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Review on the application of AI for heat
transfer and pressure drop prediction.
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Categorization of inputs as dimensional
and dimensionless parameters.
Accuracy analyses of various ML and DL
models.
Assessment of interpretability of ANN
model using SHAP library.
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A B S T R A C T

The design of micro-finned tube heat exchangers is a complex task due to intricate geometry, heat transfer
goals, material selection, and manufacturing challenges. Nowadays, mathematical models provide valuable
insights, aid in optimization, and allow us to explore various design parameters efficiently. However, existing
empirical models often fall short in facilitating an optimal design because of their limited accuracy, sensitivity
to assumption, and context dependency. In this scenario, the use of Machine and Deep Learning (ML and DL)
methods can enhance accuracy, manage nonlinearity, adjust to varying conditions, decrease dependence on
assumptions, automatically extract pertinent features, and provide scalability. Indeed, ML and DL techniques
can derive valuable insights from datasets, contributing to a comprehensive understanding. By means of
multiple ML and DL methods, this paper addresses the challenge of estimating key parameters in micro-
finned tube heat exchangers such as the heat transfer coefficient (HTC) and frictional pressure drop (FPD).
The methods have been trained and tested using an experimental dataset consisting of over a thousand data
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points associated with flow condensation, involving various tube geometries. In this context, the Artificial
Neural Network (ANN) demonstrates superior performance in accurately estimating parameters with MAEs
in the range below 4.5% for both HTC and FPD. Finally, recognizing the importance of comprehending the
internal mechanisms of the black-box ANN model, the paper explores its interpretability aspects.
Nomenclature

Artificial Intelligence.

Adaboost Adaptive Boosting
AI Artificial Intelligence
ANN Artificial Neural Network
ANFIS Adaptive Network-based Fuzzy Inference

System
CI Confidence Interval
CNN Convolutional Neural Network
DL Deep Learning
GB Gradient Boosting
GRNN Generalized Regression Neural Network
KNN K-nearest Neighbor
MAE Mean Average Error
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Squared Error
RBFN Radial Basis Function Network
RF Random Forest
RFR Random Forest Regression
RMSE Root Mean Squared Error
SVR Support Vector Regression
XGboost Extreme Gradient Boost

Thermal.

Bond Bond Number
c𝑝 Specific heat capacity, J kg−1 K−1

D Fin tip diameter, m
e Fin height, m
EF Enhancement factor
FPD Frictional Pressure Drop (per unit length),

Pa m−1

Fr Froude number
G Mass flux, kg m−2 s−1

GWP Global Warming Potential
g Gravity, 9.8m s−2

h Fin height, m; specific enthalpy, J kg−1

HC HydroCarbon
HFC HydroFluoroCarbon
HFO HydroFlouoroOlefin
𝐻𝑙𝑣 Latent Heat of Vaporization, kJ kg−1

1. Introduction

The design of heat exchangers which are omnipresent in energy
systems has been highlighted in many literary works with emphasis on
amelioration of sizing methods. Upgrades in design methods were only
made possible by accruing experimental research that is conducted un-
der various operating conditions. While thermal system configurations
are comprised of multitudinous components, a particular focus has been
2

adopted on two-phase flow inside horizontal tubes as the intricacies
HTC Heat transfer coefficient, W m−2 K−1

i Uncertainty
ID Inner diameter, m
J𝑔 Dimensionless gas velocity
OD Outer diameter, m
n Number of fins
Nu Nusselt number
Pr Prandtl
P Pressure, bar
Re Reynolds number
T Temperature, ◦ C
U Superficial velocity, m s−1

X𝑡𝑡 Martinelli parameter (Turbulent-Turbulent)
We Weber number
x Vapor quality

Greek symbols.

𝜶, 𝜷 Helix angle, ◦

𝜹 Wall thickness, m
𝜟𝑻 𝐒𝐚𝐭 Saturation and wall temperature difference,

◦ C
𝜸 Apex angle
𝝀 Thermal conductivity, W m−1 K−1

𝝁 Viscosity, Pa ⋅ s
𝝆 Density, kg m−3

𝝈 Surface tension, N m−1

Subscript.

g, v Vapor phase
l Liquid phase
sat Saturation

and complexities of such configuration demand a comprehensive exper-
imental and numerical assessment. In the aftermath of such scientific
endeavors, many empirical correlations were introduced for thermal
and hydraulic performance during boiling and condensation with the
capability to produce fairly accurate values for heat transfer coefficient
(HTC) and frictional pressure drop (FPD). With a specific focus on
refrigerants, as they possess diverse thermophysical properties, exem-
plary empirical correlations [1–5] for flow condensation can be found
in abundance whose validation has been carried out on HydroFluo-
roCarbons (HFCs) and recently for HydroFlouroOlefines (HFOs) with
minimized climate change contributions through their exceptionally
low GWP. A shared aspect among noted correlations is their reliance
on experimentally acquired data points. To detach the correlation’s
dependence from testing conditions thus building a generalized equa-
tion, most equations are based on dimensionless parameters, a list of
which prevalently used is included in Table 1. Regarding the precision
of stated correlations, in a holistic literature review, Zhang et al. [6],
garnering experimental data and comparing the accuracy of promising
empirical models, put forward that among the entirety of the col-
lected database, the most accurate model being the model by Cavallini
et al. [1], had a mean absolute error (MAE) of 17%. Regarding mini-
scale geometries and conventional ones, the fairest predictions were
made with an MAE of 20.6% and 14.4% respectively. Furthermore,
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Table 1
Parameters and expressions.
Parameter Expression

Bond number Bo
𝑔(𝜌𝑙 − 𝜌𝑣)𝐷2

𝜎

Martinelli parameter X𝑡𝑡

( 1 − 𝑥
𝑥

)0.9 ( 𝜌𝑣
𝜌𝑙

)0.5
(

𝜇𝑙

𝜇𝑣

)0.1

Reynolds number Re𝑙 (1 − 𝑥)𝐺𝐷
𝜇𝑙

Reynolds number Re𝑣 𝑥𝐺𝐷
𝜇𝑣

Prandtl number Pr𝑣
𝑐𝑝𝑣𝜇𝑣

𝜆𝑣

Weber number We𝑙𝑠
𝜌𝑙𝑈 2

𝑙𝑠𝐷
𝜎

Weber number We𝑣𝑠
𝜌𝑣𝑈 2

𝑣𝑠𝐷
𝜎

Froude number Fr𝑙
𝐺(1 − 𝑥)2

𝜌2𝑙 𝑔𝐷

Froude number Fr𝑣
𝐺𝑥2

𝜌2𝑣𝑔𝐷

Non-dimensional vapor velocity J𝑔
𝑥𝐺

(

𝑔𝐷𝜌𝑣(𝜌𝑙 − 𝜌𝑣)
)0.5

Nusselt number Nu HTC ⋅𝐷
𝜆𝑙

the authors rightfully expressed the need to construct models with
acceptable accuracy for a broad range of testing conditions. Similar
review attempts were conducted for correlations of frictional pressure
drop as the paper of Kim and Mudawar [7] in which the average
range of predictions made by models for condensation under various
conditions exceeds 20% MAE. Delving into the accuracy of models
concerning micro-finned tubes for climate-friendly refrigerants from
the HFOs family one could refer to [8,9] where models with optimal
precision recorded MAEs of 8.5% and 13.6% for HTC and FPD respec-
tively. Since the geometrical parameters involved in finned surfaces are
quite more complex than the conventional ones, contributing to the
heterogeneity of structural arrangements, Li et al. [10] carried out a
series of experiments on condensation inside five micro-fin tubes with
diverse geometrical characteristics. Having concluded the comparison
of recorded HTC and FPD for micro-fin tubes and empirical models,
a high discrepancy of MAE was reported between the cases. Such
variability is even more deplorable as a single model suffers from large
differences in MAE with a change in the physical parameters of the
micro-fin tube. For instance, regarding HTC, the previously mentioned
model by [3] experiences MAE variability ranging from 4.2% to as high
as 44.54% with alterations in helix angle, apex angle, fin height, and
the number of fins along the circumference.

As evidence suggests, an optimal design of a heat exchanger whose
imperativeness is elevating in the contemporary era, may not be sat-
isfied by empirical models that could suffer from large deviations.
With recent advancements in applications of Machine Learning (ML)
and Deep Learning (DL) in heat exchangers that can be found in the
open literature [11], discovering more precise causal links in intricate
underlying patterns among the abovementioned geometrical and ther-
mophysical parameters, heat transfer coefficient, and frictional pressure
drop characteristics has been made possible. Table 2 offers a succinct
review of the utilization of ML for the prognostication of heat transfer
coefficient and frictional pressure drop during two-phase flow. It must
be noted that both dimensional and dimensionless parameters were
used in the ML assessments of HTC and FPD.

In an assessment of Table 2:

• One could notice the absence of ML and DL implementation for
data points concerning flow condensation inside micro-fin tubes.

• A reprehensible aspect in the utilization of ML and DL could be re-
lated to the existence of only a few attempts to build interpretable
models for estimations of HTC and FPD.
3

• It is plausible to draw an inference that although the collection of
experimental points from literature elevates the quantity of data
points therefore enriching the assessment, the immutable discrep-
ancies between testing facilities and the associated experimental
uncertainties could play a role in the distortion of the learning
process of the models.

• While some articles are dedicated to dimensionless features and
some to dimensional ones, none of which is dedicated to drawing
a comparison as to how the outcome could differ for the two cases

• A holistic approach that encompasses a wide range of ML models
is lacking in the assessments of the authors.

To address such shortcomings in the prediction of HTC and FPD, the
following paper garners and implements ML and DL methods on 1192
data points of flow condensation inside micro-finned tubes, all of which
were collected at the Heat Transfer MicroGeometries laboratory of
the University of Padova. Having considered copious numbers of ML
and DL models for two categories of features, a selection of which
most capable of producing accurate results is then considered and
provided. Furthermore, DL models were scrutinized on the basis of their
interpretability to highlight salient input parameters that share most of
the impact of the resulting HTC and FPD.

2. Experimental database

The data points implemented for training, validation, and testing
purposes are comprised of a wide range of low-GWP refrigerants (pure
and azeotropic mixture) under four geometrically diverse micro-finned
tubes. Table 3 is constructed to delineate the experimental conditions
of the data points. As demonstrated, the only data set not already
published in the literature is with regard to condensation of R515B
whose experimental methodology can be found in the addendum.

The geometrical properties present in Table 3 are demonstrated by
circumferential and peripheral perspectives that are present in Figs. 1
and 2.

3. Methodology

3.1. Input features

As previously mentioned, two categories of features are imple-
mented for the prediction process namely dimensional and dimension-
less groups. The expressions are provided as:

Dimensional features:

𝑓 (𝐼𝐷, 𝑛, ℎ, 𝛽, 𝛾, 𝑃 , 𝐺, 𝑥, 𝛥𝑇 , 𝑈𝑙 , 𝑈𝑣, 𝑃red,

𝑇sat, 𝜌𝑙 , 𝜌𝑣, 𝜇𝑙 , 𝜇𝑣, 𝜆𝑙 , 𝜆𝑣, 𝜎, 𝑐𝑝𝑙 , 𝑐𝑝𝑣 ,𝐻𝑙𝑣) = HTC, FPD
(1)

where 𝐻𝑙𝑣 is the latent heat of vaporization.

Dimensionless features:

𝑓 (Rx,Xtt ,Rel,Reg,Prl,Prv,Wels,Wevs,Frl,Frv, Jg,Bond) = HTC,FPD (2)

It must be noted that three of the dimensional inputs present in
equation 1, namely reduced pressure (Pred), superficial liquid velocity
(U𝑙), and superficial vapor velocity (U𝑣), are functions of other di-
mensional parameters and the premise behind their implementation is
their imperative nature in the assessment of two-phase flow. Parameter
(R𝑥) in Eq. (2) was initially suggested by [3] as the heat transfer area
of a micro-finned tube compared to that of the smooth tube with an
identical inner diameter (ID). Such expression assists in a dimension-
less expression of geometrical parameters of the micro-finned tubes.
Although expressions of Nusselt number (Nu) and two-phase multiplier
are common in dimensionless models of heat transfer coefficient and
pressure drop, in training of the ML and DL models the output has
been assumed to be dimensional parameters of HTC and FPD. To further
elucidate the causality for which such a decision was made, one could
refer to expressions of Nu and two-phase multiplier.
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Table 2
Summary of authors, database, ML methods, and results.

Reference Database Details Method Used Results

Nie et al. [12] 6054 data points (HFCs,
HFOs, CO2, ammonia)
(0.49-8.92 mm ID)

KNN, RF, XGBoost, ANN,
CNN

1. Best HTC MAE of 5.82% achieved by the
CNN method on testing data points of 1213. 2.
Universal HTC correlation created with an
accuracy of 19.21% MAE over the entire
database.

Azizi and Ahmadloo [13] 440 data points (R134a,
8.38 mm ID, various
inclinations)

MLP network 1. MAE 1.94% for tested data. 2. 18 neurons in
the hidden layer proven to be the most suitable
with the lowest MAD.

Balcilar et al. [14] 368 data points by
experimentation (R134a,
Vertical 8.1 mm ID)

ANN, MLP, RBFN, GRNN,
ANFIS

1. Methods of MLP and RBFN proven to be
most accurate for both FPD and HTC in the
range of ±5% MAE.

Mattiuzzo et al. [15] 1504 data points by
experimentation (R513A,
R516A, Horizontal 3.38,
0.98 mm ID)

ANN Matlab toolbox 1. MAE of below 6.3%. 2. The number of
hidden neurons surpassing the value of 12 does
not substantially affect the predictive model.

Tarabkhah et al. [16] 348 data points (R134a,
R1234yf, Inclined, 8.3 mm ID)

MLP, SVR, XGBoost, KNN 1. MLP and XGboost possess the most optimal
prediction for HTC and FPD respectively.

Hughes et al. [17] 1032 data points
(Ethane/propane,
R245fa/pentane, 410A,
0.76-14.45 mm Dℎ channels)

SVR, RFR, GB, ANN 1. SVR model and GB with predictions within
5 and 5.5% MAEs for Nu and FPD respectively.
2. Highest importance factor of the Bond
number on the FPD.

Zhou et al. [18] 4882 data points (HFCs, HFOs,
HCs, CO2, 0.424-6.52 mm Dℎ)

ANN,RF,
AdaBoost,
XGBoost

1. ANN and XGBoost provided the best HTC
results with MAD of 6.8% and 9.1%. 2. ANN
and XGBoost are superior to developed
empirical methods.

Lin et al. [19] 7349 data points (HFCs,
HFOs, CO2, 3.64–11.98 mm
ID, 11◦ < 𝛽 < 50◦, 6◦ < 𝛾 < 30◦,
0.11 < 𝑒 < 0.26 mm)

Dimnet 1. Interpretable ML model allows the
construction of a universal model for flow
boiling with MAEs between 5% and 20% for
vapor qualities lower than 0.7 and mass fluxes
lower than 800 kg m−2 s−1.
Table 3
Summary of experimental data.

Data Test conditions Geometrical
characteristic

Number of
data points

Mean
experimental
uncertainty
(CI95%)

Diani et al [9] 𝐺 = 50–400 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R515B
R1234ze(E)

6.14 mm ID,
𝛽 = 18◦ ,
𝑒 = 0.18 mm

237 5%

Appendix A.1 𝐺 = 75–600 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R515B

4.28 mm ID,
𝛽 = 30◦ ,
𝑒 = 0.15 mm

102 3.4%

Irannezhad et al. [20] 𝐺 = 75–600 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R1234ze(E)

4.28 mm ID,
𝛽 = 30◦ ,
𝑒 = 0.15 mm

103 3.4%

Diani et al. [21] 𝐺 = 100–1000 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R513A

3.4 mm ID,
𝛽 = 18◦ ,
𝑒 = 0.12 mm

117 4%

Diani et al. [22] 𝐺 = 100–1000 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R1234ze(E)
R134a

3.4 mm ID,
𝛽 = 18◦ ,
𝑒 = 0.12 mm

249 4.2%

Diani et al. [8] 𝐺 = 100–1000 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R1234yf

3.4 mm ID,
𝛽 = 18◦ ,
𝑒 = 0.12 mm

103 2.4%

Diani et al. [23] 𝐺 = 100–1000 kg m−2 s−1,
𝑇sat = 30◦C, 40◦C
R513A

2.4 mm ID,
𝛽 = 7◦ ,
𝑒 = 0.12 mm

98 4.2%

Diani et al. [24] 𝐺 = 250–1000 kg m2 s−1,
𝑇sat = 30◦C, 40◦C
R1234ze(E)
R1234yf
R134a

2.4 mm ID
, 𝛽 = 7◦ ,
𝑒 = 0.12 mm

183 2.4%

Total Data Points = 1192
4
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Fig. 1. Peripheral view of the micro-finned tube.
Fig. 2. Circumferential view of the micro-finned tube.
• The equation for HTC:

HTC = Nu ⋅ 𝜆
𝐷

(3)

where Nu is commonly expressed as:

Nu = 𝑓 (Pr,Re,…) (4)

• The equation for two-phase 𝛥P:

𝛥𝑃Two-Phase
𝐿

=
(

𝛷2
𝑣
)

⋅
𝛥𝑃Single-Phase,v

𝐿
(5)

Where 𝛷𝑣 is commonly expressed as:

𝛷𝑣 = 𝑓 (𝑋𝑡𝑡,…) (6)

As evident, the relationship between Nusselt and HTC will not be
severely affected, unless large variations of thermal conductivity and
inner diameter are experienced, and the database under study does not
5

present such large variations and the same also applies to the two-
phase multiplier. Furthermore, in a trial run, the Nusselt number and
two-phase multiplier were assumed to be the function of dimensionless
inputs in Eq. (2), and quite low accuracy was reported during testing.
As a result, it was assumed that in ML and DL assessment the learning
process is considerably better using HTC and FPD values as the output.

3.2 Data preprocessing

Our dataset contains 1192 data points divided into two separate
datasets: one with 25 features representing dimensional data and the
other with 14 features representing non-dimensional data. We use a
dual-track approach to conduct comprehensive experiments, treating
these datasets independently. We began the preprocessing phase by
addressing missing values to ensure data integrity. Only one row dis-
played this characteristic, which was then removed, resulting in a clean
dataset. Following that, we used the Standard Scaler transformation,
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4

a
S
(

which uses the mean and standard deviation of the input data to scale
each feature in order to normalize the input data and ensure that each
feature contributes equally to the learning process. Normalization aims
to standardize all features, preventing certain features from dominating
the learning process due to their higher numerical values. This step is
critical for gradient-based optimization methods and other algorithms
that are sensitive to the scale of input features. Following that, we
divided our dataset into training and testing sets. 70% of the data
in this division is designated for training, while the remaining 30%
is designated for testing and validation. The thorough preprocessing
procedures we followed ensured a solid and trustworthy analysis of
the datasets, which enhanced the validity and trustworthiness of our
conclusions.

3.3 Machine and deep learning models

In this section, we delve into the ML and DL models employed
to tackle the regression task at hand. As previously mentioned, our
approach encompasses a diverse array of models, ensuring a compre-
hensive exploration of the problem space. However, it is noteworthy to
mention that, despite the potential benefits of utilizing metaheuristic
optimization algorithms such as Simulated Annealing [25], Genetic Al-
gorithm [26], Particle Swarm Optimization [27], Grey Wolf Optimiza-
tion [28], and Golden Search Optimization [29], we have consciously
chosen not to incorporate them for the purpose of model compari-
son, avoiding unnecessary complexity and enabling a focused evalua-
tion of each model’s inherent capabilities. The multifarious techniques
employed are provided as:

• Linear Regression [30]: To establish relationships between the
input features and the target variable, a basic linear modeling
technique is used.

• XGBoost [31]: XGBoost provides an ensemble learning frame-
work that can handle complex relationships in the data by uti-
lizing the power of gradient boosting. XGBoost stands out as
a promising and effective tool for applications in the energy
sector, characterized by its exceptional precision, efficiency, and
stability [32].

• KNN [33]: By taking into account the average of its k-nearest
neighbors in the feature space, a regression model based on
k-nearest neighbors predicts the target variable.

• Decision Tree [34]: The model partitions the feature space into
regions and assigns a constant value to each region in decision
tree-based regression.

• Random Forest [35]: An ensemble technique for improving ac-
curacy and robustness by constructing multiple decision trees and
combining their predictions. The number of estimators parameter
is the number of trees in the forest. In our implementation, we set
this parameter to 100.

• LightGBM [36]: LightGBM is an efficient gradient boosting frame-
work that uses tree-based learning algorithms and excels at han-
dling large datasets. In our LightGBM implementation, we tai-
lored several critical parameters to enhance model performance:
number of leaves (31), governing tree complexity; learning rate
(0.05), modulating step size for training convergence; feature
fraction (0.9), orchestrating feature randomness; bagging fraction
(0.8), instigating data randomness; and bagging frequency (5),
determining the frequency of data bagging during training.

• SVR (Support Vector Regression): SVR is capable of capturing
complex relationships in high-dimensional spaces by utilizing the
principles of support vector machines. We configured two key
parameters to influence the model behavior in our SVR implemen-
tation: kernel ’linear’ which specifies the type of kernel function
used, and C (1.0), which controls the regularization strength.

• Ridge Regression [37] : By penalizing large coefficients, a linear
regression technique with an added regularization term helps to
prevent overfitting.
6
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• Elastic Net [38] : By combining the best features of Lasso and
Ridge regression, Elastic Net is a powerful statistical technique
that effectively addresses multicollinearity and variable selection
issues in the predictive modeling process.

• Polynomial Regression [39]: By incorporating polynomial fea-
tures into linear regression, non-linear relationships between vari-
ables can be explored. In our implementation, we changed the
critical parameter degree (2), which allows us to vary the degree
of the polynomial features generated by the Polynomial Features
function.

• RANSAC Regressor [40]: Random Sample Consensus (RANSAC)
is an iterative algorithm robust to outliers, particularly suitable
for datasets with noisy observations.

• Deep Learning Model (Artificial Neural Network): Our feed-
forward architecture deep learning regression model leverages the
expressive power of artificial neural networks to extract complex
patterns from the data. We recognize the unique qualities of
predicting HTC and FPD as target features in our study. We have
chosen a customized approach because we recognize that these
two aspects of the regression task might benefit from distinct
neural network architectures. We discovered that the best way
to predict HTC and FPD is to use two separate neural network
models, each tailored to the specific needs of its target feature.
This requires adjusting hyperparameters such as the number of
hidden layers and neurons within these layers. This approach
allows each model to specialize in capturing the distinct pat-
terns and relationships associated with either HTC or FPD. We
hope to improve the models’ ability to discern and represent
the complexities of the respective output variables by fine-tuning
the architecture for each prediction task. The architecture and
hyperparameters employed in our models are detailed in Table 4.
We incorporated Rectified Linear Unit (ReLU) activation layers in
both neural networks to introduce non-linearity and enhance the
model’s capacity to capture complex patterns. Additionally, the
Adam optimization algorithm was employed during the training
process. A relatively low learning rate was chosen to prevent
overfitting, particularly in complex models with multiple hidden
layers. The model can gradually converge with a low learning
rate, reducing the risk of overshooting optimal weights and pre-
venting oscillations around the minima. Furthermore, using a
large enough number of epochs allows the model to learn from the
entire training dataset, capturing intricate patterns while avoiding
overfitting. Furthermore, we closely monitored the model’s per-
formance during training on a dedicated validation set to avoid
overfitting. We employed the mean squared error as the loss
function for training both neural networks.

Evaluation and results

In the evaluation phase, we assess the performance of our ML
nd DL models using key metrics: Mean Absolute Error (MAE), Mean
quared Error (MSE), Root Mean Squared Error (RMSE), and R-squared
𝑅2). The formulas for these metrics are defined as follows:

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − 𝑦̂𝑖|| (7)

MSE = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (8)

RMSE =
√

MSE (9)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(10)

Although it is customary in ML and DL to express MAE in the same
nit as the target variable, the unitless expression of such metrics is
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Table 4
Neural network architecture and hyperparameters for HTC and FPD prediction.
Target Architecture Layers Batch size Learning rate Number of epochs

HTC Feed-forward Neural Network 3 (512, 256, 1) 32 0.0005 400
FPD Feed-forward Neural Network 4 (1028, 512, 256, 1) 128 0.0005 450
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Table 5
Performance Metrics for HTC prediction using dimensional data.

Method MAEa MSEa RMSEa R2 MAE %

Linear Regression 1.14 2.56 1.60 0.87 13.52%
XGBoost 0.55 0.60 0.77 0.97 6.55%
KNN 0.81 1.34 1.16 0.93 9.60%
Decision Tree 0.84 1.65 1.28 0.92 9.98%
Random Forest 0.55 0.68 0.83 0.96 6.60%
LightGBM 0.54 0.70 0.83 0.96 6.47%
SVR 1.11 3.07 1.75 0.85 13.22%
Ridge Regression 1.19 2.71 1.64 0.86 14.14%
Polynomial Regression 0.61 0.90 0.95 0.95 7.23%
Elastic Net 1.76 5.50 2.34 0.73 20.88%
RANSAC Regressor 0.86 0.90 0.95 0.77 13.03%
Artificial Neural Network 0.28 0.19 0.44 0.99 3.41%

a (kW/(m2 K))

prevalently expressed in the field of thermal sciences to detach the re-
sults from the unit of measurement, providing a better grasp of model’s
accuracy. In this case, the evaluation contains reports of absolute and
percentage-based metrics. The percentage-based evaluation metric is
calculated as follows:

MAE Percentage =
(

MAE
Mean actual Values

)

× 100 (11)

Percentage-based metrics provide a normalized measure of error,
aking them particularly useful for comparing models across different

arget variables. After training each of the previously mentioned mod-
ls, we proceed to evaluate their performance based on the selected
etrics.

.1 Evaluation of dimensional data

Although building predictive models by dimensional values is scarce
n empirical attempts, delving into the possibility of the construction
f ML and DL models based on these inputs is of high importance. In
his section, we undertake the evaluation of our dimensional dataset
haracterized by the presence of 23 features for training and two target
eatures. The results of the evaluation for the prediction of HTC and
PD are succinctly presented in Tables 5 and 6.

Based on a comprehensive evaluation of performance metrics, XG-
oost, Random Forest, LightGBM, and Polynomial Regression outper-
orm other ML models in terms of predictive efficacy for HTC. The
NN also distinguishes itself by displaying the models with the lowest
rror values. In comparison to the aforementioned algorithms, Elastic
et and RANSAC Regressor exhibit relatively higher error metrics,

ndicating their limited effectiveness in modeling the complex patterns
nherent in the dataset. Furthermore, the consistently high R2 val-

ues across most methods highlight the significant proportion of HTC
variance effectively explained by XGBoost, Random Forest, LightGBM,
Polynomial Regression, and ANN, solidifying their position as robust
models for HTC prediction in comparison to alternative approaches.
The prediction plots for the top models are shown in Fig. 3. Plots for
other models will also be included in the annex.

In a parallel evaluation, XGBoost, Random Forest, Polynomial Re-
gression, and LightGBM consistently outperformed other algorithms in
predicting FPD. Despite this, the ANN exhibited the lowest error values,
showcasing its robust predictive capabilities. This consistency across
tasks underscores the adaptability and reliability of ANN, Random
Forest, LightGBM, Polynomial Regression, and XGBoost for dimensional
data predictive modeling. Refer to Fig. 4 for prediction plots of the top
models.
7

f

Table 6
Performance Metrics for FPD per unit of length prediction using dimensional data.

Method MAEa MSEa RMSEa R2 MAE %

Linear Regression 0.05 0.004 0.07 0.91 29.03%
XGBoost 0.013 0.0007 0.027 0.98 7.23%
KNN 0.034 0.0035 0.059 0.94 18.89%
Decision Tree 0.021 0.0019 0.044 0.96 11.88%
Random Forest 0.013 0.0006 0.026 0.98 7.46%
LightGBM 0.013 0.0007 0.026 0.98 7.51%
SVR 0.059 0.0053 0.073 0.90 32.33%
Ridge Regression 0.054 0.0050 0.071 0.91 29.89%
Polynomial Regression 0.010 0.0002 0.015 0.99 5.75%
Elastic Net 0.19 0.060 0.24 0 107.20%
RANSAC Regressor 0.05 0.0061 0.078 0.89 27.73%
Artificial Neural Network 0.0064 0.0001 0.010 0.99 3.53%

a (bar/m)

Table 7
Performance Metrics for HTC prediction using non-dimensional data.

Method MAEa MSEa RMSEa R2 MAE %

Linear Regression 1.35 3.69 1.92 0.82 15.86%
XGBoost 0.52 0.61 0.78 0.97 6.13%
KNN 0.98 2.08 1.44 0.90 11.48%
Decision Tree 0.94 1.86 1.36 0.91 11.00%
Random Forest 0.64 0.85 0.92 0.95 7.51%
LightGBM 0.54 0.63 0.79 0.96 6.47%
SVR 1.31 4.26 2.06 0.79 15.30%
Ridge Regression 1.35 3.71 1.92 0.82 15.87%
Polynomial Regression 0.97 1.63 1.27 0.92 11.44%
Elastic Net 2.02 7.62 2.76 0.63 23.63%
RANSAC Regressor 1.29 3.8 1.97 0.81 15.09%
Artificial Neural Network 0.34 0.28 0.53 0.98 4.02%
Empirical model [3] 1.66 6.92 2.63 0.66 19.46%

a (kW/(m2K))

.2 Evaluation of non-dimensional data

This section deals with the assessment of our non-dimensional
ataset that has two target features and twelve training features. Ta-
les 7 and 8 provide a concise presentation of the evaluation results
or the prediction of HTC and FPD.

Regarding HTC prediction with non-dimensional data, the perfor-
ance metrics table offers useful information about model effective-
ess. As before, XGBoost, Random Forest, and LightGBM exhibit better
ccuracy with smaller error values when compared to other models.
eiterating its strong predictive capabilities, the ANN stands out with

he lowest error values. These results show that the algorithms retain
heir relative performance trends between the two datasets when com-
ared to the table for HTC prediction using dimensional data that was
reviously discussed. The detailed comparison and implications of these
indings will be explored further in the discussion section. Furthermore,
ost models demonstrate superior accuracy to that of the empirical
odel by Cavallini et al. [3] which was considered a candidate for

omparative analysis owing to its promising fairly accurate predictions
hich are present in the open literature. It is pivotal to clarify that the
imensionless groups of [3] although close, are not entirely similar to
he ones utilized by ML models.

XGBoost, Random Forest, Polynomial Regression, and LightGBM
emonstrate superior accuracy in FPD prediction, which is consistent
ith the trends observed in HTC prediction tasks. Furthermore, ANN

tands out with low error values, highlighting its robust predictive per-
ormance. The detailed comparative analysis and implications of these
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Fig. 3. HTC prediction using dimensional data.
findings will be expounded upon in the subsequent discussion section.
Furthermore, the empirical model of Diani et al. [41] which was built
on the micro-finned tube of 3.4 mm ID with identical geometrical
properties to that of the included database is provided among the ML
and DL models (see Fig. 6).

4.3 Interpretability

The ability to interpret ML and DL models is critical for gaining
insights into their decision-making processes. Despite the importance
of interpretability, only a small number of research papers address it.
While many consider DL models to be the best, their inherent black-box
8

nature frequently steers researchers toward more interpretable models
such as decision trees for analysis.

In our study, we recognize the importance of interpretability and
opt to employ the SHAP (SHapley Additive exPlanations) library [42].
In the subject of explainable AI, SHAP is highly esteemed for its
capacity to offer lucid insights into model predictions. It provides a
strong framework for deciphering complex models by utilizing Shapley
values from cooperative game theory to assign the contributions of
each feature to the prediction outcome. In particular, we use the
SHAP library’s Deep Explainer to interpret the output from our top-
performing model, the ANN. The Deep Explainer is designed for DL
models, making it an excellent choice for deciphering the complexities
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Fig. 4. FPD per unit of length prediction using dimensional data.
of ANNs. This method allows us to decipher the black-box nature
of our ANN model and shed light on the factors that influence its
predictions. Figs. 7, 8, 9, 10 depict the average impact of each fea-
ture on the model’s output, allowing for a visual representation of
the interpretability results. Moreover, the delineation of SHAP values
and delving into the magnitude of the impact of one feature relative
to others will provide a novel assessment of two-phase flow. Such
aspect is quite evident from the scrutinization of literary works in flow
condensation where prioritization in the contribution of geometrical or
thermophysical properties provides a great insight into heat transfer
and hydraulic performance during condensation inside micro-finned
9

tubes. A thorough analysis of the acquired results of SHAP values and
their implications for the flow condensation models are given in the
thermal perspective of the discussion section. It is worth noting that
there exists an extension of the Shapley values known as Asymmetric
Shapley Values (ASVs) [43], which offer users the ability to integrate
partial causal knowledge into the explanation process. ASVs represent
a significant advancement in the field of explainable AI, as they enable
a more nuanced understanding of causal relationships within complex
systems. For further insights into this method and its implications,
interested readers are encouraged to explore the Future Work section,
where additional information about ASVs will be provided.
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Fig. 5. HTC prediction using non-dimensional data.
5 Discussion

The presented study investigates the predictive performance of var-
ious ML and DL models in two distinct tasks: HTC and FPD prediction.
The analysis considers both dimensional and non-dimensional data to
glean insights into the models’ adaptability and efficacy. Also, the
examination seeks to identify whether one type of data yields superior
performance compared to the other.
10
5.1 AI perspective

5.1.1 HTC prediction: Dimensional vs. Non-dimensional data
The comparison of dimensional and non-dimensional data in the

context of HTC prediction reveals intriguing patterns. Notably, XG-
Boost, Random Forest, LightGBM, and ANN consistently outperform in
both datasets, indicating their robustness across data types. In both
scenarios, the ANN performs admirably in terms of prediction. Al-
most all of the models show noticeable changes when switching from
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Fig. 6. FPD per unit of length prediction using non-dimensional data.
dimensional to non-dimensional data, as evidenced by an increase
in error metrics. Linear Regression, Elastic Net, and Support Vector
Regression (SVR), for example, exhibit sensitivity to data transforma-
tion, as evidenced by an increase in error values. On the other hand,
in the non-dimensional setting, XGBoost, LightGBM, and ANN show
consistent or slight variations in their performance. This resilience
highlights the algorithms’ ability to adjust to the intrinsic properties
of the data, highlighting their efficacy in a variety of representations.
As a benchmark, the HTC prediction using non-dimensional data is
11
compared to the empirical model. The empirical model is consistently
outperformed by the majority of the ML and DL models (11 out of
12), demonstrating the efficacy of advanced modeling techniques in
capturing complex relationships within the data.

5.1.2 FPD prediction: Dimensional vs. Non-dimensional data
XGBoost, Random Forest, LightGBM, Polynomial Regression,

and ANN dominate FPD prediction in both dimensional and non-
dimensional datasets, as they do in HTC prediction. Once again, the
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Fig. 7. SHAP values for prediction of HTC with dimensional data.
.

Table 8
Performance Metrics for FPD per unit of length prediction using non-dimensional data

Method MAEa MSEa RMSEa R2 MAE %

Linear Regression 0.030 0.0018 0.04 0.96 16.84%
XGBoost 0.018 0.001 0.034 0.97 10.14%
KNN 0.026 0.002 0.047 0.95 14.73%
Decision Tree 0.030 0.004 0.070 0.90 16.73%
Random Forest 0.017 0.001 0.035 0.97 9.45%
LightGBM 0.015 0.0008 0.029 0.98 8.45%
SVR 0.044 0.003 0.054 0.94 24.71%
Ridge Regression 0.030 0.0018 0.043 0.96 16.73%
Polynomial Regression 0.010 0.0002 0.014 0.99 5.98%
Elastic Net 0.190 0.055 0.23 0 104.67%
RANSAC Regressor 0.05 0.0061 0.078 0.89 27.73%
Artificial Neural Network 0.0080 0.0001 0.01 0.99 4.43%
Empirical model [41] 0.025 0.002 0.047 0.96 12.54%

a (bar/m)

ANN stands out as a standout performer, displaying good accuracy in
both scenarios. In contrast to the HTC prediction scenario, transitioning
from dimensional to non-dimensional data in FPD prediction results in
a significant decrease in error metrics across many models. However, in
the non-dimensional setting, some models, such as XGBoost, XGBlight,
Random Forest, Decision Tree, and ANN, show an increase in errors.
This anomaly suggests that these algorithms have a unique sensitivity
to non-dimensional representations, emphasizing the importance of
tailored considerations for specific models. Also, Polynomial Regression
stands out for its remarkable consistency in producing reliable results,
12
showcasing good performance among machine learning algorithms in
FPD prediction tasks. In contrast to the HTC prediction scenario, it is
noteworthy that, in the case of FPD prediction using non-dimensional
data, the empirical model exhibits a relatively stronger performance.
Despite the empirical model’s comparatively better results, several
ML and DL models (5 out of 12), such as XGBoost, Random Forest,
LightGBM, Polynomial Regression, and ANN, still outperform it. This
nuanced comparison underscores the effectiveness of advanced ma-
chine learning methodologies in FPD prediction, even when faced with
a competitive empirical model.

5.1.3 Adaptability across data types
The analysis of both dimensional and non-dimensional datasets

reveals consistent trends in algorithmic performance, with notable
models such as XGBoost, Random Forest, LightGBM, and ANN demon-
strating robust adaptability across the data’s diverse nature. This adapt-
ability is critical for addressing the complexities inherent in both di-
mensional and non-dimensional representations, highlighting the mod-
els’ versatility. However, the subtle changes observed in specific models
such as XGBoost, LightGBM, Random Forest, and Decision Tree dur-
ing the transition from dimensional to non-dimensional data suggest
that the optimal data type may vary depending on the model. This
highlights the importance of a contextual analysis when determining
the most suitable data representation for a particular predictive task.
The results emphasize that, while certain models exhibit enhanced per-
formance in the non-dimensional setting, the best-performing models,
including XGBoost, Random Forest, LightGBM, and ANN, consistently
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Fig. 8. SHAP values for prediction of FPD per unit of length with dimensional data.

Fig. 9. SHAP values for prediction of HTC with non-dimensional data.
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Fig. 10. SHAP values for prediction of FPD per unit of length with non-dimensional data.
Fig. 11. HTC versus vapor quality data from [9,24].
demonstrate superior accuracy with dimensional data. This insight
emphasizes the importance of carefully selecting the data type that is
aligned with the specific characteristics and requirements of the models
used.

5.2 Thermal perspective

Regarding the implications of the results acquired by the compre-
hensive AI analyses, one could identify underlying thermal phenomena.

A. Regarding HTC, In Figs. 3 and 5 one could note that regardless of
the type of input data, all models suffer from large deviations at high
heat transfer coefficient (20–25 kW m−2 K−1). Such occurrence is not
unprecedented but on the contrary quite common in most empirical
models developed for micro-finned tubes and often surmised to stem
from an observed phenomenon that transpires at high values of mass
flux inside micro-finned tubes. To elaborate, we must note the findings
14
of [9,44–47] in which at high mass fluxes and vapor qualities, HTC
reached an acme then slightly proceeded to decrease. The authors
expressed that the unconventional occurrence is germane to the surface
tension effect and the thickness of the condensate between the fins. In
addition, in the assessment of the current database, it was discovered
that the occurrence of such phenomena is highly dependent on tube
diameter. For a pellucid illustration, one could refer to HTC versus
vapor quality (x) in Fig. 11 for the 6.14 mm and 2.4 mm ID. As shown,
another causality for the occurrence of such a peculiar trend can be
related to the heat transfer area as well. Ultimately, we could link the
high MAEs in ML and DL models at high HTCs to an unconventional
pattern that seems to be abstruse to the AI models. For such reason, it
is encouraged to feed ML and DL models with copious numbers of data
points at high mass flux and vapor qualities to ameliorate the learning
process.
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B. From the assessment of SHAP values, we could infer that ML and DL
models successfully identified underlying thermo-physical patterns dur-
ing flow condensation. Concerning dimensional data, the precedence of
U𝑣 , x, and G whose variation and interplay have the essential rule in
the prevailing flow pattern and consequently the liquid thickness which
ultimately decides the heat transfer and pressure drop characteristics.
For dimensionless SHAP values, the interplay of parameters is intrigu-
ing as the results are completely congruous with expectations. In this
case, noting the discrepancies between Figs. 9 and 10, the importance
of the Reynolds number should be highlighted. As attested, the fric-
tional pressure drop is mostly due to the viscosity of the liquid phase,
giving rise to the importance of Re𝐿 as well as We𝐿 in pressure drop
ssessment compared to HTC analysis. The bond number’s importance
n the output of the model was similarly reported by ML assessment
f [17]. Further on, J𝑔 and X𝑡𝑡 whose expressions are found on flow
attern maps [48–51] are main contributors to the prevailing flow
attern by considering the forces of inertia and gravity.

Overall, the proposed ANN model not only excels at the prediction
f HTC and FPD at their high values, it successfully sheds light on the
ntricate interplay of physical and thermophysical parameters.

Conclusion

The article provided a comprehensive evaluation of ML and DL mod-
ls in HTC and FPD prognostication inside micro-finned tubes which
re the main tools in the design of heat exchangers. The training of the
odels was concluded on 1192 flow condensation data points acquired

rom the same laboratory with identical experimental techniques and
xperimental uncertainties which would minimize the range of noise
n the data. Considering both dimensional and non-dimensional data
s inputs. The following recapitulated results were concluded:

. The sustained effectiveness of XGBoost, Random Forest, LightGBM,
nd ANN underscores their versatility and reliability.

. The empirical model comparison emphasizes the advancements
chieved through sophisticated modeling techniques. The nuanced
hanges in model performance when transitioning between dimen-
ional and non-dimensional data underscore the importance of tailoring
odeling approaches to the specific characteristics of the dataset.

. Dimensionless groups could provide better accuracy for certain ML
nd DL models. However, it must be noted that the learning process
s quite multifaceted, and the usage of dimensionless data as inputs
s present in literature for empirical models does not guarantee an
mproved outcome.

. In comparison with an empirical model of [3,41] for HTC and FPD
espectively, AI models and their superiority, reinforce the potential of
he ML and DL techniques in advancing the accuracy of heat transfer
redictions.

. The ability to capture intricate patterns and non-linear relationships
ithin the data is a distinctive advantage of AI models, making them
aluable tools in the realm of heat transfer research and engineering.

. Except for the ANN model, all algorithms suffer from an inaccurate
rediction at high values of HTC owing to the peculiar trend of HTC at
igh mass fluxes and vapor qualities inside micro-finned tubes which
as concluded to be a function of tube diameter and its physical
roperties.

. Owing to SHAP values, it is evident that correct underlying thermo-
hysical connections for flow condensation were identified by the ANN
odel.
15
H. Considering the attained results regarding the accuracy of the AI
models, the design of condensers possessing horizontal tubes can be
further facilitated. In the presence of preliminary data available, it is
suggested that ANN and ML models identified as most promising in the
following work be implemented to construct new predictive models.
Overall, the classical empirical modeling which is vastly implemented
for the design of heat exchangers could be replaced by ML and DL
methods and the current paper further expands the insight into such
a possibility.

7 Future work implications

A. The combination of mean average error recorded for the proposed
ANN model and identification of underlying physical phenomena by
utilization of SHAP values could abridge improvement operations on
currently existing empirical correlations. In this case, it is surmised
that such a model could be built on dimensionless groups of empirical
correlations and help with the detection of parameters whose impact is
more than one of the others.

B. In the field of explainable AI(XAI), researchers are increasingly
recognizing the value of using asymmetric Shapley values instead of
traditional methods to improve interpretability in ML models. The
work [52] provides valuable insights into this emerging field. This
study investigates new techniques for approximating asymmetric Shap-
ley values using functional decomposition methodologies. The novelty
of asymmetric Shapley values has resulted in a scarcity of readily
available libraries, particularly in comparison to their vanilla Shapley
counterparts. As a result, for many applications, using existing libraries
is insufficient, necessitating the creation of custom implementations.
While the implications of asymmetric Shapley values go beyond XAI,
they are especially important in fields like heat transfer, where com-
plex, asymmetric interactions between factors may influence system
performance. In our future work, we hope to close this gap by focusing
on our custom implementation for calculating asymmetric Shapley
values in the design of heat exchangers with micro-finned tubes.
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Appendix A

The evaluated heat transfer coefficient and frictional pressure drop
values are included in Table A.1 as a function of mass flux and vapor
quality.

Appendix B

In this section, we present prediction plots generated by other
models under different scenarios (see Figs. B.1–B.4).
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Fig. B.1. HTC prediction using dimensional data.
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Fig. B.2. FPD prediction using dimensional data.
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Fig. B.3. HTC prediction using non-dimensional data.
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Fig. B.4. FPD prediction using non-dimensional data.
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Table A.1
HTC and FPD per unit of length data as a function of mass flux and vapor quality.

Mass flux (kg
m−2 s−1)

Vapor
quality

HTC (W
m−2 K−1)

FPD (Pa m−1) 𝑇Sat (◦ C)

605 0.13 5358 10 484 30
600 0.23 7145 15 950 30
602 0.35 8840 22 082 30
597 0.45 10 683 27 325 30
597 0.57 13 315 32 941 30
597 0.71 15 925 39 648 30
597 0.80 18 083 42 101 30
603 0.90 18 905 40 757 30
600 0.95 21 147 35 312 30
404 0.92 20 154 17 596 30
403 0.88 18 388 18 807 30
403 0.79 16 350 19 743 30
403 0.68 14 152 18 558 30
403 0.59 12 064 17 245 30
404 0.51 10 053 15 517 30
402 0.41 8432 13 230 30
402 0.31 6974 10 356 30
402 0.21 5668 7028 30
401 0.14 4730 5176 30
199 0.16 3867 1284 30
200 0.28 4863 1990 30
196 0.37 6032 2831 30
195 0.42 6709 3236 30
198 0.53 8227 4275 30
197 0.66 10 925 4922 30
196 0.75 13 436 5016 30
196 0.82 16 534 4809 30
197 0.91 18 667 4319 30
98 0.87 12 151 1004 30
97 0.80 10 108 989 30
97 0.72 8516 958 30
99 0.63 6582 846 30
98 0.54 5660 710 30
101 0.48 5158 549 30
101 0.34 5147 498 30
100 0.28 4340 397 30
101 0.18 2998 332 30
602 0.13 5153 8268 40
594 0.20 6011 11 136 40
596 0.29 7267 14 736 40
597 0.39 8363 18 692 40
599 0.48 9838 22 445 40
599 0.58 11 564 26 212 40
600 0.69 13 484 30 018 40
599 0.81 15 706 32 683 40
596 0.88 16 972 31 469 40
601 0.93 17 699 29 174 40
399 0.91 17 223 14 694 40
400 0.83 15 152 15 861 40
405 0.72 13 067 15 905 40
401 0.61 10 294 14 592 40
402 0.53 8468 13 014 40
402 0.42 7166 10 704 40
402 0.31 6261 8584 40
401 0.22 5183 6434 40
402 0.14 4325 4760 40
199 0.14 2818 1202 40
196 0.27 3810 1204 40
198 0.35 4567 1690 40
201 0.44 5428 2249 40
195 0.56 6716 2884 40
198 0.65 7807 3345 40
195 0.76 9974 3536 40
199 0.86 12 859 3621 40
198 0.90 14 973 3353 40
96 0.85 7548 629 40
100 0.80 7175 704 40
98 0.72 6026 606 40
100 0.65 5814 571 40
99 0.56 5454 494 40

(continued on next column)
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Table A.1 (continued).
Mass flux (kg
m−2 s−1)

Vapor
quality

HTC (W
m−2 K−1)

FPD (Pa m−1) 𝑇Sat (◦ C)

101 0.48 5139 407 40
99 0.38 3815 456 40
99 0.29 2430 517 40
98 0.21 1825 125 40
96 0.19 1864 247 40
103 0.17 1499 204 40
151 0.22 3347 660 30
153 0.32 3938 888 30
150 0.40 4581 1100 30
146 0.48 5319 1280 30
150 0.62 7173 1186 30
151 0.70 8795 1416 30
146 0.77 9871 1356 30
148 0.83 11 725 1362 30
150 0.14 4009 650 30
152 0.21 4406 975 30
148 0.29 4908 1238 30
146 0.39 5797 1607 30
149 0.51 6840 1893 30
145 0.60 8028 2105 30
145 0.69 9506 2326 30
152 0.79 13 313 2762 30
151 0.86 16 749 2673 30
75 0.16 1364 219 30
76 0.20 1975 241 30
77 0.29 3311 291 30
77 0.44 5351 316 30
77 0.52 6062 367 30
76 0.64 6742 441 30
76 0.71 7228 479 30
76 0.76 7581 525 30
76 0.85 8668 549 30
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