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Abstract 

Cross-laminated timber is a construction material with significant potential to realize multi-storey earthquake-
resistant buildings, exploiting the lightness of timber and the high in-plane strength and stiffness of the shear-
wall panels, conferred by cross lamination of massive boards. In such buildings, connections play a vital role to 
assure an optimal seismic performance. However, traditional connections, i.e., angle brackets and hold-downs, 
have well-known drawbacks: low dissipative capacity due cyclic deformation of fasteners with consequent 
wood embedment and possible brittle failures due to uncertainty of actual strength of fasteners and relative 
overstrength factors. The current diffusion of tall cross-laminated timber buildings in high-seismicity areas 
requires the development of new strategies to increase ductility and dissipative capacities and to improve the 
reliability of the ductile parts of the structure. Both these purposes can be achieved with the adoption of new 
connections with optimized cyclic behaviour and localization of deformation in a steel element, preventing 
damage to the timber panel. A new connection for cross-laminated timber structures named “X-bracket” has 
been designed and tested at the University of Padova; it works both in tension and shear and can be used as 
panel-to-panel or panel-to-foundation joint. The special “X” shape is optimized to assure high stiffness and 
diffused yielding of material, resulting in extraordinarily high ductility and dissipative capacities. Furthermore, 
the possibility of producing multiple elements from cutting of a mild steel plate with minimal waste of material 
assures low production costs. This Report presents main details of the X-bracket and summarizes the research 
activities from the design to the experimental validation, discussing results from numerical simulations and 
laboratory tests. Installation, anchoring to the panel and possibility of replacement after a strong earthquake 
are also addressed and supported by additional tests, to verify the reliable response and controlled 
overstrength of the X-bracket, in compliance with capacity design. 
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1. INTRODUCTION 

Cross-laminated timber (CLT) is a new constructive technology suitable for realizing multi-storey 

earthquake-resistant buildings, as demonstrated by recent full-scale shake-table tests of three-storey buildings 

(Ceccotti 2008, Flatscher and Schickhofer 2015) and a seven-storey building (Ceccotti et al. 2013). The 

buildings withstood strong earthquakes with limited damages concentrated in connection elements, which 

played a critical role in achieving the necessary stiffness, strength and ductility of the structure. 

Traditional connections for CLT buildings, known as angle brackets and hold-downs, are manufactured to 

prevent the horizontal sliding or vertical rocking of the wall panels respectively: they are made of punched and 

cold-formed thin steel plates fastened to the panel generally with ring shank nails or screws. Their derivation 

is from light-frame system, which is a technology that assures good dissipative properties given by small-

diameter fasteners that diffusively connect bracing panels to the timber frame, allowing the wall to deform in 

shear. Such type of deformation may be also achieved with massive timber shear walls, which make use of 

strategies alternative to glue to confer in-plane shear stiffness to the panel (Pozza et al. 2015). On the contrary, 

CLT panels are elastic and almost rigid in their plane, being cross-wise layers reciprocally glued; therefore, 

energy dissipation must localize only in fasteners connecting hold-downs and angle brackets to the panel and 

in screwed or nailed vertical joints connecting panels among them. The use of such types of connections in 

CLT structure leads to well-known drawbacks: low dissipative capacity due cyclic deformation of fasteners with 

consequent wood embedment and possible brittle failures of the steel plates due to uncertainty of actual 

strength of fasteners and relative overstrength factors. The direct result of the low ductility and dissipative 

capacities is a prudential structural design with low behaviour factors (EN1998, 2013) and consequent very 

high seismic forces concentrated in hold-downs and angle brackets, which require the use of many fasteners 

per connection, increasing the risk of brittle failures. A possible strategy to improve the seismic performance 

of such buildings is the fragmentation of the façades into narrow modular panels, vertically jointed by means 

of ductile fasteners, instead of the use of monolithic CLT panels (Pozza and Scotta 2015, Pozza et al. 2016, 

Pozza and Trutalli 2017, Trutalli and Pozza 2018). 

The use of special steel connections with optimized hysteretic behaviour can overcome both the 

aforementioned drawbacks of traditional connections, independently from the dimensions and arrangements 

of CLT panels. These connections exploit the ductility and dissipative capacity of steel, reducing or completely 

avoiding wood embedment. The low scattering of strength properties and the well-predictable yielding and 

peak forces, reduce the overstrength factor, improving the reliability of the ductile parts of the structure, in 

compliance with capacity design (Scotta et al. 2017). 

 Innovative connections for CLT buildings 

Innovative earthquake-resistant connections for CLT buildings are based on the concept of localizing the 

dissipative and ductility capacities of the structure to special devices, designed to exploit the hysteretic 

behaviour of steel or friction and to limit the pinching effect, provided that the anchoring to CLT panel be 

designed with sufficient overstrength to limit its elastic deformations. This means that, as opposed to angle 

brackets and hold-downs, the fastening of the device to the panel must be over-resistant. Innovative 

connection systems are also being developed in the perspective of low-damage structures, able to withstand 

subsequent seismic events by applying minor interventions, provided that connections be accessible. 
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Various types of innovative connections for CLT buildings are available, which differ in the type and shape 

of the device and in the technology used to restrain shear-walls. 

1. Dissipative devices coupled with post-tensioned shear walls were originally designed for multi-storey 

precast concrete buildings (Priestley et al. 1999). The favourable results led to the development of steel 

connection devices capable of high relative displacements, maintaining a rather unaltered energy 

dissipation capacity (Henry et al. 2010). In New Zealand, UFP connector, originally developed by Kelly et 

al. (1972), exploits a simple U-shape device realized from bending of a thick steel plate. This device has 

been applied to CLT as high-performance panel-to-panel vertical joint (Baird et al. 2014) to dissipate 

energy exploiting the rocking behaviour of slender panels restrained at the base by post-tensioned cables 

(PRES-LAM system, Palermo et al. 2006). Fuse-type buckling-restrained dissipaters have also been used 

at the base of the panels (Kramer et al. 2016, Sarti et al. 2016). 

2. The University of Salerno (Latour and Rizzano 2015) designed and tested brackets with hourglass shape 

(named XL-stubs) that concentrate energy dissipation in the flange plate, in substitution of traditional 

hold-downs. 

3. More recently, Schmidt and Blass (2017) presented a study on a steel plate combined with special 

laminated veneer lumber (LVL) inserts to realize dissipative panel-to-panel joints for CLT shear walls. 

4. The use of slip-friction devices for CLT shear walls has been investigated by Loo et al. (2014): a high-

performance hold-down was designed and tested, which exploits 12-mm thick steel plates connected 

with bolts that slip through slotted holes. Specifically designed shear keys placed at the panel base 

prevent possible slip of the panel and consequent shear loading to the dissipative devices. 

5. Hashemi et al. (2017) developed the Resilient Slip Friction (RSF) joint, in which the components are 

formed and arranged in a way that friction can occur avoiding relative residual displacements, without 

the use of post-tensioned tendons. 

6. Polastri et al. (2017) presented a connection suitable for precast CLT structures, which incorporates self-

tapping wood screws, LVL inserts and a high strength steel device. This system aims to improve the seismic 

performance of CLT structures and to reduce meanwhile the on-site installation costs. 

7. The connection presented in this Report, named “X-bracket”, has been developed at the University of 

Padova. Various advantages make this device an efficient earthquake-resistant connection for CLT 

structures and a valid alternative to traditional connections and aforementioned devices. It works both in 

tension and shear and can be used as panel-to-panel and/or panel-to-foundation joint. The special “X” 

shape is optimized to assure high stiffness and diffused yielding of material, resulting in extraordinarily 

high ductility and dissipative capacities. Furthermore, its two-dimensional shape and the possibility of 

producing multiple elements from cutting of a mild steel plate with minimal waste of material assure low 

production costs. 

This Report presents main details of the X-bracket and summarizes the research activities from the design to 

the experimental validation, discussing results from numerical simulations and laboratory tests. The 

installation and anchoring to the panel are also addressed and supported by additional tests, to verify the 

reliable response and controlled overstrength of the X-bracket. 
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 Capacity design 

Experimental evidences have demonstrated that uncertainty in applying the capacity design to traditional 

connections in CLT structures leads to frequent events of brittle failures (Gavric et al. 2013), which can 

compromise the stability of the entire structure. This derives from the high scattering of the peak strength of 

fasteners and the uncertainty in its analytical prediction. The consequence is that the actual peak strength of 

fasteners might exceed the strength of brittle components designed with insufficient overstrength, with 

subsequent brittle failure of the entire connection. On the contrary, the use of innovative connections, 

characterized by low scattering of strength properties and well-predictable yielding and peak forces, makes 

capacity design more reliable. In this case, the underestimation of the actual strength of fasteners (i.e., the 

brittle component of innovative connections) is on the safe side in the application of capacity design. 

The capacity design approach was originally developed for RC structures (Paulay and Priestley 1992). Its 

extension to timber and specifically to CLT structures has been formally defined (Jorissen and Fragiacomo 

2011, Fragiacomo et al. 2011, Sustersic et al. 2011, Scotta et al. 2017) and applied to fasteners and traditional 

connections (Gavric et al. 2013, Gavric et al. 2015a, Gavric et al. 2015b, Izzi et al. 2016, Ottenhaus et al. 2018) 

and to innovative connections (Scotta et al. 2017). Capacity design requires the definition of reliable 

overstrength factors γRd, which are not provided in the current version of Eurocode 8 (2013) for timber 

structures. A proposal for revision of Chapter 8 of Eurocode 8 (2013) is available in literature (Follesa et al. 

2015, Follesa et al. 2016), where a γRd equal to 1.3 for the CLT building technology with traditional connections 

and the formulations for its application in the capacity design are proposed. 

Fig. 1 shows a conceptual model according to Jorissen and Fragiacomo (2011) of the capacity design of the 

weakest brittle component of the connection system, starting from the strength properties of the ductile 

element. This approach is based on the scattering of the peak strength of the ductile part and the analytical 

procedures applied to evaluate such strength (i.e., rules according to Code). The main parameters in Fig. 1 are: 

dy  Yielding displacement; 

dpeak  Displacement corresponding to peak strength; 

Fcode
 −    Characteristic load-bearing capacity estimated according to Code; 

Fpeak
 −   5th percentile of the maximum strength obtained by tests; 

Fpeak
 mean  Mean value of the maximum strength obtained by tests; 

Fpeak
 +   95th percentile of the maximum strength obtained by tests; 

Fy
 −   5th percentile of the yielding strength obtained by tests; 

Fy
 mean  Mean value of the yielding strength obtained by tests; 

Fy
 +   95th percentile of the yielding strength obtained by tests; 

𝛾Rd  Overstrength factor; 

𝛾an  Analytical overstrength (Fpeak
 − = 𝛾an Fcode

 − ); 

𝛾sc  Scattering of peak strength (Fpeak
 + = 𝛾sc Fpeak

 − ). 

Subscripts B and D identify brittle and ductile element respectively. 
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Fig. 1. Conceptual model of capacity design applied to a ductile connection (Scotta et al. 2017) 

The capacity design consists in fulfilling Inequality (1), i.e., the brittle parts of the system must assure a 

characteristic load-bearing capacity higher or equal to the 95th-percentile peak strength of the ductile part, 

which is expressed as the product of the overstrength factor 𝛾Rd and the Code strength FD, code
 − : 

FB, code
 − ≥ FD,peak

 + =  𝛾Rd ∙ FD, code
 −  (1) 

Hence, the overstrength factor 𝛾Rd can be defined directly as a unique term, according to Equation (2), or 

can be split into two parts as in Equation (3): 

𝛾Rd =  FD, peak
 +  FD, code

 −  ⁄  (2) 

𝛾Rd = 𝛾sc ∙  𝛾an = FD, peak
 +  FD, peak

 −  ⁄ ∙  FD, peak
 −  FD, code

 −  ⁄   (3) 
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The described conceptual model is based on the hypothesis that a set of experimental tests (at least three) 

is available to characterize the statistical distribution of the peak strength of the ductile component and then 

to compute directly FD, peak
 + . However, this experimental characterization is generally not available, and FD, peak

 +  

is normally unknown by practitioners. Therefore, 𝛾Rd must be code-dependent being strictly correlated to the 

analytical method used to compute FD, code
 − , which is the only value available to practitioners. This aspect is of 

utmost importance for connections in timber structures, and specifically CLT, for which FD, code
 −  is currently not 

univocally defined, depending on the chosen values of parameters in the calculation model. For instance, for 

a dowel-type fastener, FD, code
 −  is normally computed according to Eurocode 5 (2014), applying the Johansen’s 

Theory (1949), but the resulting load-bearing capacity is not univocal, depending on the chosen values of 

parameters in the analytical formulations and on the special rules provided by product approvals. Therefore, 

𝛾Rd values are affected not only by the statistical variability of the strength of the ductile element (𝛾sc) but also 

by the analytical method to estimate its characteristic strength, according to a particular Code (𝛾an). Therefore, 

it is fundamental that 𝛾Rd values proposed in a Code be consistent with the analytical methods and parameters 

available in the same Code. 

An exhaustive experimental research about steel-to-timber joints with ring shank nails for CLT is available 

in (Izzi et al. 2016). According to these tests and depending on the chosen parameters to compute FD, code
 −  and 

on the angle of the force to the face lamination of the panel, the obtained γRd values are in the range between 

about 1.6 and 2.6, thus demonstrating the strict correlation between γRd and the analytical models and 

parameters to compute FD, code
 − . These values may be used to apply the capacity design to traditional 

connections for CLT, as hold-downs and angle brackets, for which ring shank nails represent the ductile 

component. The steel plate and the anchoring to foundation or floor can be therefore designed applying the 

conceptual model described here with γRd proposed by Izzi et al. (2016). 

The adoption of innovative connections developed to localise yielding in steel parts, and therefore with 

well-defined and predictable yielding and peak strength, undoubtedly would result in a more reliable 

application of the capacity design. No formulas are normally available to evaluate the load-bearing capacity of 

such connections. According to Eurocode 3 (2014), in steel structures FD, code
  −  is normally assumed coincident 

with nominal FD, y
  − : this assumption can be extended to innovative connections and γRd can be obtained directly 

as ratio between FD, peak
 +  and FD, y

  − , according to Equation 2. 

2. DETAILS AND PROPERTIES OF THE X-BRACKET 

The X-bracket has been designed and tested at the University of Padova. It is the result of a four-year 

research, which aimed to develop a connection element suitable to improve the seismic performance of CLT 

buildings at different levels, hereafter listed. The resulting device, characterized by a “X” shape, is made by 

cutting of a mild steel plate, resulting in several brackets with four fixing points (16-mm diameter holes) 

necessary for the anchoring to the timber panel or to the foundation. 

Fig. 2 shows some examples of arrangement of the X-bracket as panel-to-foundation joint (Fig. 2a,b) or 

panel-to-panel joint (Fig. 2c,d), both in external or concealed utilizations, and some anchoring strategies to 

limit the wood embedment. More details are given in the following Sections. 
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 (a)  (b) 

 (c)  (d) 

Fig. 2. Examples of possible arrangements of the X-bracket and possible strategies to guarantee a rigid anchoring to the 

panel: (a) Panel-to-foundation external joint; (b) Panel-to-foundation concealed joint; (c) Panel-to-panel external joint; 

(d) Panel-to-panel concealed joint 

Main advantages of the X-bracket, given by its special shape, by the properties of structural steel and by 

the anchoring system to the CLT panel, are: 

- An optimized mechanical behaviour to assure diffused yielding of material, resulting in extraordinarily high 

ductility and dissipative capacities; 

- An optimized mechanical behaviour to assure high stiffness, which is favourable to avoid damages to non-

structural components in case of static lateral loads or low-intensity earthquakes, and to guarantee, in case 

of strong earthquakes, that the dissipation be activated for small yielding displacements; 

- The possibility of realizing a rigid anchoring to the panel with simple additional elements, which avoid or 

limit the wood embedment near bolts and the consequent “pinching” behaviour, allowing the connection 

system to exploit entirely the dissipative properties of the X-bracket; 

- Mechanical characteristics can be easily adapted by changing dimensions and/or thickness and/or steel 

grade; 

- The possibility of working as panel-to-foundation, panel-to-panel and inter-storey floor-wall joint, fulfilling 

in this way all functions of traditional connections with a unique type of connector, allocating ductility and 

dissipative properties in all the joints of the building; 
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- The use of a unique type of device to work in tension and/or shear, with well-defined strength and 

displacement domains; 

- The reliability of the mechanical response to seismic loading, thanks to the deformation of a steel element 

and a rigid anchoring to timber, as opposed to traditional connections, whose response is governed by the 

interaction between fasteners and timber, with consequent greater uncertainty in the response; 

- A more accessible and reliable capacity design, thanks to low scattering of mechanical properties and well-

defined peak and yielding strength, resulting in low and controlled overstrength factors, easily estimable 

by means of a limited number of tests; 

- The possibility of an easy replacement in the same position after strong earthquakes (if accessible), working 

as a fuse element and avoiding damages to CLT panel; 

- The possibility of installing a couple of brackets externally to the panel to facilitate the replacement or a 

concealed bracket within the panel for aesthetic reasons or to guarantee the protection against fire (see 

Section 2.1); 

- Very low production cost (~2÷4€ per bracket) thanks to its two-dimensional and simple shape, optimized 

to minimize waste of material (see Section 2.1); 

- Fast installation (~5min per bracket) (see Section 2.2). 

 OPTIONS 

Two options are available, optimized for external or concealed installation. Fig. 3 shows standard X-brackets 

and Fig. 4 and Fig. 5 alternative or special usages. Dimensions are relative to latest specimens tested in 

laboratory, for which a complete mechanical characterization is available in this Report. 

X-bracket type 1 (Fig. 3a) is optimized to work as external bracket. Its shape is suitable to minimize waste 

of material from cutting of a mild steel plate (Fig. 6a). It can be used as panel-to-panel, panel-to-foundation 

and floor-wall joint. The anchoring to CLT can be realized by means of a screwed thin steel plate placed 

between the bracket and the panel with two holes in correspondence to the fixing points of the bracket. This 

allows X-bracket type 1 to be replaced after a strong earthquake in the same position, without removing the 

screwed steel plate. 

X-bracket type 2 (Fig. 3b) is optimized to work as concealed connection within a groove in the panel edge. 

Its shape has been studied to work with complementary plates obtained directly in the cutting operations (Fig. 

6b), which can be fixed to the panel with double shear plane self-drilling dowels as typical concealed beam 

hangers, assuring high strength and stiffness of the anchoring system. In this way, a cylindrical hinge at each 

fixing point is guaranteed allowing bending deformation of flanges and rotation around the calibrated bolts. 

This option is suitable to realize panel-to-panel joints for aesthetic reasons or to guarantee the protection 

against fire. A special usage of X-bracket type 2 as panel-to-foundation concealed connection (Fig. 4) can be 

obtained using half a bracket welded to a rectangular steel plate, which can be fixed to foundation by means 

of concrete anchors. The usage of X-bracket type 2 as external bracket is anyway possible (Fig. 5), with or 

without the use of the complementary plates. 
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            (a) 

 

 

               (b) 

Fig. 3. Standard usages of the X-bracket: (a) Type 1 as external application; (b) Type 2 as concealed application. 

Dimensions refer to the latest specimens tested in laboratory. Units: mm 
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Fig. 4. Special usage of the X-bracket type 2 as panel-to-foundation concealed connection 

        

Fig. 5. Alternative usage of the X-bracket type 2 as external connection 

 
(a)                       (b) 

Fig. 6. Production of X-bracket: (a) Type 1; (b) Type 2 
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 INSTALLATION 

A very fast installation is guaranteed since only four calibrated bolts are needed to connect one X-bracket 

to CLT or to foundation. Bolts are inserted into holes predrilled in panels. X-bracket type 1 must be used in a 

pair at both sides of the panel. A foundation curb or bottom rail is always needed. Alternative solutions are 

available to avoid wood embedment, both in external and concealed utilizations.  

2.2.1 External X-bracket 

Some possible anchoring systems of the external X-bracket are here listed. 

- Use of a screwed thin steel plate between the bracket and the panel (Fig. 7). Analytical calculations based 

on the conceptual model of capacity design described in Section 1.2 and experimental tests* demonstrated 

that fourteen 8x100mm self-tapping partially threaded screws per bracket are sufficient to guarantee a 

rigid anchoring with negligible decrease of strength and dissipative capacity of the entire connection 

system with respect to the intrinsic capacities of a bracket (Scotta et al. 2017) (*X-bracket realized with 

dimensions in Fig. 3a and S450 steel grade according to EN 10025-2). 

- Use of punched metal plates (Blass et al. 2000) (see Fig. 2c). 

- Use of special elements to increase the wood embedment strength near calibrated bolts. This strategy does 

not require the addition of steel plates or fasteners with the exception of the four calibrated bolts per 

bracket, which are always needed (see Fig. 2d and Fig. 5). 

   

Fig. 7. Anchoring of external X-bracket type 1 to CLT with a screwed plate 

2.2.2 Concealed X-bracket 

Some possible anchoring systems of the concealed X-bracket type 2 are here listed. 

- Use of complementary plates fastened to the panel with self-drilling dowels (Fig. 8 and Fig. 9). Analytical 

calculations based on the conceptual model of capacity design described in Section 1.2 and experimental 

tests** demonstrated that four 7x90mm self-drilling dowels per bolt are sufficient to guarantee a rigid 

anchoring (**X-bracket realized with dimensions in Fig. 3b and Fig. 4and S355 steel grade according to EN 10025-2). 

- Use of special elements to increase the wood embedment strength near calibrated bolts. This strategy does 

not require the addition of steel plates or fasteners (see Fig. 2d and Fig. 10). 
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Fig. 8. Anchoring of concealed X-bracket type 2 to CLT with self-drilling dowels (panel-to-panel joint) 

 

  

Fig. 9. Anchoring of concealed X-bracket type 2 to CLT with self-drilling dowels (panel-to-foundation joint) 

 

  

Fig. 10. Anchoring of concealed X-bracket type 2 to CLT with special elements without the use of complementary plates 

or additional fasteners (panel-to-foundation joint) 
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3. MECHANICAL CHARACTERIZATION 

The mechanical behaviour of the X-bracket has been characterized by means of numerical simulations with 

detailed Finite Element (FE) models and experimental tests performed in the Mechanical Laboratory of 

Construction and Materials of Department ICEA of the University of Padova. In this Section, main results from 

simulations and tests are reported and discussed. The complete mechanical characterization is available in 

Appendix A, which reports results from each performed test. Before presenting main results relative to X-

bracket type 1 and type 2, preliminary tests and simulations of the first prototype are also briefly summarized 

(see also Scotta et al. (2015); Scotta et al. (2016); Marchi et al. (2016). 

 FIRST PROTOTYPE 

3.1.1 Preliminary simulations 

A three-dimensional (3D) FE model of the X-bracket using solid elements was implemented into ANSYS 

Workbench to design the optimal shape and dimensions of the first prototype. Main geometrical parameters 

chosen as variables in the model are evidenced with letters in Fig. 11. An elastic-plastic constitutive law 

combined with a Von-Mises yield criterion and a kinematic hardening model was adopted to simulate steel 

cyclic behaviour. The non-linear geometrical analysis option was activated to account for possible buckling 

phenomenon for high displacements. A total of about 80 combinations of parameters were examined. Each 

combination consisted in a pure tension and pure shear pushover and/or cyclic-loading analysis. The 

parametric analyses were helpful, as modifying length and thickness of vertical and horizontal arms allowed 

to calibrate strength in shear and tension and displacement capacity. Additionally, the variation of stiffness 

and strength was permitted by changing the internal curvature radius. The dimensions of the final shape listed 

in Fig. 11 resulted in an optimization of strength, stiffness and ductility and in assuring similar performances 

in tension and shear. The high ductility in shear is mainly assured by the plastic deformation of the vertical 

web, whereas in tension by the bending deformation of the horizontal arms. Fig. 12 shows the deformation at 

maximum imposed displacements, in tension and shear loading. The grey contour shows plastic regions, in 

which the yielding stress has been exceeded. 

 

Parameters (units) Dimensions Parameters (units) Dimensions 

a (mm) 303.0 g (mm) 33.0 
b (mm) 233.0 h (mm) 89.0 
c (mm) 33.0 i (mm) 1.0 
d (mm) 35.0 j (mm) 91.5 
e (mm) 31.5 k (mm) 23.5 
f (mm) 26.5 Thickness (mm) 6.0 

Fig. 11. Dimensions of the first prototype as output of the parametric analysis 
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(a) 

 

 (b) 

Fig. 12. Numerical model of the first prototype: equivalent von Mises stress contour on deformed geometry of X-

brackets. (a) Tension loading; (b) Shear loading. Plastic regions in grey colour (Scotta et al. 2016) 

3.1.2 Preliminary tests 

After the numerical design and optimization, preliminary experimental tests of the first prototype were 

carried out to obtain the actual cyclic behaviour and to compare results with numerical predictions. Three 

tests were performed in pure tension and three in pure shear loading, according to the quasi-static cyclic 

loading protocol in displacement control recommended by EN 12512 (2006). The cyclic procedure was 

stopped after reaching a relative displacement of 30 mm; then the specimens were loaded monotonically until 

failure. A couple of X-brackets was fixed externally on both sides of a rigid steel frame without blocking possible 

buckling; therefore, a total of twelve X-brackets were tested. Two specific setups were designed for tension 

and shear tests (Fig. 13). With reference to the setup for tension tests (Fig. 13a), the two lower fixing points of 

the X-brackets were connected to a rectangular 20mm thick steel plate, rigidly fixed to the portal. The two 

upper fixing points were connected to another rectangular 20mm thick plate fixed to the hydraulic actuator 

with rotational hinge. The pure shear loading was obtained with an unbraced 15mm thick steel truss, in which 

the X-brackets worked as cross-bracing elements (see Fig. 13b); the whole assembly was positioned in a 

rotated configuration, in order to keep the loading direction as close as possible to the virtual diagonal line. 

Polytetrafluoroethylene (Teflon - PTFE) sheets were interposed between contact surfaces to minimize friction. 

During tests, displacements were measured by a Linear Variable Differential Transducer (LVDT) per side of 

the supporting steel frame. For tension tests, the LVDTs measured directly the relative displacement Δy of the 

two rigid plates (see Fig. 13a). The shear displacements Δx were obtained projecting the virtual diagonal 

deformation (see Fig. 13b) to the lateral direction of the X-bracket; the progressive rotation of the steel frame 

was considered in the evaluation of the shear component of the applied force. It is worth noting that this 

preliminary experimental phase was useful also to test the setup and the measuring system, in order to make 

possible improvements for the following experimental campaign of the final versions of X-bracket. 
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        (a)       (b)  

Fig. 13. Test setups: (a) Rigid frame for tension tests; (b) Unbraced steel truss for shear tests (Scotta et al. 2016) 

Fig. 14 plots the results of tests in comparison with numerical prediction (the numerical model was 

calibrated according to mean steel parameters derived from tensile tests of the material according to EN ISO 

6892-1 (2016). Force refers to one bracket. With reference to the curves of the specimens loaded in shear, 

the projection of forces and displacements to the lateral direction of the X-bracket are shown, to present the 

results in terms of lateral force and lateral displacements. Results for tension loading (Fig. 14a) show that 

during the 30 mm cycles the reloading stiffness decreased gradually due to buckling. For the same reason, the 

maximum compression force measured during unloading was lower than the tension one, but still maintained 

a wide hysteresis area and, consequently, an appropriate dissipative capacity. The numerical model tolerably 

underestimated unloading stiffness. With reference to the shear loading results (Fig. 14b), the experimental 

hysteresis cycles are perfectly centred on the origin of the axes, thus demonstrating the suitability of the setup 

configuration. The experimental cyclic shear tests were stopped at about ±15 mm due to the limitations of the 

test setup. Then, X-brackets were deformed monotonically up to 50, 58 and 80mm in Tests 1, 2 and 3, 

respectively. In general, no noticeable strength degradation was observed in the experimental tests. Numerical 

simulations of cyclic shear tests were extended up to ±30 mm. In the range ±15 mm, the numerical results are 

in good agreement with the experiments, even if the numerical predictions slightly over-estimate shear force 

at higher displacements. Moreover, flexural-torsional buckling of the X-brackets, started at ±15 mm cycles, 

was correctly simulated, Fig. 15. 

Fig. 16 shows the tested specimens subjected to very large displacement (35 mm in tension test, 50 mm in 

shear test). The main evidence is that the X-brackets are able to experience large plastic deformations before 

failure, in both loading configurations. Specimens failed at very large displacements due to stress 

concentration in fillet “i” (Fig. 11).  Based on these preliminary results, the ductility of X-brackets was further 

improved with a proper modification of this detail. Moreover, test setups and measuring systems were 

optimized for the test campaigns of the final versions to permit tests to continue in cyclic loading up to failure 

of the specimens. 
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(a) 

 

 (b) 

Fig. 14. Experimental and numerical results of one bracket. (a) Tension tests; (b) Shear tests (Scotta et al. 2016) 

 

(a) 

 

 (b) 

Fig. 15. Plate buckling under shear loading. (a) Experimental evidence; (b) Numerical prediction (Scotta et al. 2016) 

 

(a) 

 

 (b) 

Fig. 16. Deformed specimens. (a) Tension test; (b) Shear test (Scotta et al. 2016) 
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The cyclic tests were analysed, fitting the envelope curve with the analytical formulation proposed by 

Foschi and Bonac (1977). Then, method (a) of EN 12512 (2006) was chosen for both tension and shear tests, 

in order to obtain the best linear fitting of the envelope curve. Moreover, also the equivalent elastic–plastic 

energy (EEEP) method (Foliente 1996) was used to analyse the results of the shear tests, because of the almost 

elastic perfectly plastic behaviour. From the bi-linear curves, it was possible to obtain: elastic and post-elastic 

stiffness (kel, kpl), yielding point (dy, Fy), ultimate displacement du, peak strength Fmax and ductility μ. Finally, 

according to Eurocode 8 (2013) it was possible to classify the connection into the appropriate ductility class, 

i.e., low (L), medium (M) or high (H). Table 1 and Table 2 list the obtained results referring to a single bracket, 

i.e., strength and stiffness represent the mean result between the couple of X-brackets contemporarily tested. 

Therefore, average values, standard deviations (SD) and 5th and 95th characteristic values (k-, k+), were 

computed considering a sample of six brackets. Results show that the proposed connection is characterized 

by a high initial stiffness and adequate strength for both tension and shear loads. However, the most valuable 

result is the very high ductility obtained and the limited pinching effect. High values of ductility are the 

consequences of a combination of large displacement capacity du, similar or greater than traditional 

connections, and an early yielding condition dy. Ductility for the shear configuration was computed assuming 

du equal to 50 mm, although in Test 3, failure of the specimen occurred for a displacement equal to 80 mm, 

whereas Tests 1 and 2 were stopped before failure. 

Table 1 - Tension tests: main mechanical parameters (Scotta et al. 2016) 

Parameters 

(units) 
Test 1 Test 2 Test 3 Mean SD k- k+ 

Fy (kN) 17.55 18.37 17.99 17.97 0.36 17.18 18.76 

dy (mm) 1.89 2.01 1.98 1.96 0.06 1.83 2.09 

Fmax (kN) 37.18 37.84 38.25 37.76 0.48 36.70 38.81 

du (mm) 44.30 47.30 47.00 46.20 1.48 - - 

kel (kN/mm) 9.31 9.12 9.08 9.17 0.11 8.94 9.40 

kpl (kN/mm) 0.46 0.43 0.45 0.45 0.01 0.42 0.48 

 (du) (-) 23.49 23.49 23.72 23.57 0.12 23.30 - 

Ductility Class H H H - - - - 

Table 2 - Shear tests: main mechanical parameters (Scotta et al. 2016) 

Parameters Test 1 Test 2 Test 3 Mean SD k- k+ 

(units) EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP EN EEEP 

Fy (kN) 26.71 27.41 29.41 28.88 28.14 27.83 28.09 28.04 1.21 0.68 25.46 26.56 30.71 29.52 

dy (mm) 2.38 2.60 4.00 4.45 4.02 4.53 3.46 3.86 0.84 0.98 1.63 1.73 5.30 5.99 

Fmax (kN) 29.00 27.41 29.70 28.88 28.40 27.83 29.03 28.04 0.58 0.68 27.76 26.56 30.30 29.52 

du (mm) 50.00* 50.00* 58.00* 58.00* 80.00 80.00 - - - - - - - - 

kel (kN/mm) 11.24 10.55 7.36 6.49 7.00 6.14 8.53 7.73 2.10 2.19 3.95 2.95 13.12 12.50 

kpl (kN/mm) 0.05 0.00 0.01 0.00 0.00 0.00 - - - - - - - - 

 (du=50mm) 21.04 19.24 12.51 11.24 12.44 11.03 - - - - - - - - 

Ductility Class H H H H H H - - - - - - - - 

* Tests 1 and 2 were stopped before the ultimate displacement 
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 EXTERNAL X-BRACKET TYPE 1 

X-bracket type 1 (see Section 2) is an enhanced version of the first prototype. According to results of 

preliminary tests, minimal shape adjustments were performed, increasing fillet radius “i” in Fig. 11 and 

modifying hole spacing. A 6-mm thick steel plate, with strength corresponding to a S450 steel grade according 

to EN 10025-2 (2004), was chosen to realize the specimens for the experimental campaign. Dimensions of the 

specimens are in Fig. 3a. 

3.2.1 Simulations 

A 3D FE model of the X-bracket type 1 was performed to predict the actual behaviour in tension or shear 

and then to derive the full shear-tension strength and displacement domain (Marchi et al. 2017). The FE model 

was developed in ANSYS Workbench, using high-order SOLID185 elements, meshed with a mesh size between 

2-5 mm, Fig. 17. Cylindrical hinges placed at the four fixing points (i.e., holes where bolts are inserted) allowed 

horizontal arms to rotate. The geometrical nonlinearity was activated to account for possible Eulerian buckling 

(Fig. 17b) and lateral-torsional buckling (Fig. 17d) for large deformations. A compression-only surface placed 

on the back side of the bracket forced the possible out-of-plane buckling only towards the opposite side, to 

simulate the presence of the CLT panel. 

An elastic-plastic constitutive law combined with a Von Mises yield criterion and a kinematic hardening 

model was adopted to simulate steel cyclic behaviour. The mechanical properties of steel were extrapolated 

from monotonic tensile tests on specimens according to EN ISO 6892-1 (2016) and applied to the model 

through a multilinear true stress-vs.-strain curve. Elastic and hardening moduli of S450JR steel were set to 

210000 and 957 MPa, respectively, whereas yielding stress and ultimate true stress were set to 450 MPa and 

700 MPa, respectively. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 17. Mesh of X-bracket type 1 and contour of the Von Mises stress from cyclic-loading simulations: (a) Loading in 

tension; (b) Unloading in tension and Eulerian buckling; (c) Loading in shear, front view; (d) Loading in shear and lateral 

torsional buckling, side view 

For this type of bracket, additional displacement-driven non-linear static analyses were performed, varying 

the angle α of the resulting force between pure shear condition (α = 0°) and pure tension condition (α = 90°). 

Obtained force-vs.-displacement curves (Fig. 18) have same stiffness in the initial elastic phase, and deviate 

when entering the plastic phase. The resulting displacement and strength domains, applying ten combinations 

of tension and shear forces are shown in Fig. 19. First yielding conditions were evaluated after decomposition 

of the applied force to the tension and shear components FHD and FSH respectively. Failure conditions were 
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set at the achievement of the ultimate steel strain. A conservative analytic ultimate displacement domain was 

defined according to Equation (4), as shown with dashed line in Fig. 19a. 

√dx
2+dy

2≤38mm   (4) 

 

 
(a) 

 
(b) 

Fig. 18. Monotonic curves varying the angle of the applied force: (a) Vertical component FHD; (b) Shear component FSH 

 

 
(a) 

 
(b) 

Fig. 19. Coupling domains obtained from the imposed angles of the applied forces: (a) Displacement domain; (b) 

Strength domain 
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3.2.2 Tests 

Six mechanical tests (three in tension and three in shear) were performed according to the quasi-static 

cyclic-loading protocol of EN 12512 (2006), imposing a yielding displacement dy,est equal to 4mm. The same 

symmetric test procedure of the preliminary tests was followed, by anchoring a couple of X-brackets to a rigid 

steel frame, with M16 8.8-class steel bolts (Fig. 20). Therefore, six brackets were tested in tension and six in 

shear. Fig. 21 shows photos of the setup and measurement system and positions, with some improvements 

with respect to preliminary tests. 

Test results are plotted in Fig. 22 and Fig. 23 in terms of force-displacement curve for all the tests. Strength 

refers to a single X-bracket. With reference to the curves of the specimens loaded in shear, the projection of 

forces and displacements to the local axis x (see Fig. 20) are shown, to present the results in terms of lateral 

force and lateral displacements of one bracket.  

Results show that X-bracket type 1 is characterized by very high ductility resulting from a combination of 

high elastic stiffness and high displacement capacity. In tension tests, failure occurred due to large amount of 

plastic deformations of the vertical web, which is subjected to Eulerian buckling during the unloading phase 

and consequent strength degradation during the reloading (Fig. 24). This phenomenon starts from the 24mm 

cycles, whereas up to this deformation, no instability or strength degradation occurred. Moreover, for the 

subsequent 32, 40 and 48mm cycles, the hysteretic response was still very acceptable and all the three 

repeated cycles were successfully completed. Also for shear tests, failure was located in the vertical web, which 

is subjected to repeated load inversions and consequent flexural-torsional buckling (Fig. 25) for large 

deformations (i.e., ±16mm cycles in Fig. 23). However, also for shear tests, all three ±32mm cycles were 

completed without showing excessive strength degradation. Fig. 22 and Fig. 23 show also the suitability of the 

FE model in predicting the hysteretic behaviour of the X-bracket. 

The performed cyclic tests allowed to define main mechanical parameters, by fitting the envelope of the 

hysteresis curves using the analytical formulation proposed by Foschi and Bonac (1977) and applying proper 

bi-linearization methods. Table 3 lists results of tests in tension and Table 4 results of tests in shear. As for the 

first prototype, method (a) of EN 12512 (2006) was chosen for tension tests, whereas the EEEP method 

(Foliente 1996) was considered suitable for shear tests, due to the different post-elastic behaviour shown. 

From the obtained bi-linear curves, it was possible to classify the proposed connection into the appropriate 

ductility class (Low (L), Medium (M) and High (H), according to Eurocode 8 (2013). Characteristic 5th percentile 

and 95th percentile values were calculated assuming a normal distribution according to EN 1990 (2010) and 

EN 14358 (2016). The increase of steel strength resulted in an improvement of strength and stiffness with 

respect to the first prototype. 
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(a) 

  

(b) 

Fig. 20. Test setup of the X-bracket type 1: (a) Tests in tension; (b) Tests in shear 

  

 
(a) 

 
(b) 

Fig. 21. Test setup of X-bracket type 1 and positioning of LVDTs: (a) tests in tension; (b) tests in shear 
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Fig. 22. Force-displacement curves for tests in tension (strength refers to one bracket) 

 

  

Fig. 23. Force-displacement curves for tests in shear (strength refers to one bracket) 
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(a) 

 

(b) 

Fig. 24. Deformed specimen in tension: (a) Loading; (b) Unloading 

 

 

 

 

Fig. 25. Deformed specimen in shear 
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Table 3. Tension tests: main mechanical parameters according to EN 12512 (2006) method “a” 

Parameter 

(units) 
TEST 1 TEST 2 TEST 3 Mean SD COV 

EN 1990 (2010) EN 14358 (2016) 

k- k+ k- k+ 

Fy (kN) 28.59 29.51 28.16 28.75 0.62 2.14% 27.41 30.09 25.39 32.11 

dy (mm) 3.26 3.08 3.21 3.18 0.08 2.53% 3.01 3.36 2.81 3.55 

Fmax (kN) 46.60 47.60 47.30 47.17 0.46 0.97% 46.17 48.17 41.65 52.68 

du (mm) 40.00 40.00 40.00 40.00 - - - - - - 

kel (kN/mm) 8.78 9.57 8.77 9.04 0.41 4.57% 8.14 9.94 7.98 10.10 

kpl (kN/mm) 0.49 0.49 0.52 0.50 0.02 3.12% 0.47 0.53 0.44 0.56 

 (du) (-) 12.29 12.98 12.46 12.58 0.32 2.56% 11.87 - 11.10 - 

Ductility 

Class 
H H H - - - - - - - 

Table 4. Shear tests: main mechanical parameters according to EEEP method (Foliente 1996). 

Parameter 

(units) 
TEST 1 TEST 2 TEST 3 Mean SD COV 

EN 1990 (2010) EN 14358 (2016) 

k- k+ k- k+ 

Fy (kN) 39.15 39.51 39.84 39.50 0.31 0.78% 38.83 40.17 34.88 44.12 

dy (mm) 1.24 1.26 1.25 1.25 0.01 0.97% 1.23 1.28 1.11 1.40 

Fmax (kN) 43.91 43.49 44.45 43.95 0.43 0.98% 43.01 44.89 38.81 49.09 

du (mm) 32.00 32.00 24.00 - - - - - - - 

kel (kN/mm) 31.64 31.25 31.75 31.55 0.23 0.74% 31.03 32.06 27.85 35.24 

kpl (kN/mm) 0.00 0.00 0.00 0.00 - - - - - - 

(du) (-) 25.86 25.31 19.13 23.43 3.34 14.27% 16.14 - 15.61 - 

Ductility 

Class 
H H H - - - - - - - 

 

The tension tests and the bi-linearization method (a) of EN 12512 (2006) returned FD, y
 −  and FD, peak

 +  values 

of 27.41 kN and 48.17 kN respectively, according to EN 1990 (2010). Therefore, the resulting overstrength 

factor γRd for the X-bracket loaded in tension, according to the conceptual model presented in Section 1.2 and 

assuming FD, code
 −  = FD, y

 − , is equal to 1.76. In shear loading conditions, γRd is equal to 1.15, resulting from FD, y
 −  

and FD, peak
 +  values of 38.83 kN and 44.89 kN respectively.  

In (Scotta et al. 2017) a comparison of γRd evaluated for the X-bracket and for traditional connections, which 

are characterized by values in the range 2.0÷3.4, is discussed. It can be noted that the use of X-brackets, which 

localize the ductility and energy dissipation capacity in a steel element, can strongly reduce the scattering of 

peak force. On the contrary, a steel-to-timber connection with dowel-type fasteners, as traditional 

connections, has higher statistical dispersion. 

According to the calculated values of γRd, the anchoring of the X-bracket to a CLT panel subjected to tension 

loads was designed. The timber element is a 120mm thick CLT panel composed by 5 layers of C24 timber 

boards. The two 16mm diameter upper fixing points of the X-brackets are supposed to be fastened to the 

panel with two 16x200mm 8.8-class calibrated bolts, to allow the horizontal arms to rotate and to dissipate 

energy due to steel plasticization. These two cylindrical restraints are subjected to high concentrated forces, 
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which would result in predominant wood embedment, compromising the dissipative properties of the 

connection. A thin steel plate was placed between the bracket and the panel with two 16mm diameter holes 

in correspondence to the fixing points of the bracket. A rectangular S275JR steel plate with dimensions of 

330x200x3mm, was designed and fastened to the panel with fourteen 8x100mm self-tapping partially 

threaded screws. The characteristic load-bearing capacity of the screws FB,code
 −  was computed according to 

Eurocode 5 (2014). In detail, a total shear strength FB,code
 − =52.86 kN was obtained for the effective number of 

screws, evaluating the characteristic embedment strength in the timber member fh,k according to Eurocode 5 

formulation (2014), assuming the fastener yield moment My,Rk and withdrawal capacity fax,k according to ETA-

11/0027 (2016) and a the characteristic value of panel density ρk equal to 385 kg/m3.  This value of FB, code
 −  is 

higher than γRd ·FD,code
 −  = 48.24 kN (assuming again FD,code

 −  = FD,y
 − ), thus fulfilling Inequality (1) and complying 

with the capacity design. 

A cyclic-loading test of the complete connection was conducted following the same cyclic-loading 

procedure and setup adopted for the bracket, in order to obtain a direct comparison between the hysteretic 

behaviour of the X-bracket and of the complete connection. The experimental test of the complete connection 

was conducted only in tension. However, by changing the plate dimensions and the position of the screws, it 

is possible to realize the same over-resistant connection in case of shear loading conditions. 

Fig. 26 shows the photos of a non-deformed and a deformed specimen, up to failure. From the 

superimposition of the results recorded for the X-bracket and the test of the complete connection, a very 

similar hysteresis behaviour and a negligible decrease of dissipative capacity and strength was evidenced, Fig. 

27a. The maximum relative slip of the 3-mm steel plate is 0.4mm, a negligible value with respect to the 

displacement amplitude of the bracket. The reduction of strength and dissipative capacity (in terms of viscous 

damping ratio νeq (EN 12512, 2006) for the complete connection with respect to the mean value from the 

three tests of the X-bracket can be quantified from a comparison of the orange and the black lines in Fig. 27b-

c for all the loading cycles. It can be noted that the recorded viscous damping ratios are substantially higher 

than traditional hold-downs, having νeq of about 3 due to marked pinching behaviour (Gavric et al. 2015b). 

After the execution of the test of the complete connection, an additional test was performed to the same 

specimen, replacing only the two X-brackets and the two bolts, whereas the self-tapping screws that fastened 

the rectangular plate were not replaced. The aim was to give a preliminary evaluation of the possibility of using 

this bracket as a fuse element, which can be replaced after an earthquake, if accessible. The same loading 

procedure (EN 12512, 2006) was applied to the specimen. Results show that the device can withstand another 

cyclic loading procedure without significant degradation in strength and dissipative capacity (Fig. 28, Table 5). 

It can be noted that the dissipative capacity is almost fully exploited and, neglecting the elastic phase, the 

mean strength loss ∆F measured for each cycle was about 2.5%. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 26. Test of the complete connection: (a) Photo of the non-deformed specimen; (b) Specimen at maximum vertical 

displacement of 48m; (c,d) Failure in the vertical web 
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 (a) 

 (b) 

 (c) 

Fig. 27. Comparison among tests of X-brackets and of the complete connection in tension, dy,est = 4.00 mm: (a) 

Hysteresis cycles; (b) Maximum force per loading cycle; (c) Equivalent viscous damping. (Scotta et al. 2017) 
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 (a) 

 (b) 

(C) 

Fig. 28. Comparison between first and second test of the complete connection in tension, dy,est = 4.00 mm: (a) 

Hysteresis cycles; (b) Maximum force per loading cycle; (c) Equivalent viscous damping 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-40

-20

0

20

40

60

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

d/dy,est (-)

Fo
rc

e 
(k

N
)

Displacement (mm)
COMPLETE CONNECTION TEST 1 COMPLETE CONNECTION TEST 2

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25

M
ax

im
u

m
 F

o
rc

e 
(k

N
)

Loading cycles (-)

COMPLETE CONNECTION TEST 1 COMPLETE CONNECTION TEST 2

d/dy,est (-)

<1 1 2 4 6 8 10 12

0%

5%

10%

15%

20%

25%

1 3 5 7 9 11 13 15 17 19 21 23 25

V
is

co
u

s 
D

am
p

in
g 

R
at

io
 (

-)

Loading cycles (-)

COMPLETE CONNECTION TEST 1 COMPLETE CONNECTION TEST 2

d/dy,est (-)

<1 1 2 4 6 8 10 12



 
DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE - I C E A 
DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING 

 
 UNIVERSITÀ DEGLI STUDI DI PADOVA 

 
 

 

 

33 

Table 5. Test results: main mechanical parameters according to EN 12512 (2006) method “a”  

Parameter 
X-BRACKET 

MEAN VALUES 

COMPLETE 

CONNECTION  

TEST 1 

COMPLETE 

CONNECTION 

TEST 2** 

Fy (kN) 28.75 26.17 24.93 

dy (mm) 3.18 4.69 5.77 

F(du) (kN) 47.17 48.64 53.85 

du (mm) 40.00* 48.00* 56.00* 

kel (kN/mm) 9.04 5.58 4.32 

kpl (kN/mm) 0.50 0.57 0.66 

µ (du) (-) 12.58 10.23 9.70 

Ductility Class H H H 

* Test stopped before failure 

** Same specimen as test 1. Only X-brackets and bolts replaced. 

 CONCEALED X-BRACKET TYPE 2 

X-bracket type 2 (see Section 2) is the concealed version of the bracket, within a groove in the panel edge. 

It works with complementary plates obtained directly in the cutting operations (Fig. 6b). In this way, a 

cylindrical hinge at each fixing point is guaranteed, allowing bending deformation of flanges and rotation 

around the calibrated bolts. Thickness and curvature radius of the arms were not modified with respect to 

type 1 bracket. This to maintain unchanged the hysteretic behaviour. Some modifications were applied to the 

ends of the arms to let them to rotate in contact with the complementary plates. The fastening of this version 

exploits the same 16mm diameter steel bolts for the main fixings, whereas the complementary plates are to 

be fastened with self-drilling steel dowels. Position of these dowels was designed with FE simulations in order 

to find the disposition that better distributes the shear forces among fasteners. Dimensions of the specimens 

are in Fig. 3b. 

3.3.1 Simulations 

Numerical FE models were performed to predict the hysteresis behaviour of X-bracket type 2 used as panel-

to-panel shear connection or as concealed hold-down. This second option can be obtained using half a bracket 

welded to a rectangular steel plate, which can be fixed to foundation by means of concrete anchors, see 

Section 2. Fig. 29 shows the position of the 7mm diameter dowels. 

As for type 1, possibility of buckling of the bracket was not neglected in the model, although the CLT panel 

is supposed to restrain possible out-of-plane deformations. This because, for high amplitude cycles, 

compression strength perpendicular to the grain of the CLT is not sufficient to avoid partial crushing of the 

timber boards. 

Fig. 30 and Fig. 31 show the numerical predictions of the cyclic behaviour of the X-bracket type 2 used as 

hold-down. Results for the X-bracket loaded in shear are reported in Fig. 32 and Fig. 33. A comparison with a 

test of type 1 bracket is also given. It is worth noting that in the model of the X-bracket in tension also a friction 
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effect (μ = 0.60) in the contact zones between the bracket and the complementary plate was considered, 

according to the experimental evidence (see Section 3.3.2).  

 

Fig. 29. Dimensions of X-bracket type 2 used as hold-down and position of 7mm diameter self-drilling dowels (M1 to 

M8) and 16mm diameter dowels 

(a) 

(b) 

Fig. 30. Out-of-plane deformations of X-bracket type 2 used as hold-downs: (a) At vertical uplift of 20 mm; (b) Residual 

deformation after the complete cyclic-loading procedure 
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Fig. 31. Results of simulation of X-bracket type 2 in tension as hold-down vs. test results of X-bracket type 1 in tension 

  

(a) (b) 

Fig. 32. Out-of-plane buckling of X-bracket type 2 in shear at 24mm slip: (a) Out-of-plane displacements; (b) Von Mises 

stress distribution (post-yielding zones in red) 

 

Fig. 33. Results of the numerical simulation of X-bracket type 2 in shear vs. test results of X-bracket type 1 in shear 
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3.3.2 Tests 

A special test setup was designed to investigate the behaviour of the X-bracket type 2 as hold-down or 

shear connection for a panel-to-panel joint (Fig. 34, Fig. 35). In detail: 

- For tension tests, a single bracket was anchored to a 5-layer CLT panel with a thickness of 100mm (20-

20-20-20-20) and dimensions of 1.0x1.4m. The upper edge of the panel was fixed to a steel beam HEA 

140 by means of four 24mm diameter steel rods, welded to an eyebolt mechanism, in order to apply 

the vertical displacement with a hydraulic actuator. The base plate of the bracket was fixed to the rigid 

frame with four 16mm diameter steel rods. Two steel profiles with PTFE sheets were placed on each 

side of the specimen to avoid possible out-of-plane displacements. The vertical uplift of the concealed 

bracket was monitored with two LVDTs that measured the relative displacement between mid-point 

of the base steel plate and the CLT panel (see Fig. 36a); 

- For shear tests, the same CLT panel used for tension tests was fixed to two CLT rectangular elements, 

one per side, with one X-bracket type 2 per vertical joint. The lateral panels had the same thickness of 

the central panel and dimensions of 0.6x1.4m. The same setup of the tension tests was used. The 

panel-to-panel slip was measured with two LVDTs per bracket, at each side of the panel near the fixing 

points (see Fig. 36b). 

Three tests were performed, two in tension and one in shear. The EN 12512 (2006) cyclic-loading protocol 

was adopted in all tests imposing a dy,est of 2mm for both shear and tension tests. Fig. 37 shows the obtained 

force-displacement curves and the comparison with the numerical predictions and Table 6 lists main 

mechanical parameters. With reference to tension tests (Fig. 37a), the bracket completed successfully all 

cycles of 20mm amplitude and failed at an uplift of 24 mm due to the accumulated plastic work in  the 

horizontal arms, Fig. 38. No damage was evidenced either in the dowel-type fasteners or in the CLT panel, Fig. 

38. Frictional effects were confirmed to be responsible for the higher strength with respect to X-bracket type 

1. Moreover, the smaller vertical dimension of the bracket reduced significantly buckling during compression. 

The shear test (Fig. 37b, Fig. 39) showed a hysteretic response typical of cyclically loaded steel connectors. 

Failure occurred in the bracket after the 24mm cycles, Fig. 40. An important confinement effect was 

demonstrated by the CLT panel in limiting to the out-of-plane buckling of the central web.  
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Fig. 34. Test setup for X-bracket type 2 used as hold-down in tension 

 

Fig. 35. Test setup for X-bracket type 2 in shear 
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(a) (b) 

Fig. 36. Position of LVDTs: (a) Tension tests; (b) Shear test 

 (a) 

 (b) 

Fig. 37. Force-displacement curves: (a) Tests in tension; (b) Test in shear 
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Table 6. Mechanical parameters for X-bracket type 2 according to method “a” of EN12512 (2006) 

Parameter 
TEST 1 

TENSION 

TEST 2 

TENSION 

TEST 

SHEAR 
BILINEAR CURVES 

Fy (kN) 37.75 36.64 41.70 

 

dy (mm) 1.76 1.71 2.39 

Fmax (kN) 87.57 88.19 47.50 

du (mm) 20.00 20.00 24.00 

kel (kN/mm) 21.43 21.43 17.43 

kpl (kN/mm) 2.22 2.22 0.27 

(Vu) (-) 11.34 11.68 10.03 

Ductility Class H H H 

 

(a) 

(b) 

(c) 

(d) 

Fig. 38. Test in tension: (a) Test setup; (b) Specimen at maximum uplift of 24mm; (c) Failure of the X-bracket; (d) Holes 

in timber panel after test (no evident embedment) 
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Fig. 39. Setup for test in shear 

 

(a)  

 

(b) 

 

(c) 

Fig. 40. Test in shear: (a) Failure of the X-bracket; (b) Specimen at 24mm slip; (c) Damaged inner layers 
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4. DISCUSSION AND CONCLUSIONS 

The experimental and numerical characterization of the X-bracket presented in this Research Report 

demonstrated many advantages with respect to traditional connections: (1) higher ductility, displacement 

capacity and dissipative capacity, with equivalent viscous damping ratio approximately double than traditional 

connections; (2) very low scattering of results and well-defined yielding and failure conditions, resulting in a 

lower overstrength value and a more reliable application of capacity design; (3) negligible strength degradation 

and pinching behaviour in its displacement working range. 

The two available options of X-bracket demonstrated proper peculiarities: 

- External X-bracket type 1: does not require any particular woodworking of the CLT panel as it is fixed 

externally. The buckling of the bracket results in partial pinching phenomenon and consequent 

reduction of dissipative capacity. However, this phenomenon occurs only for very high displacements. 

Fire protection has to be addressed as for traditional connections. 

- Concealed X-bracket type 2: implicitly satisfies the capacity design, using the complementary plates 

and same fasteners with same position as in tested configurations. Fire protection is guaranteed by 

the CLT panel. It requires a partial milling of the panel edge. 

Other conclusions can be obtained comparing test results (Table 7, Fig. 41, Fig. 42). 

The change of steel grade from the first prototype to the type 1 bracket increased the yielding strength for 

tension loading and shear loading conditions, of about 60% and 40% respectively. With reference to type 2 

bracket, although steel was downgraded to an S355 class, the yielding strength in tension increased of an 

additional 30%, reaching a similar load-bearing capacity of the connection loaded in shear, which on the 

contrary did not change considerably. This was due to two different effects: 1) the modification of the vertical 

position of the fixing points with respect to type 1 bracket; 2) the frictional effect between the bracket and 

the complementary plate produced a considerable strength increment.  

The different mechanical response between type 1 and type 2 bracket in terms of equivalent viscous 

damping ratio 𝜐 and the total amount of dissipated energy is shown in Fig. 42.  

In Fig. 41a and Fig. 42a,b results of tests in tension are reported in terms of d/dy,est to emphasize better the 

strength increment obtained with type 2 bracket. For these tests, the calculated equivalent viscous damping 

at 1st and 3rd cycle is similar up to d/dy,est = 6. However, type 2 bracket shows values in the range of 12-15% 

also for higher displacements (6 < d/dy,est ≤ 10). Moreover, the reduced pinching phenomenon is confirmed 

by the reduced losses of viscous damping ratio from the 1st to the 3rd cycle. Typical values of equivalent viscous 

damping for traditional hold-downs are about 9% (1st cycle) and 3% (third cycle) (Gavric et al. 2015b). Finally, 

the combination of higher strength and dissipative capacity for type 2 bracket results in an increase of total 

dissipated energy by the connector of about 54.0%. 

With reference to tests in shear, a reduction of the equivalent viscous damping ratio for type 2 bracket was 

calculated for all the displacement amplitudes, but values are anyway very high if compared to traditional 

angle brackets (Gavric et al. 2015b, Tomasi and Smith 2015). As for tests in tension, the dissipative capacity of 

the X-bracket did not vary significantly between the 1st and 3rd cycle. 
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Table 7. Comparison of the preliminary prototype, type 1 bracket and type 2 bracket (mean values) 

 First prototype  Type 1  Type 2* 

 Parameter Tension Shear  Tension Shear  Tension** Shear *** 

Steel class S275JR  S450JR  S355JR 

Dimensions a x b (mm x mm) 303 x 233  303 x 233  308 x 265 

Spacing of fixings (mm x mm) 237 x 180  243 x 185  243 x 200 

Fy (kN) 17.97 28.09  28.75 39.50  37.19 41.70 

dy (mm) 1.96 3.46  3.18 1.25  1.74 2.39 

Fmax (kN) 37.76 29.03  47.17 43.95  87.88 47.50 

du (mm) 46.20 50.00  40.00 24.00  20.00 24.00 

kel (kN/mm) 9.17 8.53  9.04 31.55  21.43 17.43 

kpl (kN/mm) 0.45 -  0.50 -  2.22 0.27 

µ (du) (-) 23.57 14.45  12.58 23.43  11.51 10.03 

Ductility Class H H  H H  H H 

*  Tests performed including complementary plates; ** Half bracket; *** One test 

 
(a) 

 
(b) 

  
(c) (d) 

Fig. 41. Comparison of force-displacement cycles, envelope and bilinear curves for tests in tension (a,b) and shear (c,d) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 42. Viscous damping ratio and dissipated energy for the X-brackets loaded in tension (a,b) and in shear (c,d) 
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APPENDIX A: Analysis of results of all performed tests of X-bracket type 1 and 2 

X-BRAKET TYPE 1 – TENSION – TEST 1 

 

 

 
 

 
 

 

 

 

 

 
 

-40

-30

-20

-10

0

10

20

30

40

50

0 4 8 12 16 20 24 28 32 36 40 44

F
o
rc

e 
(k

N
)

Displacement (mm)

Experimental 1st cycle 2nd cycle 3rd cycle

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 4 8 12 16 20 24 28 32 36 40 44

V
is

co
u

s 
D

am
p

in
g
 R

at
io

 (
-)

Displacement (mm)

1st cycle

3rd cycle

2
.3

4
%

1
.6

8
%

2
.4

7
%

0
.8

2
%

0
.7

7
% 3
.3

6
%

1
.3

8
%

1
.2

1
%

1
0

.3
9

%

5
.2

8
%

5
.3

7
%

1
5

.3
2

%

1
2

.7
6

%

1
2

.8
2

%

1
5

.9
9

%

1
5

.7
5

%

1
4
.0

5
%

1
3

.3
2

%

8
.5

2
%

7
.8

5
%

8
.6

8
%

7
.0

1
%

7
.1

3
%

0%

5%

10%

15%

20%

V
is

co
u

s 
D

am
p

in
g
 (

-)

7
.2

6

1
5

.2
6 2
1

.3
5

2
1

.0
8

2
0

.8
4

2
4

.4
4

2
3
.1

8

2
3

.2
6 2
9

.2
7

2
8

.7
6

2
8

.4
4

3
2

.9
6

3
3

.0
1

3
2

.6
1

3
7

.0
8

3
7

.5
5

3
5

.8
2

4
1

.5
9

3
8

.3
2

3
5

.2
7 4
6

.0
0

3
9

.9
8

3
6
.2

4

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

F
o
rc

e 
(k

N
)

Half cycle number (-)



 
DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE - I C E A 
DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING 

 
 UNIVERSITÀ DEGLI STUDI DI PADOVA 

 
 

 

 

48 

  

 

 

 

 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 27.50 (kN) 

Yielding displacement dy 2.50 (mm) 

Ultimate force Fu 46.50 (kN) 

Ultimate displacement du 40.00 (mm) 

Maximum Force Fmax 46.50 (kN) 

Elastic stiffness kel 11.01 (kN/mm) 

Hardening stiffness kpl 0.51 (kN/mm) 

Ductility ratio μ (du) 16.02 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 37.11 (kN) 

Yielding displacement dy 4.59 (mm) 

Ultimate force Fu 46.50 (kN) 

Ultimate displacement du 40.00 (mm) 

Maximum Force Fmax 46.50 (kN) 

Elastic stiffness kel 8.09 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 8.72 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 24.16 (kN) 

Yielding displacement dy 3.06 (mm) 

Ultimate force Fu 46.50 (kN) 

Ultimate displacement du 40.00 (mm) 

Maximum Force Fmax 46.50 (kN) 

Elastic stiffness kel 7.34 (kN/mm) 

Hardening stiffness kpl 1.22 (kN/mm) 

Ductility ratio μ (du) 13.08 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – TENSION – TEST 2 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 29.49 (kN) 

Yielding displacement dy 2.48 (mm) 

Ultimate force Fu 52.80 (kN) 

Ultimate displacement du 48.60 (mm) 

Maximum Force Fmax 52.80 (kN) 

Elastic stiffness kel 11.87 (kN/mm) 

Hardening stiffness kpl 0.51 (kN/mm) 

Ductility ratio μ (du) 19.57 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 41.49 (kN) 

Yielding displacement dy 5.11 (mm) 

Ultimate force Fu 52.80 (kN) 

Ultimate displacement du 48.60 (mm) 

Maximum Force Fmax 52.80 (kN) 

Elastic stiffness kel 8.12 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 9.51 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 26.51 (kN) 

Yielding displacement dy 3.35 (mm) 

Ultimate force Fu 52.80 (kN) 

Ultimate displacement du 48.60 (mm) 

Maximum Force Fmax 52.80 (kN) 

Elastic stiffness kel 7.20 (kN/mm) 

Hardening stiffness kpl 1.20 (kN/mm) 

Ductility ratio μ (du) 14.52 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – TENSION – TEST 3 

 

 

 
 

 

 

 

 

 

 

 
 

-40

-30

-20

-10

0

10

20

30

40

50

60

0 4 8 12 16 20 24 28 32 36 40 44 48 52

F
o
rc

e 
(k

N
)

Displacement (mm)

Experimental 1st cycle 2nd cycle 3rd cycle

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 4 8 12 16 20 24 28 32 36 40 44 48 52

V
is

co
u

s 
D

am
p

in
g
 R

at
io

 (
-)

Displacement (mm)

1st cycle

3rd cycle

6
.7

8
%

3
.3

1
%

2
.8

3
%

1
.6

5
%

1
.4

1
% 3
.6

5
%

2
.0

2
%

1
.7

1
%

1
0

.8
6

%

6
.0

3
%

5
.8

6
%

1
4

.9
3

%

1
3

.4
6

%

1
4

.5
8

%

1
7

.0
5

%

1
6

.3
1

%

1
4

.0
0

%

1
2

.2
6

%

8
.2

7
%

7
.3

2
%

8
.9

2
%

7
.1

5
%

6
.8

2
%

7
.3

2
%

6
.0

4
%

6
.3

9
%

6
.4

4
%

2
.8

2
%

0%

5%

10%

15%

20%

V
is

co
u

s 
D

am
p

in
g
  
(-

)

6
.4

0
8 1
2

.9
2

4

2
0

.4
6

6

2
0

.1
8

4

1
9

.9
0

2

2
3

.9
2

2

2
3

.5
6

2

2
2

.7
7

6

2
8

.9
0

2

2
8
.8

9
6

2
8

.2
5

4

3
4

.2
1

2

3
3

.6
4

8

3
3

.2
8

2

3
7

.4
6

4

3
7

.7
2

2

3
6

.7
7

4

4
2

.1
8

3
8

.0
3

4

3
5

.6
5

2 4
6

.2
4

2

4
0

.0
5

6

3
6

.6
9

6 5
1

.9
4

8

4
2

.8
1

6

3
8

.6
4

6

3
4

.1
8

8

3
1

.5
6

6

0

10

20

30

40

50

60

1 5 9 13 17 21 25 29 33 37 41 45 49 53

F
o
rc

e 
(k

N
)

Half cycle number (-)



 
DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE - I C E A 
DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING 

 
 UNIVERSITÀ DEGLI STUDI DI PADOVA 

 
 

 

 

52 

 

 

  

 

 

 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 27.59 (kN) 

Yielding displacement dy 2.50 (mm) 

Ultimate force Fu 52.15 (kN) 

Ultimate displacement du 48.40 (mm) 

Maximum Force Fmax 52.15 (kN) 

Elastic stiffness kel 11.02 (kN/mm) 

Hardening stiffness kpl 0.54 (kN/mm) 

Ductility ratio μ (du) 19.33 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 40.32 (kN) 

Yielding displacement dy 5.41 (mm) 

Ultimate force Fu 52.15 (kN) 

Ultimate displacement du 48.40 (mm) 

Maximum Force Fmax 52.15 (kN) 

Elastic stiffness kel 7.45 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 8.94 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 25.27 (kN) 

Yielding displacement dy 3.48 (mm) 

Ultimate force Fu 52.15 (kN) 

Ultimate displacement du 48.40 (mm) 

Maximum Force Fmax 52.15 (kN) 

Elastic stiffness kel 6.52 (kN/mm) 

Hardening stiffness kpl 1.09 (kN/mm) 

Ductility ratio μ (du) 13.92 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – SHEAR – TEST 1 
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POSITIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 41.40 (kN) 

Yielding displacement dy 2.01 (mm) 

Ultimate force Fu 21.05 (kN) 

Ultimate displacement du 42.90 (mm) 

Maximum Force Fmax 38.32 (kN) 

Elastic stiffness kel 20.57 (kN/mm) 

Hardening stiffness kpl -0.50 (kN/mm) 

Ductility ratio μ (du) 21.31 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 30.49 (kN) 

Yielding displacement dy 1.39 (mm) 

Ultimate force Fu 21.05 (kN) 

Ultimate displacement du 42.90 (mm) 

Maximum Force Fmax 38.32 (kN) 

Elastic stiffness kel 21.90 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 30.81 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 28.67 (kN) 

Yielding displacement dy 1.40 (mm) 

Ultimate force Fu 21.05 (kN) 

Ultimate displacement du 42.90 (mm) 

Maximum Force Fmax 38.32 (kN) 

Elastic stiffness kel 19.16 (kN/mm) 

Hardening stiffness kpl 3.19 (kN/mm) 

Ductility ratio μ (du) 30.72 - 

Ductility Class H - 
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NEGATIVE ENVELOPE 

 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 45.14 (kN) 

Yielding displacement dy 2.16 (mm) 

Ultimate force Fu 35.99 (kN) 

Ultimate displacement du 32.30 (mm) 

Maximum Force Fmax 42.90 (kN) 

Elastic stiffness kel 20.89 (kN/mm) 

Hardening stiffness kpl -0.30 (kN/mm) 

Ductility ratio μ (du) 14.95 - 

Ductility Class H - 

 
 
 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 39.37 (kN) 

Yielding displacement dy 1.84 (mm) 

Ultimate force Fu 35.99 (kN) 

Ultimate displacement du 32.30 (mm) 

Maximum Force Fmax 42.90 (kN) 

Elastic stiffness kel 21.45 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 17.60 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 32.21 (kN) 

Yielding displacement dy 1.62 (mm) 

Ultimate force Fu 35.99 (kN) 

Ultimate displacement du 32.30 (mm) 

Maximum Force Fmax 42.90 (kN) 

Elastic stiffness kel 18.39 (kN/mm) 

Hardening stiffness kpl 3.06 (kN/mm) 

Ductility ratio μ (du) 19.96 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – SHEAR – TEST 2 
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POSITIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 38.87 (kN) 

Yielding displacement dy 1.46 (mm) 

Ultimate force Fu 21.24 (kN) 

Ultimate displacement du 42.47 (mm) 

Maximum Force Fmax 36.86 (kN) 

Elastic stiffness kel 26.68 (kN/mm) 

Hardening stiffness kpl -0.43 (kN/mm) 

Ductility ratio μ (du) 29.15 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 29.55 (kN) 

Yielding displacement dy 1.00 (mm) 

Ultimate force Fu 21.24 (kN) 

Ultimate displacement du 42.47 (mm) 

Maximum Force Fmax 36.86 (kN) 

Elastic stiffness kel 29.49 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 42.37 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 27.12 (kN) 

Yielding displacement dy 0.95 (mm) 

Ultimate force Fu 21.24 (kN) 

Ultimate displacement du 42.47 (mm) 

Maximum Force Fmax 36.86 (kN) 

Elastic stiffness kel 27.64 (kN/mm) 

Hardening stiffness kpl 4.61 (kN/mm) 

Ductility ratio μ (du) 44.81 - 

Ductility Class H - 
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NEGATIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 45.87 (kN) 

Yielding displacement dy 1.66 (mm) 

Ultimate force Fu 34.66 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 43.70 (kN) 

Elastic stiffness kel 27.71 (kN/mm) 

Hardening stiffness kpl -0.37 (kN/mm) 

Ductility ratio μ (du) 19.33 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 39.35 (kN) 

Yielding displacement dy 1.35 (mm) 

Ultimate force Fu 34.66 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 43.70 (kN) 

Elastic stiffness kel 29.13 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 23.69 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 32.72 (kN) 

Yielding displacement dy 1.18 (mm) 

Ultimate force Fu 34.66 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 43.70 (kN) 

Elastic stiffness kel 26.22 (kN/mm) 

Hardening stiffness kpl 4.37 (kN/mm) 

Ductility ratio μ (du) 27.09 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – SHEAR – TEST 3 
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POSITIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 41.58 (kN) 

Yielding displacement dy 1.79 (mm) 

Ultimate force Fu 24.31 (kN) 

Ultimate displacement du 33.26 (mm) 

Maximum Force Fmax 38.54 (kN) 

Elastic stiffness kel 23.29 (kN/mm) 

Hardening stiffness kpl -0.55 (kN/mm) 

Ductility ratio μ (du) 18.63 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 32.07 (kN) 

Yielding displacement dy 1.25 (mm) 

Ultimate force Fu 24.31 (kN) 

Ultimate displacement du 33.26 (mm) 

Maximum Force Fmax 38.54 (kN) 

Elastic stiffness kel 25.69 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 26.65 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 28.44 (kN) 

Yielding displacement dy 1.16 (mm) 

Ultimate force Fu 24.31 (kN) 

Ultimate displacement du 33.26 (mm) 

Maximum Force Fmax 38.54 (kN) 

Elastic stiffness kel 23.12 (kN/mm) 

Hardening stiffness kpl 3.85 (kN/mm) 

Ductility ratio μ (du) 28.59 - 

Ductility Class H - 
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NEGATIVE ENVELOPE 
 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 46.60 (kN) 

Yielding displacement dy 1.96 (mm) 

Ultimate force Fu 34.58 (kN) 

Ultimate displacement du 31.50 (mm) 

Maximum Force Fmax 43.96 (kN) 

Elastic stiffness kel 23.81 (kN/mm) 

Hardening stiffness kpl -0.41 (kN/mm) 

Ductility ratio μ (du) 16.09 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 39.43 (kN) 

Yielding displacement dy 1.57 (mm) 

Ultimate force Fu 34.58 (kN) 

Ultimate displacement du 31.50 (mm) 

Maximum Force Fmax 43.96 (kN) 

Elastic stiffness kel 25.12 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 20.06 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 32.77 (kN) 

Yielding displacement dy 1.39 (mm) 

Ultimate force Fu 34.58 (kN) 

Ultimate displacement du 31.50 (mm) 

Maximum Force Fmax 43.96 (kN) 

Elastic stiffness kel 21.98 (kN/mm) 

Hardening stiffness kpl 3.66 (kN/mm) 

Ductility ratio μ (du) 22.64 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – TEST COMPLETE CONNECTION – TENSION – TEST 1 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 26.52 (kN) 

Yielding displacement dy 2.66 (mm) 

Ultimate force Fu 48.25 (kN) 

Ultimate displacement du 48.20 (mm) 

Maximum Force Fmax 48.25 (kN) 

Elastic stiffness kel 9.96 (kN/mm) 

Hardening stiffness kpl 0.48 (kN/mm) 

Ductility ratio μ (du) 18.10 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 37.75 (kN) 

Yielding displacement dy 5.48 (mm) 

Ultimate force Fu 48.25 (kN) 

Ultimate displacement du 48.20 (mm) 

Maximum Force Fmax 48.25 (kN) 

Elastic stiffness kel 6.89 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 8.80 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 24.12 (kN) 

Yielding displacement dy 3.60 (mm) 

Ultimate force Fu 48.25 (kN) 

Ultimate displacement du 48.20 (mm) 

Maximum Force Fmax 48.25 (kN) 

Elastic stiffness kel 6.03 (kN/mm) 

Hardening stiffness kpl 1.01 (kN/mm) 

Ductility ratio μ (du) 13.39 - 

Ductility Class H - 
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X-BRAKET TYPE 1 – TEST COMPLETE CONNECTION – TENSION –  
REPLICATION OF TEST 1 WITH REPLACEMNT OF BRAKETS 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 23.66 (kN) 

Yielding displacement dy 2.55 (mm) 

Ultimate force Fu 52.79 (kN) 

Ultimate displacement du 56.10 (mm) 

Maximum Force Fmax 52.79 (kN) 

Elastic stiffness kel 9.29 (kN/mm) 

Hardening stiffness kpl 0.54 (kN/mm) 

Ductility ratio μ (du) 22.03 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 39.39 (kN) 

Yielding displacement dy 7.65 (mm) 

Ultimate force Fu 52.79 (kN) 

Ultimate displacement du 56.10 (mm) 

Maximum Force Fmax 52.79 (kN) 

Elastic stiffness kel 5.15 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 7.34 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 23.80 (kN) 

Yielding displacement dy 4.71 (mm) 

Ultimate force Fu 52.79 (kN) 

Ultimate displacement du 56.10 (mm) 

Maximum Force Fmax 52.79 (kN) 

Elastic stiffness kel 4.40 (kN/mm) 

Hardening stiffness kpl 0.73 (kN/mm) 

Ductility ratio μ (du) 11.91 - 

Ductility Class H - 
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X-BRAKET TYPE 2 – TEST COMPLETE CONNECTION – TENSION – TEST 1 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 41.82 (kN) 

Yielding displacement dy 1.96 (mm) 

Ultimate force Fu 97.25 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 97.25 (kN) 

Elastic stiffness kel 21.39 (kN/mm) 

Hardening stiffness kpl 2.50 (kN/mm) 

Ductility ratio μ (du) 12.33 - 

Ductility Class H - 

 
 
 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 73.08 (kN) 

Yielding displacement dy 5.64 (mm) 

Ultimate force Fu 97.25 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 97.25 (kN) 

Elastic stiffness kel 12.97 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 4.28 - 

Ductility Class M - 
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X-BRAKET TYPE 2 – TEST COMPLETE CONNECTION – TENSION – TEST 2 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 41.14 (kN) 

Yielding displacement dy 1.93 (mm) 

Ultimate force Fu 101.07 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 101.07 (kN) 

Elastic stiffness kel 21.37 (kN/mm) 

Hardening stiffness kpl 2.70 (kN/mm) 

Ductility ratio μ (du) 12.52 - 

Ductility Class H - 

 
 
 

 
 

Equivalent bi-linear system 
according to  EEEP method  

Yielding force Fy 75.80 (kN) 

Yielding displacement dy 6.19 (mm) 

Ultimate force Fu 101.07 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 101.07 (kN) 

Elastic stiffness kel 12.25 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 3.90 - 

Ductility Class L - 
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X-BRAKET TYPE 2 – TEST COMPLETE CONNECTION – SHEAR 
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POSITIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 37.71 (kN) 

Yielding displacement dy 1.76 (mm) 

Ultimate force Fu 48.47 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.47 (kN) 

Elastic stiffness kel 21.37 (kN/mm) 

Hardening stiffness kpl 0.48 (kN/mm) 

Ductility ratio μ (du) 13.66 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 42.28 (kN) 

Yielding displacement dy 2.18 (mm) 

Ultimate force Fu 48.47 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.47 (kN) 

Elastic stiffness kel 19.39 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 11.05 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 30.39 (kN) 

Yielding displacement dy 1.68 (mm) 

Ultimate force Fu 48.47 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.47 (kN) 

Elastic stiffness kel 16.16 (kN/mm) 

Hardening stiffness kpl 2.69 (kN/mm) 

Ductility ratio μ (du) 14.33 - 

Ductility Class H - 
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NEGATIVE ENVELOPE 

 
 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 41.49 (kN) 

Yielding displacement dy 1.91 (mm) 

Ultimate force Fu 48.23 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.23 (kN) 

Elastic stiffness kel 21.72 (kN/mm) 

Hardening stiffness kpl 0.30 (kN/mm) 

Ductility ratio μ (du) 12.62 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 43.63 (kN) 

Yielding displacement dy 2.04 (mm) 

Ultimate force Fu 48.23 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.23 (kN) 

Elastic stiffness kel 21.44 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 11.84 - 

Ductility Class H - 

 

 
 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 31.71 (kN) 

Yielding displacement dy 1.59 (mm) 

Ultimate force Fu 48.23 (kN) 

Ultimate displacement du 24.10 (mm) 

Maximum Force Fmax 48.23 (kN) 

Elastic stiffness kel 18.09 (kN/mm) 

Hardening stiffness kpl 3.01 (kN/mm) 

Ductility ratio μ (du) 15.19 - 

Ductility Class H - 
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X-BRAKET TYPE 2, SPECIAL USAGE AS EXTERNAL BRACKET – TEST COMPLETE CONNECTION WITH SPECIAL 
ELEMENTS TO INCREASE WOOD EMBEDMENT STRENGTH – TENSION 

 

 

 

 

 

 

 

 

 

 
 

-60

-40

-20

0

20

40

60

80

-4 0 4 8 12 16 20 24

F
o
rc

e 
(k

N
)

Displacement (mm)

Experimental 1st cycle 2nd cycle 3rd cycle

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 4 8 12 16 20 24 28 32

V
is

co
u

s 
D

am
p

in
g
 R

at
io

 (
-)

Displacement

1st cycle

3rd cycle

4
.0

2
%

3
.4

3
%

4
.3

1
%

2
.5

0
%

2
.3

3
% 4

.8
0
%

2
.9

7
%

2
.5

8
%

9
.9

9
%

6
.3

8
%

6
.4

5
%

1
3
.1

6
%

1
1
.1

4
%

1
1
.1

0
%

1
3
.6

4
%

1
0
.7

5
%

8
.7

0
%

9
.7

9
%

0%

5%

10%

15%

V
is

co
u

s 
D

am
p

in
g
  
(-

)

1
0
.6

2
5

1
7
.8

2

2
2
.9

8

2
2
.4

2
2
.2

6

2
5
.4

1
5

2
5
.2

8

2
4
.5

4 3
2
.0

9

3
1
.6

5

3
1
.1

4
0
.3

3
5

3
9

.4
1

5

3
9

.2
1 4
6
.2

3

4
4
.7

4
2
.3

3
5

4
8
.0

6
5

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

F
o
rc

e 
(k

N
)

Half cycle number (-)



 
DIPARTIMENTO DI INGEGNERIA CIVILE, EDILE E AMBIENTALE - I C E A 
DEPARTMENT OF CIVIL, ENVIRONMENTAL AND ARCHITECTURAL ENGINEERING 

 
 UNIVERSITÀ DEGLI STUDI DI PADOVA 

 
 

 

 

74 

  

 

 

 

 

 

Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 28.43 (kN) 

Yielding displacement dy 2.40 (mm) 

Ultimate force Fu 54.98 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 54.98 (kN) 

Elastic stiffness kel 11.87 (kN/mm) 

Hardening stiffness kpl 0.90 (kN/mm) 

Ductility ratio μ (du) 13.36 - 

Ductility Class H - 

 
 
 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 42.40 (kN) 

Yielding displacement dy 5.21 (mm) 

Ultimate force Fu 54.98 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 54.98 (kN) 

Elastic stiffness kel 8.15 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 6.15 - 

Ductility Class H - 

 

 

Equivalent bi-linear system 
according to EN12512 method (b) 

Yielding force Fy 27.66 (kN) 

Yielding displacement dy 3.49 (mm) 

Ultimate force Fu 54.98 (kN) 

Ultimate displacement du 32.00 (mm) 

Maximum Force Fmax 54.98 (kN) 

Elastic stiffness kel 7.17 (kN/mm) 

Hardening stiffness kpl 1.20 (kN/mm) 

Ductility ratio μ (du) 9.17 - 

Ductility Class H - 
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X-BRAKET TYPE 2 – TEST COMPLETE CONNECTION WITH SPECIAL ELEMENTS TO INCREASE WOOD 
EMBEDMENT STRENGTH – TENSION 
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Equivalent bi-linear system 
according to EN12512 method (a) 

Yielding force Fy 29.38 (kN) 

Yielding displacement dy 1.37 (mm) 

Ultimate force Fu 68.50 (kN) 

Ultimate displacement du 20.00 (mm) 

Maximum Force Fmax 68.50 (kN) 

Elastic stiffness kel 21.44 (kN/mm) 

Hardening stiffness kpl 2.10 (kN/mm) 

Ductility ratio μ (du) 14.60 - 

Ductility Class H - 

 
 
 

 
 

Equivalent bi-linear system 
according to  EEEP method 

Yielding force Fy 50.74 (kN) 

Yielding displacement dy 3.70 (mm) 

Ultimate force Fu 68.50 (kN) 

Ultimate displacement du 20.00 (mm) 

Maximum Force Fmax 68.50 (kN) 

Elastic stiffness kel 13.70 (kN/mm) 

Hardening stiffness kpl 0.00 (kN/mm) 

Ductility ratio μ (du) 5.40 - 

Ductility Class M - 
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