array that determines the
optimal flow from the GHE based on the field temperature, the demand,
and the date to avoid the exhaustion of the ground heating/cooling
capacity in an HGSHP [19]. Montagud et al. developed an in-situ
optimisation methodology based on experimental measurements to op-
timise the circulation pump frequency for on/off operation as a function
of the load [39]. The study was then extended to multi-stage circulation
pumps [40] and to address some comfort limitations [41,42].

Off-line optimisations enable more complex strategies than ERS.
They are still relatively easy to implement, as the results can be com-
patible with existing controllers. Another advantage is that they can be
carried directly on design models. However, they still lack adaptability
to the evolution of the performance of the system, and the parameters
considered tend to still be limited.

To be able to take into account the real operating conditions of
the system and the long-term changes in the boundary conditions, the
optimisation can be done on-line and be embedded in the continuous
operation of the GSHP.

A first approach is to use physical equations to include the thermal
behaviour of the building as a metric in the decision process. These
controls are still based on rules, but instead of making decision only
on directly measured data, indicators about the thermal load are also
considered [14,43]. Yang and Wang proposed a rule-based control to
chose between operating modes of an HGSHP with a solar thermal
collector using thermal balance equations to calculate the building
load [14]. Hu et al. used the building load ratio for on/off control of a
system with two HPs. Additionally, off-line optimisation is done on the
HP flow rate using a global search method [43].

Another approach is to continuously optimise the set-points of the
system. This can be done using linear programming, which consists
in obtaining the best solution from a set of linear relations. Here a
set of physical equations are used to calculate the best value for key
control elements based on current measurements. Gao et al. optimised
the set-point and the dead-band of the water return temperature in
relation to the total energy consumption of the system for an Air
Handling Unit (AHU) with GSHP as chilled water provider considering
a maximum number of start-up of the GSHP per hour [12]. Edwards and
Finn used design data and the compressor’s on/off signal to optimise
the water flow rate of the circulation pumps of a GSHP system at
partial loads to maximise the system’s performance [44]. de Paly et al.
used linear programming, to optimise which GHE should fulfil the
demand in a field of 25 boreholes and the long-term performance of
the GSHP system [20,21]. Xia et al. combined linear programming
with computational optimisation. A near-optimal performance map of
the HPs was first generated to limit the search space. Then exhaustive
search was used on a limited interval around the near optimal value.
The different options were passed to a physical model. The feasibility
of the settings was checked against measured values, and the solution
that minimised the energy consumption was chosen [45,46].

Finally, Hu et al. proposed to optimise the control of a GSHP
with a CT by using extremum seeking control. This method uses a
mathematical model, instead of a model of the system’s physics, where
an objective function is minimised based on the control parameters.
They used dither-demodularisation, a signal processing technique, to
link inputs and outputs, which are the CT fan relative airflow rate and
pump waterflow rate, and the power consumption respectively [47,48].

Those methods enable to improve the efficiency of the system com-
pared to ERS, but are still reactive systems, meaning they use the current
state of the system. However, because of thermal inertia of the building
and intermittent production of renewable energy, further optimisation
can be achieved by anticipating future states of the environment. This
is commonly referred to as predictive control.

The most studied predictive controls are Model Predictive Controls
(MPC). MPCs use mathematical models based on the physics of the
4

system to predict its future states based on the boundary conditions. A
control vector that minimises a cost function is generated over the time
horizon considered. The first element of the control vector is applied
to the system controls and the optimisation is carried out again for the
next time step [49].

MPCs require a model based on a set of equations that can be
optimised. These models need to be low order to make computation
possible [50], which is non-trivial because the COP of the GSHP in-
troduces non-linearity. Methods have been investigated to reduce the
order of GSHP’s models [51,52].

Several MPC approaches have been demonstrated on GSHP systems.
Bianchi et al. demonstrated an MPC with pulse-width modulation on a
laboratory test bed considering weather predictions and energy tariffs
to optimise the load distribution during the day [53]. Antonov et al.
compared short- and long-term optimisation for the MCP control of
an HGSHP system [54] and proposed a method to address uncertain-
ties [55]. Weeratunge et al. used an MPC with mixed integer linear
programming to optimise the operation cost of a solar-assisted GSHP
with thermal storage under dynamic pricing [56]. Atam et al. found
non-linear MPC and a linear optimal control performed well [57].

MPCs give good results in terms of performances as the method can
optimise multiple parameters of the system. However, they are costly
to develop as they require adapted models. Therefore, the cost savings
need to be significant enough to justify the implementation of an MPC.

3.3. Artificial intelligence application for GSHP control

The different approaches reviewed so far optimise GSHP control
based on a trade-off between system performance and complexity of
implementation. Due to the complexity of GSHP systems, there is a
need for autonomous and adaptable intelligent controllers. The field of
artificial intelligence has the potential to contribute to this goal. This
section looks at the use of AI for GSHP control in the literature.

Zhou et al. reviewed the application of AI for GSHP and identi-
fied the following uses: building load forecasting, design data acqui-
sition (soil thermal properties and ground temperature distribution),
heat transfer property and design of GHE systems. When focusing on
AI for GSHP control, this paper identifies three applications, which
are reviewed in this section: (1) parameter optimisation; (2) system
modelling; (3) control optimisation.

3.3.1. Control parameter optimisation at design stage
When investigating GSHP, a lot of work is traditionally done to find

the best system design and AI has been used to optimise this process.
There is also the possibility to consider the control parameters at this
stage. Optimising control parameters can lead to reducing the length of
GHE installed and thus the initial costs.

When considering many parameters, the computational cost of ex-
ploring the solutions systematically is prohibitive. A combinatorial
optimisation can be performed using a metaheuristic optimisation al-
gorithm [58] to explore the solution space faster, although a global
optimal solution would not be guaranteed. Genetic and evolutionary
algorithms are examples of metaheuristic algorithms suited for com-
binatorial optimisation. Genetic Algorithms (GA) are stochastic search
algorithms inspired by population genetic selection [59]. They use
crossover between the best individuals and random mutations to obtain
better solutions until a stop condition is met (Fig. 2).

Zeng et al. used a multi-population GA to find the optimal solution
for a hybrid combined cooling heating and power-GSHP system. The
off-line optimisation, realised at the design stage, determined, along
sizing parameters, the critical value for when to run the gas engine.
This can be implemented in a ERS once the system is installed [60].

AI-based optimisation algorithms, like GA, enable to consider more
parameters while performing design optimisation related to controls.
The limitation of this type of optimisation, like any off-line optimi-
sation, is their lack of adaptive capacity to the real operation of the

system.
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Fig. 2. Genetic algorithm principle.
The papers reviewed in the rest of this section address the operation
phase of the GSHP life cycle, but since most of the research is based on
simulated environments, in practice they could be devised at the design
stage to ensure a good adequacy between the system components, their
dimension and how they will be controlled.

3.3.2. Artificial intelligence for GSHP modelling
The predominant use of AI for GSHP control is to build data-driven

models for predictive control. The development of physical models
as described in 3.2, also called forward models, requires a detailed
understanding of the physics of all the elements of the system and their
interaction with each other. There is then a large number of parameters
to determine. It can be done either based on manufacturers’ data sheets,
which can be imprecise as test conditions differ from operating ones,
or with direct measurements, which increase the complexity of the
forward model development. One further limitation is that some aspect
cannot be predicted ahead accurately by forward models (e.g. solar
radiation) [61]. In addition, forward models are often developed for
design, which makes then too computationally intensive to use for
operation. According to [62], forward models are useful for research
or simple systems, but not practical for industrial exploitation.

By opposition, data-driven or inverse models are black-box em-
pirical models that are obtained based on measured data and reflect
the real behaviour of the system. The most used method for data-
driven models are Artificial Neural Networks (ANN), which have the
advantage of working well for non-linear models.

An ANN is composed of three different sections (Fig. 3): (1) the
input layer, in which the ANN is fed with data; (2) the hidden layer(s),
which contains 𝑁 layers of varying numbers of neurons; (3) the output
layer, consisting of a single layer with one or more neurons, produces
the results. Each neuron represents a weight in a set of parametric
equations meant to replicate the behaviour of a biological neuron. Non-
linear activation functions are used to account for non-linearity in the
observed data. The ANN is trained by using back-propagation based
on the difference with the labelled data to update the weights of each
neuron until they can satisfactorily predict the dataset.

Entchev et al. used ANNs to predict the indoor temperature at
different time horizons. The prediction was based on the outdoor
temperature, solar irradiance, and internal gains. This prediction was
then used in a rule-based predictive control and was compared to a
traditional on/off GSHP control. The benefit was clear for cost and
energy, but there were some limitations on the comfort aspect [63].

Gang and Wang used an ANN to predict the supply temperature of
the GHE and the CT of an HGSHP system. The two values can normally
not be measured simultaneously as only one system is operating at
any given time. An ERS was implemented based on the two predicted
5

temperatures [64]. The approach was improved to limit on/off cycles
of the HP. Over the four-year period simulated, the ANN predictive
control provided better energy efficiency than traditional controls,
although wet-bulb temperature difference control resulted in lower
increase of the soil temperature [65].

Salque et al. implemented a predictive control strategy based on
ANN models for weather prediction, borehole and radiant floor flow
prediction, and room temperature prediction for a single-speed GSHP.
When compared to conventional controls, the method resulted in in-
creased comfort and significant energy savings [66].

Afram et al. used an ANN to model the different components of
a residential GSHP system (Energy Recovery Ventilator, AHU, Buffer
Tank, Radiant Floor Heating, GSHP). A Particle Swarm Optimisation
(PSO) algorithm was then used to determine the set-points of the dif-
ferent elements that minimise operating cost with Time of Use energy
pricing [62]. PSO is a metaheuristic algorithm, where the space of
solutions is explored by assimilating the solutions to moving particles.

Because ANNs require large datasets to be adequately trained, al-
ternatives have been investigated for when limited data is available.
Esen et al. used an adaptive neuro-fuzzy inference system, hybridisation
between ANN and fuzzy logic, to predicts the performance of a GSHP
using only 38 inputs. The COP of the system was predicted based on
the air temperature entering and leaving the condenser and the ground
temperature [67,68]. The obtained model could be used for control
decisions. The authors also used statistical weighted pre-processing,
where the input values were transformed according to the training set
average and standard deviation, to improve ANN training on the same
case study [69].

Fang et al. used Gaussian Process Regression (GPR) to model power
consumption and indoor environment from an experimental dataset.
They were used to obtain control curves determining the optimal
ventilation rate and supply water temperature from the compressor to
optimise the predictive mean vote, the standard indicator for comfort,
and power consumption of the GSHP [70]. GPR is a non-parametric
Machine Learning (ML) method and was selected because it has been
shown to outperform ANN for small data samples to obtain meta-
models for design optimisation [71]. Fang et al. suggested the obtained
curve could be used in ERS or MPC.

Data-driven models can consider the real operating condition of the
GSHP system without the need to understand precisely every physical
phenomena, as they are learned implicitly. They are also able to con-
sider many parameters with non-linear relationship, leading to reduced
modelling errors. However, it is not possible to generalise the output
to conditions not observed in the training set and only measurable
parameters can be predicted. The quality of a data-driven model is
dictated by the quality and quantity of data available. A good model
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Fig. 3. Artificial Neural Network architecture: Multi-layer perceptron (MLP).
requires a dataset covering all the working conditions of the system.
According to [18], high frequency data is also important to capture the
dynamics of the system.

The most popular algorithm is the feedforward multi-layer percep-
tron (MLP) with one or two hidden layers, which is an ANN implemen-
tation. According to [72], ANNs outperform other black-box models,
although for a small dataset, [71] found that GPR outperform ANN. In
most cases, a different AI-based model is necessary for the heating and
the cooling season [62].

Data-driven models cannot consider the long-term effect on the
GHE, as it would be unlikely to have access to 20–30 years of data [18].
However, they can be adaptive, meaning the model can be re-calibrated
with recent data, thus adapt to changes in the system or the environ-
ment.

3.3.3. Artificial intelligence for control optimisation
As demonstrated in the previous section, AI can be used to make pre-

dictive models. AI can also intervene to optimise the control decision
for predictive control. When control actions need to be optimised on a
given time horizon based on future conditions, control optimisation can
be assimilated to a combinatorial problem and solved by metaheuristic
algorithms similarly to Section 3.3.1. Evaluation of the solution is made
using a predictive model of the system.

As a step further to model-based control optimisation, Xia et al. used
simplified adaptive models that were updated in real time with the
recursive least square method with exponential forgetting combined
together with a GA to find the optimal control solution for a hybrid
GSHP system with a PVT collector [73].

Ikeda et al. used an epsilon-constrained differential evolution (DE)
with random jumping to provide a 24h-ahead operating schedule for an
HGSHP, taking into account ground thermal history and optimal load
dispatch between the different sources of the system [74]. Like GA, DE
are evolutionary algorithm, but the new solutions are generated based
on vector differences.

Metaheuristic optimisation enables to consider large solution spaces
without systematic exploration, making real time optimisation possible.
In [73,74], the models used were forward models, but similar methods
could be applied using data-driven models like in [62].

Mokhtar et al. used an ARTMAP for control decisions within a
multi-agent system controlling a GSHP and a boiler [8]. ARTMAP is
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a supervised ANN belonging to the adaptive resonance theory fam-
ily [75]. Here, ARTMAP is used to group the measured data into
clusters that are then used to make control decisions. The authors do
not describe how the training data are obtained which does not permit
to assess how optimised the control decisions are.

In this section, the different approaches to tackle the optimisation
of a GSHP or HGSHP system’s control have been presented. The control
of the system is either optimised during the design phase or the opera-
tional phase. The former ensures that the design will produce a control
system capable of leveraging the different installed elements at optimal
performance. The latter ensures that the management of the devices
will reduce the energy consumption by considering current or future
external variables (e.g. energy demand, weather). Table 1 classifies the
papers reviewed in this section based on Fig. 1. Model-free methods
are mostly for off-line optimisation and until now the use of AI for
GSHP control has focused mainly on producing predictive models. The
use of AI for control optimisation is limited to date, although it was
demonstrated that metaheuristic algorithms can give good results.

4. Opportunities of Machine Learning (ML) for GSHP control

As demonstrated in the previous section, AI has potential to improve
GSHP control, but only a few among the vast array of techniques
have been tried to date. Traditional ERSs as presented in 3.1, which
are the first step of intelligent decision-making systems, require expert
knowledge and can become limited or suboptimal for complex systems.
Ruelens et al. demonstrated their limitation when using an ERS to
overrule the ML control of the thermostat of a HP [76]. ML is a
category of AI which enables to gain knowledge automatically through
the use of data. ML algorithms are a promising approach to overcome
limitations of ERS systems and they can also complement model-based
approach by their ability to consider non-modellable parameters such
as occupancy or weather. Those aspects are key to predict demand
and RES production, as well as optimising the relation between energy
efficiency and comfort.

In this section, different ML based approaches will be reviewed with
the aim to identify how they can benefit GSHP control. First transitional
ML algorithms are presented before moving to Deep Learning and Deep
Reinforcement Learning.
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Table 1
Classification of GSHP control research. MF: Model-free, MB: Model-based, DD: Data-driven. (*) indicate the use AI.

Predictive control Control optimisation Pros Cons Ref Year

MF MB DD

Off-line

x ERS Easy implementation Suboptimal operation [13,15,23–36] 2000–2018
x Fuzzy logic Accounts for uncertainties Intermediary performance [37] 2015

x ERS + metaheuristic∗ More configurations tested None-adaptive control [60]∗ 2015
x ERS based on optimal curves Compatible with traditional Non-predictive control [19,38–42] 2011–2017

x∗ controllers [70]∗ 2018

On-line

x Extremum seeking control No forward model needed No account for building physics [47,48] 2014
x ERS based on thermal equation Accounts for building load Non-predictive control [14,43] 2012–2017
x Linear programming Optimal solution from equations Requires simple equations [12,20,21,44–46] 2012–2017
x Mathematical optimisation Good performance Costly to implement [51–57] 2013–2018

x∗ Predictive ERS Predictive control based on real
performance

Requires a good quality dataset [63–69]∗ 2008–2013

x Metaheuristic∗ Good solution considering future Might not find the global optimal [73,74]∗ 2017–2018
x∗ state solution [62]∗ 2017
4.1. Traditional Machine Learning algorithms

ML algorithms are based on mathematical formulas which are op-
timised by performing a training process using a set of data. There
are different ML-based algorithms suitable for different tasks. ML al-
gorithms are commonly classified into three groups: (1) supervised
classification, in which a labelled training dataset allows the algorithm
to learn how to label new observations; (2) unsupervised classification,
in which the given dataset is not labelled and the algorithms try
to group the data using its properties and latent relationships; (3)
reinforcement learning in which an agent learns based on a system of
rewards. Table 2 lists a sample of common ML-based algorithms and
the kind of task they accomplish. Those algorithms have been used
extensively in the literature and are the foundation for more cutting-
edge ML. These algorithms require a feature engineering process. Feature
engineering consists in selecting the most meaningful properties from
a raw data source based on expert knowledge and statistical analysis.

The papers using ML identified in Section 3.3 are mostly based
on supervised neural networks, although a few also use regression
techniques, and were used to generate predictive models. When looking
more generally at the HVAC control field, AI uses focus on build-
ing load forecasting, and prediction of system consumption, indoor
thermal comfort, and air quality [88] and the most common optimi-
sation techniques used are stochastic gradient decent, genetic algo-
rithms and global convergence algorithms [89]. In a review of data-
driven approaches for building load forecasting, Ahmad et al. classified
the existing approaches as ANN-based, clustering-based, statistical and
ML-based, and Support Vector Machine (SVM)-based [90].

In addition to the generation of predictive models of the behaviours
of the system, ML learning can be used to predict the energy demand of
the building, which is important for short-term optimisation of GSHPs.
This has been investigated in several studies.

For example, Robinson et al. used ML algorithms to predict the
energy consumption in commercial buildings. They used a dataset
extracted from a survey performed by the U.S. Energy Information
Administration. Using this information, they demonstrated that gradi-
ent boosting algorithms outperformed other types of supervised based
ML algorithms such as Random Forest (RF), Linear Regression or KNN
in the process of estimate the commercial building energy consump-
tion [91].

Edwards et al. trained seven different supervised ML algorithms
and determined which techniques were the most successful at pre-
dicting energy consumption for three residential buildings located in
west Know Country, Tennessee. To do so, they used a residential
dataset which contained 140 different sensors measurements collected
7

every 15 min. They compared prior studies around traditional energy
modelling (model-based) by using expert knowledge versus the sensor-
based modelling process (data-driven). They found that Least Square
SVM was the best ML algorithm for energy prediction [92].

Yang et al. proposed a data-mining-based approach to predict the
energy consumption of a chiller. They applied different ML algorithms
on a dataset containing energy consumption, weather data and the
building operation processes. There were some limitations because the
proposed method lacked the ability to deal with noisy data. To solve
it, they identified and removed this data, but the process is not optimal
and requires further research. They concluded that non-linear model
gave accurate results for predicting energy consumption [93].

Kontes et al. proposed a novel methodology in which they created
an intelligent building energy management system using the model
of a Greek building. They trained a SVM algorithm by using the
simulation environment Energy Plus to obtain reliable information on
the building consumption and its thermal behaviour over the time. With
the trained algorithm, they obtained around 35%–57% of energy saving
in comparison to the default rule-based strategy [94].

Pham et al. used a data-driven approach combining five differ-
ent datasets to predict hourly energy consumption in different time
windows. They trained ML models to evaluate the energy consump-
tion prediction accuracy 1, 12 and 24 h ahead. In this study, RF
outperformed the other types of algorithms used [95].

Culaba et al. used ML algorithms for the energy consumption pre-
diction of mixed-use buildings. Based on simulations, they created a
dataset from 30 hypothetical mixed-use buildings (model-based). The
dataset was used to perform a clusterization using K-means algorithms,
which allowed to explore similarities in the energy consumption of
different mixed-use buildings. A SVM algorithm was then used to
forecast the energy consumption within each cluster. They used real
weather data (data-driven) to predict the weather [96].

There are different traditional ML algorithms that can be used to
predict the energy consumption of a building. This is a useful parameter
to consider when controlling a GSHP, as it enables to implicitly include
occupancy and weather as a control parameter. ML models enhance the
usage of the real data acquired from different sensors and allow the
creation of intelligent agents to perform actions if needed or simply
provide information to understand what the energy requirements of a
building are. Control strategies can then use the energy demand for
decision-making.

4.2. Deep learning

Building on traditional ML algorithms, Deep Learning (DL) is an
approach that works on big datasets and reduces the need for feature
engineering. It is particularly efficient at finding hidden relationships

between the data.



Renewable and Sustainable Energy Reviews 153 (2022) 111685S. Noye et al.

t
d
r
t
a
a
i
m
R
s

m
c
b
d
d
2
h
t
u

a
b

m
G
a

p
s
o
d
r
f

n
t
m
C
V
t
a
h

M
p
f
M
R
c
i

Table 2
Traditional ML algorithms. S: Supervised, NS: Non Supervised, RL: Reinforcement Learning.

Type Name Description

S Linear Regression [77] A line which fits two or more properties.
S Random Forest (RF) [78] A randomised decisions tree.
S XGBoost [79] A eXtreme Gradient boosted decision trees.
S KNN [80] K-Nearest Neighbours, a classification using the nearest properties.
S Support Vector Machine (SVM) [81] Draws a virtual line which divides the data in different groups.
S Neuronal Networks [82] Networks composed by digital neurons which emulates the brain.
NS K-Means [83] Similar to KNN but it create clusters using the mean of the properties.
NS Hclust [84] Hierarchical clustering process to create a tree of properties.
RL Q-Learning [85] A model free algorithm based on Temporal-Difference RL.
RL Monte-Carlo [86] A model free algorithm which learns from complete episodes.
RL Bellman expectation equation [87] Policy discovery equation for fully observable environments.
RL Bellman optimally equation [87] Policy improvement equation for fully observable environments.
Inside classical ML algorithms, the Multi-Layer Perceptron (MLP) is
he base for ANN architecture as described in Section 3.3. The MLP
emands high computational power which has limited its use until
ecent years when improvement in the hardware has made possible
he training of very deep neuronal networks with many hidden layers
nd neurons in a reasonable time. These very deep MLPs are known
s Deep Learning [97]. The main difference with traditional ANN
s the increased number of hidden layers. This then gives way to
ore complex architectures like Convolutional Neural Networks (CNN),
ecursive Neural Networks (RNN) or autoencoders, which are able to
olve increasingly complex tasks.

When looking at applications of DL for building energy manage-
ent, various studies have shown that DL provides improved prediction

apacity compared to traditional ML. For example, Fan et al. used DL-
ased algorithms to perform a load prediction of a cooling system using
ata of an educational building in Hong Kong. They used two types of
atasets to train their models: the first contained data from the previous
4h and the second only considered measurements from the previous
our. They trained seven different algorithms and demonstrated that
he DL approach outperforms the rest of the ML-based algorithms
sed [98].

Marino et al. used Long Short-Term Memory (LSTM), an RNN
rchitecture, to build an energy load forecasting algorithm to perform
uilding level load forecasting [99].

Cai et al., presented a comparison between different time-series DL
odels based on RNN (like GRNN1, GRNN2), or based on CNN (like
CNN24); and between classical time-series algorithms like SARIMAX
nd showed DL algorithms to perform better [100].

Son et al. used DL to forecast the energy production of a PV
anel. They compared their baseline algorithms, which relied on active
ensors installed in the PV panels, against a DL-based approach, using
nly the PV output history and the local weather forecast historical
ata. With only one year of training data, they obtained slightly better
esults than their previous approaches suggesting that DL is suitable for
ine-tuning the problem of PV output power forecasting [101].

Zhang et al. used a hybrid approach in which they used LSTM
etworks and ANN algorithms to extract features from time-series data
o predict the energy loads of a target building. To train the proposed
ethod, they used a public dataset of a building located in Shenzhen,
hina. In addition, they compared four different algorithms (Support
ector Regression, ANN, RF and Gradient Boosting trees). To evaluate

he performance of each proposed algorithm, they used the load data
nd the outdoor meteorological data of the building to predict the
ourly cooling loads of the target building [102].

Li et al. combined Stacked Autoencoders and Extreme Learning
achine in a DL algorithm to obtain accurate energy consumption

rediction of a building. In order to ensure that their approach outper-
ormed the state of the art, they compared it with different traditional
L algorithms such as Support Vector Regression, Multiple Linear
egressions and Back propagation ANN. They used a partial auto-
orrelation function to select the most sensitive input variables to use
n the training procedure and to train their algorithms, they used a
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public dataset containing samples collected every 15 minutes from a
retail building in Fremont, CA [103].

Mocanu et al. used DL to estimate the building energy consumption
using an individual household electric power consumption dataset from
UCI Machine Learning repository. They compared different algorithms
and demonstrated that the used DL-based algorithms (Conditional Re-
stricted Boltzmann Machines and Factored Conditional Restricted Boltz-
mann Machine) outperforms the results obtained by ANN, SVM or
RNN [104].

Based on the good results DL shows for predictive task, it has the
potential to improve data-driven predictive models for GSHP control
and other relevant predictive tasks like load forecasting. The main
disadvantage of DL is the requirement of a large dataset so that the
different weight of the ANN can be trained accurately and without
overfitting, but it has the advantage to limit the feature engineering
as bias in the data can be learned implicitly.

4.3. Deep Reinforcement Learning

The applications of DL reviewed in the previous section are focused
on predictive models. Those are useful to improve the control decision-
making, but normally require additional rules or optimisation process.
This section focuses on RL, a family of algorithms which acts directly
on the decision-making process and can optimise control strategies in
the case of GSHP control.

Reinforcement Learning (RL) is a set of ML based algorithms which
emulate the psychological concept of learning by giving positive or
negative rewards to reinforce an action or a set of actions. The con-
cept of RL appeared in the literature in neurological studies on an-
imals in [105] which studied their behavioural changes by doing
different error-testing experiments. At the neurological level, it was
demonstrated how the reinforcement rewards changed the structure
of the neurons, and consequently, the decisions and actions of the
subject [106].

Bellman created the first mathematical formulation of a RL problem,
using the concept of Markov Decision Processes (MDP) [107]. These
processes are mathematical models which are represented by states and
actions that a human being could perform following a decision-making
neuropsychological process where the results are uncertain [108]. MDP
modelling was subsequently used to develop different algorithms and
try to optimise the MDP process. Some well-known algorithms in the
literature are Dynamic Programming [87] and Linear programming (Q-
learning [85], or Monte Carlo [86]). Sutton and Barto developed the
first formalisation of the concept of RL in machine learning [109].

Fig. 4 depicts the MDP process followed by a RL agent. The agent’s
timestamp is represented by the time step (𝑡). The agent’s perception of
the target environment at time step 𝑡 is defined by the state (𝑆𝑡). The
agent selects an action (𝐴𝑡) to modify its environment. The environment
returns to the agent a new State (𝑆𝑡+1) and a scalar value called Reward
(𝑅𝑡) which identifies how good or bad the action was. The objective of

the agent is to maximise the cumulative reward over time.
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Fig. 4. Reinforcement Learning schematics.
Table 3
Different DRL-based algorithms.

Name Action state Type

Deep Q-Learning Discrete TD-Learning
Double Q-Network Discrete TD-Learning
Dueling Network Architecture Discrete TD-Learning
Advantage Actor–Critic (A2C) Continual Actor–Critic
Asynchronous Advantage Actor–Critic (A3C) Continual Actor–Critic
Soft Actor–Critic Continual Actor–Critic
Proximal Policy Optimisation Continual Policy Gradient
Deep Deterministic policy gradient Continual Policy Gradient
Trust Region Policy Optimisation Continual Policy Gradient

The concept of Deep Reinforcement Learning (DRL) appeared in the
literature when Mnih et al. developed a variation of the Q-Learning
algorithm called DQN. The decision-making agent was substituted by a
Deep Neuronal Network, which receives the current states of the agent
as an input, and predicts the value of the different actions possible. This
enables to account for a greater number of state–action pairs [110].

Fig. 5 illustrates the DRL approach. A neuronal network receives
the current state (𝑆𝑡) and outputs a valid action (𝐴𝑡) to perform in
the environment. The rewards (𝑅𝑡) from the environment are used to
update the internal weights of the neuronal network, which represents
the policy 𝜋 of the agent. These weights are updated interactively
using a stochastic gradient descent following a custom loss equation.
This approach, where the agent learns a policy 𝜋 by iterating over
the environment and updating its weights, is being used extensively in
the literature. The main advantage of using a neuronal network as an
agent is the capacity of DL-based networks to find latent relationships
between the state space and the value of the actions to maximise the
agent’s reward. Nevertheless, the developed DRL algorithms have some
disadvantages. For example, they add a layer of complexity to the tra-
ditional RL methods because a neuronal network must be implemented.
In addition, the DRL approaches sometimes lack the capacity to learn
how to perform a specific task unless they have prior knowledge.

Table 3 lists different DRL-based algorithms. The algorithms are
organised based on: (1) whether the action state is discrete or contin-
uous; (2) the type of the algorithm which can be Temporal-Difference,
Actor–Critic and Policy Gradient.

Brandi et al. trained a DRL agent to control the supply water tem-
perature of heating terminal units. The terminal units were modelled
using EnergyPlus. The developed agent selected the supplied water
temperature by configuring the set-point taking into account discrete
actions from the action space 𝐴𝑡 = {20, 40, 50, 60, 70} [111].

Liu et al. used DRL to make short-term energy consumption pre-
dictions of the energy required by a GSHP system. They captured real
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data from the GSHP and used the information of the local weather
station to create a first raw dataset. Then, they used autoencoders to
perform a feature extraction in which a final training/testing set was
created to make a high-dimensional representation of the agent states.
The agent was then trained and its actions represented the short-term
energy consumption of the GSHP [112].

Yang et al. used RL agents trained on a Simulink model to control
an HGSHP system with PVT panels. They first used a RL controller
for the PVT system, leading to an increase in performance of 10%
compared to the rule-based alternative after 3 years. Then, to control
the whole system, they added a similar RL controller to the GSHP loop
and the distribution loop demonstrating improvement of all the control
objectives compared to the rule-based solution [113].

DRL is capable of solving different tasks for HVAC control, either
predictive, or, more interestingly, by directly learning optimal con-
trol strategies via trial and error. The initial studies for GSHPs are
promising, but more investigation is needed.

The use of a simulation environment (e.g. EnergyPlus, Simulink)
is crucial to test DRL agents and understand how they train. These
simulation environments ensure the acquisition of useful training data
without noise caused by unexpected external factors. They also allow
to test the performance of the trained agents in the long run by creating
different scenarios to test how they affect the behaviour of the trained
DRL models.

However, there is a gap between how a DRL agent behaves on a
real environment compared to the virtual training environment. In this
regard, comparison is needed between the trained agents in virtual
environments against the results obtained when they are executed on
a real system. Data is needed to understand how a DRL based agent is
capable of modifying its behaviour and adapt its internal policy to the
variations not considered in the virtual environment.

5. Discussion

The literature shows the relevance of optimising GSHP controls to
reduce costs and increase energy efficiency, which in turn can facilitate
a greater market penetration of geothermal energy. Artificial intelli-
gence (AI) shows potential for two key aspects of this optimisation.
On the one hand, to create data-driven models that can predict the
real, short-term performance of systems as a basis for control decision.
On the other hand, to optimise the control decision themselves. Based
on the different fields of artificial intelligence, other method could
be explored to further optimise GSHP operation. In this section, the
challenges that need to be overcome to improve and implement those

systems are discussed.
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Fig. 5. Deep Reinforcement Learning schematics.
5.1. Challenges of GSHP control optimisation reporting

As it is often the case with building system research, the studies car-
ried out for GSHPs are specific to a case study. Those case studies have
value because they enable to test hypotheses, generate knowledge and
their findings can be extended to similar cases. However, if rule-based
conclusion can be easily transferred to new cases, the more complex the
control, the more variation will happen between cases and comparison
of results becomes difficult. This leads to a series of techniques to be
developed in parallel without a clear view of which perform better for
which typology of GSHP system. In the literature, common typologies
emerge. Standalone GSHP, hybrid GSHP with CTs, and hybrid GSHP
with PV or PVT are the most common ones. Although their exact set up
differs, defining archetypes based on these technologies would permit
more consistent research. It would also permit researchers to focus
on the control optimisation, without having to define a use case from
scratch.

In addition to being system specific, studies are also specific to
the defined environment (e.g. weather, soil type). When the study
is done on a real case it is inevitable, but when simulation is used,
comparison between different environments would be interesting to
better understand how they influence the performance of the control
algorithms in order to better generalise them. Although the choice
of system architecture will depend on weather conditions (cooling
dominant, heating dominant, moderate climate), there will still be
variations within these broad climate groups that affect the outcome
(e.g. humidity of the climate, peak temperatures).

To benchmark different control strategies, it is also important to
have results relative to different optimisation objectives. Some studies
focus on energy (e.g. [73]) other on operating cost (e.g. [62]) and
data are missing in the other aspect to evaluate the trade-off. Another
key element for a successfully control algorithm is how it affects the
comfort of the occupants, which few of the reviewed papers assessed.

It is also important to look at the long-term performance of the
proposed control algorithms. A lot of studies focus either on cooling or
heating, thus not considering the full-year performance and even fewer
studies look at performances beyond a year, unless the main objective
of the study is to compensate for load imbalance.

Most of the studies reviewed are using a detailed model of the
system to test the performance of the control strategies. In some studies,
the model is validated with real data (e.g. [12,28]), bringing the study
closer to a real case. Bianchi et al. conducted their research on a
laboratory HP test bed, which enabled them to test and control vari-
ous operating scenarios. Real world validation requires access to real
systems and the ability to control them, which is not easily obtained,
but in case studies based on simulations, some real-world factors might
be neglected, making wide implementation difficult.
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Having well-defined archetype cases for GSHP control would permit
comparability and also accounting for more aspects relevant to the
development of robust and advanced GSHP control algorithms. The
ideal scenario is for those archetypes to be linked with real cases, so
that the algorithms could be validated in real conditions.

Additionally, to properly evaluate the impact and feasibility of
innovative control strategies based on artificial intelligence techniques
and adequate comparison between them, a common methodology of
reporting results is necessary. The literature often only reports on
the metrics linked to energy/cost, but is missing detail about the AI
algorithm metrics such as training time or GPU use, which is especially
relevant to evaluate the trade-off between energy saved by improved
operation and energy used for ML training. In most cases, key elements
are lacking to understand how the AI was implemented, as informa-
tion is missing regarding the formalisation of the model, the training
set or the hyperparameters used, which prevents replicability of the
investigation.

5.2. Challenges of physical implementation

The application of the discussed AI algorithms and control strategies
in a real-life scenario requires the acquisition of real-time information
on the status of the system, the building or climate conditions, a
GSHP that can be controlled automatically, and a management system
capable of applying the control strategies defined according to the
current conditions and of sending the corresponding commands to the
GSHP.

Smart Buildings are complex ecosystems that traditionally comprise
sets of sensors that capture the state of the environment; management
systems that analyse the information provided by the sensors and
decide the actions to take; actuators that allow the control of the
facilities; and interfaces for the owners or managers of the building to
be able to monitor or take control of the system.

Traditionally, these systems have followed a centralised architecture,
with a central manager that handles all the information generated
and sends the corresponding commands, either locally or in the cloud.
The evolution of the ICT technologies has improved Smart Buildings,
adding new features and capabilities. It is the case of IoT networks,
which allow real-time monitoring and control of the facilities and
have brought the capacity to integrate more elements to the system.
The increase of available data (in quantity and heterogeneity) permits
the development of more accurate and complex control algorithms,
including the integration of AI algorithms. However, its processing is
much heavier and less manageable and has brought the need to rethink
the Smart Building architecture [114,115]. Edge and fog technologies
bring the computing capabilities closer to the sensor. All the data
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captured does not travel to a central management system, but it is, at
least partially, processed in a node close to the sensor network. This
allows the scaleability of the solutions, as well as the management of
great amounts of data, it increases the security and reduces the latency
of the systems.

Beside its substantial volume, data handled in this smart building
environment is also highly heterogeneous. An optimal GSHP control
requires taking into account energy needs, user comfort and varying en-
ergy costs. Thus, information regarding the physics of the building (e.g.
size, distribution, insulation level or heater types) must be combined
with the IoT networks and the multiplicity of their types of devices (e.g.
water or air temperature sensors, consumption meters of the GSHP) and
with external sources (e.g. weather forecast, energy prices). For smart
systems to automatically handle data, they must have a consistent way
to represent all the information, regardless of its source, and must also
understand the nature of each piece of information and what every
value represents. Gilani et al. reviewed different technologies to deal
with these challenges: semantic web technologies, which are often used
for allowing cross-domain interoperability, and ontologies, that support
data readability and machine reasoning, defining concepts that allow
the interpretation of data [116].

Apart from understanding the data, it needs to be trusted. All the
knowledge extracted and the decisions taken by the AI algorithms for
the GSHP control are based on the data obtained automatically, with
no human supervision, from an IoT network which is subject to errors
due to sensor battery losses, device malfunctioning, noise or communi-
cation losses. Therefore, data quality must be ensured, since low data
quality will result in unsound decisions and poor GSHP performance.
A review on how these data quality problems manifest themselves in
IoT networks (roughly grouped in two classes: dropped readings, which
result in the loss of data, and unreliable readings which result in the
reception of erroneous data), and on the data science techniques that
can be applied to avoid them can be found in [117].

Last, since the IoT network is usually connected to the Internet
either directly or indirectly, serious concerns regarding the security and
privacy of the occupants arise. This issue is even more pressing in
an environment where cloud, edge and fog architectures are progres-
sively becoming predominant, in part to allow the deployment of AI
algorithms. The information from sensors, especially those that could
lead to knowledge on the occupants’ activities, such as the energy
meters, should only be accessed by authorised elements; the identity
of the devices that send commands to the GSHP or of the external
sources of information such as weather or energy cost servers should
be guaranteed; and, in general, the performance of the system under
different well-known attacks should be ensured [114].

The research community has generated a great amount of knowl-
edge about the energy efficient operation of systems like GSHP, but
to achieve significant CO2 reduction in building, there need to be a
generalisation of this knowledge. It would be cost prohibitive for an
energy expert to perform a detailed study of each and every building to
determine its optimal operating conditions. This is why building energy
expert and information technology experts need to work hand in hand
to achieve energy efficiency.

6. Conclusions

This paper reviews the state of the art of GSHP control and the
potential of Artificial Intelligence to reduce operating cost and improve
energy efficiency. Distinction has been made between methods that
are applied off-line and can be implemented at the design stage and
the ones that are done continuously during operation. Those control
methods can be model-free or based on a predictive model. Predictive
models can either be based on physical laws or inferred from a dataset.
GSHPs are complex system and thus require controls that can adapt
to their operating environment so that maximum performance can be
achieved, making online optimisation better adapted for their control.
11
These controls need to account for real operating condition of the
HP, variation in external condition such as weather and demand, and
long-term variations of the systems’ performance.

The field of Artificial Intelligence provides algorithms that can
learn complex patterns from data and work with a great number of
parameters without the need of explicit knowledge to link them. These
algorithms can provide autonomous and adaptive control to better
control GSHP for energy, comfort and cost optimisation, but long-term
performance need to be better included in their learning objectives. The
focus in the literature so far has been on using AI to build predictive
models of GSHP systems. The progress on deep learning could further
improve predictive tasks when large datasets are available. Regard-
ing control optimisation, examples of artificial intelligence applied to
GSHPs has been limited to date. Metaheuristic algorithms have been
used with success and progress in the field of deep reinforcement
learning are promising, but further research is needed to streamlin the
transition between virtual and real environments.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgement

This work was developed as part of the GEO4CIVHIC Project, which
has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No. 792355.

References

[1] European Parliament. Directive 2010/31/EU of the European parliament and
of the council of 19 may 2010 on the energy performance of buildings (recast)
(OJ l 153 18.6.2010, p. 13). 2010.

[2] Magrini A, Lentini G, Cuman S, Bodrato A, Marenco L. From nearly zero energy
buildings (NZEB) to positive energy buildings (PEB): The next challenge - the
most recent European trends with some notes on the energy analysis of a
forerunner PEB example. Dev Built Environ 2020;3:100019. http://dx.doi.org/
10.1016/j.dibe.2020.100019.

[3] IEA. Geothermal, IEA, Paris. 2021, https://www.iea.org/reports/geothermal,
accessed: 2021-05-21.

[4] Self SJ, Reddy BV, Rosen MA. Geothermal heat pump systems: Status review
and comparison with other heating options. Appl Energy 2013;101:341–8.
http://dx.doi.org/10.1016/j.apenergy.2012.01.048.

[5] Alshehri F, Beck S, Ingham D, Ma L, Pourkashanian M. Techno-economic
analysis of ground and air source heat pumps in hot dry climates. J Build
Eng 2019;26:100825. http://dx.doi.org/10.1016/j.jobe.2019.100825.

[6] Ma Z, Xia L, Gong X, Kokogiannakis G, Wang S, Zhou X. Recent advances
and development in optimal design and control of ground source heat pump
systems. Renew Sustain Energy Rev 2020;131:110001. http://dx.doi.org/10.
1016/j.rser.2020.110001.

[7] Caird S, Roy R, Potter S. Domestic heat pumps in the UK: user behaviour,
satisfaction and performance. Energy Effic 2012;5(3):283–301. http://dx.doi.
org/10.1007/s12053-012-9146-x.

[8] Mokhtar M, Stables M, Liu X, Howe J. Intelligent multi-agent system for
building heat distribution control with combined gas boilers and ground source
heat pump. Energy Build 2013;62:615–26. http://dx.doi.org/10.1016/j.enbuild.
2013.03.045.

[9] Mohanraj M, Jayaraj S, Muraleedharan C. Applications of artificial neural
networks for refrigeration, air-conditioning and heat pump systems—A review.
Renew Sustain Energy Rev 2012;16(2):1340–58. http://dx.doi.org/10.1016/j.
rser.2011.10.015.

[10] Zhou S, Liu D, Cao S, Liu X, Zhou Y. An application status review of compu-
tational intelligence algorithm in GSHP field. Energy Build 2019;203:109424.
http://dx.doi.org/10.1016/j.enbuild.2019.109424.

[11] Arteconi A, Brandoni C, Rossi G, Polonara F. Experimental evaluation and
dynamic simulation of a ground coupled heat pump for a commercial building.
Int J Energy Res 2013;37(15):1971–80. http://dx.doi.org/10.1002/er.3059.

[12] Gao J, Huang G, Xu X. An optimization strategy for the control of small
capacity heat pump integrated air-conditioning system. Energy Convers Manage
2016;119:1–13. http://dx.doi.org/10.1016/j.enconman.2016.04.027.

http://refhub.elsevier.com/S1364-0321(21)00959-X/sb1
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb1
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb1
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb1
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb1
http://dx.doi.org/10.1016/j.dibe.2020.100019
http://dx.doi.org/10.1016/j.dibe.2020.100019
http://dx.doi.org/10.1016/j.dibe.2020.100019
https://www.iea.org/reports/geothermal
http://dx.doi.org/10.1016/j.apenergy.2012.01.048
http://dx.doi.org/10.1016/j.jobe.2019.100825
http://dx.doi.org/10.1016/j.rser.2020.110001
http://dx.doi.org/10.1016/j.rser.2020.110001
http://dx.doi.org/10.1016/j.rser.2020.110001
http://dx.doi.org/10.1007/s12053-012-9146-x
http://dx.doi.org/10.1007/s12053-012-9146-x
http://dx.doi.org/10.1007/s12053-012-9146-x
http://dx.doi.org/10.1016/j.enbuild.2013.03.045
http://dx.doi.org/10.1016/j.enbuild.2013.03.045
http://dx.doi.org/10.1016/j.enbuild.2013.03.045
http://dx.doi.org/10.1016/j.rser.2011.10.015
http://dx.doi.org/10.1016/j.rser.2011.10.015
http://dx.doi.org/10.1016/j.rser.2011.10.015
http://dx.doi.org/10.1016/j.enbuild.2019.109424
http://dx.doi.org/10.1002/er.3059
http://dx.doi.org/10.1016/j.enconman.2016.04.027


Renewable and Sustainable Energy Reviews 153 (2022) 111685S. Noye et al.
[13] Hackel S, Pertzborn A. Effective design and operation of hybrid ground-source
heat pumps: Three case studies. Energy Build 2011;43(12):3497–504. http:
//dx.doi.org/10.1016/j.enbuild.2011.09.014.

[14] Yang R, Wang L. Efficient control of a solar assisted ground-source heat pump
system based on evaluation of building thermal load demand. In: 2012 north
american power symposium (NAPS). IEEE; 2012, p. 1–6.

[15] Yavuzturk C, Spitler JD. Comparative study of operating and control strategies
for hybrid ground-source heat pump systems using a short time step simulation
model. ASHRAE Trans 2000;106:192.

[16] Kim Y, Lee JS, Jeon SW. 12 - hybrid ground-source heat pump systems. In:
Advances in ground-source heat pump systems. Woodhead Publishing; 2016, p.
331–57. http://dx.doi.org/10.1016/B978-0-08-100311-4.00012-1.

[17] Sivasakthivel T, Murugesan K, Thomas HR. Optimization of operating pa-
rameters of ground source heat pump system for space heating and cooling
by taguchi method and utility concept. Appl Energy 2014;116:76–85. http:
//dx.doi.org/10.1016/j.apenergy.2013.10.065.

[18] Atam E, Helsen L. Ground-coupled heat pumps: Part 1 – literature review and
research challenges in modeling and optimal control. Renew Sustain Energy
Rev 2016;54:1653–67. http://dx.doi.org/10.1016/j.rser.2015.10.007.

[19] De Ridder F, Diehl M, Mulder G, Desmedt J, Van Bael J. An optimal
control algorithm for borehole thermal energy storage systems. Energy Build
2011;43(10):2918–25. http://dx.doi.org/10.1016/j.enbuild.2011.07.015.

[20] de Paly M, Hecht-Méndez J, Beck M, Blum P, Zell A, Bayer P. Opti-
mization of energy extraction for closed shallow geothermal systems using
linear programming. Geothermics 2012;43:57–65. http://dx.doi.org/10.1016/j.
geothermics.2012.03.001.

[21] Hecht-Méndez J, de Paly M, Beck M, Bayer P. Optimization of energy extraction
for vertical closed-loop geothermal systems considering groundwater flow.
Energy Convers Manage 2013;66:1–10. http://dx.doi.org/10.1016/j.enconman.
2012.09.019.

[22] Jackson P. Introduction to expert systems. USA: Addison-Wesley Longman
Publishing Co., Inc.; 1998.

[23] Corberan JM, Finn DP, Montagud CM, Murphy FT, Edwards KC. A quasi-
steady state mathematical model of an integrated ground source heat pump
for building space control. Energy Build 2011;43(1):82–92. http://dx.doi.org/
10.1016/j.enbuild.2010.08.017.

[24] Yang J, Xu L, Hu P, Zhu N, Chen X. Study on intermittent operation strategies of
a hybrid ground-source heat pump system with double-cooling towers for hotel
buildings. Energy Build 2014;76:506–12. http://dx.doi.org/10.1016/j.enbuild.
2014.02.061.

[25] Dai L, Li S, DuanMu L, Li X, Shang Y, Dong M. Experimental performance
analysis of a solar assisted ground source heat pump system under different
heating operation modes. Appl Therm Eng 2015;75:325–33. http://dx.doi.org/
10.1016/j.applthermaleng.2014.09.061.

[26] Sagia Z. New control strategy for a hybrid ground source heat pump system
coupled to a closed circuit cooling tower. J Appl Mech Eng 2012;1(2):8.
http://dx.doi.org/10.4172/2168-9873.100010.

[27] Wan H, Xu X, Li A, Yan T, Gang W. A wet-bulb temperature-based control
method for controlling the heat balance of the ground soil of a hybrid ground-
source heat pump system:. Adv Mech Eng 2017. http://dx.doi.org/10.1177/
1687814017701705.

[28] Gong X, Xia L, Ma Z, Chen G, Wei L. Investigation on the optimal cooling
tower input capacity of a cooling tower assisted ground source heat pump
system. Energy Build 2018;174:239–53. http://dx.doi.org/10.1016/j.enbuild.
2018.06.024.

[29] Madani H, Claesson J, Lundqvist P. A descriptive and comparative analysis of
three common control techniques for an on/off controlled ground source heat
pump (GSHP) system. Energy Build 2013;65:1–9. http://dx.doi.org/10.1016/j.
enbuild.2013.05.006.

[30] Emmi G, Zarrella A, De Carli M, Galgaro A. An analysis of solar assisted ground
source heat pumps in cold climates. Energy Convers Manage 2015;106:660–75.
http://dx.doi.org/10.1016/j.enconman.2015.10.016.

[31] Fan R, Gao Y, Hua L, Deng X, Shi J. Thermal performance and operation strat-
egy optimization for a practical hybrid ground-source heat-pump system. Energy
Build 2014;78:238–47. http://dx.doi.org/10.1016/j.enbuild.2014.04.041.

[32] Park H, Kim W, Lee JS, Kim Y. Optimization of a hybrid ground source heat
pump using the response surface method. In: World renewable energy congress-
Sweden; 8-13 May; 2011; Linköping; Sweden. (057):Linköping University
Electronic Press; 2011, p. 1345–51.

[33] Karlsson F, Fahlén P. Capacity-controlled ground source heat pumps in hydronic
heating systems. Int J Refrig 2007;30(2):221–9. http://dx.doi.org/10.1016/j.
ijrefrig.2006.08.008.

[34] Madani H, Claesson J, Lundqvist P. Capacity control in ground source heat
pump systems part II: Comparative analysis between on/off controlled and
variable capacity systems. Int J Refrig 2011;34(8):1934–42. http://dx.doi.org/
10.1016/j.ijrefrig.2011.05.012.

[35] Zarrella A, Emmi G, De Carli M. A simulation-based analysis of variable flow
pumping in ground source heat pump systems with different types of borehole
heat exchangers: A case study. Energy Convers Manage 2017;131:135–50.
12

http://dx.doi.org/10.1016/j.enconman.2016.10.061.
[36] Cui W, Zhou S, Liu X. Optimization of design and operation parameters for
hybrid ground-source heat pump assisted with cooling tower. Energy Build
2015;99:253–62. http://dx.doi.org/10.1016/j.enbuild.2015.04.034.

[37] Andrew Putrayudha S, Kang EC, Evgueniy E, Libing Y, Lee EJ. A study of
photovoltaic/thermal (PVT)-ground source heat pump hybrid system by using
fuzzy logic control. Appl Therm Eng 2015;89:578–86. http://dx.doi.org/10.
1016/j.applthermaleng.2015.06.019.

[38] Del Col D, Azzolin M, Benassi G, Mantovan M. Energy efficiency in a ground
source heat pump with variable speed drives. Energy Build 2015;91:105–14.
http://dx.doi.org/10.1016/j.enbuild.2014.12.048.

[39] Montagud C, Corberán JM, Montero A. In situ optimization methodology for
the water circulation pumps frequency of ground source heat pump systems.
Energy Build 2014;68:42–53. http://dx.doi.org/10.1016/j.enbuild.2013.09.030.

[40] Cervera-Vázquez J, Montagud C, Corberán JM. In situ optimization method-
ology for the water circulation pumps frequency of ground source heat pump
systems: Analysis for multistage heat pump units. Energy Build 2015;88:238–47.
http://dx.doi.org/10.1016/j.enbuild.2014.12.008.

[41] Cervera-Vázquez J, Montagud C, Corberán JM. In situ optimization methodol-
ogy for ground source heat pump systems: Upgrade to ensure user comfort.
Energy Build 2015;109:195–208. http://dx.doi.org/10.1016/j.enbuild.2015.10.
026.

[42] Cervera-Vázquez J, Cazorla-Marin A, Montagud C, Corberán JM. Optimal
control and operation of a GSHP system for heating and cooling in an office
building. In: IGSHPA technical/research conference and expo. International
Ground Source Heat Pump Association; 2017, http://dx.doi.org/10.22488/
okstate.17.000502.

[43] Hu P, Hu Q, Lin Y, Yang W, Xing L. Energy and exergy analysis of a ground
source heat pump system for a public building in wuhan, China under different
control strategies. Energy Build 2017;152:301–12. http://dx.doi.org/10.1016/j.
enbuild.2017.07.058.

[44] Edwards KC, Finn DP. Generalised water flow rate control strategy for opti-
mal part load operation of ground source heat pump systems. Appl Energy
2015;150:50–60. http://dx.doi.org/10.1016/j.apenergy.2015.03.134.

[45] Xia L, Ma Z, McLauchlan C, Wang S. Experimental investigation and con-
trol optimization of a ground source heat pump system. Appl Therm Eng
2017;127:70–80. http://dx.doi.org/10.1016/j.applthermaleng.2017.07.205.

[46] Ma Z, Xia L. Model-based optimization of ground source heat pump systems.
Energy Procedia 2017;111:12–20. http://dx.doi.org/10.1016/j.egypro.2017.03.
003.

[47] Hu B, Li Y, Mu B, Wang S, Seem JE, Cao F. Extremum seeking control for
efficient operation of hybrid ground source heat pump system. Renew Energy
2016;86:332–46. http://dx.doi.org/10.1016/j.renene.2015.07.092.

[48] Hu B, Li Y, Mu B, Wang S, Seem JE, Cao F. Extremum seeking control of
hybrid ground source heat pump system. In: International refrigeration and air
conditioning conference, 2014.

[49] Afram A, Janabi-Sharifi F. Theory and applications of HVAC control systems
– a review of model predictive control (MPC). Build Environ 2014;72:343–55.
http://dx.doi.org/10.1016/j.buildenv.2013.11.016.

[50] Verhelst C, Helsen L. Low-order state space models for borehole heat exchang-
ers. HVAC&R Res 2011;17(6):928–47. http://dx.doi.org/10.1080/10789669.
2011.617188.

[51] Atam E, Verhelst C, Helsen L. Development of a control-oriented model for
boreholedynamics for buildings equipped with ground coupled heatpumps. In:
Proceedings of BS2013: 13th conference of international building performance
simulation association, 2013.

[52] Atam E, Helsen L. A convex approach to a class of non-convex build-
ing HVAC control problems: Illustration by two case studies. Energy Build
2015;93:269–81. http://dx.doi.org/10.1016/j.enbuild.2015.02.026.

[53] Bianchi M, Shafai E, Geering HP. Comparing new control concepts for heat
pump heating systems on a test bench with the capability of house and earth
probe emulation. In: Proc. 8th IEA heat pump conference: global advances in
heat pump technology, 2005.

[54] Antonov S, Verhelst C, Helsen L. Optimal operation of ground coupled heat
pump systems: should we take the seasonal time scale into account? In: Clima
2013, 11-Th REHVA world congress & 8-th international conference on IAQVEC,
2013. p. 10.

[55] Antonov S, Helsen L. Robustness analysis of a hybrid ground coupled heat pump
system with model predictive control. J Process Control 2016;47:191–200.
http://dx.doi.org/10.1016/j.jprocont.2016.08.009.

[56] Weeratunge H, Narsilio G, de Hoog J, Dunstall S, Halgamuge S. Model
predictive control for a solar assisted ground source heat pump system. Energy
2018;152:974–84. http://dx.doi.org/10.1016/j.energy.2018.03.079.

[57] Atam E, Patteeuw D, Antonov SP, Helsen L. Optimal control approaches for
analysis of energy use minimization of hybrid ground-coupled heat pump
systems. IEEE Trans Control Syst Technol 2016;24(2):525–40. http://dx.doi.org/
10.1109/TCST.2015.2445851.

[58] Blum C, Puchinger J, Raidl GR, Roli A. Hybrid metaheuristics in combinatorial
optimization: A survey. Appl Soft Comput 2011;11(6):4135–51. http://dx.doi.
org/10.1016/j.asoc.2011.02.032.

http://dx.doi.org/10.1016/j.enbuild.2011.09.014
http://dx.doi.org/10.1016/j.enbuild.2011.09.014
http://dx.doi.org/10.1016/j.enbuild.2011.09.014
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb14
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb14
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb14
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb14
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb14
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb15
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb15
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb15
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb15
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb15
http://dx.doi.org/10.1016/B978-0-08-100311-4.00012-1
http://dx.doi.org/10.1016/j.apenergy.2013.10.065
http://dx.doi.org/10.1016/j.apenergy.2013.10.065
http://dx.doi.org/10.1016/j.apenergy.2013.10.065
http://dx.doi.org/10.1016/j.rser.2015.10.007
http://dx.doi.org/10.1016/j.enbuild.2011.07.015
http://dx.doi.org/10.1016/j.geothermics.2012.03.001
http://dx.doi.org/10.1016/j.geothermics.2012.03.001
http://dx.doi.org/10.1016/j.geothermics.2012.03.001
http://dx.doi.org/10.1016/j.enconman.2012.09.019
http://dx.doi.org/10.1016/j.enconman.2012.09.019
http://dx.doi.org/10.1016/j.enconman.2012.09.019
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb22
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb22
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb22
http://dx.doi.org/10.1016/j.enbuild.2010.08.017
http://dx.doi.org/10.1016/j.enbuild.2010.08.017
http://dx.doi.org/10.1016/j.enbuild.2010.08.017
http://dx.doi.org/10.1016/j.enbuild.2014.02.061
http://dx.doi.org/10.1016/j.enbuild.2014.02.061
http://dx.doi.org/10.1016/j.enbuild.2014.02.061
http://dx.doi.org/10.1016/j.applthermaleng.2014.09.061
http://dx.doi.org/10.1016/j.applthermaleng.2014.09.061
http://dx.doi.org/10.1016/j.applthermaleng.2014.09.061
http://dx.doi.org/10.4172/2168-9873.100010
http://dx.doi.org/10.1177/1687814017701705
http://dx.doi.org/10.1177/1687814017701705
http://dx.doi.org/10.1177/1687814017701705
http://dx.doi.org/10.1016/j.enbuild.2018.06.024
http://dx.doi.org/10.1016/j.enbuild.2018.06.024
http://dx.doi.org/10.1016/j.enbuild.2018.06.024
http://dx.doi.org/10.1016/j.enbuild.2013.05.006
http://dx.doi.org/10.1016/j.enbuild.2013.05.006
http://dx.doi.org/10.1016/j.enbuild.2013.05.006
http://dx.doi.org/10.1016/j.enconman.2015.10.016
http://dx.doi.org/10.1016/j.enbuild.2014.04.041
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb32
http://dx.doi.org/10.1016/j.ijrefrig.2006.08.008
http://dx.doi.org/10.1016/j.ijrefrig.2006.08.008
http://dx.doi.org/10.1016/j.ijrefrig.2006.08.008
http://dx.doi.org/10.1016/j.ijrefrig.2011.05.012
http://dx.doi.org/10.1016/j.ijrefrig.2011.05.012
http://dx.doi.org/10.1016/j.ijrefrig.2011.05.012
http://dx.doi.org/10.1016/j.enconman.2016.10.061
http://dx.doi.org/10.1016/j.enbuild.2015.04.034
http://dx.doi.org/10.1016/j.applthermaleng.2015.06.019
http://dx.doi.org/10.1016/j.applthermaleng.2015.06.019
http://dx.doi.org/10.1016/j.applthermaleng.2015.06.019
http://dx.doi.org/10.1016/j.enbuild.2014.12.048
http://dx.doi.org/10.1016/j.enbuild.2013.09.030
http://dx.doi.org/10.1016/j.enbuild.2014.12.008
http://dx.doi.org/10.1016/j.enbuild.2015.10.026
http://dx.doi.org/10.1016/j.enbuild.2015.10.026
http://dx.doi.org/10.1016/j.enbuild.2015.10.026
http://dx.doi.org/10.22488/okstate.17.000502
http://dx.doi.org/10.22488/okstate.17.000502
http://dx.doi.org/10.22488/okstate.17.000502
http://dx.doi.org/10.1016/j.enbuild.2017.07.058
http://dx.doi.org/10.1016/j.enbuild.2017.07.058
http://dx.doi.org/10.1016/j.enbuild.2017.07.058
http://dx.doi.org/10.1016/j.apenergy.2015.03.134
http://dx.doi.org/10.1016/j.applthermaleng.2017.07.205
http://dx.doi.org/10.1016/j.egypro.2017.03.003
http://dx.doi.org/10.1016/j.egypro.2017.03.003
http://dx.doi.org/10.1016/j.egypro.2017.03.003
http://dx.doi.org/10.1016/j.renene.2015.07.092
http://dx.doi.org/10.1016/j.buildenv.2013.11.016
http://dx.doi.org/10.1080/10789669.2011.617188
http://dx.doi.org/10.1080/10789669.2011.617188
http://dx.doi.org/10.1080/10789669.2011.617188
http://dx.doi.org/10.1016/j.enbuild.2015.02.026
http://dx.doi.org/10.1016/j.jprocont.2016.08.009
http://dx.doi.org/10.1016/j.energy.2018.03.079
http://dx.doi.org/10.1109/TCST.2015.2445851
http://dx.doi.org/10.1109/TCST.2015.2445851
http://dx.doi.org/10.1109/TCST.2015.2445851
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.asoc.2011.02.032


Renewable and Sustainable Energy Reviews 153 (2022) 111685S. Noye et al.
[59] Shapiro J. Genetic algorithms in machine learning. In: Paliouras G, Karkalet-
sis V, Spyropoulos CD, editors. Machine learning and its applications: advanced
lectures. Lecture notes in computer science, Springer; 2001, p. 146–68. http:
//dx.doi.org/10.1007/3-540-44673-7_7.

[60] Zeng R, Li H, Liu L, Zhang X, Zhang G. A novel method based on
multi-population genetic algorithm for CCHP–GSHP coupling system optimiza-
tion. Energy Convers Manage 2015;105:1138–48. http://dx.doi.org/10.1016/j.
enconman.2015.08.057.

[61] Sakellari D, Forsén M, Lundqvist P. Investigating control strategies for a domes-
tic low-temperature heat pump heating system. Int J Refrig 2006;29(4):547–55.
http://dx.doi.org/10.1016/j.ijrefrig.2005.10.009.

[62] Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K. Artificial neural network
(ANN) based model predictive control (MPC) and optimization of HVAC
systems: A state of the art review and case study of a residential HVAC system.
Energy Build 2017;141:96–113. http://dx.doi.org/10.1016/j.enbuild.2017.02.
012.

[63] Entchev E, Yang L, Ghorab M, Rosato A, Sibilio S. Energy, economic and
environmental performance simulation of a hybrid renewable microgeneration
system with neural network predictive control. Alex Eng J 2018;57(1):455–73.
http://dx.doi.org/10.1016/j.aej.2016.09.001.

[64] Gang W, Wang J. Predictive ANN models of ground heat exchanger for
the control of hybrid ground source heat pump systems. Appl Energy
2013;112:1146–53. http://dx.doi.org/10.1016/j.apenergy.2012.12.031.

[65] Gang W, Wang J, Wang S. Performance analysis of hybrid ground
source heat pump systems based on ANN predictive control. Appl Energy
2014;136:1138–44. http://dx.doi.org/10.1016/j.apenergy.2014.04.005.

[66] Salque T, Marchio D, Riederer P. Neural predictive control for single-speed
ground source heat pumps connected to a floor heating system for typical
french dwelling:. Build Serv Eng Res Technol 2013. http://dx.doi.org/10.1177/
0143624413480370.

[67] Esen H, Inalli M, Sengur A, Esen M. Modelling a ground-coupled heat
pump system using adaptive neuro-fuzzy inference systems. Int J Refrig
2008;31(1):65–74. http://dx.doi.org/10.1016/j.ijrefrig.2007.06.007.

[68] Esen H, Inalli M, Sengur A, Esen M. Predicting performance of a ground-source
heat pump system using fuzzy weighted pre-processing-based ANFIS. Build
Environ 2008;43(12):2178–87. http://dx.doi.org/10.1016/j.buildenv.2008.01.
002.

[69] Esen H, Inalli M, Sengur A, Esen M. Forecasting of a ground-coupled heat
pump performance using neural networks with statistical data weighting pre-
processing. Int J Therm Sci 2008;47(4):431–41. http://dx.doi.org/10.1016/j.
ijthermalsci.2007.03.004.

[70] Fang J, Feng Z, Cao S-J, Deng Y. The impact of ventilation parameters on
thermal comfort and energy-efficient control of the ground-source heat pump
system. Energy Build 2018;179:324–32. http://dx.doi.org/10.1016/j.enbuild.
2018.09.024.

[71] Østergård T, Jensen RL, Maagaard SE. A comparison of six metamodel-
ing techniques applied to building performance simulations. Appl Energy
2018;211:89–103. http://dx.doi.org/10.1016/j.apenergy.2017.10.102.

[72] Afram A, Janabi-Sharifi F. Black-box modeling of residential HVAC system
and comparison of gray-box and black-box modeling methods. Energy Build
2015;94:121–49. http://dx.doi.org/10.1016/j.enbuild.2015.02.045.

[73] Xia L, Ma Z, Kokogiannakis G, Wang S, Gong X. A model-based optimal
control strategy for ground source heat pump systems with integrated solar
photovoltaic thermal collectors. Appl Energy 2018;228:1399–412. http://dx.doi.
org/10.1016/j.apenergy.2018.07.026.

[74] Ikeda S, Choi W, Ooka R. Optimization method for multiple heat source
operation including ground source heat pump considering dynamic variation
in ground temperature. Appl Energy 2017;193:466–78. http://dx.doi.org/10.
1016/j.apenergy.2017.02.047.

[75] Carpenter GA, Grossberg S, Reynolds JH. ARTMAP: Supervised real-time
learning and classification of nonstationary data by a self-organizing neu-
ral network. Neural Netw 1991;4(5):565–88. http://dx.doi.org/10.1016/0893-
6080(91)90012-T.

[76] Ruelens F, Iacovella S, Claessens BJ, Belmans R. Learning agent for a heat-pump
thermostat with a set-back strategy using model-free reinforcement learning.
Energies 2015;8(8):8300–18.

[77] Freedman DA. Statistical models: theory and practice. cambridge University
Press; 2009.

[78] Ho TK. The random subspace method for constructing decision forests. IEEE
Trans Pattern Anal Mach Intell 1998;20(8):832–44.

[79] Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and
data mining, 2016, pp. 785–794.

[80] Evelyn F, Hodges J. Discriminatory analysis-nonparametric discrimination:
consistency properties. Technical Report, 1951.

[81] Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20(3):273–97.
[82] Kleene SC. Representation of events in nerve nets and finite automata. Princeton

University Press; 2016.
[83] MacQueen J, et al. Some methods for classification and analysis of multivariate

observations. In: Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, Oakland, CA, USA, Vol. 1, 1967. pp. 281–297.
13
[84] Rokach L, Maimon O. Clustering methods. In: Data mining and knowledge
discovery handbook, Springer; 2005, p. 321–52.

[85] Watkins CJCH, Dayan P. Q-learning. Mach Learn 1992;8(3–4):279–92.
[86] Metropolis N, Ulam S. The monte carlo method. J Amer Statist Assoc

1949;44(247):335–41.
[87] Bellman RE, Dreyfus SE. Applied dynamic programming. Princeton University

Press; 2015.
[88] Ahmad MW, Mourshed M, Yuce B, Rezgui Y. Computational intelligence

techniques for HVAC systems: A review. Build Simul 2016;9(4):359–98. http:
//dx.doi.org/10.1007/s12273-016-0285-4.

[89] Chiasson A, Kelly Kissock J, Selvacanabady A. Lean energy buildings: Appli-
cations of machine learning, optimal central chilled-water systems, and hybrid
solar-ground source heat pump systems. In: Advances in sustainable energy.
Lecture notes in energy, Springer International Publishing; 2019, p. 59–92.
http://dx.doi.org/10.1007/978-3-030-05636-0_4.

[90] Ahmad T, Chen H, Guo Y, Wang J. A comprehensive overview on the data
driven and large scale based approaches for forecasting of building energy
demand: A review. Energy Build 2018;165:301–20. http://dx.doi.org/10.1016/
j.enbuild.2018.01.017.

[91] Robinson C, Dilkina B, Hubbs J, Zhang W, Guhathakurta S, Brown MA, et
al. Machine learning approaches for estimating commercial building energy
consumption. Appl Energy 2017;208:889–904.

[92] Edwards RE, New J, Parker LE. Predicting future hourly residential electrical
consumption: A machine learning case study. Energy Build 2012;49:591–603.

[93] Yang C, Létourneau S, Guo H. Developing data-driven models to predict BEMS
energy consumption for demand response systems. In: International conference
on industrial, engineering and other applications of applied intelligent systems.
Springer; 2014, p. 188–97.

[94] Kontes GD, Valmaseda C, Giannakis GI, Katsigarakis KI, Rovas DV. Intelligent
BEMS design using detailed thermal simulation models and surrogate-based
stochastic optimization. J Process Control 2014;24(6):846–55.

[95] Pham A-D, Ngo N-T, Truong TTH, Huynh N-T, Truong N-S. Predicting energy
consumption in multiple buildings using machine learning for improving energy
efficiency and sustainability. J Cleaner Prod 2020;260:121082.

[96] Culaba AB, Del Rosario AJR, Ubando AT, Chang J-S. Machine learning-based
energy consumption clustering and forecasting for mixed-use buildings. Int J
Energy Res 2020;44(12):9659–73.

[97] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[98] Fan C, Xiao F, Zhao Y. A short-term building cooling load prediction method

using deep learning algorithms. Appl Energy 2017;195:222–33.
[99] Marino DL, Amarasinghe K, Manic M. Building energy load forecasting using

deep neural networks. In: IECON 2016-42nd annual conference of the IEEE
industrial electronics society. IEEE; 2016, p. 7046–51.

[100] Cai M, Pipattanasomporn M, Rahman S. Day-ahead building-level load fore-
casts using deep learning vs. traditional time-series techniques. Appl Energy
2019;236:1078–88.

[101] Son J, Park Y, Lee J, Kim H. Sensorless PV power forecasting in grid-connected
buildings through deep learning. Sensors 2018;18(8):2529.

[102] Zhang C, Li J, Zhao Y, Li T, Chen Q, Zhang X. A hybrid deep learning-
based method for short-term building energy load prediction combined with
an interpretation process. Energy Build 2020;225:110301.

[103] Li C, Ding Z, Zhao D, Yi J, Zhang G. Building energy consumption prediction:
An extreme deep learning approach. Energies 2017;10(10):1525.

[104] Mocanu E, Nguyen PH, Gibescu M, Kling WL. Deep learning for estimating
building energy consumption. Sustain Energy Grids Netw 2016;6:91–9.

[105] Thorndike EL. Animal intelligence: an experimental study of the associative
processes in animals. Psychol Rev: Monograph Suppl 1898;2(4):i.

[106] Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward.
Science 1997;275(5306):1593–9.

[107] Bellman R. A Markovian decision process. J Math Mech 1957;679–84.
[108] Puterman ML. Markov decision processes: discrete stochastic dynamic

programming. John Wiley & Sons; 2014.
[109] Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT Press; 2018.
[110] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG,

et al. Human-level control through deep reinforcement learning. Nature
2015;518(7540):529–33.

[111] Brandi S, Piscitelli MS, Martellacci M, Capozzoli A. Deep reinforcement learning
to optimise indoor temperature control and heating energy consumption in
buildings. Energy Build 2020;224:110225.

[112] Liu T, Xu C, Guo Y, Chen H. A novel deep reinforcement learning based
methodology for short-term HVAC system energy consumption prediction. Int
J Refrig 2019;107:39–51.

[113] Yang L, Nagy Z, Goffin P, Schlueter A. Reinforcement learning for optimal
control of low exergy buildings. Appl Energy 2015;156:577–86.

[114] Mocrii D, Chen Y, Musilek P. Iot-based smart homes: A review of system
architecture, software, communications, privacy and security. Internet Things
2018;1:81–98.

[115] Rahimi M, Songhorabadi M, Kashani MH. Fog-based smart homes: A systematic
review. J Netw Comput Appl 2020;153:102531.

[116] Gilani S, Quinn C, McArthur J. A review of ontologies within the domain of
smart and ongoing commissioning. Build Environ 2020;107099.

[117] Karkouch A, Mousannif H, Al Moatassime H, Noel T. Data quality in internet
of things: A state-of-the-art survey. J Netw Comput Appl 2016;73:57–81.

http://dx.doi.org/10.1007/3-540-44673-7_7
http://dx.doi.org/10.1007/3-540-44673-7_7
http://dx.doi.org/10.1007/3-540-44673-7_7
http://dx.doi.org/10.1016/j.enconman.2015.08.057
http://dx.doi.org/10.1016/j.enconman.2015.08.057
http://dx.doi.org/10.1016/j.enconman.2015.08.057
http://dx.doi.org/10.1016/j.ijrefrig.2005.10.009
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.1016/j.enbuild.2017.02.012
http://dx.doi.org/10.1016/j.aej.2016.09.001
http://dx.doi.org/10.1016/j.apenergy.2012.12.031
http://dx.doi.org/10.1016/j.apenergy.2014.04.005
http://dx.doi.org/10.1177/0143624413480370
http://dx.doi.org/10.1177/0143624413480370
http://dx.doi.org/10.1177/0143624413480370
http://dx.doi.org/10.1016/j.ijrefrig.2007.06.007
http://dx.doi.org/10.1016/j.buildenv.2008.01.002
http://dx.doi.org/10.1016/j.buildenv.2008.01.002
http://dx.doi.org/10.1016/j.buildenv.2008.01.002
http://dx.doi.org/10.1016/j.ijthermalsci.2007.03.004
http://dx.doi.org/10.1016/j.ijthermalsci.2007.03.004
http://dx.doi.org/10.1016/j.ijthermalsci.2007.03.004
http://dx.doi.org/10.1016/j.enbuild.2018.09.024
http://dx.doi.org/10.1016/j.enbuild.2018.09.024
http://dx.doi.org/10.1016/j.enbuild.2018.09.024
http://dx.doi.org/10.1016/j.apenergy.2017.10.102
http://dx.doi.org/10.1016/j.enbuild.2015.02.045
http://dx.doi.org/10.1016/j.apenergy.2018.07.026
http://dx.doi.org/10.1016/j.apenergy.2018.07.026
http://dx.doi.org/10.1016/j.apenergy.2018.07.026
http://dx.doi.org/10.1016/j.apenergy.2017.02.047
http://dx.doi.org/10.1016/j.apenergy.2017.02.047
http://dx.doi.org/10.1016/j.apenergy.2017.02.047
http://dx.doi.org/10.1016/0893-6080(91)90012-T
http://dx.doi.org/10.1016/0893-6080(91)90012-T
http://dx.doi.org/10.1016/0893-6080(91)90012-T
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb76
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb76
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb76
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb76
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb76
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb77
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb77
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb77
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb78
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb78
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb78
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb80
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb80
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb80
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb81
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb82
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb82
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb82
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb84
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb84
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb84
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb85
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb86
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb86
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb86
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb87
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb87
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb87
http://dx.doi.org/10.1007/s12273-016-0285-4
http://dx.doi.org/10.1007/s12273-016-0285-4
http://dx.doi.org/10.1007/s12273-016-0285-4
http://dx.doi.org/10.1007/978-3-030-05636-0_4
http://dx.doi.org/10.1016/j.enbuild.2018.01.017
http://dx.doi.org/10.1016/j.enbuild.2018.01.017
http://dx.doi.org/10.1016/j.enbuild.2018.01.017
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb91
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb91
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb91
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb91
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb91
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb92
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb92
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb92
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb93
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb94
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb94
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb94
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb94
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb94
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb95
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb95
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb95
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb95
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb95
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb96
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb96
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb96
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb96
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb96
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb97
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb98
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb98
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb98
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb99
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb99
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb99
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb99
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb99
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb100
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb100
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb100
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb100
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb100
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb101
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb101
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb101
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb102
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb102
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb102
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb102
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb102
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb103
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb103
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb103
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb104
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb104
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb104
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb105
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb105
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb105
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb106
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb106
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb106
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb107
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb108
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb108
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb108
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb109
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb110
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb110
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb110
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb110
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb110
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb111
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb111
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb111
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb111
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb111
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb112
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb112
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb112
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb112
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb112
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb113
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb113
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb113
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb114
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb114
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb114
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb114
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb114
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb115
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb115
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb115
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb116
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb116
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb116
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb117
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb117
http://refhub.elsevier.com/S1364-0321(21)00959-X/sb117

	A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control
	Introduction
	The challenges of GSHP control
	State of the art of GSHPs control optimisation
	GSHP traditional control
	Optimisation of GSHP control 
	Artificial intelligence application for GSHP control
	Control parameter optimisation at design stage
	Artificial intelligence for GSHP modelling
	Artificial intelligence for control optimisation


	Opportunities of Machine Learning (ML) for GSHP control
	Traditional Machine Learning algorithms
	Deep learning
	Deep Reinforcement Learning

	Discussion
	Challenges of GSHP control optimisation reporting
	Challenges of physical implementation

	Conclusions
	Declaration of competing interest
	Acknowledgement
	References


