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1 Introduction

Nambu-Goldstone bosons (NGBs) [1, 2] are ubiquitous in theoretical physics, from phe-
nomenological models to esoteric theories. Their prevalence stems from the fact that a
broad universality class of microscopic UV possibilities all lead, in the IR, to unique NGB
theories whose leading structural features are dictated solely by the spontaneously broken
global symmetries. The specific details of the UV structure are only imprinted in oper-
ators which are increasingly irrelevant in the IR. When the spontaneously broken global
symmetries are also explicitly broken by some small parameter the structure of the IR
theory depends only on the nature of the explicit breaking. For non-linearly realised in-
ternal symmetries the consequent NGBs become pNGBs as they no longer parameterise a
degenerate vacuum.

In principle, a pNGB potential could take any form, up to some non-trivial periodicity
in terms of a decay constant ‘f ’ which is a consequence of the compactness of the underlying
spontaneously broken symmetry. One may wish to determine whether pNGB potentials
can be understood in terms of some fundamental ‘building blocks’ mapping the range of
possible structures. Here it is found that, at least for the symmetry-breaking pattern
SO(N + 1) → SO(N), there is a sense in which there are fundamental building blocks of
the scalar potential: Gegenbauer polynomials.

This conclusion is first derived from the perspective of renormalisation and radiative
stability. Working within the IR theory one cannot ascertain the precise form UV quantum
corrections would take within the full microscopic completion in which all IR properties are
calculable in terms of the more fundamental UV parameters. However, the structure of UV
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corrections may be estimated from within the IR theory by studying the cutoff dependence
of radiative corrections, assuming the physics at the cutoff does not introduce any additional
explicit symmetry breaking.1 One may thus ask what form of pNGB potential is insensitive
to physics at the cutoff? Here ‘insensitive’ does not imply that UV corrections should
be absent, but instead that they should not change the functional form of the pNGB
potential. By examining the Coleman-Weinberg potential [3] it is shown in section 2.1
that Gegenbauer polynomials are, in this sense, eigenfunctions of the renormalisation at
leading order in the small explicit symmetry-breaking parameter. This is not the case for
a generic scalar potential. It suggests that the scope of possibilities for radiatively stable
non-Abelian pNGB potentials and their associated phenomenology is much broader than
the basic trigonometric functions found in typical models.

In section 2.2, a deeper explanation based on spurions is presented. If an explicit sym-
metry breaking spurion takes values in an irreducible representation (irrep) of SO(N + 1)
then at leading order in this spurion the generated pNGB potential will take the form of a
Gegenbauer polynomial. This is familiar from many areas of physics from scattering am-
plitudes to conformal field theories: the spin decomposition of functions (or operators) of
momenta leads to Gegenbauer polynomials since they are the higher dimensional harmonic
function counterparts of Legendre polynomials. The difference is that in those cases the
SO(N+1) symmetry is a spacetime symmetry and the variables are momenta or spacetime
coordinates. By contrast, here the SO(N + 1) symmetry is an internal global symmetry
and the coordinates are pNGB fields. We may thus understand each individual Gegen-
bauer potential as effectively capturing a term in the multipolar expansion of the scalar
potential, with the multipole living in the internal symmetry manifold. In this way, the
radiative stability found at one loop is also seen to persist to any loop order. To construct
the scalar potential the symmetry-breaking spurion may only be contracted with the non-
linear field parameterising the pNGBs, which transforms in the fundamental representation
of SO(N + 1), and the Kronecker-δ. The latter contractions vanish due to tracelessness of
the symmetric spurion, being an irrep of SO(N + 1). Thus, at any radiative order and at
leading order in the spurion, the only term that can be constructed in the scalar potential
is that which corresponds to a Gegenbauer polynomial.2

The above observations are interesting from a purely theoretical perspective and not
widely appreciated. Some of them have been discussed for nonlinear sigma models in two
dimensions in [4], although with different implications. There, Gegenbauer polynomials
were already noted to be eigenfunctions of the renormalisation group flow, to arise from
irrep spurions, and to therefore form a preferred basis for the potential decomposition.
However, these properties would become significantly more interesting if there were addi-

1Note that within the IR theory alone certain observables, such as pNGB masses, are incalculable and can
only be fixed by measurement. However, by assumption the IR theory is the effective low-energy description
of a theory in which physical properties are calculable in terms of more microscopic UV parameters, just
as for the pions (IR) and the quark masses and QCD coupling (UV). Within this context, the naïve cutoff-
dependence of IR quantities, subject to symmetries, provides a rough estimate as to the expected nature of
the true UV-calculable contributions.

2Going beyond the SO(N + 1)→ SO(N) symmetry breaking pattern may modify both the appearance
of Gegenbauer potentials and features of radiative stability.
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tional practical applications. Here, we observe one feature which stands out in this regard.
For a Gegenbauer potential of even order ‘n’, with positive overall sign, the deepest mini-
mum is at a Goldstone field magnitude ‘v’ which scales as v ∝ f/n. Thus, for a large n, the
pNGB expectation value is significantly smaller than the decay constant of spontaneous
symmetry breaking. Importantly, the radiative stability of the potential guarantees that
this fact survives radiative corrections and is technically natural. In principle, this means
that there is no obstruction to naturally finding v � f for a pNGB. It is well known that
for Abelian pNGBs these features may readily be obtained through a Zn symmetry arising
from explicit breaking by an operator of charge n but, to our knowledge, they have not
been obtained before for non-Abelian pNGBs.

In section 3, an application for these findings is presented in the context of a key
question in fundamental physics, which is whether or not the Higgs boson could be a pNGB.
A composite pNGB Higgs, analogous to QCD pions, may explain a hierarchy between the
electroweak scale v and the scale of spontaneous symmetry breaking f (and related new
resonances). However, it appears that in ‘generic’ scenarios one must fine-tune to realise
this hierarchy, at the level of ∆ ≈ 2v2/f2 (see e.g. [5–7] for discussions on this point).
While some constructions which challenge this expectation have been realised (see for
instance [8, 9]), a clear picture has not yet emerged as to whether this required fine-tuning
is a fundamental consequence of effective field theory (EFT) or if it is instead the result of
some additional ‘minimality’ assumption injected into the theory. Based on the previous
observations regarding Gegenbauer potentials, we argue for the latter. As an explicit
counterexample, we construct a ‘Gegenbauer Higgs’ model in which the v/f tuning is
entirely absent thanks to a Gegenbauer potential and to its radiative stability.

Although the v/f tuning is ameliorated in this Gegenbauer Higgs model, the fine-
tuning stemming from the explicit symmetry breaking in the top-quark sector persists
when reproducing the observed Higgs mass.3 For this reason we find that for v/f ≈ 1/8,
top-partner masses satisfying MT ≈ 2TeV and single Higgs coupling modifications below
1%, a Gegenbauer Higgs model is fine-tuned at the ∼ 10% level. This is significantly less
than standard pNGB Higgs models, where all explicit breaking arises from couplings to
Standard Model (SM) fields in minimal spurion representations. Therefore, some relatively
natural pNGB scenarios could remain inaccessible at the HL-LHC. Further experimental ex-
ploration to higher precision Higgs measurements and/or higher energy resonance searches
will thus be necessary for a conclusive understanding of whether or not the Higgs is a pNGB.

Section 4 contains some conclusions and a discussion of future avenues of investigation,
which cover both unaddressed theoretical questions and the possibility of constructing
Gegenbauer Higgs models that may also confront the apparent fine-tuning in the top-quark
sector.

2 Gegenbauer Goldstones

Consider Goldstone bosons from the spontaneous symmetry breaking SO(N+1)→ SO(N)
with decay constant f . The N Goldstone bosons Π sit in the fundamental representation

3Note that constructions to ameliorate this tuning contribution have been found [10].
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of SO(N) and are parameterised non-linearly as

φ = 1
Π sin Π

f



Π1
Π2
...

ΠN

Π cot Π
f


, with Π =

√
Π ·Π , (2.1)

which, in accordance with the CCWZ procedure [11, 12], we treat as a fundamental of
SO(N + 1). We will assume some small explicit symmetry breaking in the UV theory such
that the IR effective theory contains an SO(N)-invariant scalar potential

V = εM2f2G(cos Π/f) , (2.2)

where G is some as-yet-undetermined function of cos Π/f , ε is a small dimensionless param-
eter, andM is the typical UV mass scale. As a result, the Goldstone bosons become pNGBs.

We wish to determine if there exists a class of scalar potentials G whose functional
form is radiatively stable at O(ε) against unknown UV corrections that respect the UV
symmetry SO(N + 1). One way to estimate the scale of UV-corrections from within the
IR theory is to use the one-loop Coleman-Weinberg (CW) potential, since hard cutoff
renormalisation within the CW potential reveals the likely form of threshold corrections in
matching from a given UV-completion to the IR theory. Radiative stability requires that
these threshold corrections must not alter the form of the scalar potential other than by a
simple multiplicative factor. In other words, the structure of divergences should mimic the
functional form of G, otherwise one would have to tune unknown deep UV-contributions
against the threshold corrections in order to realise an IR effective potential G whose
functional form is significantly different from either of the former in isolation.

2.1 Gegenbauers from Coleman-Weinberg

Adopting a geometrical formulation, the general one-loop effective action for a set of scalar
fields ϕi with Lagrangian L = 1

2gij(ϕ)∂µϕi∂µϕj − V (ϕ) may be determined following the
formalism of [13]. This leads to the Coleman-Weinberg effective potential,

VCW = 1
2Tr

∫
d4p

(2π)4 log
[
p2 + g−1

(
δ2V

δϕ2 −
δV

δϕ
Γ
)]

, (2.3)

with p an Euclidean momentum, and where the Christoffel symbols are

Γkij = 1
2g

kr
(
δgir
δϕj

+ δgjr
δϕi
− δgij
δϕr

)
. (2.4)

Note that g−1(δ2V/δϕ2 − δV/δϕ Γ) is the Laplacian of V in general ϕi coordinates.
In our specific case, symmetry forces the potential to only depend on Π and the field

metric is [13]

gij =
(
F (Π)2ĝab 0

0 1

)
, F = sin Π

f
, (2.5)
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where ĝab with a, b ∈ {1, . . . , N − 1} is a metric on the sphere SN spanned by the Πi for
fixed Π. The quadratically divergent piece of the one-loop effective potential is

V Λ2
CW = Λ2

32π2

(
δ2V

δΠ2 + (N − 1) 1
F

δF

δΠ
δV

δΠ

)
, (2.6)

where Λ is the hard UV-cutoff. Thus, at the linear order in ε, the quantum-corrected
potential following from eq. (2.2) is

VQ = εM2
(
f2G+ Λ2

32π2

(
G′′ + (N − 1) cot Π

f
G′
))

(2.7)

where primes denote derivatives of G(cos Π/f) with respect to Π/f . We see from this one-
loop correction that a generic pNGB potential will not be radiatively stable against UV
corrections. On the contrary, for a scalar potential comprised of a function G satisfying
the strict relation

G′′ + (N − 1) cot Π
f
G′ ∝ G , (2.8)

the one-loop quadratic divergences may be absorbed into a multiplicative counterterm at
leading order in ε. Gegenbauer polynomials Gλn(cos Π/f) satisfy precisely this requirement.
Specifically, they obey the second-order differential equation4

Gλ ′′n + 2λ cot Π
f
Gλ ′n + n(n+ 2λ)Gλn = 0 , (2.9)

where n ≥ 0 is an integer, so that eq. (2.8) is satisfied for λ = (N−1)/2. As a consequence,
Gegenbauer polynomials are uniquely identified as describing an infinite class of radiatively
stable scalar potentials for pNGBs in the fundamental representation of SO(N). In other
words, we find that the functional form of the scalar potential

V = εM2f2 G(N−1)/2
n (cos Π/f) (2.10)

is radiatively stable against UV-physics at one loop and linear order in ε.
Following the same approach that led to the linear contribution in eq. (2.6), the

quadratic contributions in ε that arise at the one-loop order and spoil the multiplicative
renormalization of the potential are of the form(

δ2V

δΠ2

)2

+ (N − 1)
( 1
F

δF

δΠ
δV

δΠ

)2
. (2.11)

For such subleading terms in ε to remain negligible, one must require ε n2 � 1. Given the
differential equation in eq. (2.9), the second derivative of a Gegenbauer potential indeed
receives contributions scaling as n2.

In the Abelian N = 1 case, eq. (2.9) reduces to G′′ + n2G = 0 whose solution is
simply cos(nΠ/f) and is radiatively stable. This is straightforward to understand in terms

4Solutions for non-integer n + λ − 1/2, as well as the second family of solutions obtained for integer
values, are not analytic at certain field values and can therefore not be generated in an effective field theory
where the only light particles are the Goldstone bosons we discuss.
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Figure 1. For Π/f away from multiples of π and n large, the Gegenbauer polynomials
G

(N−1)/2
n (cos Π/f) approximately oscillate as cosnΠ/f . For even n, their deepest minimum is

the closest to kπ with k ∈ Z. For odd n, they take negative values at (2k + 1)π where the deepest
minimum is then also located.

of symmetries, as this potential is invariant under a Zn symmetry transforming Π →
Π + 2πf/n. The connection with symmetries for the non-Abelian case N > 1, which is far
less obvious, is established in section 2.2.

Interestingly, there exists a regime in which G(N−1)/2
n (cos Π/f) oscillate approximately

like cos(nΠ/f). This can be seen graphically in figure 1, obtained for N = 4 and n = 20.
More precisely, one can derive the following approximations (see appendix A), up to overall
normalisation factors

Gλn

(
cos Π

f

)
n�1−−−→

Jλ−1/2
(
(n+ λ)Π

f

)
Πλ−1/2

Π
f
� 1

n−−−−→
cos

(
(n+ λ)Π

f − λ
π
2

)
Πλ

, (2.12)

where Jλ−1/2 is the Bessel function of the first kind with order λ − 1/2. Thus for large
n and Π/f � 1/n, we see that the potential becomes approximately periodic in Π. This
is non-trivial and is, again, somewhat reminiscent of the potential for an Abelian pNGB
in the case where an explicit symmetry-breaking spurion has large U(1) charge. Thus,
while a purely periodic potential for a non-Abelian pNGB is not radiatively stable and
thus not technically natural, the Gegenbauer polynomials do provide a potential which
is radiatively stable and approximately periodic in f/n. As we will see, this can have
non-trivial consequences for phenomenological applications.

2.2 Gegenbauers from spurion irreps

Taking a more symmetry-based approach, one can see that the radiative stability of the
form of the potential in eq. (2.2) would be guaranteed if it arose from the interaction of φ

with an explicit symmetry-breaking spurion K sitting in a traceless symmetric irreducible
representation of SO(N + 1),

V = εM2f2Ki1i2...in
n φi1 . . . φin . (2.13)

Such a representation has dimension (N + 2n − 1)(N + n − 2)!/n!(N − 1)!, growing like
2nN−1/(N − 1)! for n� N .
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The reason for stability is that radiative corrections at all scales will generally furnish
every SO(N + 1) invariant that can be constructed in the scalar potential out of the
fields and parameters. However, at O(ε) the only structures we have to work with are
φ, transforming as a fundamental, the SO(N + 1)-invariant Kronecker-δ, and the spurion
tensor Ki1i2...in

n . Hence, at leading order in ε, the only non-vanishing term that can be
constructed is that of eq. (2.13). Thus we conclude that the functional form of a pNGB
potential generated from an explicit symmetry-breaking spurion in the traceless symmetric
representation of SO(N + 1) is radiatively stable against UV-corrections to all loop orders
at O(ε). If the potential eq. (2.2) could be constructed in this way, it would also be stable
against radiative corrections to all loop orders at O(ε).

A Gegenbauer polynomial does indeed arise from such a spurion. This connection is
well known (see e.g. [4, 14, 15]), however since we could not find a detailed explanation in
the literature we present a short derivation here for completeness. It rests on a parallel
with the multipole expansion of axisymmetric potentials in general dimension.

Let us perform a Taylor expansion around φ̃ of the scalar function

|tφ− φ̃|1−N =
∞∑
n=0

tnKi1i2...in
n (φ̃)φi1φi2 . . . φin , (2.14)

where t is a dimensionless parameter and we have now defined the Ki1i2...in
n tensor through5

Ki1i2...in
n (φ) = 1

n!
∂nφ1−N

∂φi1∂φi2 . . . ∂φin
. (2.15)

Clearly Ki1i2...in
n (φ) forms an n-index representation of SO(N + 1). This representation

is manifestly symmetric by construction and also traceless, since the N + 1-dimensional
Laplacian vanishes when evaluated away from the origin,

N+1∑
i=1

∂2φ1−N

∂φ2
i

= 1
φN

∂

∂φ

(
φN

∂φ1−N

∂φ

)
= 0 . (2.16)

Thus we have constructed the desired traceless symmmetric n-index representation of
SO(N + 1) from this higher-dimensional multipolar expansion (in field-space). Now taking
a constant value for Ki1i2...in

n (φ̃) to explicitly break SO(N + 1) this spurion will preserve
the SO(N) subgroup if we take φ̃ = (0, . . . , 0, 1)T . This completes the construction of the
desired class of symmetry-breaking spurions.

On the other hand, taking φ as defined in eq. (2.1) we find

|tφ− φ̃| =
√

1− 2t cos Π/f + t2 , (2.17)
5For illustration, an explicit construction of e.g. K6 is:

Ki1i2i3i4i5i6
6 (φ̃) ∼ φ̃i1 φ̃i2 φ̃i3 φ̃i4 φ̃i5 φ̃i6

− φ̃i1 φ̃i2 φ̃i3 φ̃i4δi5,i6/(N + 9) + 14 perm.
+ φ̃i1 φ̃i2δi3,i4δi5,i6/(N + 9)(N + 7) + 44 perm.
− δi1,i2δi3,i4δi5,i6/(N + 9)(N + 7)(N + 5) + 14 perm. .
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still for φ̃ = (0, . . . , 0, 1)T . The left-hand side of eq. (2.14) can then also be recognised as
the generating function of Gegenbauer polynomials

(1− 2tx+ t2)−λ =
∞∑
n=0

tnGλn(x) , (2.18)

for λ = (N − 1)/2 and x = cos Π/f . Identifying the two sides of eq. (2.14) order-by-order
in t, one therefore obtains

Ki1i2...in
n (φ̃) φi1φi2 . . . φin = G(N−1)/2

n (cos Π/f) . (2.19)

We have hence shown that a Ki1i2...in
n (φ̃) spurion irrep of SO(N+1) which explicitly breaks

SO(N + 1)→ SO(N) yields a Gegenbauer polynomial as scalar potential. Thus the under-
lying reason for the radiative stability of the Gegenbauer polynomial pNGB potential found
from the Coleman-Weinberg calculation is symmetry. Furthermore, the spurion analysis
reveals that at O(ε) the form of a Gegenbauer pNGB potential will be radiatively stable
at all loop orders, going beyond the Coleman-Weinberg calculation which only confirmed
this radiative stability at one loop.

In general models, the presence of this symmetry-breaking spurion will correct the
potential for the radial mode ρ and hence the value of f . However this is at O(ε) and will
thus be small if ε is small and will be particularly suppressed in strongly coupled models.
Furthermore, in a general theory there will be a tower of symmetry preserving operators
which generate corrections to the radial mode potential ∝ ρp and thus a full knowledge
of the UV theory is required to estimate the impact of the spurion on the radial mode
potential. We implicitly assume that the value of f is the radial mode vacuum expectation
value (vev) after including all of these effects.

2.3 Gegenbauer decomposition of a pNGB potential

It is thus established, from two complementary perspectives, that for pNGBs in the funda-
mental of SO(N) the form of the scalar potential eq. (2.10) is radiatively stable and hence
technically natural, for any n. This is also suggestive that for these pNGBs the Gegenbauer
polynomials form a preferred basis, from a quantum perspective, for the decomposition of
any functional form of a pNGB potential. The reason for this is that they also form a com-
plete basis, orthogonal with respect to the weight sinN−2(Π/f). As a result any potential
for pNGBs in the fundamental of SO(N) may be decomposed as

V = εM2f2
∞∑
n=0

anG
(N−1)/2
n (cos Π/f) . (2.20)

Each term is radiatively stable at all loop orders and O(ε). Divergent UV-corrections will
treat the individual terms differently, by the factor n(n+λ) from eq. (2.9) but will not mix
them at this order.

This expansion is familiar for good reason. In D = 3 dimension electrostatics, for
instance, one may decompose any axisymmetric charge distribution as an infinite sum
of multipoles which are, from a symmetry perspective, n-index spurions in symmetric

– 8 –
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traceless representation of SO(D = 3). This is the familiar decomposition in terms of
Legendre polynomials, which are just special cases of the Gegenbauer polynomials for
D = 3. Indeed, the same procedure in a greater number of spatial dimensions would
result in an expansion in Gegenbauer polynomials. The distinction here is that, in the
electrostatics case, the polynomials arise as a result of explicit breaking of the spatial
symmetries SO(D) → SO(D − 1), whereas in the pNGB case they arise as a result of the
explicit breaking of the internal continuous symmetries SO(N+1)→ SO(N). Nevertheless,
the potential becomes an effective multipole expansion in this internal scalar field space.

3 Gegenbauer Higgs

Since the Gegenbauer potential for a pNGB can significantly alter the vacuum structure of
a theory, it is natural to investigate potential areas of relevance in physics. The Higgs boson
is an obvious candidate application since, as yet, it remains to be understood whether it is
a fundamental particle down to ultra short scales or if it is instead a composite pNGB. The
latter class of models has been explored in depth, but almost exclusively under minimal
assumptions concerning the explicit symmetry-breaking terms, taken to originate only from
the couplings of elementary fields to the composite sector and transforming in the few
smallest representations of the global symmetry. As we will now see, the introduction of
a Gegenbauer potential for a composite pNGB Higgs can challenge basic expectations for
the vacuum structure.

We assume the Higgs doublet emerges among the N fundamental NGBs of the
SO(N + 1)→ SO(N) spontaneous symmetry breaking. Henceforth we often focus on
N = 4, corresponding to the minimal composite Higgs model (MCHM) [16], but note that
our discussion could be extended to non-minimal constructions with N > 4, where addi-
tional NGBs accompany the Higgs. The kinetic term of the nonlinear sigma model reads

L2 = f2

2 DµφTDµφ , (3.1)

where φ was defined in eq. (2.1) and the covariant derivative gauges the SM electroweak
group. As a result, we identify the vev of the Higgs field as f2 sin2〈Π〉/f = v2 ≈ (246 GeV)2,
and the Higgs boson coupling to SM gauge bosons is

chV V /c
SM
hV V = cos 〈Π〉/f =

√
1− v2/f2 , (3.2)

one of the central predictions of this class of models.
Now we introduce explicit SO(N + 1) breaking in the form of a traceless symmetric n-

index spurion irrep, which as shown in section 2 gives rise to a Gegenbauer Higgs potential
V (Π) = εM2f2G

(N−1)/2
n (cos Π/f). As seen in figure 1, for positive coefficient ε and even

n the deepest minimum is the first, which for large n is located at Π � f . In the large n
limit, its position may be obtained from the Bessel approximation as

〈Π〉
f
≈
jλ+1/2,1
n+ λ

≈ 5.1
n
, (3.3)
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Figure 2. Higgs trilinear self-coupling as a function of n, for a pure Gegenbauer potential
V (Π) = ε M2f2 G

(N−1)/2
n (cos Π/f) with N = 4. In the large-n limit, the location of the global

minimum is approximated using the first Bessel zero 〈Π〉/f ≈ jλ+1/2,1/(n+ λ). The latter can
further approximated by the first term of the McMahon formula jλ+1/2,1 ≈ π(1 + λ/2).

where jλ+1/2,1 denotes the first zero of the Bessel function of order λ+ 1/2. Its numerical
value for λ = (N − 1)/2 with N = 4 is j2,1 ≈ 5.1356. Importantly, this global minimum is
at a small non-zero value, scaling inversely with n. Thus Gegenbauer potentials provide a
radiatively stable means by which to realise a Higgs vacuum expectation value much lower
than the scale of spontaneous symmetry breaking in pNGB Higgs models.

An additional novelty of Gegenbauer Higgs potentials concerns the trilinear Higgs
self-coupling if one, for now, sets aside important contributions from the top and gauge
sectors. Its value can be obtained by differentiating the potential with respect to z = Π/f
as chhh/cSM

hhh = [sin z V ′′′/(3V ′′)]z= 〈Π〉/f , where cSM
hhh = m2

h/(2v). Taking an additional
derivative of the Gegenbauer differential equation eq. (2.9) and setting the first derivative
to zero, one finds that for a G(N−1)/2

n (cos Π/f) potential the correction is

chhh
cSM
hhh

= −N − 1
3 cos 〈Π〉

f
≈ − N − 1

3 , (3.4)

where, in the last approximate equality, we have taken the large n limit. We learn that
for N = 4 the Higgs trilinear self-coupling with a purely Gegenbauer potential has equal
magnitude but opposite sign compared to the SM, as illustrated in figure 2.

While the above features are genuine novelties in the pNGB Higgs context, a complete
model must also account for the explicit symmetry breaking originating from the couplings
of the elementary degrees of freedom (transverse gauge fields and fermions) to the composite
sector which, in turn, contribute radiatively to the Higgs potential. As the next step in
the direction of a fully realistic model, we now include the dominant explicit breaking from
the top-quark sector, which will have a significant impact on the Higgs self-coupling and
fine-tuning in the model.

3.1 Towards a realistic model

In pNGB Higgs models the dominant radiative contributions to the Higgs potential arise
from the top quark and its composite partners, due to the large Yukawa interaction. The
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minimal magnitude of this potential is fixed by the lower bound on the top partner masses
from direct searches at the LHC, currently MT & 1.3 TeV (see for example [17]). Here
we show that the sum of top sector and Gegenbauer potentials can realise viable elec-
troweak breaking without any v/f fine-tuning and with significantly less total tuning than
in standard pNGB Higgs scenarios.

The leading term of the top sector potential is expected to be of the form

Vt = κ
Nc

16π2 y
2
t f

2M2
T sin2 Π/f , (3.5)

where MT is the lightest top partner mass scale and κ is a dimensionless parameter whose
size and sign depend on the details of the top sector realisation. Contrary to the stan-
dard narrative in pNGB models, where a negative sin2 Π/f term is balanced by a positive
sin4 Π/f one to obtain electroweak breaking, here we assume a positive sign for Vt. We will
see momentarily that there is no impediment in obtaining this sign with the most common
choices of SO(N +1) representations for the embeddings of qL and tR. Pressing on, we add
a Gegenbauer potential with even n assuming that this arises from an additional source
of explicit symmetry breaking in the UV, obtaining the toy potential which is the sum of
the two

V (Π) = κ
Nc

16π2 y
2
t f

2M2
T

[
sin2 Π/f + γ G(N−1)/2

n (cos Π/f)
]
. (3.6)

As illustrated in the left panel of figure 3, there exists a critical value for the coefficient γ

γc = − (sin2 Π/f)′′

(G(N−1)/2
n (cos Π/f))′′

∣∣∣∣∣
Π = 0

, (3.7)

below which the global minimum of V (Π) is at the origin, whereas for γ > γc the effect of
the Gegenbauer is sufficiently strong to ensure v/f = sin〈Π〉/f 6= 0. This critical value is
numerically small, with approximate scaling given by γc ≈ 8 · 10−4(10/n)3.6, ensuring that
the condition εn2 � 1 discussed in section 2.1 is well satisfied.

As shown in the right panel of figure 3, for very small γc/γ, the Gegenbauer contribution
to the potential dominates and f/v ≈ n/5.1 can admit large values without any fine tuning.
By contrast, in standard pNGB models f � v can only be obtained at the cost of a ∼ v2/f2

cancellation. Adopting a log-derivative definition,

∆ =
(
∂ log f/v
∂ log γ

)−1
, (3.8)

one finds here that no tuning is generated from f/v up to γc/γ ≈ 0.6. In this region of small
γc/γ, generating the 125 GeV Higgs mass while satisfying the LHC bound on coloured top
partners however requires to tune the top sector contribution with κ� 1.

Conversely, for larger γc/γ, the Gegenbauer acts as a small perturbation to the top
sector potential, shifting the minimum slightly away from the origin and resulting in f/v �
n/5.1 at the price of increasing fine tuning. The observed Higgs mass is however obtained
for κ of order one and no tuning is needed in the top sector.
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Figure 3. (Left) Shape of the Gegenbauer-Higgs potential of eq. (3.6) for N = 4, n = 20 and
different values of γc/γ. The global minimum approaches the origin as γ tends to its critical value
while, for small γc/γ, its location is determined by the Gegenbauer contribution to the potential.
(Right) Parameter space of the Gegenbauer-Higgs model. Values of the log-derivative f/v tuning
are shown as ∆ contours, while κ quantifies the tuning of top-sector contributions to the Higgs
mass. The two tunings evolve in opposite ways as functions of γc/γ and both admit values above
10% in the 0.6 – 0.95 region for top-partner masses of about 2TeV.

The above features suggest that the most natural parameter space should lie in an
intermediate regime where both tunings are present but moderate. This is shown in the
left panel of figure 4. In this regime, the approximate scaling of the two tunings is

∆ ≈ 30%
(
f

4v
5.1
n

)−2.1
, κ ≈ 30%

(
f

4v
5.1
n

2TeV
MT

)2
. (3.9)

So both reach only about 30% for MT ≈ 2 TeV, which roughly corresponds to the ultimate
reach of the LHC, and f ≈ 1TeV × n/5.1. For such a top partner mass, n cannot be
taken much above 10. Indeed, in concrete top partner constructions, MT sets an upper
bound on the pNGB decay constant, f .

√
2MT /yt, to reproduce the top-quark mass.6

This constraint forces the Higgs mass tuning to increase for large n since it implies κ .
30% (14/n)2. As seen in the right panel of figure 4, values of n below about 10 are the
most natural for MT ≈ 2 TeV. For instance, with n = 10 and MT ≈ f ≈ 2 TeV the total
tuning is better than 10%, when conservatively estimated by multiplying the individual
sources. This is a significant improvement compared to the minimal amount of cancellation
necessary in standard pNGB Higgs models with the same f , namely 2v2/f2 ≈ 3%.

We now return to our estimate of the top sector potential in eq. (3.5) to show that,
in general, its sign can be positive, and its size can be tuned by realising κ � 1 through
appropriate choices of model parameters. We illustrate these properties by considering a
two-site realisation [18] of the well-known 5L + 5R composite Higgs model [19], where the

6This is observed in a variety of explicit models. For instance, a mass matrix(
yf sin Π/f 0
yf cos Π/f MT

)
among (t̄L, TL) and (tR, TR) yields, expanding for MT � yf , the top mass mt ≈ MT sin Π/f , resulting in
MT & ytf/

√
2.
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Figure 4. Sources of fine tuning in the Gegenbauer Higgs model for N = 4. Solid lines provide
the log-derivative tuning of f/v that is independent ofMT (left axis), while dashed lines correspond
to the Higgs mass tuning arising from the top sector and controlled by κ (right axis). In the right
panel, the shaded region for which f &

√
2MT /yt is inaccessible in coloured top partner models

reproducing the observed top-quark mass.

leading term of the radiatively generated potential is V 5+5
t = αt sin2 Π/f with

αt ≈
Nc

8π2 (y2
L − 2y2

R)f2(M2
1 −M2

4 )
∫

dp p3

(p2 +M2
1 + y2

Rf
2)(p2 +M2

4 + y2
Lf

2)
. (3.10)

Evidently, by appropriately choosing the elementary/composite couplings yL,R and the
SO(4)-preserving composite masses M1,4 , either sign can be obtained for αt and its size
reduced below the natural expectation. The fact that αt is logarithmically UV divergent is
a limitation of the two-site structure, and does not affect our qualitative conclusions. If we
were to consider a three-site model (or phenomenological Weinberg sum rules) to render αt
UV-finite, we would obtain a more elaborate expression, but still taking either sign across
the parameter space and with tunable size.7 Finally, we observe that loops from the gauge
sector always generate a positive contribution αg, of subleading magnitude compared to
top sector loops. Thus, including the gauge contribution in the potential does not affect
our conclusions.

3.2 Phenomenology

The key finding of section 3.1 is that, by including a Gegenbauer potential on top of the
one radiatively generated by the top sector, it is possible to obtain natural pNGB Higgs
models where the top partner masses are at MT & 2 TeV and the correction to the hV V
coupling is below 1%. This pushes the two prime observables characteristic of this scenario
beyond the sensitivity reach of the HL-LHC. For instance, for MT ≈ f ≈ 2 TeV and an

7If both qL and tR are partially composite in the 5L + 5R model, the parametric scaling of Vt is in
fact closer to ytfM

3
T , than to y2

t f
2M2

T assumed in eq. (3.5). Adopting the former scaling has a mild effect
on our results. The ∼ y2

t f
2M2

T dependence is obtained for example in models where the tR is a fully
composite chiral fermion, such as 5L + 1R or 14L + 1R, where κ� 1 can be realised by tuning appropriate
combinations of the composite masses. In the 14L +1R setup a sin4 Π/f term is generated as well at leading
order, whose inclusion does not qualitatively change our discussion as long as it has positive sign.

– 13 –



J
H
E
P
0
1
(
2
0
2
2
)
0
7
6

0 2 4 6 8 10
f/v × 5.1/n

1.0

0.5

0.0

0.5

1.0
c h

hh
/c

SM hh
h

n=4
n=10
n=20
n=30

0.0 0.5 1.0 1.5 2.0 2.5 3.0
f [TeV]

1.0

0.5

0.0

0.5

1.0

c h
hh

/c
SM hh

h

n=4
n=10
n=20
n=30

0.010.11
v2/f2

Figure 5. The Higgs trilinear coupling normalised to its SM value, for the potential in eq. (3.6)
including both Gegenbauer and top-sector contributions. Its behaviour as a function of f is inde-
pendent of the top partner mass scale MT .

explicit breaking spurion in the n = 10 index traceless symmetric tensor representation, a
conservative estimate places the tuning at better than 10%.

It is also important to ask how much the Higgs trilinear coupling deviates from the SM
in the most natural parameter space, after we include both the Gegenbauer and top sector
components. In figure 5 we observe the expected limiting behaviours, namely chhh/cSM

hhh is
close to −1 in the Gegenbauer-dominated region with f/v ≈ n/5.1, whereas it approaches
+1 where the Gegenbauer provides only a small perturbation to the top sector potential,
resulting in f/v � n/5.1. In this latter regime, the following scaling is realised:

chhh
cSM
hhh

≈ 1− 1.2
(
f

v

5.1
n+ λ

)−2
. (3.11)

For f and MT of a couple of TeV’s, the discussion in the previous section indicated the
most natural region has n below about 10. In this regime, deviations in the trilinear Higgs
self coupling are below 10% and out of the HL-LHC reach. Larger modifications would
require an increase of the Higgs mass tuning from the top sector. Observable deviations
can nevertheless coexist with conceivable tuning levels: with n = 30 and MT ≈ f ≈ 2 TeV
we for example find chhh/cSM

hhh ≈ 0.2, while the κ tuning is about 2%.
The above observations suggest that once departures from the oft-assumed minimality

of explicit breaking are accepted, testing relatively natural pNGB Higgs models requires
an accelerator program capable of reaching beyond the ultimate sensitivity of the LHC.

4 Conclusions

The phenomenology of pNGBs is couched firmly in the framework of EFTs. Our present
expectations for the ‘generic’ properties of pNGBs are thus guided by EFT logic in com-
bination with lessons learned from commonly studied models. It is important to identify
which of these expectations are driven primarily by EFT reasoning and which are driven
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instead by the assumed structure of the models. One commonly injected element is min-
imality. Not minimality in the sense of the number of degrees of freedom, or the rank of
the broken symmetry, but in terms of the representations of spurions that explicitly break
the symmetries and generate the vacuum potential of pNGBs.

In this work, this question has been examined from the perspective of the radiative
stability of pNGB potentials. This is a useful guiding principle: if a pNGB potential is
not radiatively stable against UV corrections, one cannot develop any robust expectations
for its ‘generic’ properties. For SO(N + 1) → SO(N), we have found that Gegenbauer
polynomials form a basis of radiatively stable pNGB scalar potentials. As a result, there
exist universality classes of natural microscopic theories which flow, in the IR, to a theory
with pNGBs whose scalar potential is predominantly of the form of a Gegenbauer polyno-
mial of degree n, up to corrections at second order in some small parameter. This is an
internal-symmetry analogue of the usual multipole expansion in momentum-space.

For small n, the Gegenbauer polynomials furnish the usual sine and cosine-type poten-
tials found in typical symmetry breaking scenarios, reflecting a ‘minimal’ spurion. How-
ever for large n the vacuum structure differs markedly. In particular, the location of the
global minimum and pNGB expectation value ‘v’ may be at arbitrarily small values, since
v ∝ f/n. Furthermore, the potential locally becomes approximately periodic, with period
2πf/n. This is interesting as it appears to be, at an approximate level, akin to the potential
for an Abelian pNGB with explicit breaking via a spurion of charge n, except that in our
case the pNGBs are non-Abelian.

We conclude that typical expectations for a non-Abelian pNGB potential are driven
not by any fundamental aspect of EFT itself but, instead, by the expectation that low-
dimensional representations for explicit-breaking spurions are more generic than higher-
dimension ones. This may indeed be the case in many realistic settings, since often the
leading breaking of global symmetries is via a gauge or Yukawa interaction and both
typically correspond to a low-dimension spurion. As a result, we do not question the
genericity of this expectation but emphasise that there are additional technically natural
possibilities.

There are a number of questions that remain unanswered. One question concerns
different symmetry groups. The Gegenbauer polynomials arose due to the assumption of
an SO(N) symmetry, but for different symmetry groups it is not clear what the associated
functions would be. Another question concerns the role of the UV symmetry. Throughout,
for the symmetry breaking pattern G → H, we made a specific assumption for G. On the
other hand, it has become evident that certain properties of pNGBs may be determined
independently of any specific choice for G [20]. It would be interesting to know if this is
the case for the extraction of the radiatively stable pNGB potentials.

On a more phenomenological note, it is important to understand if the Higgs boson
could be a pNGB. To this end we have developed, at a relatively superficial level, a class
of ‘Gegenbauer Higgs’ models. These models adopt the standard structure for a composite
pNGB Higgs, with the additional ingredient of an extra source of explicit symmetry break-
ing in the UV which is in a high-dimension traceless symmetric irrep of a global SO(5)
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symmetry.8 This gives rise to an additional Gegenbauer polynomial potential in the IR
which is a radiatively stable and thus a technically natural IR augmentation of the usual
models. This greatly modifies the vacuum structure of pNGB Higgs models.

Primarily, the Gegenbauer potential can create a global minimum at small field values,
hence a natural hierarchy v � f is realised. Since Higgs coupling modifications scale
proportional to v2/f2, this allows for a pNGB Higgs to be naturally SM-like. On the
contrary, the explicit symmetry breaking in the top and gauge sectors remains. Thus
the Gegenbauer Higgs class of models is not immune to fine-tuning arising from the lack
of complete SO(5) multiplets in these sectors at the electroweak scale. This becomes the
dominant source of fine-tuning and we find that for all new coloured resonances above about
2TeV some combined fine-tuning remains at the O(10%) level. This ultimately suggests
that, if we are to truly understand whether or not the Higgs is a composite pNGB, then
we will need to probe very small Higgs coupling modifications or push coloured resonance
searches to energies beyond the reach of the HL-LHC.

There are a number of open questions concerning the Higgs models. Presumably
the most pressing is to identify if there are UV possibilities that could motivate such
a high-dimensional symmetry-breaking spurion. Perhaps some alternative interpretation
or motivation would be found by appealing to a holographic picture? Furthermore, the
phenomenology of these models has also not been explored to any extent. For instance,
perhaps such highly oscillating scalar potentials could have a cosmological impact relating
to the nature of the electroweak phase transition (see e.g. [21]). On the model-building
side, it would be interesting to explore different symmetry groups or, more importantly,
whether the symmetry structure of the top sector could be modified such that the generated
contributions to the effective potential were also of a Gegenbauer form. If possible, this
may significantly reduce fine-tuning.9 Finally, the approach developed here could possibly
be applied to neutral naturalness setups such as the Twin Higgs framework [23]. The reason
being that the v/f tuning in this framework is often the dominant one whereas the top
partners, being uncoloured, can in principle be quite light. It would seem that combining
this with the properties of the Gegenbauer Higgs setup may be fruitful.
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Elvang and Aaron Pierce for discussions.

8Note that the SM pion potential is shaped by two explicit symmetry breaking contributions of inde-
pendent origin: one internal to the strong sector (the quark masses) and one arising from the couplings of
the external gauge fields (primarily the photon). However, in that case the explicit symmetry breaking is
in low dimensional representations.

9It would be interesting if, for instance, some variant of the Zn models obtained in [22] may be embedded
within the non-Abelian structures found here.
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A Large-n limit

A large-n approximation for the Gegenbauer potential can be obtained by considering the
differential equation satisfied by Gegenbauer polynomials Gλn(x):

(1− x2)G′′ − (2λ+ 1)xG′ + n(n+ 2λ)G = 0 . (A.1)

Performing the x→ cos y
n+λ change of variable, it becomes:

(n+ λ)2G′′ + 2λ(n+ λ) cot y

n+ λ
G′ + n(n+ 2λ)G = 0 , (A.2)

which expands for large-n to
(G′′ +G)y + 2λG′ ' 0 , (A.3)

up to 1/n2 corrections (while the change of variable x → cos yn would have left out 1/n
corrections). Imposing that its solution goes to 1 for y = 0 and λ = 1/2, as Legendre
polynomials do, one finds a Bessel function of the first kind. In the large argument limit,
the latter also approximate to a cosine. Thus, as stated in eq. (2.12),

Gλn

(
cos y

n+ λ

)
n�1−−−→

Jλ−1/2(y)
yλ−1/2

y�1−−−→
√

2
π

cos
(
y − λπ2

)
yλ

. (A.4)
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