

Analysis of the active length dynamics on intermittent streams using water presence sensors

Zanetti Francesca, Durighetto Nicola, Vingiani Filippo, Botter Gianluca

University of Padua (francesca.zanetti.3@unipd.it)

River networks are highly dynamical

DROUGHT

PONDING

Different conditions can be observed on the same stretch of a watercourse over time.

The Valfredda catchment

Area: 2.6 km² Altitude: 1900 to 3000 m a.s.l. Climate: Alpine

<u>South</u>: moraine deposites, mild slopes covered by pastures

<u>Northwest</u>: steep canyon of quartz porphyry rocks

Water presence sensors

Onset HOBO pendant waterproof temperature and light data loggers

More than 30 HOBOs were placed on grassland and rocks

Data collected from HOBOs vs persistency of the corresponding nodes

Ratio between the number of surveys during which a node was wet and the total number of field surveys done

Exceedance of the threshold = probability that the electrical signal is greater or equal than the threshold that separates wet and dry status Average intensity = mean of the electrical signal registered by each HOBO

Active length and discharge measured

Active length and discharge power law model

$$L = aQ^b$$

$$\log(L) = \log(a) + b\log(Q)$$

(Godsey and Kirchner, 2014)

Single events active length and discharge relationship

2200

2000

1800

1600

드 ¹⁴⁰⁰ - ₁₂₀₀

1000

800

600

400

0

0.1

0.2

0.3

Q [m³ s⁻¹]

0.4

0.5

1100

1000

900

800

600

500

[L 700

(a)

CONCLUSIONS

- 1. Water presence sensors provided precious information about high frequency space time network dynamics
- 2. The mean intensity of the electrical signal and the exceedance of a suitable threshold were found to be highly correlated with the persistencies of the nodes
- 3. An in depth analysis of the relationship between catchment discharge (Q) and active length (L) was carried out
- 4. Hysteresis in the high frequency L- Q relationship were observed due to the different responsiveness of the streamflow and the active length to small precipitation inputs.