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A B S T R A C T   

Process-based models have been recognized as cost-effective tools to assess carbon farming mechanisms through 
quantifying the C fluxes in the agroecosystems. A result-based approach is suggested however the wide vari-
ability of agricultural environments makes further model implementation necessary to limit the uncertainty of 
the results, especially on deep soil organic carbon (SOC) stock estimation and stratification and in agro-
ecosystems characterized by a shallow water table. In this study, a comprehensive soil and crop dataset collected 
over a seven-year period from different pedoclimatic conditions across the Veneto Region (NE Italy) was used for 
EPIC model calibration and validation of SOC stock dynamics. Experimental data included yields from several 
crops (corn, winter and spring wheat, rapeseed, and soybean), continuous monitoring of soil water content, and 
SOC stocks (1872 total samples within the 0–50 cm soil profile) under conventional, cover crop and conservation 
agriculture systems. Modelling was performed by testing two N-C sub-models (CENTURY and PHOENIX), which 
differentiated in terms of mineralization/immobilization rates. 

Results showed that the procedure was able to obtain parameters valuable for most of the management system 
and pedoclimatic condition, reproducing well the tested variables. The EPIC model acceptably captured soil 
water dynamics (Nash-Sutcliffe coefficient – NSE – was up to 0.26), especially in the topsoil. Furthermore, 
simulation of weed—crop competition in conservation agriculture strongly contributed to properly explain the 
variability in crop production among the contrasting agricultural systems (R2 ranged from 0.51 to 0.71). Like-
wise, EPIC skillfully simulated SOC stocks within the 0–50-cm profile regardless of the sub-model used (NSE was 
up to 0.64). Moreover, the model acceptably captured the profile SOC stratification among the different man-
agement practices. This study highlights the EPIC robustness for predicting SOC stocks and assessing with high 
accuracy carbon farming results.   

1. Introduction 

There is renewed interest in carbon (C) farming, a strategy that en-
compasses the management of carbon pools, flows, and greenhouse gas 
(GHG) fluxes at the farm level. To address this issue within the “Farm to 
Fork Strategy”, the EU is called upon to implement effective monitoring, 
reporting, and verification (MRV) scheme that will provide incentives to 
farmers and landowners based on the results achieved (COWI, 2021). At 

the field scale, the challenge is to ensure rapid accounting of soil organic 
carbon (SOC) stock, and its variability over space and time (Montanar-
ella and Panagos, 2021). 

Several agricultural practices have been identified to enhance SOC 
stock (Abbas et al., 2020; Chenu et al., 2019; Stockmann et al., 2013). 
However, accurate evaluation of their effectiveness is complex and 
highly site-specific. The SOC spatial variability is often greater than its 
variability over time, introducing unavoidable uncertainties in detecting 
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changes in SOC stocks (Morari et al., 2019). 
Proper sampling protocols can be adopted to maximize the accuracy 

to field-level soil changes. These methods produce accurate estimates of 
SOC stock –even minimizing the number of samples (Longo et al., 2020; 
Smith et al., 2020)– although MRV costs can still be high. Moreover, 
simply scaling up data to a greater spatial level, or extending data from 
one to another agroecosystem, can generate uncertainty due to varia-
tions in soil, climate, crop, and management practices (Hoffmann et al., 
2016; Manivasagam and Rozenstein, 2020). 

Modeling approaches represent promising solutions for a trade-off 
between monitoring accuracy and costs. Process-based agroecosystem 
models are among the best tools to estimate biogeochemical fluxes and 
predict agronomic and environmental performances of different farm 
management (Oteng-Darko et al., 2013). 

However, reliable reproduction of SOC dynamics and nutrient 
cycling still need thorough testing with monitored data to overcome the 
uncertainties associated with their theoretical background. For instance, 
Brilli et al. (2017), by reviewing several studies, found that flux dis-
crepancies arose from errors in the simulation of soil water content 
(SWC), underlining the importance of adequately describing peculiar 
agroecosystem conditions such as a shallow water table, or thawing and 
ponding. Moreover, current models typically represent soils in a 
simplified way that limits the correct representation of deep SOC dy-
namics (Braakhekke et al., 2013; Jones et al., 2017; LeDuc et al., 2017), 
e.g., actual SOC accumulation versus SOC stratification under no-till 
conditions (Morari et al., 2019; Powlson et al., 2014) or dissolved 
organic carbon leaching (Montanarella and Panagos, 2021). 

Among process-based biogeochemical models, EPIC (Williams, 
1990) has been recently upgraded with advanced physical methods for 
accurate simulation of soil water dynamics and microbial denitrifica-
tion. First, an efficient yet accurate solution of the Richards equation 
(Richards, 1931) was included to overcome the cascade model (Gowdish 
and Muñoz-Carpena, 2009; Jones et al., 2021). The updated model was 
tested on a series of lysimeters that were managed according to different 
shallow groundwater depths, showing considerable improvements in 
SWC predictions (Longo et al., 2021b). Second, a state-of-the-art C/N 
modeling based on CENTURY (Izaurralde et al., 2006; Parton et al., 
1998) was upgraded by introducing a microbial denitrification N-C 
sub-model (Izaurralde et al., 2017) based on PHOENIX approach (McGill 
et al., 1981). However, the above-mentioned studies did not test such 
sub-models in terms of C dynamics while they focused on water and N 
cycles, despite they could be pivotal for refining SOC stock estimates. 

Since 2000, the Veneto Region Government (NE Italy) has subsidized 
several agri-environmental schemes with the general goal to reduce the 
environmental impact of agriculture and enhance the delivery of 
ecosystem services. Recent research has shown that there are significant 
benefits for the agroecosystem from adopting such practices (Dal Ferro 
et al., 2017; Longo et al., 2021a; Piccoli et al., 2019), especially on the 
water quality in the low-lying regional plain that exhibits shallow water 
table conditions (Borin et al., 2000; Camarotto et al., 2018; Morari et al., 
2012). However, the ex-ante and ex-post evaluations of sustainable 
agricultural practices require further refinement to comply with the 
MRV requirements of carbon farming. For instance, previous estimates 
of SOC stock potential under conservation practices in Veneto Region 
generated uncertainty due to the model underrepresentation of SOC 
profile distribution, especially in deep layers (Longo et al., 2021a). 

Here, we hypothesize that recent upgrades in EPIC concerning SWC 
dynamics and N-C processes can improve the prediction of biogeo-
chemical dynamics at the field scale, and in turn refine SOC stock esti-
mates within the soil profile. The general objective of this paper is to test 
the robustness of recently-improved EPIC under the peculiar environ-
ment of the low-lying Venetian plain, by using a large dataset of 44 
agricultural fields across the region covering contrasting tillage and soil 
cover managements. Our specific aims were: i) to assess the ability of the 
Richards sub-model to model soil water dynamics under shallow water 
table conditions, and ii) to test the EPIC PHOENIX-based sub-model to 

simulate SOC using the standard EPIC CENTURY-based sub-model as a 
benchmark. 

2. Materials and methods 

2.1. Study area 

The experimental data used for calibrating and validating the EPIC 
model were collected from three farms in the Veneto Region in northeast 
Italy during the period 2011–2017. The “Vallevecchia” (F1) farm was 
located on the Adriatic Coast (45◦ 38.350′N 12◦ 57.245′E, − 2 m a.s.l.) 
(Fig. 1): the soil was Gleyic Fluvisol or Endogleyic Fluvic Cambisol 
(FAO-UNESCO, 1990) with texture ranging from silty-clay to sandy- 
loam (Table 1) and bulk density of 1.439 g cm− 3, on average. The 
“Diana” (F2) and “Sasse Rami” (F3) farms were situated further west, on 
the central (45◦ 34.965′ N 12◦ 18.464′ E, 6 m a.s.l.) and southern (45◦

2.908′ N 11◦ 52.872′ E, 2 m a.s.l.) regional plains, respectively. Both F2 
and F3 were characterised by Endogleyic Cambisol (FAO-UNESCO, 
1990) silty-loam soils with an average bulk density of 1.426 and 1.451 g 
cm− 3 (Table 1). During the study period annual precipitations were 756 
(±96), 953 (±60), and 703 (±54) mm in F1, F2 and F3, respectively 
(Fig. 2). Mean yearly temperatures were 14.1 ◦C (±0.1 ◦C), 14.4 ◦C 
(±0.1 ◦C), 13.7 ◦C (±0.2 ◦C), with the coldest (January) and warmest 
(July) months having average minimum temperatures of 0.6 ◦C 
(±1.0 ◦C), − 0.2 ◦C (±1.2 ◦C), and 0.0 ◦C (±1.2 ◦C) and maximum 
temperatures of 28.6 ◦C (±2.9 ◦C), 29.8 ◦C (1.0 ◦C), and 30.2 ◦C 
(±1.8 ◦C) in F1, F2 and F3, respectively (Fig. 2). Reference evapo-
transpiration (ET0) exceeded rainfall from May to September in F1 and 
F2, from May to October in F3. 

2.2. Cultivation practices 

Since 2010, a conventional agricultural system (CV) has been 
established in a comparison with cover crop (CC) –it followed the same 
agronomic protocol as CV with the addition of cover crops between the 
main crops– and conservation agriculture (CA) managements. CA and 

Fig. 1. Experimental sites in the Veneto region low plain, northeast Italy. Farm 
positions are marked with triangles (Vallevecchia, F1; Diana, F2, Sasse 
Rami, F3). 
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CC were agri-environmental measures that followed the rules estab-
lished by the Rural Development Programme for the Veneto Region. 

A total of 44 experimental fields (ca. 400 m long × 30 m wide) were 
included in this study, evenly separated between farms and agricultural 
systems (Table S1). Tillage operations for CV and CC included mold-
board plow 35-cm deep and a 15-cm deep seedbed was prepared by disk 
harrow. The CA was managed with no tillage, direct sowing, and crop 
residues left on the field after harvest. Each system underwent the same 
crop rotation since 2010: winter wheat (Triticum aestivum L.), oilseed 
rape (Brassica napus L.), soybean (Glycine max (L.) Merr.) and corn (Zea 
mays L.) were the main crops, after which in 2015, the rotation was 
simplified by abandoning rapeseed cultivation (Table S1 and Table S2). 
In a few instances, winter wheat sowing was delayed until the spring 
season. In both CA and CC, the permanent soil cover was performed with 
cover crops: sorghum-sudangrass (Sorghum x drummondii (Nees ex 
Steud.) Millsp. & Chase) in the spring-summer season and a mixture of 
barley and vetch (Hordeum vulgare L., Vicia sativa L., until 2014) or 

winter wheat (after 2014) during autumn-winter (Table S1). 
Soil remained bare between the main CV crops. Crop protection was 

based on Integrated pest management (IPM) practices following in-
dications from Annual Crops Bulletin (https://www.venetoagricoltura. 
org/argomento/bollettino-colture-erbacee/) which exploits several 
development models, DSS and monitoring procedures. When a IPM 
decision was taken, it was applied to all the CA, CC and CV fields. 

2.3. In-field data collection 

A total of nine soil water monitoring stations were installed to cover 
all the different treatments at the three farms. At each farm, volumetric 
SWC (m3 m− 3) was recorded daily from November 2013 to May 2015 via 
WaterScout SMEC 300 sensors (Spectrum Technologies, Aurora, IL, 
USA) positioned at depths of 10, 30, and 50 cm. Prior to field installa-
tion, the SMEC 300 sensors were calibrated in the laboratory to an ac-
curacy of ±5%. Weather data were collected from nearby stations 
operated by the Environmental Protection Agency of the Veneto Region 
(ARPAV). 

As of March 2016, additional nine soil water monitoring stations 
were installed in three experimental fields only of F3, such that the CV, 
CC, and CA systems were monitored with three monitoring stations 
each. Each station was equipped with multi-sensor probes (HD3510.2, 
Delta OHM, GHM GROUP, Selvazzano Dentro, IT) that continuously 
monitored soil temperature (◦C) and volumetric soil water content (m3 

m− 3) at 10, 30, and 55 cm depths. It follows that monitoring of soil 
water dynamics in each agricultural system was replicated three times at 
all the depths. All soil moisture sensors were previously calibrated in the 
laboratory to an accuracy of ±3%. An additional weather station was 
also installed that was equipped with a thermometer, hygrometer, 
anemometer, pyranometer, and rain gauge. Across farms and cultivation 
systems, phreatic wells (3.5 m depth) were installed to monitor the 
water table level. 

Table 1 
Main soil physicochemical characteristics of the three farms in the 0–50 cm soil 
profile (Vallevecchia, F1; Diana, F2, Sasse Rami, F3).  

Soil property Unit F1 F2 F3 

Sand g 100 g− 1 34.2 8.3 18.4 
Silt g 100 g− 1 42.6 66.1 57.8 
Clay g 100 g− 1 23.2 25.6 23.8 
Bulk density g cm− 3 1.439 1.426 1.451 
pH  8.3 8.0 8.6 
Total Carbonate g 100 g− 1 53.0 4.0 13.0 
Active carbonate g 100 g− 1 3.0 1.0 3.0 
SOC g 100 g− 1 1.0 0.9 0.8 
Available P mg kg− 1 32.0 22.0 6.0 
Exchangeable Ca cmol(+) kg− 1 24.7 21.7 15.5 
Exchangeable Mg cmol(+) kg− 1 3.2 3.4 1.4 
Exchangeable K cmol(+) kg− 1 0.5 0.3 0.2  

Fig. 2. Monthly precipitation (bars, mm) and average temperature (red line, Celsius) by farm.  
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Crop biomass and residue samples were collected annually from 
three 2 m2 areas in each of the 44 fields. The biomass samples were dried 
at 65 ◦C in a forced draft oven for 72 h for dry weight determination. 

Three comprehensive soil sampling campaigns were undertaken in 
the spring of 2011, 2014, and 2017 (Camarotto et al., 2020) to evaluate 
the effects of soil cover and undisturbed soil management on SOC stocks. 
In 2014, sampling was conducted only on CA and CV fields, while in 
2011 and 2017 all agricultural systems were investigated. Undisturbed 
soil cores (0–50 cm) were taken by hydraulic sampler following the 
methodology reported in Dal Ferro et al. (2020) from six systematically 
chosen locations in each field and cut into three distinct layers, 0–5, 
5–30 and 30–50 cm (Piccoli et al., 2016). Briefly, a tractor-mounted 
double-cylinder core sampler was used to minimize compaction by 
slowly drilling soil layers. After sampling, each soil core was measured 
to verify it matched the full length of the hole. A total of 1872 samples 
were collected and later analyzed to estimate SOC concentration (with 
CNS elemental analyzer Vario Max, Elementar Americas, Inc., DE), 
particle size distribution (with laser diffraction, Malvern Mastersizer 
2000, Malvern, UK) and dry bulk density by the core method. 

2.4. The EPIC model 

The EPIC model was originally developed in the early 80 s by the 
USDA with the main purpose of assessing the impact of erosion on soil 
productivity (Williams et al., 1984). After the addition of various 
modules over the past 20 years, EPIC is now suitable to simulate a wide 
range of processes in the agroecosystems, such as crop growth and yield, 
nutrient cycling, water balance, and many agronomic techniques 
(Gassman et al., 2004). 

The standard coupled C-N subroutine (CNT) reflects an approach 
similar to that of CENTURY (Izaurralde et al., 2006), in which C and N 
compounds are allocated to biomass, slow, or passive pools. In the recent 
version, a second module (PHO) based on the approach used in both the 
CENTURY and PHOENIX models (McGill et al., 1981) was also added 
(Izaurralde et al., 2017). Here, mineralization and immobilization rates 
vary with fluctuating C/N ratios of aggregated microbial biomass (i.e., 
bacterial and fungi are not treated separately). Gas diffusivity was 
improved as well when using PHO. Instead of a generalized function of 
depth or carbon/clay fractions, diffusion of O2 and CO2, along with N2O 
and N2, are simultaneously simulated using the gas transport equation 
(Šimůnek and Suarez, 1993). The upgraded sub-model also contains a 
decomposition feedback mechanism (Izaurralde et al., 2012), which is 
reduced sufficiently such that actual decomposition produces an elec-
tron supply equal to the total of electrons that can be accepted by O2 and 
oxides of N. Both CNT and PHO sub-models simulate C-N dynamics for 
all soil layers. 

The EPIC model simulates SWC dynamics through a cascade model 
approach, which showed to be inaccurate for near-saturated conditions 
(Longo et al., 2021b). To overcome this, the EPIC code has been recently 
upgraded with subroutines for simulating SWC dynamics intended to 
better handle conditions above the field capacity. The subroutines use 
the Ross method (Ross, 2006) to reproduce a fast analytical solution of 
the Richards equation (Jones et al., 2021), which is: 

∂θ
∂t

=
∂
∂z

[

K(θ)
(

∂h
∂z

+ 1
)]

(1)  

where θ is the volumetric soil water content (m3 m− 3), t is time (s), K is 
the hydraulic conductivity (m s− 1), z is the elevation (m), and h is the 
matric head (m). 

The Richards sub-model drives daily vertical water flows through the 
soil following infiltration and evaporation from the surface soil layer, 
and root water extraction from root-penetrated soil layers. Due to its 
application for independent modeling units, horizontal inflows and 
outflows are assumed to be balanced in EPIC. Percolation from the 
deepest soil layer is assumed to occur as free gravitational drainage. The 

two bottom boundary conditions available in the module are free 
drainage and constant head. Soil hydraulic parameterization employs 
the modified van Genuchten-Mualem models (Schaap and van Gen-
uchten, 2006) to characterize the soil water retention and unsaturated 
hydraulic conductivity functions. The soil hydraulic characteristics can 
either be input or estimated by the pedotransfer functions in the code. 

2.5. Model input data 

Model input parameters were daily weather data from which crop 
potential evapotranspiration was calculated using Penman-Monteith 
equation (Allen et al., 1998). Soil profiles were set down to 1.5 m. Dry 
bulk density, particle size distribution, pH, and SOC concentration 
measured on samples within the 0–50 cm profile were fed into the 
model. The other soil parameters required by the model, and those 
below 50 cm deep, came from the Veneto Region soil map (Regione 
Veneto, 2005) (Table 1). Model SOC fraction pools were initialized with 
a 100-yr spin-up of crop rotations (Izaurralde et al., 2012) typical in the 
area as in Dal Ferro et al. (2016). Minimum and maximum shallow water 
table depths were also added as input parameters. Pedotransfer func-
tions were used to estimate soil hydraulic parameters according to 
(Jones et al., 2014). 

The dates, operational details, and quantities of the agricultural 
management practices, such as tillage, fertilizations, and harvesting 
came from experimental protocols. Crop and cover crop parameters 
embedded in the plant species file (CROPCOM.DAT) were adjusted to 
the specific vegetation conditions of the Veneto Region. Corn (CORN), 
soybean (SOYB), and winter wheat (WWHT) parameterization was 
based on the studies of Giardini et al. (1998) and Causarano et al. (2008) 
(Table S3). Spring wheat (SWHT) was used in the instances when the 
sowing of winter wheat was delayed. For this crop and in the case of 
rapeseed (RAPE), crop parameters were sourced from the EPIC database 
(Williams, 1995). Some CA systems experienced high competition from 
weeds, which led to significant lower yields than weed-free fields. Here, 
Johnsongrass (JHGR) was simulated to reproduce the effect of weeds 
competing with the main crop. 

2.6. Calibration and validation 

Calibration and validation were performed by comparing experi-
mental and simulated crop yields, SWC dynamics, and SOC contents 
within the 0–50 cm profile throughout the 7-year experiment 
(2011–2017). Calibration and validation datasets of crop yields and SOC 
were built to represent the whole range of pedo-climatic and manage-
ment conditions. Hence, for each farm-management practice combina-
tion, half of the experimental fields were randomly selected for 
calibration, the remaining half was used for validation. It follows that in 
total 22 out of 44 fields were used for calibration. 

Water dynamics, available in nine fields from November 2013 to 
October 2014, were used for calibration; values from November 2014 to 
April 2015 were used for validation. In F3 farm, the March 2016-to- 
December 2017 period was also used for water dynamics validation. 
Soil layer depths differed between measured and simulated values. To 
match them, simulated SOC stocks were determined by fitting an equal- 
area spline to estimate the 1 cm variation in bulk density and SOC 
concentration along the soil profile (Longo et al., 2020), and by calcu-
lating the cumulative stock in the 50 cm depth and the stock in the 0–5, 
5–30 and 30–50 cm depth. 

A first set of potentially calibrated parameters was selected based on 
expert knowledge of EPIC, which most influence SWC, yield, and SOC 
(Table S4). Selected SWC parameters mainly affected the Penman- 
Monteith equation and runoff. Most of the parameters regarding crop 
yield adjustments were related to the influence of stresses caused by 
water deficit and soil strength. SOC parameters regarded SOC pool 
transformation and decay rate, the effect of tillage, and soil biological 
mixing (e.g., earthworms). After that, a sensitivity test using the Morris 

M. Longo et al.                                                                                                                                                                                                                                  



European Journal of Agronomy 145 (2023) 126771

5

elementary screening method (Campolongo et al., 2007) was performed 
to identify the most sensitive parameters requiring calibration. The 
method involves two main steps. First, it discretizes the input space for 
each variable, then it performs a set number of designs as each input is 
varied while holding the others fixed (one-at-time design) (Iooss and 
Lemaître, 2015). 

Final sensitivity is expressed as the mean of absolute value (µ*) and 
the standard deviation (σ) of the elementary effect of the tested 
parameter (Iooss and Lemaître, 2015). The larger the µ* is, the more the 
parameter contributes to output dispersion. The smaller is σ, the more 
negligible the parameter effect becomes when interacting with others. 
The screening method considered the influence of the selected param-
eters on model skill for simulating yield, SWC and SOC, according to the 
Nash-Sutcliffe coefficient of efficiency (NSE) (Nash and Sutcliffe, 1970), 
with the average NSE utilized for a balanced assessment. The parameter 
selection method was conducted for both PHO and CNT subroutines, 
which were executed for 420 iterations (20 parameters × 20 +1 repe-
titions) at 22 fields (totally 18480 simulations). Parameters whose 
relative sensitivity –the ratio between each µ* and the maximum µ* – 
was < 0.05 were excluded from calibration. 

A multi-objective genetic parameter estimation algorithm (NSGA-II; 
Deb et al., 2002) was used to automatically find the best parameter set. 
The optimization procedure aimed to maximize the NSE coefficient of 
yield, SWC and SOC of the 22 selected fields, so that the procedure 
simultaneously optimized three NSE values. The parameter set that 
maximized the average NSE was then selected. The model was executed 
for 66000 iterations (number of generations=30, population size=100, 
fields=22) for each N-C sub-model (132000 in total). 

As for validation, the coefficient of determination (R2), the NSE, and 
the percent bias (PBIAS) coefficients (Tonitto et al., 2010) were calcu-
lated between experimental and simulated results. 

The NSE coefficient (Nash and Sutcliffe, 1970) was expressed as 
follows: 

NSE = 1 −

∑n

i=1
(Obsi − Simi)

2

∑n

i=1
(Obsi − Obs)2

(2)  

where Obsi is the i-th observation of the variable being evaluated, Simiis 
the i-th simulated value of that variable, Obsis the mean of observed 
values, and n is the total number of observations. Model outcomes 
produce good approximations when NSE is positive, with NSE= 1 rep-
resenting the best fit. 

The PBIAS coefficient measures the average tendency of the simu-
lated data to be larger or smaller than their observed counterparts and 
was expressed as: 

PBIAS =

∑n
i=1(Obsi − Simi) × 100

∑n
i=1Obsi

(3) 

Both automated calibration and validation procedures were con-
ducted in R version 3.6.0 (R Core Team, 2017). 

3. Results 

3.1. Sensitivity analysis and model calibration 

The sensitivity analysis using the Morris method revealed greater 
sensitivity for SWC-related parameters than SOC and yield, regardless 
the implementation of PHO or CNT sub-models. Of all SWC parameters, 
only PRMT(75) –which affects the residue influence on runoff 
(Table S4)– was excluded from the calibration process. The greatest 
effect was associated with the “adjustment factor of the Penman- 
Monteith equation” (PRMT(74)), a parameter that contributed (PHO, 
µ* = 0.29; CNT, µ* = 0.30) and interacted (PHO, σ = 0.27; CNT, 
σ = 0.28) more than others to the model output (Table S4) or (Table S5). 

Considering SOC parameters, the Morris method selected PRMT(20), 
PRMT(47), and PRMT(51), which represent the microbial decay rate 
coefficient, the slow humus transformation rate, and the microbial ac-
tivity in topsoil layer, respectively. Regarding crop, the selection pro-
cedure highlighted high sensitivity for root growth against soil strength 
(PRMT(2)). In total, eight parameters out of 20 were excluded from the 
calibration process. 

The model calibration produced similar results between CNT and 
PHO sub-models. In only a few exceptions did parameters relatively vary 
much from their initial values. For example, runoff related PRMT(81) 
increased from 0.10 to 0.52 (PHO) and 0.19 (CNT). The PRMT(20) rose 
from 1.00 to 1.34 (PHO) and 1.20 (CNT). 

3.2. Soil water content dynamics 

Experimental SWC had generally higher values during winter, fol-
lowed by a gradual decrease until minima that were observed during 
summer (Fig. 3). This dynamic was more pronounced in F2 regardless 
the agricultural system and the soil depth. Similar, F1 dynamics were 
more noticeable under CC and CV than CA as well as at 10 and 30 cm 
than 55 cm depth. SWC increased with depth, averaging 0.26 (SD 
= ±0.004), 0.30 (±0.004), and 0.29 (±0.003) m3 m− 3 at 15 cm in F1, 
F2, and F3, respectively, and 0.35 (±0.003), 0.34 (±0.003), 0.38 
(±0.002) m3 m− 3 at 55 cm depth. Prolonged periods of SWC 
> 0.30 m m− 3 were observed at all depths in F1 and F2, which increased 
to values > 0.40 m m− 3 in F3. Here, it was also monitored the highest 
SWC that reached values up to 0.48 m m− 3 during the winter of 2014. In 
contrast, the lowest SWC was measured in F2 during July 2014, when a 
prolonged dry period combined with high temperatures and evapo-
transpiration dropped SWC down to 0.08 m m− 3 in the surface layer 
(Fig. 3b). Regarding management, SWC varied little on average, with 
values equal to 0.31 (±0.003) m m− 3 for CC and 0.33 (±0.002) m m− 3 

for both CV and CA. 
Little SWC variations were observed between CNT and PHO, and 

similar dynamics were simulated by the two sub-models (Fig. 3 and S1). 
Overall, both sub-models predicted average SWC values of 0.32 m3 m− 3 

across all depths along the experiment, while observations showed av-
erages equal to 0.27, 0.30, and 0.36 m3 m− 3 at 15, 30 and 55 cm depth, 
respectively. A brief description for only PHO is reported hereafter. 
Simulations with PHO led to good representation of experimental SWC 
at 15-cm depth across farms and managements (NSE=0.07). Results also 
agreed well at 30-cm depth, despite some misrepresentations. For 
instance, the experimental SWC fluctuation under CC in F2 was not 
caught by EPIC with observations ranging between 0.10 and 0.36 m3 

m− 3, and simulations between 0.27 and 0.44 m3 m− 3 (Fig. 3b). Larger 
differences were observed at 55-cm depth for all treatments. In fact, 
EPIC often simulated quick changes in saturated and unsaturated SWC 
fluctuations along the full soil profile, even though only slight changes 
were monitored. In this context, some prolonged soil saturation condi-
tions during winter at 55-cm depth were not predicted, probably 
because of a model neglection of upward movements (Fig. 3a, b). 

The SWC dynamics found during calibration were confirmed in the 
validation, highlighting a good sensitivity to detect soil moisture 
changes especially in the surface and intermediate layers. Also, the 
model was accurate to describe SWC dynamics in the surface layer of F2 
and F3 (NSE equaled 0.26 and 0.13, respectively). Accuracy decreased 
with depth: at 30-cm depth, some higher SWC was predicted compared 
with the observed at both F1 and F2, especially for the summer months 
when EPIC probably underestimated the evapotranspiration, failing in 
turn to reproduce the observed low SWCs; at 55-cm depth some SWC 
underestimation was found in F1 CA and F3 regardless the management 
system. 

Soil water content for validation period was underestimated in CA 
and CV (PBIAS=− 8.8% and − 3.7%), while it performed better for CC, 
which PBIAS showed a slightly overprediction (1.1%). 

At F3, EPIC performed well at 10 and 30 cm in CC, successfully 
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capturing both dynamics and range. Nonetheless, it failed at the deepest 
layer, when accuracy rapidly dropped as a result of upward movement 
underestimations. SWC dynamics for CNT are reported in Supplemen-
tary material (Fig. S1). 

Little SWC variations were observed between CNT and PHO, and 
similar dynamics were simulated by the two sub-models (Fig. S1). 
Overall, they both predicted average SWC values were 0.32 m3 m− 3 for 
all depths all along the experiment, while observations showed averages 
equal to 0.27, 0.30, and 0.36 m3 m− 3 at 15, 30 and 55 cm depth, 

respectively. 

3.3. Crop yields 

During the 7-year experiment different crops, management systems, 
and farms, determined high yield variability. For instance, corn (CORN) 
yield averaged 7.79 Mg DM ha− 1 (SD = 2.88 Mg DM ha− 1) while soy-
bean (SOYB) averaged 2.75 Mg DM ha− 1 (SD = 1.51 Mg DM ha− 1). The 
highest CORN yields were observed under CA (14.3 Mg DM ha− 1, 

Fig. 3. Observed and simulated daily SWC (soil water content, m3 m− 3) by management system and depth at a) F1 farm, b) F2 farm, and c) F3 farm using the PHO 
submodel. Observed and simulated values were reported during calibration (Cal) and validation (Val). 
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respectively). Substantial yield reductions were also observed in CA 
compared to CV and CC (− 28.3% for CORN and − 21.0% for SOYB, on 
average) in the fields where weed infestation of Johnsongrass (Sorghum 
halepense (L.) Pers.) was poorly controlled. Rapeseed (RAPE) and spring 
wheat (SWWHT) produced generally lower yields, with the former 
varying from values < 1.0–2.65 Mg DM ha− 1 and the latter from 1.1 to 
3.78 Mg DM ha− 1 (Fig. 4). Winter wheat (WWHT) averaged 5.45 Mg DM 
ha− 1, with SD = 1.74 Mg DM ha− 1. 

Modeled yields using the PHO sub-model acceptably reproduced the 
experimental results, explaining overall 55% of the measured vari-
ability. However, some slight underestimation was observed in all sys-
tems, estimated by a general PBIAS = − 6.9%. The best model 
performance was observed under CC (R2 = 0.69). Under CA, EPIC 
initially simulated high soybean and corn yields that did not account for 
the experimental competition between main crops and weeds. The 
model adjustment with simultaneous growth of the main crops with 
weeds resulted in: i) crop yield predictions that were reduced from 8.84 
to 3.68 DM Mg ha− 1 (data in line with the observed average = 4.82 Mg 
DM ha− 1); ii) explained variability equal to 56% of the total one that was 
experimentally found (Fig. 4). 

Among all crops, CORN was the best modelled (NSE = 0.15) followed 
by SOYB (NSE = 0.11), while the model performance dropped under 
RAPE(NSE =− 0.6) despite a low PBIAS (= 1.2%). 

When using the CNT sub-model (Fig. S3), some differences emerged 
compared to PHO. In particular, the model had better caught the 
observed variability, in particular in CA and CV, that increased the R2 

from 0.56 and 0.51 –using PHO– to 0.65 and 0.71 –using CNT. The 
coefficient of determination did not vary for CC fields (0.69). Predictions 
mostly differed for CORN and SOYB, whose NSE rose up to 0.43 and 0.27 
(for PHO = 0.15 and 0.11). RAPE yield prediction worsened consider-
ably, being PBIAS equal to 48.5%. 

3.4. Soil organic carbon stocks 

Soil organic carbon dynamics during the 2011–2017 experiment 
have been extensively reported in Camarotto et al. (2020). A brief 
description of main experimental results is reported here. 

In 2011, observed SOC stocks along the 0–50 cm soil profile aver-
aged 67.6, 71.9, and 79.1 Mg C ha− 1 under CV, CA, and CC, respectively, 
and higher values in F1 (84.0 Mg C ha− 1) than in F3 (69.9 Mg C ha− 1) 
and F2 (61.1 Mg C ha− 1). During the second sampling campaign (2014) 
SOC content was determined only under CA and CV systems, leading to 
estimated stocks of 67.3 ± 6.6 and 70.6 ± 12.9 Mg C ha− 1, respectively. 
No samplings were performed in CC in 2014. In contrast, SOC stocks 

were greater in CA than CV in 2017, being respectively equal to 75.4 and 
71.1 Mg C ha− 1 (Fig. 5). The highest SOC stock in 2017 was measured 
under CC (80.1 Mg C ha− 1), despite a 3.74 Mg C ha− 1 decrease with 
respect to initial conditions (2011). Instead, both CA and CV had an 
increase in stocks, equal to 2.08 and 2.59 Mg C ha− 1, respectively, from 
2011 to 2017. 

A SOC stratification was clearly observed within the soil profile. 
Final CA stocks were greater than those in the other systems in the 
surface layer (0–5 cm), being 9.28 (SD = 1.1) Mg C ha− 1 against 7.7 (SD 
= 1.2 v) and 6.3 (SD = 1.6) Mg C ha− 1 in CC and CV, respectively 
(Fig. 6). In the deeper layers, CC stocks outranked CV and CA both in 
5–30 (37.6; SD = 78.5 Mg C ha− 1) and 30–50 cm layer (30.7; SD 2.6 Mg 
C ha− 1). 

CNT and PHO sub-models were able to predict SOC stocks within the 
0–50 cm in both 2014 and 2017, regardless the management system 
(Fig. 5). CNT sub-model slightly overestimated the SOC stocks in 2014 
(PBIAS = 7.3%) compared to PHO (PBIAS =− 1.7%) while in 2017 SOC 
stock were underestimated by PHO (PBIAS=− 8.2%) with respect to CNT 
(PBIAS=2.6%). The high SOC stock values, particularly in F1, were 
underrepresented by PHO, which restricted the observed variability 
(86–103 Mg C ha− 1) in the range 67–76 Mg C ha− 1. Similarly, CNT 
underperformed in the same range but reaching an upper limit of 85 Mg 
C ha− 1. Considering the treatment, CNT outperformed PHO in CV in 
both the years, on the contrary PHO better simulated CA, as well 
confirmed by NSE coefficient (Table 2). 

Over the experimental period, EPIC was less effective at predicting 
SOC stock layering. Indeed, in 2017 both sub-models slightly over-
estimated stratification in the 0–5 cm layer irrespective of management 
system (Fig. 6), and underestimated values in the 5–30 and 30–50 cm 
layers, especially for values above 40 Mg C ha− 1. 

Considering the whole profile, SOC stock changes in time were better 
captured by PHO, which simulated an overall increase of 1.73 Mg ha− 1 

in the 2011–2017 period, against an observed value of 1.12 Mg ha− 1. 
Conversely, CNT highly overpredicted SOC stock changes (6.23 Mg 
ha− 1) despite a closer estimation of CV increases (2.59 vs. 2.46 Mg ha− 1, 
for observed and simulated values). Both PHO and CNT poorly repro-
duced the SOC depletion under CC. Regarding stock changes by layer, 
surface and 30–50 cm layers dynamics were better captured by PHO 
compared to CNT, despite they both overestimated the observed change: 
0.54 Mg ha− 1 vs 0.92 Mg ha− 1 (PHO) and 1.60 Mg ha− 1 (CNT) at 
0–5 cm; 1.08 Mg ha− 1 vs to 2.50 (PHO) and 5.08 Mg ha− 1 (CNT) at 
30–50 cm. Conversely, variations in the middle layer were better per-
formed by CNT. 

Fig. 4. Comparison of observed and simulated yields in the validation fields using the PHO sub-model. Significant relationships are labelled with asterisks (* =
p < 0.05, ** = p < 0.01). 
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4. Discussion 

4.1. Model performance and description of biogeochemical cycles 

The screening of sensitive and insensitive model parameters proved 
the Morris method ably minimized calibration efforts, as the influential 
parameters reduced with respect to those initially selected. Automated 
parameter optimization after Morris diagnosis resulted in an optimal set 
of parameters by overcoming the issues of manual calibration, such as 
time demands and consideration of parameter—parameter interactions 
(Balkovič et al., 2018; Causarano et al., 2007; Wang et al., 2005). 

In terms of SWC, EPIC produced promising results, being that the 
model was generally able to describe the dynamics across farms, agri-
cultural practices, and soil depths. Therefore, implementation of EPIC 
with the physically-based approach of Richards equation confirmed its 
ability in terms of soil water predictions. This advanced approach, 
implemented as either an internal subroutine or coupled to a hydraulic 
model, has yielded satisfactory results in several other studies (Die-
kkrüger et al., 1995; Doro et al., 2018; Shelia et al., 2018; Wang et al., 
2015). Researchers have highlighted the success of the calibrated 
Richards solver to surmount SWC underestimations that can render 
cascade-based methods unsuitable for simulating soil water dynamics 
(Beheydt et al., 2007; Kröbel et al., 2010) and related ecosystem services 
(water cycle regulation, nutrient cycling, water filtering, etc.), especially 
at high SWC. In this study, underestimations were rarely observed by 
using the calibrated Richards solver, except during the initial period in 
F3 and at occasional events in the other farms, generally at the deepest 
soil layers. Previous modelling studies that were conducted in lysimeters 
(Longo et al., 2021b) showed that strictly controlled conditions of 
shallow water table level ensured considerably better description of 

SWC dynamics than those reported here. It is likely that lack of 
continuous groundwater data has limited model performance in the 
present experiment. More sophisticated model approaches could be 
helpful to reproduce water table fluctuations, such as in the recent 
coupling of DayCent biogeochemical and MODFLOW groundwater flow 
models (Deng et al., 2021a; Deng et al., 2021b). 

EPIC provided satisfactory predictions of crop yield at levels com-
parable to those reported in other CA (Causarano et al., 2008; Jones 
et al., 2017), CC (Jones et al., 2018), and CV (Balkovič et al., 2013; 
Billen et al., 2009) modeling studies. Specifically, EPIC predicted the 
lower yields that resulted from resource competition between crops and 
weeds in no-tillage (CA) as opposed to the absence of competition in 
tillage (CC, CV) managements. However, it cannot be excluded that 
other factors such as the poor soil structure conditions and a higher bulk 
density (Camarotto et al., 2020) hindered the crop growth, especially in 
the short term (Constantin et al., 2010). Weed infestation is a common 
occurrence under conservation agriculture (Bajwa, 2014; Chauhan 
et al., 2012), especially when practiced with no-tillage and poorly-timed 
herbicide application. These results indicate that yields can be modeled 
successfully as long as needed information is available. Missing infor-
mation about field crop—weed competition may partially explain the 
inter-annual variability that was observed within plots in the experi-
ment, but that was not captured by the model. Other authors have also 
reported a limitation in the ability to predict year-to-year variability 
(Causarano et al., 2008; Kiniryt et al., 1995). Such findings highlight the 
dependency of the model on reliable boundary conditions and input 
parameters from experimental sites. 

Fig. 5. Comparison of simulated and observed SOC stocks along the full profile (0–50 cm) by model used under different agricultural systems (CA: Conservation 
agriculture, CC: conventional cover crop practices, CV: conventional practices). One asterisk (*) indicates statistical significance at p < 0.05; two asterisks (**) 
indicates significance at p < 0.01. 
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4.2. SOC stock estimates with EPIC 

The usage of biogeochemical models, especially when accompanied 
by field auditing, has been suggested as the most robust method for 
carbon farming purposes and MRV scheme (COWI, 2021; Mattila et al., 
2022; Nevalainen et al., 2022). Among the advantages of using such 
tools, models can also be applied to estimate co-benefits of carbon 
farming, such as increases in soil and water quality and economic ser-
vices (Baumber et al., 2019; Lin et al., 2013). Indeed, most empirical 
studies focuses on the possible amount of GHGs mitigated, thereby 
neglecting any potential non-GHG environmental and social co-benefits 
of carbon farming (Tang et al., 2016). 

The model was found to produce accurate predictions of SOC dy-
namics, which compared favorably with other studies (Jones et al., 
2018, 2017; Zhao et al., 2013). The EPIC model was able to perform well 
across systems and years in two ways, first by capturing SOC stock 
variability affected by differing tillage systems, and second by high-
lighting its potential for SOC-related ecosystem services valuation (e.g., 
carbon sequestration and climate regulation, soil degradation 

limitation) (Jones et al., 2018). It is worth mentioning that soil 
compaction and bulk density variation are some examples of the diffi-
culties in modeling soil carbon increases (Mattila et al., 2022). Despite 
EPIC did not include the effect of soil compaction on bulk density 
variation, experimental data did not show significant variation across 
years (Camarotto et al., 2020), substantiating the choice of using this 
model for reproducing SOC stock dynamics. 

Despite the contrasting tillage/no-tillage practice, the model simu-
lated well the experimental SOC stocks in the full soil profile, which 
accounted to an average of +2.08, +2.59, in CA and CV and –3.74 in CC, 
during the 2011–2017 trial. 

It follows that calibrated soil parameters were able to describe the 
different conditions in CV and CA, for instance by adjusting the root 
growth-soil strength relationships and microbial decay rate coefficient 
(PRMT(2) and PRMT(20), respectively. In contrast, EPIC did not fully 
reproduce the SOC depletion experimentally observed under CC 
(Camarotto et al., 2020) for which it was claimed a priming effect due to 
the large burying of fresh biomass with a high C/N ratio. Finally, it is 
worth to note that the model calibration included most of the soil types 

Fig. 6. Comparison of simulated and observed SOC stocks by depth (symbol) and tillage (color). All regression models were statistically significant (p < 0.001).  

Table 2 
Average observed and simulated soil organic carbon stocks within 50-cm soil depth using CENTURY (CNT) and PHOENIX (PHO).    

2014 2017 

Sub- 
model 

Till Observed SOC (Mg 
ha− 1) 

Simulated SOC (Mg 
ha− 1) 

NSE PBIAS (%) Observed SOC (Mg 
ha− 1) 

Simulated SOC (Mg 
ha− 1) 

NSE PBIAS (%) 

CNT CA 66.0 73.4 -1.32 11.1 75.4 80.4 0.54 6.6  
CC - - - - 80.1 86.0 -2.83 7.4  
CV 67.5 69.9 0.44 3.5 71.1 69.9 0.64 -1.7 

PHO CA 66.0 67.3 0.07 1.9 75.4 71.4 0.63 -5.3  
CC - - - - 80.1 76.9 -1.84 -4.0  
CV 67.5 64.0 0.41 -5.2 71.1 62.8 0.38 -11.7  

M. Longo et al.                                                                                                                                                                                                                                  



European Journal of Agronomy 145 (2023) 126771

10

and cropping systems that are representative of the low-lying Venetian 
plain soils. However, it did not cover the full pedo-climatic and man-
agement combinations that mostly occur, e.g., in the high plain and hilly 
areas of Veneto (grasslands, vineyards, etc.). This suggests that a wider 
model validation should be conducted to provide a comprehensive 
assessment of SOC stock dynamics across the agroecosystems of the 
region (Longo et al., 2021a). For instance, the requirement of specific 
calibrations/validations might be also hinted by the different C resi-
dence times between grassland vs. cropland (Guo et al., 2017). 

The implementation of PHO sub-model showed similar results to 
CNT, despite the latter yielded slightly SOC stock overestimations in 
2014 and 2017 when CC and CA were simulated. Le et al. (2018) already 
reported that EPIC overestimated SOC under a no-tillage in Cambodia. 
Most likely, CNT overestimated the potential decomposition rate of 
structural and metabolic surface SOC pools, even though an a priori 
100-year spinning-up procedure was applied to equilibrate soil C. 
Several authors insist that the spinning-up procedure is often the most 
adequate and common SOC pool initialization method (Farina et al., 
2020; Hashimoto et al., 2011; Nemo et al., 2017), others (e.g. Dimassi 
et al., 2018) argue that the spinning-up procedure has little effect. Thus, 
the outperformance on PHO in CA and CC may relate to its ability to 
represent plant residue decomposition well, as reported by Jan-
s-Hammermeister and McGill (1997). Over time, interest has grown in 
models that use microbial biomass to drive decomposition rates (Berardi 
et al., 2020). Therefore, PHO may be preferred to CNT as it better 
combines N and C cycle simulations. Indeed, PHOENIX applies the 
deterministic Michaelis-Menten kinetic equation for simulating the N 
immobilization, N mineralization, and microbial O2 uptake (Manzoni 
and Porporato, 2009). Wieder et al. (2013) underscored that the 
Michaelis-Menten kinetic-based modeling approach was able to 
generate more accurate projections of the C soil feedback on climate 
change. Similar microbial models also correctly reproduced ephemeral 
increases in the C decomposition due to warming, re-wetting, and 
root-priming events (Allison et al., 2010; Evans et al., 2016; Sulman 
et al., 2017). The DNDC model was recently upgraded by developing a 
microbial-mediated organic matter decomposition model, increasing the 
performance in capturing seasonal variations of net ecosystem exchange 
and SOC changes (Deng et al., 2021b; Deng et al., 2021a). 

5. Conclusions 

The EPIC model was calibrated and validated using a massive dataset 
from three farms that included crop yields, soil water content dynamics, 
and SOC stocks. Overall, the model was able to reproduce the tested 
variables under different pedo-climatic and management conditions 
over a seven-year period, which made clear it represents a promising 
tool to quantify ecosystem services provisioning across the Venetian 
Plain (9000 km2). In fact, the Richards sub-model implementation made 
it possible to predict well the SOC stock dynamics even under shallow 
water table conditions, thus broadening its applicability to low-lying 
and coastal areas that are poorly represented by cascade-based biogeo-
chemical models. The additional strength of the model was its ability to 
explain the variability in crop production, even when weed—crop 
competition was present. Some of the best performances by the model 
were observed for SOC simulations. The model described management 
systems that were characterized by different tillage practices, empha-
sizing its ability to simulate not only the SOC stock within the 0–50-cm 
profile regardless of sub-model used, but also the SOC stratification. 

In terms of opportunities to improve the model, there are several. 
Soil water content simulations suffered from missing data that could not 
be used to set water table levels as a bottom boundary condition. Results 
in the 0–30 cm soil profile were generally acceptable, but less so in the 
deepest layer. Soil water content predictions in the model would benefit 
from modification and additional testing of the water table level routine 
with data from environments characterized by shallow water tables, 
such as those studied here. 

On balance, we accept our hypothesis that recent EPIC imple-
mentations provide substantial improvements for predicting SOC dy-
namics, which allows refined estimates of agricultural practices to affect 
the SOC stocks in the perspective of carbon farming initiatives. The 
acceptance of our hypothesis comes with the recommendation to use the 
PHO sub-model in the future, since microbial C/N dynamics are more 
realistically modeled and provide far better outcomes when both the C 
and N cycles are combined and tested. To this end, future research will 
be required to test a wide range of ecosystem service provisioning 
models that embed both C and N cycles, allowing to account for the 
whole GHG balance. 
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