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Abstract: High energy particle accelerators rely on superconducting radio frequency cavities to
transfer energy and accelerate the beam. Such particle accelerators are complex and expensive
systems prone to failures which lead to downtime of the whole experimental facility: it is thus
of primary importance to anticipate and prevent these faults to improve the uptime and cost-
effectiveness of particle accelerators. Data-driven methods are especially fit for this task as they
can leverage all the data recorded and archived by a typical control system. Previous works
used classical machine learning (ML) models for anomaly detection to detect early signs of an
upcoming fault. We propose here a different approach based on deep learning (DL) models,
exploiting the temporal correlation of the raw data. Three different models are tested on data
from the ALPI (Linear Accelerator for Ions) linear accelerator in INFN (National Institute
for Nuclear Physics) Legnaro National Laboratories in Italy and they are compared with the
classical ML approach.
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1. INTRODUCTION

Particle accelerators are complex experimental plants
which deliver high energy particle beams to a target for
physics experiments or industrial and medical applica-
tions. They are composed of different and heterogeneous
systems such as the ion source, the beam transport mag-
nets and electrodes or the beam diagnostics, along with
supporting infrastructure such as the water cooling and
cryogenic systems. Given the complexity of each subsys-
tem and the unpredictability of the interactions between
them, it’s difficult to avoid faults and operating errors.

In the ALPI (Acceleratore Lineare per Ioni, which stands
for Linear Accelerator for Ions) particle accelerator at
INFN Legnaro National Laboratories (LNL) one of the
most critical systems is the radio frequency (RF) which
is responsible to transfer energy to the beam and thus
accelerate it. It uses superconductive RF cavities which are
extremely sensitive to external factors such as noise coming
from the cryogenic lines. The RF control system is able to
correct small perturbations and keep the cavity operating
as intended most of the time, but it still can stop working
when anomalous conditions arise. These conditions are
hard to predict and to take into account; when one of such
failures happens on a single cavity, the beam trajectory is
impacted so that the ions don’t reach the target and thus
the physics experiment is paused. Being able to predict
these faults would mean to being able to act early and to
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prevent such conditions. Furthermore, a good prediction
model can also be used to better understand the different
causes of each fault and to identify the best preventive
action to perform. Such an Anomaly Detection model
(Maggipinto et al. (2022)) can be part of a broader pipeline
of engineering tools with the aim of maximizing the total
operating time of the accelerator, leading to increasing its
scientific output and to optimizing its large operational
costs.

With the advent of Machine Learning (ML), data-driven
methods have been very successful at modeling complex
systems and thus they are promising candidates for this
kind of tasks. Furthermore, particle accelerators usually
collect and record the trends of many process variables
(PVs) from the thousands of sensors and actuators in-
stalled, meaning that a large dataset of raw signals can
be available or can be easily collected during a run of
the accelerator. This creates the possibility to adopt data-
intensive approaches such as Deep Learning (DL) models,
which are usually able to reach great performance by
paying a penalty on training times and data efficiency. For
these reasons, ML and DL models have been adopted by
the particle accelerator community for different purposes,
such as physics data analysis, beam dynamics optimization
or to develop advanced and proactive control systems
(Edelen et al. (2018)).

This paper presents a method to predict runtime faults on
particle accelerations by means of DL Anomaly Detection
models; the approach was tested and validated on the
ALPI RF control system. The prediction is performed by
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a neural network based forecasting model for time series.
Different approaches have been proposed in this field: Li
et al. (2021) presented a classification model to predict
safety interlocks based on Recurrence Plots and Convo-
lutional Neural Networks (CNN). An anomaly detection
method based on Recurrent Neural Networks is used by
Sulc et al. (2022) to predict faults on the RF system. In
this case the facility accelerates a photon beam and the
faults are due to quenches, when a cavity loses its super-
conductive status. Li and Adelmann (2022) offer a review
of time series forecasting methods in the field of particle
accelerator, highlighting both linear and non-linear models
and their importance in different applications in particle
accelerators. An application on RF cavity faults based on
a CNN classificator is presented, while methods based on
recurrent neural networks are only theorized and left for
future works. In Marcato et al. (2021) a first approach
to the fault prediction problem and its application on the
RF control system of the ALPI accelerator was presented;
such work was based on classical ML models for Anomaly
Detection, such as Cluster Based Local Outlier Factor
(CBLOF) which don’t natively take into account the time
correlation of subsequent samples.

More advanced Anomaly Detection approaches for time
series can be found in literature applied to other fields.
For example in Liu et al. (2023) a Generative Adversarial
Network (GAN) is used to reconstruct the original data,
with the idea that anomalies will not be reconstructed
correctly. This paper builds upon this idea, the usage of
the residual reconstruction error of a deep learning model
as an anomaly score, with a focus on the specific domain
of particle accelerators data.

The paper is organized as follows: Section 2 will describe
the ALPI RF control system and the nature of the faults
to be predicted while Section 3 explains the data pre-
processing and the model development. Finally, in Section
4 some experimental results are presented and a com-
parison between ML and DL performance is presented,
highlighting the strengths and weaknesses of the two ap-
proaches. We finally draw conclusions on Section 5.

2. ELEMENTS OF PARTICLE ACCELERATORS
CONTROL SYSTEM: THE ALPI RF CASE STUDY

The ALPI linear accelerator is part of the accelerator
complex at INFN LNL, used to accelerate proton beams
for nuclear physics experiments. It is based on supercon-
ductive RF Quarter Wave Resonators (QWR) operating
at 80MHz and 160Mhz. To reach the superconductive
state, the cavities are cooled down using liquid helium
to a temperature of about 4K and they are placed in-
side a cryostat cooled with liquid nitrogen in groups of
four. The specific geometry of these cavities is designed
to generate an oscillating electric field in the direction
of the beam. A charged particle travelling in the same
direction is thus accelerated thanks to the Lorentz force.
Since the beam is not a continuous flow of protons but
is divided into bunches, the frequency and phase of the
electric field oscillation must be synchronized with the
beam bunches, so that when a bunch of protons enters the
cavity the field is in the correct direction to accelerate the
bunch instead of decelerating it. Thus the RF system must

Fig. 1. RF feedback control system

control the cavity electric field through a power RF signal
which must have fixed frequency and phase, as well as the
desired amplitude setpoint. When all these conditions are
respected, the cavity is considered locked.

To achieve these goals the RF control system implements
two feedback control loops (see Bortolato et al. (2018)),
as highlighted in Fig. 1: the electric field in the cavity
is sampled through an opening, the pickup, and digitized
by the RF controller. This a custom built board which
includes ADCs, DACs and an FPGA, used to calculate a
feedback signal to be amplified and then fed back into
the cavity. This system is very fast and accurate, but
can only correct small errors on the RF frequency and
phase. The second loop is thus used to perform bigger but
slower corrections: the frequency error sampled by the RF
controller is read by the software control system running
on a remote server and, if it gets bigger than a certain
threshold, the tuner motors are moved to reduce it. In
fact, the native resonance frequency of a cavity depends
on its geometry and thus, by moving a plate at one end of
the cavity it is possible to change it. This control loop is
much slower and less precise than the first one, but is able
to correct slow drifts.

Theoretically, these two systems would be able to keep
the RF signal phase, frequency and amplitude fixed at
their setpoint. In practice, multiple faults are typically
observed, which results in unlock events. Such faults are
due to the complexity of the real world, where each
cavity is not built exactly the same as another one and it
behaves differently (especially at cryogenic temperatures),
motor movements are not completely linear and suffer
from hysteresis and external systems introduce unknown
variables. Unfortunately, when a single cavity is unlocked,
the beam energy changes, and thus it will loose the
synchronization with subsequent RF cavities causing a
complete loss of beam particles, meaning that the beam
will no longer reach the target and the physics experiment
is paused. From the point of view of the experiment, the
whole accelerator experience a downtime and a manual
intervention is required. Since ALPI has about 80 cavities
and a single cavity fault is enough to block the whole
accelerator, it is mandatory to reduce the probability of
each fault to the minimum. This paper uses the data from
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recurrent neural networks are only theorized and left for
future works. In Marcato et al. (2021) a first approach
to the fault prediction problem and its application on the
RF control system of the ALPI accelerator was presented;
such work was based on classical ML models for Anomaly
Detection, such as Cluster Based Local Outlier Factor
(CBLOF) which don’t natively take into account the time
correlation of subsequent samples.

More advanced Anomaly Detection approaches for time
series can be found in literature applied to other fields.
For example in Liu et al. (2023) a Generative Adversarial
Network (GAN) is used to reconstruct the original data,
with the idea that anomalies will not be reconstructed
correctly. This paper builds upon this idea, the usage of
the residual reconstruction error of a deep learning model
as an anomaly score, with a focus on the specific domain
of particle accelerators data.

The paper is organized as follows: Section 2 will describe
the ALPI RF control system and the nature of the faults
to be predicted while Section 3 explains the data pre-
processing and the model development. Finally, in Section
4 some experimental results are presented and a com-
parison between ML and DL performance is presented,
highlighting the strengths and weaknesses of the two ap-
proaches. We finally draw conclusions on Section 5.

2. ELEMENTS OF PARTICLE ACCELERATORS
CONTROL SYSTEM: THE ALPI RF CASE STUDY

The ALPI linear accelerator is part of the accelerator
complex at INFN LNL, used to accelerate proton beams
for nuclear physics experiments. It is based on supercon-
ductive RF Quarter Wave Resonators (QWR) operating
at 80MHz and 160Mhz. To reach the superconductive
state, the cavities are cooled down using liquid helium
to a temperature of about 4K and they are placed in-
side a cryostat cooled with liquid nitrogen in groups of
four. The specific geometry of these cavities is designed
to generate an oscillating electric field in the direction
of the beam. A charged particle travelling in the same
direction is thus accelerated thanks to the Lorentz force.
Since the beam is not a continuous flow of protons but
is divided into bunches, the frequency and phase of the
electric field oscillation must be synchronized with the
beam bunches, so that when a bunch of protons enters the
cavity the field is in the correct direction to accelerate the
bunch instead of decelerating it. Thus the RF system must

Fig. 1. RF feedback control system

control the cavity electric field through a power RF signal
which must have fixed frequency and phase, as well as the
desired amplitude setpoint. When all these conditions are
respected, the cavity is considered locked.

To achieve these goals the RF control system implements
two feedback control loops (see Bortolato et al. (2018)),
as highlighted in Fig. 1: the electric field in the cavity
is sampled through an opening, the pickup, and digitized
by the RF controller. This a custom built board which
includes ADCs, DACs and an FPGA, used to calculate a
feedback signal to be amplified and then fed back into
the cavity. This system is very fast and accurate, but
can only correct small errors on the RF frequency and
phase. The second loop is thus used to perform bigger but
slower corrections: the frequency error sampled by the RF
controller is read by the software control system running
on a remote server and, if it gets bigger than a certain
threshold, the tuner motors are moved to reduce it. In
fact, the native resonance frequency of a cavity depends
on its geometry and thus, by moving a plate at one end of
the cavity it is possible to change it. This control loop is
much slower and less precise than the first one, but is able
to correct slow drifts.

Theoretically, these two systems would be able to keep
the RF signal phase, frequency and amplitude fixed at
their setpoint. In practice, multiple faults are typically
observed, which results in unlock events. Such faults are
due to the complexity of the real world, where each
cavity is not built exactly the same as another one and it
behaves differently (especially at cryogenic temperatures),
motor movements are not completely linear and suffer
from hysteresis and external systems introduce unknown
variables. Unfortunately, when a single cavity is unlocked,
the beam energy changes, and thus it will loose the
synchronization with subsequent RF cavities causing a
complete loss of beam particles, meaning that the beam
will no longer reach the target and the physics experiment
is paused. From the point of view of the experiment, the
whole accelerator experience a downtime and a manual
intervention is required. Since ALPI has about 80 cavities
and a single cavity fault is enough to block the whole
accelerator, it is mandatory to reduce the probability of
each fault to the minimum. This paper uses the data from
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Fig. 2. A schema illustrating the main steps of the proposed approach to build an anomaly detection model. The
anomalies are then used as indicators for fault prediction.

a one month long run of the ALPI accelerator in February
2020, which include a total of 24 cavities operating at
80MHz and a total number of 169 registered unlock events.

3. ANOMALY DETECTION

This section describes the anomaly detection model devel-
oped for fault prediction, including a brief description of
the available dataset, its pre-processing and the evaluation
metrics. Figure 2 shows a flowchart which summarizes the
proposed fault prediction pipeline. The historical data is
first divided into events, each including a single fault on
a single cavity and all the relative process variable time
series during the normal operation preceding the fault.
Then, a preprocessing phase is used to normalize and
resample the time series to a constant sample frequency
and to apply a sliding window to obtain the final training
dataset. This is then used to fit a time-series forecasting
model, which is able to predict the next value given an
observation from the past. The main idea is that a good
prediction model should be able to forecast the future
value with a small error during normal operation, when
all the variable behave as expected, while the prediction
error could be much bigger for anomalous values. Thus, by
comparing the prediction with the next value, as soon as it
is available, it’s possible to compute the prediction loss and
use it as an outlier score. A high outlier score is used as an
indicator of an upcoming fault, since we expect to observe
anomalous behaviours in the process variables before a
fault. So, by applying a threshold on the prediction loss it’s
possible to obtain a binary classification which distinguish
normal trends from upcoming faults.

This pipeline builds upon the work presented in Marcato
et al. (2021); with respect to the original work, the
main differences are highlighted in blue: previously an
anomaly detection model was run on a set of manually
extracted features to obtain the outlier score, now the
score is calculated from the prediction loss of a time series
forecasting model fit on the original data. The following
paragraphs explain all these steps in greater detail.

3.1 Dataset preparation

The data is composed of the evolution over time of multiple
process variables recorded by the RF control system. The
raw data is structured as multiple concurrent time series:

each data point includes the PV name, the acquisition time
and the value, for a total of 670 million data points and
20GB of CSV files. Among these, a few PVs for each cavity
are selected to be used:

• Lock and Lock Failed statuses;
• Forward RF power;
• Tuning motor direction and moving flag;
• Cryostat liquid helium tank pressure.

These variables are chosen among the ones most correlated
with the events, thanks to the experience from previous
works. The Lock status indicates the normal operation
of a cavity, when the cavity is correctly accelerating the
beam. The Lock Failed status indicates that the cavity
is no longer in the Locked status due to a failure, as
opposed to an intended operation. These are used to split
the data into events, where the cavity is working correctly
up to the next fault event. The other PVs include the RF
power, which is directly correlated with the frequency and
phase error of the cavity, the tuning motors status, which
are moved to adjust the residual frequency error, and the
helium pressure in the cryogenic tank which is used to
cool the cavity. For example in Fig. 3 the trend of the RF
power and Helium Pressure is shown during a time window
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Fig. 3. The trend of the RF power and He Pressure before
an unlock event.

Fig. 4. A sliding window example.

preceding a fault event on a cavity. A strong perturbation
is clearly visible in the RF power just before the event.

After splitting the data into events, three transformations
are applied before using them. In fact, as can be seen in
Figure 3, different PVs have different engineering units
and different scales, which is not ideal to be used as input
to a neural network because it may result in a slow or
unstable learning process. For this reason, the data is
first normalized using the Standard Scaler, which imposed
the data to be centered in zero, with unit variance. The
standard scaler is used in this case as the data do not
have an obvious maximum value and thus it’s not trivial
to normalize it based with respect to the maximum value.

The second transformation is the resampling operation.
In fact, time series model expect to have an input with
a constant and aligned sampling rate. Instead, the data
was recorded during the operation in an event driven
way, meaning that each value is written to the database
as soon as it changes. This is useful not to loose any
value and to save storage space for slow PVs, but is not
very convenient during the analysis of the data. Thus
all the data was resampled to the same sampling rate,
simply using the mean value in the sampling period
as the new value. When no data was recorded in the
sampling period, the last valid value was propagated. The
resampling period is an important parameter to choose:
choosing a very fast sampling rate the dataset size and
the execution time increases exponentially, without adding
any meaning information, but a very long sampling period
means loosing a lot of information due to the averaging.

The final step is the creation of the actual dataset for
forecasting using a sliding window approach. This is a
crucial part of the process to build the model, as it
can have a direct impact on the training of the neural
network and the final result. An example of sliding window
application with a single feature is shown in Figure 4. From
the initial sequence of values of the time-series we want to
create a set X where each sample is a subsequent portion
of the original data (with the correct time order), and a set
Y with the future value of each window. Given an element
from the X set, our model will be trained to predict the
corresponding value in Y . There are many parameters that
can be adjusted:

• input PVs: this indicates which PV to include in the
X samples;

• output PVs: which PV to include in the Y samples;
• lookback window: the length of the window;
• shift samples: how far in the future to predict in
number of samples;

• batch size: the number of samples in a training
batch;

• step size: how many samples to slide between one
window and the next;

• window sampling rate: optionally subsample the
values in the window to reduce its size while keeping
old values;

These parameters determine the forecasting horizon,
which is selected aiming both at proving accurate predic-
tions in useful time and at considering typical dynamics
of a failure (ie. the amount of time on which anomalous
behaviour start to verify before the unlock event). Fur-
thermore, the length of the window is adjusted to be able
to capture trends far in the past, while subsampling is
then applied to limit the number of points in the window.
This enables the use of smaller models, which have a
limited number of nodes in the input layer. By applying the
subsampling after the windowing, the number of samples
in (X,Y ) is not artificially reduced. A side effect of the
sliding window operation is the explosion of the size of the
data, since each original point is repeated many times in
the observation windows. For real world use case, like the
one presented in this paper, this can become a problem as
it’s easy to incur into memory limitation issues, even when
using modern hardware. In fact, with the naive approach
the dataset is fully loaded on the device memory and can
exceed its size, in this case the 16GB of memory of the
available GPU. For this reason the implementation of the
dataset should use streaming data type which loads the
data in memory in chunks to avoid hitting the memory
limit.

3.2 Forecasting Models

Given the dataset described in the previous paragraph,
three Neural Networks were tested as forecasting mod-
els. The first one is based on Long Short Term Mem-
ory (LSTM) layers (Hochreiter and Schmidhuber (1997)).
This is a Recurrent Neural Network (RNN) architecture,
meaning that it can propagate a ”state” between inputs
so that the output depends both on the input and on the
state, effectively exploiting the time dependency between
the data points. In particular, LSTM layers are designed
so that the output does not depend only on the state from
the last few nodes, but can have long term dependencies.

As shown in Fig. 5, we chose to use a Neural Network with
2 stacked LSTM layers with 64 units each, both returning
the whole sequence of outputs of each unit. Thus, the
second layer receives in input these output and reprocesses
them sequentially to obtain new outputs. These are finally
fed into a fully connected layer with a single output to
perform regression on the prediction value. No activation
function is used on the output neuron.

The second model was built using a Temporal Convo-
lutional Network (TCN) from Lea et al. (2016): this is
based on 1D causal convolution layers arranged so that
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Fig. 4. A sliding window example.

preceding a fault event on a cavity. A strong perturbation
is clearly visible in the RF power just before the event.

After splitting the data into events, three transformations
are applied before using them. In fact, as can be seen in
Figure 3, different PVs have different engineering units
and different scales, which is not ideal to be used as input
to a neural network because it may result in a slow or
unstable learning process. For this reason, the data is
first normalized using the Standard Scaler, which imposed
the data to be centered in zero, with unit variance. The
standard scaler is used in this case as the data do not
have an obvious maximum value and thus it’s not trivial
to normalize it based with respect to the maximum value.

The second transformation is the resampling operation.
In fact, time series model expect to have an input with
a constant and aligned sampling rate. Instead, the data
was recorded during the operation in an event driven
way, meaning that each value is written to the database
as soon as it changes. This is useful not to loose any
value and to save storage space for slow PVs, but is not
very convenient during the analysis of the data. Thus
all the data was resampled to the same sampling rate,
simply using the mean value in the sampling period
as the new value. When no data was recorded in the
sampling period, the last valid value was propagated. The
resampling period is an important parameter to choose:
choosing a very fast sampling rate the dataset size and
the execution time increases exponentially, without adding
any meaning information, but a very long sampling period
means loosing a lot of information due to the averaging.

The final step is the creation of the actual dataset for
forecasting using a sliding window approach. This is a
crucial part of the process to build the model, as it
can have a direct impact on the training of the neural
network and the final result. An example of sliding window
application with a single feature is shown in Figure 4. From
the initial sequence of values of the time-series we want to
create a set X where each sample is a subsequent portion
of the original data (with the correct time order), and a set
Y with the future value of each window. Given an element
from the X set, our model will be trained to predict the
corresponding value in Y . There are many parameters that
can be adjusted:

• input PVs: this indicates which PV to include in the
X samples;

• output PVs: which PV to include in the Y samples;
• lookback window: the length of the window;
• shift samples: how far in the future to predict in
number of samples;

• batch size: the number of samples in a training
batch;

• step size: how many samples to slide between one
window and the next;

• window sampling rate: optionally subsample the
values in the window to reduce its size while keeping
old values;

These parameters determine the forecasting horizon,
which is selected aiming both at proving accurate predic-
tions in useful time and at considering typical dynamics
of a failure (ie. the amount of time on which anomalous
behaviour start to verify before the unlock event). Fur-
thermore, the length of the window is adjusted to be able
to capture trends far in the past, while subsampling is
then applied to limit the number of points in the window.
This enables the use of smaller models, which have a
limited number of nodes in the input layer. By applying the
subsampling after the windowing, the number of samples
in (X,Y ) is not artificially reduced. A side effect of the
sliding window operation is the explosion of the size of the
data, since each original point is repeated many times in
the observation windows. For real world use case, like the
one presented in this paper, this can become a problem as
it’s easy to incur into memory limitation issues, even when
using modern hardware. In fact, with the naive approach
the dataset is fully loaded on the device memory and can
exceed its size, in this case the 16GB of memory of the
available GPU. For this reason the implementation of the
dataset should use streaming data type which loads the
data in memory in chunks to avoid hitting the memory
limit.

3.2 Forecasting Models

Given the dataset described in the previous paragraph,
three Neural Networks were tested as forecasting mod-
els. The first one is based on Long Short Term Mem-
ory (LSTM) layers (Hochreiter and Schmidhuber (1997)).
This is a Recurrent Neural Network (RNN) architecture,
meaning that it can propagate a ”state” between inputs
so that the output depends both on the input and on the
state, effectively exploiting the time dependency between
the data points. In particular, LSTM layers are designed
so that the output does not depend only on the state from
the last few nodes, but can have long term dependencies.

As shown in Fig. 5, we chose to use a Neural Network with
2 stacked LSTM layers with 64 units each, both returning
the whole sequence of outputs of each unit. Thus, the
second layer receives in input these output and reprocesses
them sequentially to obtain new outputs. These are finally
fed into a fully connected layer with a single output to
perform regression on the prediction value. No activation
function is used on the output neuron.

The second model was built using a Temporal Convo-
lutional Network (TCN) from Lea et al. (2016): this is
based on 1D causal convolution layers arranged so that
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Fig. 5. The LSTM based neural network architecture.

the output depends only on the inputs from earlier in
the sequence. Furthermore, by stacking the layers it’s
possible to obtain a large receptive field, meaning that the
input sequence can be long and the data dimensionality
is reduced by the convolution. Skip connections can be
added to propagate the gradient between deep stacks of
layers. In this case the complete network is composed by
a stack of 3 layers with dilations of 1, 4 and 16, 64 filters
and skip connections. After that a fully connected layer
with 16 nodes precedes the single output node with linear
activation.

The aforementioned models both use the trend of multiple
input time-series to forecast a single value: the RF power.
The choice of the single variable to forecast is arbitrary and
can have a big impact on the final results. An alternative
approach is to forecast multiple values at once and then
combine the losses of each prediction to obtain a more
robust outlier score. Thus, we developed a third model ,
based on the TCN network, to predict the forward and
reverse RF power and the helium pressure. The dataset is
changed to include the three variables in Y and the output
layer of the network is increased to 3 nodes. Finally, the
average of the prediction loss in the three variables is used
as the final score.

The hyper-parameters of the three model were chosen
empirically balancing accuracy and fit times, since the final
goal is not to obtain a perfect forecasting model but to
produce a good anomaly score. These models are trained
with the Adam optimizer for 10 epochs using the Mean
Squared Error (MSE) loss function. The parameters of
the dataset presented in the previous section are chosen
as shown in Table 1. This means that the LSTM model
predicts 30s in the future by looking at 1 value every 30
seconds in the last 256 minutes, while the TCN models
look at one value every 10s in the last 30 minutes and
predict 10s in the future.

The three models achieve similar performance, with the
LSTM network obtaining a MSE 0.723 and a Mean Ab-
solute Error (MAE) of 0.5222, while the TCN achieved a
MSE of 0.702 and MAE of 0.5229. The TCN predicting
multiple variable reaches a MSE of 0.503 and a MAE of
0.4044. By computing the absolute value of the difference

Table 1. Dataset preprocessing parameters

LSTM TCN TCN Multi

Data sampling period 0.5s 1s 1s
Input PVs All All All

Output PVs RF power RF power
RF power,

He pressure
Lookback window 30720 1800 1800

Shift samples 60 10 10
Batch size 128 128 128
Step size 3 1 1

Window sampling rate 1/60 1/10 1/10

between the predicted value and the actual value, it’s
possible to obtain an outlier score for each point. In fact,
we expect the forecasting model to be less accurate on
anomalous data point. This can be observed in Figure
6, where the time series of all the prediction errors in
the last 300 samples before each event are shown. The
prediction errors explode in the last few samples before an
event, indicating the presence of anomalous data and thus
anticipating the fault event.
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Fig. 6. The prediction errors on the last 300 samples of all
the events, aligned with fault at sample 0.

4. EXPERIMENTAL RESULTS

The outlier score obtained from the prediction error, as
presented in the previous paragraph can thus be used as an
outlier score to predict faults. To do so, a simple threshold
function is used to classify each point between anomalous
or not. The value of the threshold must be chosen to
maximize the number of true positive while avoiding false
positives and false negatives.

For this purpose artificial labels were computed from the
Y dataset: all the datapoints which are far from the
next events are assigned a label of -1, meaning that they
are considered non-anomalous. The samples in the last 5
seconds are assigned a non-negative value, identifying the
corresponding event, to indicate that they are considered
outliers. After that a threshold is applied on the prediction
loss and all the points are classified as either 0 or 1,
where 1 is considered an anomalous point. Now, a fault
is considered correctly classified if at least one point in
the last 5 seconds before its occurrence is classified as
anomalous. Vice versa, a false positive is counted for each
sequence of 1s in the predicted labels which are not in

the last 5 seconds before the event. Finally, the correct
threshold must be chosen. The F-score is used in this
case as a single metric to be maximized. In fact the F-
score depends both on the True Positives (TP), the False
Positives (FP) and the False Negatives (FN), and it’s able
to find a trade-off between them. The best threshold is
chosen by testing the F-score at different threshold levels,
and choosing the one that minimized it. Since the dataset
is highly unbalanced, meaning that there are few faults
among many normal points, the True Negatives (TN) is
close to the total number of points, which is not really
interesting and thus it’s not calculated.

With this setup it’s possible to obtain the following results
for the three models:

Table 2. Fault prediction results

LSTM TCN TCN Multi

Fscore 0.578± 0.004 0.642± 0.006 0.691± 0.006
Precision 0.713± 0.025 0.743± 0.043 0.831± 0.023
Recall 0.419± 0.019 0.507± 0.036 0.516± 0.019
TP 25.6± 1.20 66.4± 4.92 67.6± 2.57
FP 10.4± 1.85 23.6± 6.65 13.8± 2.78
FN 35.4± 1.20 64.4± 4.71 63.4± 2.57

The results show that these models are able to correctly
predict many faults with few false positives. When com-
pared, TCN models are more robust and obtain a higher
F-score than the LSTM one, and a further advantage
is gained by predicting multiple variables. The Precison-
Recall plot in Fig. 7 shows the behaviour of the models
when changing the threshold level, and the TCN Multi
outperforms the other on the whole range of threshold.
Moreover, the graph highlights that by accepting a lower
recall value it’s possible to reach high levels of precision,
which may be useful depending on the use case.

These results are comparable with the ones of a few
classical ML models presented in Marcato et al. (2021),
trained on the same dataset, even though they do not
reach the F-score of 0.87 of the best one. Even so, DL
models have the unique advantage of being usable without
any manually crafted feature, which means that they are
directly portable to to different environments and different
kinds of faults. Furthermore, while the dataset includes
millions of data points, not all of them are usable to build
the training models, and they pertain only to a short time
span of 1 month of operation, meaning that they did not
include much variability. Even if the DL training did not
take into account the faults, the data included less than
200 events, a very small number to build a confident model.
This is probably an advantage for simpler models, but by
collecting more data and recording more events DL models
are expected to reach better performance.

5. CONCLUSIONS

We presented an anomaly detection approach for fault
prediction in the field of particle accelerators, based on DL
time series forecasting Neural Networks. Three different
networks are developed to predict future values of the
process variables of the accelerator. The prediction loss
is used as an outlier score and a high value is considered
as an indicator of an upcoming fault. The F-score on the
fault prediction is used to select the best threshold on the
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Fig. 7. The Precision-Recall plot of the three models.

outlier score to be able to discriminate normal point from
anomalous ones.

The models are tested on the RF control system of
the ALPI particle accelerator, where they are able to
correctly predict many unlock events on the RF cavities
while returning few false positives. A comparison with
previous results from classical ML anomaly detection
models show a performance advantage for earlier models,
but DL models have the advantage of reaching good results
without requiring manually crafted features. Furthermore,
by collecting more data and more faults during different
runs of the accelerator, these model could prove useful
where simpler models may scale worse.
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the last 5 seconds before the event. Finally, the correct
threshold must be chosen. The F-score is used in this
case as a single metric to be maximized. In fact the F-
score depends both on the True Positives (TP), the False
Positives (FP) and the False Negatives (FN), and it’s able
to find a trade-off between them. The best threshold is
chosen by testing the F-score at different threshold levels,
and choosing the one that minimized it. Since the dataset
is highly unbalanced, meaning that there are few faults
among many normal points, the True Negatives (TN) is
close to the total number of points, which is not really
interesting and thus it’s not calculated.

With this setup it’s possible to obtain the following results
for the three models:

Table 2. Fault prediction results

LSTM TCN TCN Multi

Fscore 0.578± 0.004 0.642± 0.006 0.691± 0.006
Precision 0.713± 0.025 0.743± 0.043 0.831± 0.023
Recall 0.419± 0.019 0.507± 0.036 0.516± 0.019
TP 25.6± 1.20 66.4± 4.92 67.6± 2.57
FP 10.4± 1.85 23.6± 6.65 13.8± 2.78
FN 35.4± 1.20 64.4± 4.71 63.4± 2.57

The results show that these models are able to correctly
predict many faults with few false positives. When com-
pared, TCN models are more robust and obtain a higher
F-score than the LSTM one, and a further advantage
is gained by predicting multiple variables. The Precison-
Recall plot in Fig. 7 shows the behaviour of the models
when changing the threshold level, and the TCN Multi
outperforms the other on the whole range of threshold.
Moreover, the graph highlights that by accepting a lower
recall value it’s possible to reach high levels of precision,
which may be useful depending on the use case.

These results are comparable with the ones of a few
classical ML models presented in Marcato et al. (2021),
trained on the same dataset, even though they do not
reach the F-score of 0.87 of the best one. Even so, DL
models have the unique advantage of being usable without
any manually crafted feature, which means that they are
directly portable to to different environments and different
kinds of faults. Furthermore, while the dataset includes
millions of data points, not all of them are usable to build
the training models, and they pertain only to a short time
span of 1 month of operation, meaning that they did not
include much variability. Even if the DL training did not
take into account the faults, the data included less than
200 events, a very small number to build a confident model.
This is probably an advantage for simpler models, but by
collecting more data and recording more events DL models
are expected to reach better performance.

5. CONCLUSIONS

We presented an anomaly detection approach for fault
prediction in the field of particle accelerators, based on DL
time series forecasting Neural Networks. Three different
networks are developed to predict future values of the
process variables of the accelerator. The prediction loss
is used as an outlier score and a high value is considered
as an indicator of an upcoming fault. The F-score on the
fault prediction is used to select the best threshold on the

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

c
is

io
n

Precision Recall Plot

LSTM

TCN

TCN multi

Fig. 7. The Precision-Recall plot of the three models.

outlier score to be able to discriminate normal point from
anomalous ones.

The models are tested on the RF control system of
the ALPI particle accelerator, where they are able to
correctly predict many unlock events on the RF cavities
while returning few false positives. A comparison with
previous results from classical ML anomaly detection
models show a performance advantage for earlier models,
but DL models have the advantage of reaching good results
without requiring manually crafted features. Furthermore,
by collecting more data and more faults during different
runs of the accelerator, these model could prove useful
where simpler models may scale worse.
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