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Abstract: In the last years, collaborative human-robot applications have become more and
more appealing thanks to the robot’s easiness of programming and the promise of increasing
precision and safety. However, by combining two resources (the cobot and the human operator)
there is a problem of safety since cobot and human operator have to work in the same workspace.
To ensure human safety, the distance between robot and operator must be assessed and the robot
must adapt accordingly either by reducing its velocity or by modifying its trajectory.
In this paper, we propose a new online method to adapt the trajectory of the robot to the
human movements using a single depth camera. This algorithm eliminates the robot from the
scene using a simple calibration process. Then, it interpolates the shared workspace, captured
by the depth camera, using Radial Basis Functions (RBFs). The result is a continuous function
that is representative of the risk of collision with obstacles on the plane. Its gradient is used
as a repulsive potential in the Artificial Potential Field (APF) method to generate the path.
This method eliminates the need to calculate the distance between operator and robot since it
is intrinsically considered in the potentials. Results shows the validity of the method.
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1. INTRODUCTION

Nowadays, the demand for high product variety drives the
manufacturing market and requests for higher flexibility
in production. One trend born to accomplish this task is
the human-robot collaboration [IFR (2020)]. The robot
is not constrained inside a fenced cage, but it works ac-
tively and responsively with the human operator, shar-
ing its workspace. Collaboration can take advantage both
of the dexterity and flexibility of human operators, and
the repeatability, speed, accuracy, and strength of robots
[Matheson et al. (2019)]. As a result, higher agility is
achieved, and complex tasks can be completed with higher
productivity and lower costs. However, this comes with
a decreased throughput when compared to a traditional
robotic system. Fortunately, a careful allocation of tasks
and increased flexibility can make this aspect negligible
[Faccio et al. (2019a), Faccio et al. (2019b)].

Even if the collaboration can be achieved with traditional
robots, dedicated robots, called cobots, have been de-
signed. Indeed, they are equipped with sensors and proce-
dures to detect and prevent impacts [Villani et al. (2018)].
Furthermore, they can exhibit mobility through their in-
stallation over mobile robots or their ease of installation. In
this way, they can be used to assist inexperienced operators
or substitute ill workers [Cohen et al. (2021)].

However, the collaboration has some downsides regarding
the safety of the operator. Indeed, one of the current trends
among researchers is about developing algorithms and
devices to protect the operator from the risk of collisions

with the robot [Villani et al. (2018), Robla-Gómez et al.
(2017)]. Moreover, nowadays, most collaborative tasks
involve either coexistence or sequential collaboration to
reduce intrinsically that risk [IFR (2020)].

This need arises because the robot is not able to perceive
the environment in which it moves. Thus, approaches to
increase its perception are fundamental to exploit the
benefits of collaboration through obstacle avoidance, pre-
dictive control, and task recognition [Antão et al. (2019)].
For example, a robot should be able to distinguish be-
tween human interferences due to trajectory error or time
sequence error [Boschetti et al. (2021)]. In the first case,
the robot can decide whether the interference can cause a
collision or not. In the second case, it should redefine its
task and warn the operator of his poor performance.

In general, the approaches to collision detection and col-
lision avoidance regard the use of force/torque sensors,
vision systems [Robla-Gómez et al. (2017)], or dedicated
end-effectors [Tommasino et al. (2021), Kim et al. (2013)].

The different solutions adopted depend on the modality of
the collaboration. For example, in [Mariotti et al. (2019)],
authors focused on the so-called ”Hand Guiding” mode
making the most of the estimated forces given by the
controller of the robot and the data from a force/torque
sensor attached to the end-effector. These forces are used
to detect impacts. Furthermore, they can distinguish be-
tween intentional and accidental collisions adapting the
response to the stimulus.
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In other modes, a calculation of the distance between
the robot and moving obstacles (such as operators) must
be assessed [Secil and Ozkan (2022)]. In general, this
is performed using vision systems and algorithms opti-
mized to guarantee real-time capabilities. The detection
of the human operator is achieved using complex devices,
such as infrared cameras and reflective spheres [Amorim
et al. (2021)], or RGB-D cameras coupled with dedicated
tracking algorithms [Mauro et al. (2018)]. The algorithms
measure the distance between robot and operator and
decide whether to reduce velocities and stop [Magrini et al.
(2020)] or modify the trajectory [Flacco et al. (2012),
Scimmi et al. (2021), Bottin et al. (2021b)]. Depth cameras
are extensively used for their simplicity and reduced cost.

In this work, we introduce a new algorithm that can
simplify the detection of human interferences in the col-
laboration space by combining Radial Basis Functions
(RBFs) and Artificial Potential Field (APF) method. Un-
like other methods, this algorithm makes use of a single
depth camera to view the scene from above. Then, the
scene is elaborated to remove the robot, and interpolated
using RBFs to obtain a continuous function. Finally, APF
method is adopted to find the trajectory and modify it if
operators interfere in the scene during the execution of the
task. Such an algorithm can be used in conjunction with
a task planning algorithm [Bottin et al. (2021a)].

The paper is organized as follows. In Section 2, the global
RBFs will be described in all its components. In Section
3, the theory is applied in a use case to demonstrate its
applicability. Finally, conclusions are drawn in Section 4.

2. POTENTIAL FUNCTION

The method used to modify trajectories derived from
the APF method used extensively in the field of path
planning [Warren (1989)]. The potentials are extrapolated
directly from the interpolation of the environment with
Radial Basis Functions, first introduced by [Strack and
Janković (1999)] and used in many fields of application
during the years [Buhmann (2000)]. They can be used
to represent a measure of the risk of collisions inside
the environment in which the robot moves, for example
interpolating the data coming from depth cameras. Indeed,
the interpolation of depth images causes the obstacles,
such as human operators, to be the maximums of the
interpolated functions. Thus, such interpolation can be
used so that the robot will deviate while following the
gradient of the function. In such way, the robot can avoid
the operator without the need of feature recognition.

2.1 Radial Basis Functions

Radial Basis Function (RBF) method is widely used to
approximate multivariate functions since it can handle
high dimensional problems with scattered data [Buhmann
(2000)].

This property made RBFs suitable as neural network
models [Broomhead and Lowe (1988)]. In particular, their
introduction in this field was driven by their simplicity in
modeling nonlinear relationships using a linear combina-
tion of the weights of the variables. They are defined as a
combination of functions [Buhmann (2000)]:

s(x) =
∑
ξ∈Ξ

λξφ(‖x− ξ‖) (1)

where x ∈ Rn, λξ represents the coefficients of the
combination, φ(‖x − ξ‖) is the basis and Ξ is the set of
distinct points used as centers for the RBFs.

In this work, the Radial Basis Functions are built using
the Gaussian function. Thus, the basis is described by the
following equation:

φ(‖x− ξ‖) = e−
‖x−ξ‖
2σ2 (2)

where x are the coordinates (x, y) of the points in which
evaluate the function and ξ are the coordinates of the
centers of the Gaussian functions. σ is canonically the
standard deviation. In this case, σ represents a measure
of the influence of a single Gaussian over the others, as
can be seen in Figure 1. In fact, the higher σ, the wider
the spread of the Gaussian function.

(a)

(b)

Fig. 1. Mutual influence of RBFs depending on σ: (a)
σ = 5, (b) σ = 12.

Since the function is constituted of a linear combination of
the variables, the weights can be estimated using the least
square method. Considering the following simplification:

Gi = φ(‖x− ξ‖) (3)

the weights are obtained with Equation 4

λξ = (GTG)−1GT f(x, y) = G+f(x, y) (4)

where G+ is the pseudoinverse of the matrix G, and
f(x, y) contains the depth image data. The calculation of
G+ is time-consuming, but it can be performed in advance.
Thus, weights estimation is reduced to a simple and fast
matrix multiplication.

The value of σ is arbitrary; thus, tests were carried on
fitting different images to find the best value for σ. For an
equally spaced grid of RBFs, the best interpolation results
have been achieved when:

σ =
Dξiξj

2
(5)

where Dξiξj is the distance between the Gaussian centers.

Finally the interpolated image f∗(x, y) is given by:

f∗(x, y) = G · λξ (6)

In [Carr et al. (2001)], authors take advantage of RBFs
to fit point-clouds representing 3D objects. They obtained
smooth surfaces and were also able to repair incomplete
meshes. Similarly, in this work, we used RBFs to approx-
imate depth images data to obtain a more regular envi-
ronment where searching for paths. In Figure 2a, a depth
image of the robot is shown. This image was interpolated
using a 15 × 15 grid of evenly distributed RBFs on the
plane. As can be seen in Figure 2b, the resulting function
is regular and continuous. Such function is easier to work
with and can be easily added to other functions. Moreover,
the calculation of the gradient is straightforward since it
is not necessary to calculate the gradient directly from the
final function. From Equation 1, the gradient is given by:

δf(x, y)

δx
=

δG

δx
λξ (7)

δf(x, y)

δy
=

δG

δy
λξ (8)

Thus, it is only necessary to know the gradient formulation
of a simple gaussian and to calculate the weights with
Equation 4. This simplicity makes it useful for the APF
application exposed in the next section where gradients
are used to modify the trajectory.

2.2 Robot removal from depth images

Independently of the vision system adopted, the robot will
always appear in the images. Most of the works track the
robot or use its kinematics to understand where it is to
calculate its distance from the operator [Secil and Ozkan
(2022), Mauro et al. (2018)].

In [Magrini et al. (2020)], the robot is removed from the
scene using its augmented 3D model to eliminate possible
disturbances or false alarms. As a result, the processed
depth image data contains only obstacles.

Following [Magrini et al. (2020)], the captured depth image
is processed by means of a calibration method: the robot
moves on the plane following a grid disposed all over the
collaborative space. In the meanwhile, the camera takes

(a)

(b)

Fig. 2. Example of interpolation of the depth image of the
robot using RBFs: (a) original depth image filtered
to reduce noise, (b) interpolated function using 15x15
RBFs grid.

snapshots of its movements, as in Figure 2a. The position
of the robot at every snapshot is read from the robot
controller. After this process, the images are interpolated
using RBFs as shown in Figure 2b. The interpolation
generates an augmented representation of the robot that
is useful to be more conservative during the elimination
phase. Then, the images are binarized, and the MATLAB
function regionprops is used to find the pixels occupied by
the robot. Finally, a matrix is populated with the image’s
pixels that must be deleted at every position of the robot in
the collaboration space. Such calibration method is easy to
implement and is convenient when a reliable CAD model
of the robot is not available. It is worth to notice that by
using a CAD model the calibration could be performed
more accurately.

Figures 3a and 3b show the binarized images. The thresh-
old for the binarization is selected experimentally search-
ing for a good approximation of the robot. The thresh-
old corresponds to the height at which the interpolated
function is cut. Therefore, higher thresholds mean greater
heights for the cut, and the final result is nearer to the
original image. This iterative process is simplified since the
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the calculation of the gradient is straightforward since it
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of a simple gaussian and to calculate the weights with
Equation 4. This simplicity makes it useful for the APF
application exposed in the next section where gradients
are used to modify the trajectory.

2.2 Robot removal from depth images

Independently of the vision system adopted, the robot will
always appear in the images. Most of the works track the
robot or use its kinematics to understand where it is to
calculate its distance from the operator [Secil and Ozkan
(2022), Mauro et al. (2018)].

In [Magrini et al. (2020)], the robot is removed from the
scene using its augmented 3D model to eliminate possible
disturbances or false alarms. As a result, the processed
depth image data contains only obstacles.

Following [Magrini et al. (2020)], the captured depth image
is processed by means of a calibration method: the robot
moves on the plane following a grid disposed all over the
collaborative space. In the meanwhile, the camera takes
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Fig. 2. Example of interpolation of the depth image of the
robot using RBFs: (a) original depth image filtered
to reduce noise, (b) interpolated function using 15x15
RBFs grid.

snapshots of its movements, as in Figure 2a. The position
of the robot at every snapshot is read from the robot
controller. After this process, the images are interpolated
using RBFs as shown in Figure 2b. The interpolation
generates an augmented representation of the robot that
is useful to be more conservative during the elimination
phase. Then, the images are binarized, and the MATLAB
function regionprops is used to find the pixels occupied by
the robot. Finally, a matrix is populated with the image’s
pixels that must be deleted at every position of the robot in
the collaboration space. Such calibration method is easy to
implement and is convenient when a reliable CAD model
of the robot is not available. It is worth to notice that by
using a CAD model the calibration could be performed
more accurately.

Figures 3a and 3b show the binarized images. The thresh-
old for the binarization is selected experimentally search-
ing for a good approximation of the robot. The thresh-
old corresponds to the height at which the interpolated
function is cut. Therefore, higher thresholds mean greater
heights for the cut, and the final result is nearer to the
original image. This iterative process is simplified since the
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Binarized image of the robot

(a)

Binarized image of the interpolated robot

(b)

Fig. 3. Example of binarization: (a) original depth image,
(b) interpolated image with a threshold of 100 mm.

threshold selected for one position shows good consistency
for all the other positions of the robot. It is clear how the
interpolation augments the size of the robot. Furthermore,
the augmentation simplify the calibration process, since it
is not necessary to have a snapshot of the robot in every
single point of the plane.

In Figure 4, the result of the filtering is proposed. As
can be seen in Figure 4a, the operator approaches the
collaboration space. The image shown in 4b is the one
used for future operations.

3. TRAJECTORY GENERATION

In this phase, we make the assumption that robot and
operator face each other during the task. This is typical
if we consider the case of limited collaborative space. In
such a way, all the possible collisions between the arm of
the operator and the robot links are avoided. Thus, only
the wrist is expected to collide with the operator. Future
work will address this limitation to expand the model.

After removing the robot, the filtered image can be ana-
lyzed to find the optimal path for the robot. The method
implemented is based on the Artificial Potential Field
(APF) method. Thus, an attractive force drives the robot
to the target, and a repulsive one makes it divert to avoid
obstacles.

The attractive force is constant and is formulated as
[Siciliano et al. (2008)]:

(a)

(b)

Fig. 4. Example of filtering: (a) original depth image, with
the operator hand on the left and the robot on the
right; (b) filtered and interpolated image, where the
robot has been completely removed.

Fa = ka
e(p)

‖e(p)‖
(9)

where ka is a constant, and e(p) = pgoal−p is the distance
between the current position of the robot (p) and the
target (pgoal).

The repulsive force is derived from the gradient of the in-
terpolated image. Moreover, the gradient can be exploited
to create a vortex field. This potential forces the robot to
go around the obstacle (i.e., the operator) improving the
final path, and limiting the risk of being stuck in local
minima.

The repulsive force is defined as:

Fr = ±kr




δf∗

δy

−δf∗

δx


 (10)

where the sign decides the direction of rotation, kr is
a constant, and f∗ is the result of the depth image
interpolation and filtering to remove the robot.

It is worth noticing that since the operator comes from the
outside of the space, only one of the two directions of the
vortex (clockwise or counterclockwise) can be used. The
right direction depends strictly on the direction of motion
of the robot, as can be seen in the example in Figure 5.
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Fig. 5. Example of a trajectory generated using APF and
vortexes.

Finally, the total force acting on the robot is :

Ft(p) = Fa(p) + Fr(p) (11)

This force can be used in different ways to modify the
trajectory [Siciliano et al. (2008)]. In this work, it is used
as cartesian speed:

v̇ = Ft(p) (12)

The path is generated using the gradient descent method:

vi+1 = vi + v̇∆t (13)

where ∆t is the time between two path computations.

In Figure 6, a typical path generated is showed. It is clear
how the robot is able to divert from the straight trajectory
to compensate for human interferences in the scene.

To modify the maximum distance from the operator, the
path can be adjusted in two ways:

(1) tuning the coefficients of the potentials;
(2) increasing the σ of the RBFs (without modifying the

weights).

The second way shows another advantage of the use of
RBFs. Once the weights have been calculated, they can be
assigned to another grid of RBFs to generate a function
that is always a good approximation of the system, but
can have different σ. The final result is tighter or wider
than the original as shown in Figure 7.

Finally, a fundamental parameter analyzed to ensure that
the algorithm has adequate capabilities for online control
is the time necessary to compute a new command for the
robot. This parameter was measured experimentally using
a Techman TM5-700 and a Kinect camera. MATLAB is
used to control both. The images were interpolated using
a 15x15 Gaussian grid. The tests returned a mean total
time of 0.0806±0.0080s, of which the algorithm used only
0.0223 ± 0.0041s to calculate the new pose, and the rest
to take the image from the camera and the actual position
from the robot. Thus, this particular system can perform
online with an update frequency of 10 Hz.

Fig. 6. Path generated with APF method showing the
deviation in correspondence to human interference.
The red dots represent the robot tool center point.

Fig. 7. Path generated with APF method using an aug-
mented value for σ (σ′ = 1.5σ)

4. CONCLUSIONS

In this paper, a novel approach to achieve human detection
and avoidance in collaborative tasks was presented. The
algorithm can detect the presence of the human operator
in the workspace and modify the robot trajectory accord-
ingly, avoiding potential collisions. This algorithm can be
used online at a frequency dependent on the robot and the
camera. The tests showed a computation time of 22 ms to
calculate a new pose, whereas about 60 ms were used to
take the photo and the data from the robot.

The algorithm mixes Radial Basis Functions to interpolate
the scene, and Artificial Potential Fields to generate the
path. In particular, RBFs create a continuous function
on which the gradient is calculated; such a gradient,
moreover, is used as a repulsive potential for APFs that
automatically generate robot trajectory. This algorithm
is innovative since it requires uniquely a single depth
camera to work. Thus, it does not require either complex
elaborations on multiple images, or complex setups. It
requires the classical calibration of the camera, and a
second simple calibration in which the robot moves over
the space. The second calibration is necessary to remove
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It is worth noticing that since the operator comes from the
outside of the space, only one of the two directions of the
vortex (clockwise or counterclockwise) can be used. The
right direction depends strictly on the direction of motion
of the robot, as can be seen in the example in Figure 5.
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Fig. 5. Example of a trajectory generated using APF and
vortexes.

Finally, the total force acting on the robot is :

Ft(p) = Fa(p) + Fr(p) (11)

This force can be used in different ways to modify the
trajectory [Siciliano et al. (2008)]. In this work, it is used
as cartesian speed:

v̇ = Ft(p) (12)

The path is generated using the gradient descent method:

vi+1 = vi + v̇∆t (13)

where ∆t is the time between two path computations.

In Figure 6, a typical path generated is showed. It is clear
how the robot is able to divert from the straight trajectory
to compensate for human interferences in the scene.

To modify the maximum distance from the operator, the
path can be adjusted in two ways:

(1) tuning the coefficients of the potentials;
(2) increasing the σ of the RBFs (without modifying the

weights).

The second way shows another advantage of the use of
RBFs. Once the weights have been calculated, they can be
assigned to another grid of RBFs to generate a function
that is always a good approximation of the system, but
can have different σ. The final result is tighter or wider
than the original as shown in Figure 7.

Finally, a fundamental parameter analyzed to ensure that
the algorithm has adequate capabilities for online control
is the time necessary to compute a new command for the
robot. This parameter was measured experimentally using
a Techman TM5-700 and a Kinect camera. MATLAB is
used to control both. The images were interpolated using
a 15x15 Gaussian grid. The tests returned a mean total
time of 0.0806±0.0080s, of which the algorithm used only
0.0223 ± 0.0041s to calculate the new pose, and the rest
to take the image from the camera and the actual position
from the robot. Thus, this particular system can perform
online with an update frequency of 10 Hz.

Fig. 6. Path generated with APF method showing the
deviation in correspondence to human interference.
The red dots represent the robot tool center point.

Fig. 7. Path generated with APF method using an aug-
mented value for σ (σ′ = 1.5σ)

4. CONCLUSIONS

In this paper, a novel approach to achieve human detection
and avoidance in collaborative tasks was presented. The
algorithm can detect the presence of the human operator
in the workspace and modify the robot trajectory accord-
ingly, avoiding potential collisions. This algorithm can be
used online at a frequency dependent on the robot and the
camera. The tests showed a computation time of 22 ms to
calculate a new pose, whereas about 60 ms were used to
take the photo and the data from the robot.

The algorithm mixes Radial Basis Functions to interpolate
the scene, and Artificial Potential Fields to generate the
path. In particular, RBFs create a continuous function
on which the gradient is calculated; such a gradient,
moreover, is used as a repulsive potential for APFs that
automatically generate robot trajectory. This algorithm
is innovative since it requires uniquely a single depth
camera to work. Thus, it does not require either complex
elaborations on multiple images, or complex setups. It
requires the classical calibration of the camera, and a
second simple calibration in which the robot moves over
the space. The second calibration is necessary to remove
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the robot from future images. It is worth stating that
using a single depth camera presents some limitations. For
example, the algorithm is very conservative since it can not
consider the third dimension. However, the only safe case
not considered is when the operator executes actions above
the robot. Indeed, possible worst-case scenarios can take
place when the operator is working beneath the robot, such
as the one in which the robot is handling a sharp object.
Unfortunately, it is impossible to overcome this limitation
using a single depth camera. The operator can move one
arm over the robot and the other beneath it at the same
time. Thus, the safety of the operator is not guaranteed in
any case.

Future works will regard limitations and the elimination
of the assumption of face-to-face task execution. Indeed,
the robot overall encumbrance have been ignored.
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