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Abstract: The integration of artificial intelligence (AI) into medical disciplines is rapidly transforming
healthcare delivery, with audiology being no exception. By synthesizing the existing literature, this
review seeks to inform clinicians, researchers, and policymakers about the potential and challenges of
integrating AI into audiological practice. The PubMed, Cochrane, and Google Scholar databases were
searched for articles published in English from 1990 to 2024 with the following query: “(audiology)
AND (“artificial intelligence” OR “machine learning” OR “deep learning”)”. The PRISMA extension
for scoping reviews (PRISMA-ScR) was followed. The database research yielded 1359 results, and
the selection process led to the inclusion of 104 manuscripts. The integration of AI in audiology has
evolved significantly over the succeeding decades, with 87.5% of manuscripts published in the last
4 years. Most types of AI were consistently used for specific purposes, such as logistic regression
and other statistical machine learning tools (e.g., support vector machine, multilayer perceptron,
random forest, deep belief network, decision tree, k-nearest neighbor, or LASSO) for automated
audiometry and clinical predictions; convolutional neural networks for radiological image analysis;
and large language models for automatic generation of diagnostic reports. Despite the advances in
AI technologies, different ethical and professional challenges are still present, underscoring the need
for larger, more diverse data collection and bioethics studies in the field of audiology.

Keywords: artificial intelligence; audiology; machine learning; diagnostic tools; hearing tests

1. Introduction

The integration of artificial intelligence (AI) into medical disciplines is rapidly trans-
forming healthcare delivery, with audiology being no exception. As audiology traditionally
relied on manual diagnostic methods and subjective assessments [1], advances in AI have
opened new avenues for enhancing diagnostic accuracy, treatment efficiency, and patient
outcomes. AI refers to technologies which enable machines to perform tasks typically re-
quiring human intelligence. The history of AI dates back to the mid-20th century, beginning
with the development of strict rule-based algorithm systems in the 1950s and 1960s [2].
The field experienced a significant resurgence in the 2000s due to increased computational
power and the advent of big data [3]. Key milestones included the development of ma-
chine learning (ML) algorithms (a subset of artificial intelligence which allows systems
to learn from data and make predictions or decisions without explicit programming), the
rise of deep learning (DL) in the 2010s, which is any type of ML based on artificial neural
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networks with multiple layers, and more recently the emergence of generative AI and large
language models (LLMs) [4]. In fact, AI includes a broad range of technologies, each with
distinct capabilities and applications. ML is a fundamental subset of AI which focuses
on developing algorithms enabling computers to learn from and make predictions based
on data [5]. Unlike traditional programming, which relies on explicit instructions, ML
systems enhance their performance through iterative exposure to data [6]. As more data are
processed, these systems refine their algorithms to improve their accuracy and efficiency
in tasks ranging from pattern recognition to predictive analytics. Within the realm of ML,
DL stands out as a powerful technique utilizing artificial neural networks with multiple
layers; hence the term “deep” [2]. These networks can model complex patterns in large
datasets, making DL particularly successful in image and speech recognition tasks [7]. The
ability to automatically learn hierarchical feature representations allows DL to excel in
identifying intricate patterns and correlations which might be missed by simpler algorithms.
Generative AI represents another innovative branch of AI, involving algorithms designed
to create new contents such as text, images, or music by learning from existing data [8].
Techniques such as generative adversarial networks (GANs) and variational autoencoders
(VAEs) are central to this field [9]. These methods have shown remarkable potential in
applications like medical image synthesis, where they can generate high-quality images for
training purposes, and in drug discovery, where they can create novel molecular structures.
LLMs like GPT-4 (OpenAI, San Francisco, CA, USA) epitomize the advanced capabilities
of AI in understanding and generating human-like text [10]. Trained on extensive cor-
pora of text data, LLMs are adept at tasks such as language translation, summarization,
and conversational interaction. They employ DL techniques to process and generate text
which is coherent and contextually relevant, making them invaluable tools in fields re-
quiring sophisticated language understanding and generation. Although these models
showed promising applications across various medical specialties [11,12], the evaluation of
healthcare information provided by generative AI platforms remains a topic of debate and
requires careful consideration [13]. In audiology, AI applications range from enhancing the
accuracy of hearing assessment to automating hearing aid and cochlear implant (CI) fitting,
as well as optimization of auditory rehabilitation processes [14–17]. The deployment of
AI in these areas promises to (1) improve the capabilities of audiologists, (2) reduce the
burden of routine tasks, and (3) deliver personalized patient care. Despite the promise of
AI, its integration into audiology also raises several challenges. These include data privacy
concerns, the need for large datasets for training algorithms, potential biases in AI models,
and the requirement of rigorous validation before clinical implementation [18]. Further-
more, many audiologists lack awareness of the potential applications of AI in their field [1].
Addressing these challenges is crucial to realize the full potential of AI in audiology.

This narrative review aims to provide a comprehensive overview of the current state of
AI applications in audiology. We will explore the technological advancements and discuss
the benefits and limitations of AI in audiology. By synthesizing the existing literature, the
review seeks to inform clinicians, researchers, and policymakers about the potential and
challenges of integrating AI into audiological practice.

2. Materials and Methods

A comprehensive literature search was conducted to identify relevant studies and
reviews on the application of AI in audiology. The PubMed, Cochrane, and Google Scholar
databases were searched on 5 July 2024 with the following query: “(audiology) AND
(“artificial intelligence” OR “machine learning” OR “deep learning”)”. The search was
limited to articles published in English from 1990 to 2024 to capture the most recent
advances in the field. The PRISMA extension for scoping reviews (PRISMA-ScR) checklist
was considered to ensure quality of the review [19]. Articles were selected if they primarily
focused on the application of AI in audiology. This investigation included studies which
provided empirical data on the effectiveness, accuracy, or utility of AI technologies in the
context of audiology practices from diagnosis to treatment. Additionally, reviews and meta-
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analyses which discussed the integration of AI within the audiology field were critically
analyzed, given their comprehensive insights and evaluation of multiple studies. Studies
which lacked sufficient data or clear methodology were excluded, as these did not provide
reliable or verifiable results.

Data extraction was performed independently by three reviewers (V.C., L.F. and A.F.)
to ensure accuracy and comprehensiveness. The information extracted included the study
design, AI technology used, audiology application, measured outcomes, and key findings.
Discrepancies between reviewers were resolved through discussion and consensus. The
extracted data were then analyzed to identify the study design, population, intervention,
comparison, and outcome. Studies were categorized based on the type of AI technology
(ML, DL, or generative AI), clinical field (hearing and balance), and AI application (e.g.,
diagnosis and treatment). Qualitative result synthesis was performed.

3. Results

The database research yielded 156 results from PubMed, 1200 from Google Scholar, and
3 from Cochrane. The selection process led to the inclusion of 104 manuscripts [1,16,20–121],
as shown in Figure 1.
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The integration of AI in audiology has evolved significantly over the succeeding
decades. An early pioneer study by Bonadonna [20] laid the initial groundwork for
AI applications in medical audiology, marking the inception of this innovative research
area. During the last decade of the second millennium and the first decade of the third
millennium (1990–2009), there were only three investigations [20–22], representing ap-
proximately 2.9% of the total studies reviewed. The second decade of the third millen-
nium (2010–2019) saw the establishment of more sophisticated AI models, improved
computational power, and greater data availability. Accordingly, we retrieved a sub-
stantial increase, with 10 publications (9.6% of our sample) focused on developing ML
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algorithms and integrating AI technologies into audiology’s diagnostic and therapeutic
tools. The growing trend continued into the third decade (2020–2024), which showed
a prolific output of 91 studies from 2020 to 2024, representing approximately 87.5% of
the total publications. This period has been characterized by the application of DL, the
rise of large language models, and a focus on enhancing diagnostic accuracy, treatment
efficiency, and patient outcomes. The three most active countries in this field have been
the United States, Germany, and China. The United States contributed to 26 of the re-
viewed studies, including advancements in hearing tests, diagnostic tools, and therapeutic
applications [24,25,29,35–38,43,45,46,55,60,70,81,82,85,86,96,97,101,104,115,120]. Germany
followed with 14 contributions, focusing in particular on ML models and clinical deci-
sion support systems [30,33,40,42,51,53,62–65,73,93,95]. Contributing to 12 studies, China
has made significant strides in diagnostic applications using DL and predictive model-
ing [50,59,78,83,87,105,110,116–119], as depicted in Figure 2.
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Table 1 illustrates the most frequently retrieved journals and the published studies’
designs. Ear and Hearing was the leading journal with 13 publications [24,29,32,35–37,50,
55,57,69,86,96,97] followed by International Journal of Audiology with 6 [26,30,32,33,42,72],
both showcasing significant contributions to the field through various investigations of
hearing tests, diagnostics, and therapeutic tools. With four publications, Frontiers in
Digital Health reflected the growing multidisciplinary interest in integrating digital health
technologies with AI in audiology [43,51,73,115]. Observational studies were the most
prevalent study design (68%), followed by development and validation studies (16.3%) and
reviews (8.7%).

Application Fields and Technical Approaches

The application of AI in audiology spans various fields, reflecting the technology’s
versatility and potential impact. The most prevalent application was in therapeutic and
prognostic tools, accounting for 34.6% of the studies reviewed. These studies focused
on using AI to enhance treatment plans and predict patient outcomes, as exemplified by
investigations such as those by Jin et al. (2023) and Doborjeh et al. (2023) [84,86]. The
hearing test field was close behind, comprising 33.7% of the research, including significant
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contributions from groups such as Barbour et al. (2019) and Heisey et al. (2020) [29,37], who
explored AI-driven methods to improve the accuracy and efficiency of hearing assessments.
The miscellaneous category included 21.1% of the studies, covering a range of unique
applications and exploratory audiological research areas. The fields of temporal bone
radiology and vestibular diagnosis each accounted for 5.8% of the studies. Research in
temporal bone radiology, such as the investigation by Masino et al. [25], focused on applying
AI to analyze complex oto-radiology imaging data. Meanwhile, studies in vestibular
diagnosis, such as those by Kong et al. [87], applied AI to improve diagnosis and treatment
of vestibular disorders. Specific features and results of different included categories of
investigations will be covered in the following paragraphs.

Table 1. Summary of top journals and study designs in AI and audiology research considering
manuscripts included in the present review.

Journals Number of Publications (%) Study Design Number of Publications (%)

Ear and Hearing 13 (12.5%) Observational 71 (68.3%)

International Journal of Audiology 6 (5.8%) Development and Validation 17 (16.3%)

Frontiers in Digital Health 4 (3.8%) Reviews 9 (8.7%)

Others 81 (88.7%) Clinical Trials 3 (2.9%)

Surveys 2 (1.9%)

Case Reports and Study Protocols 2 (1.9%)

ML encompasses a diverse array of algorithms, each suited to specific tasks. Choosing
the right algorithm is crucial in data analysis and predictive modeling. In the subsequent
sections, we explore various representative algorithms, delving into their mechanisms and
practical applications in audiology with the aim to enhance understanding of the intricate
relationship between function choice and data analysis.

Gaussian process regression (GPR) and Gaussian process classification (GPC) are
probabilistic modeling techniques employed for supervised learning and grounded in
Gaussian processes (GPs), which are a powerful framework for defining distributions
over functions. A GP is essentially a collection of random variables, any finite number of
which have a joint Gaussian distribution. This allows GPs to model the uncertainty and
variability in the relationship between input and output data in a flexible, non-parametric
way [29]. GPR is used for regression tasks, predicting continuous outputs given input
data [115]. It models the relationship between inputs and outputs by placing a GP prior
over possible functions, leading to predictions which include both a mean estimate and
a measure of uncertainty [24]. Instead, GPC is applied to classification tasks, where the
outputs are discrete classes. In GPC, the GP models a latent function—an unobserved
or hidden function which describes the relationship between the input data and some
underlying variable—which is then mapped to class probabilities via a link function, such
as a sigmoid function, an unobserved or hidden function which describes the relationship
between the input data and some underlying variable [29]. Both approaches benefit from
the inherent ability of GPs to quantify uncertainty, making them valuable for tasks where
understanding the confidence in predictions is important. Accordingly, they have recently
been employed to develop ML techniques for automated hearing threshold tests [24,29].

Unlike standard regression, which minimizes the difference between the predicted
and actual values, least absolute shrinkage and selection operator (LASSO) regression
adds a penalty term which constrains the coefficient size and promotes sparsity by setting
some coefficients to zero [5]. This process selects the most important variables, reduces
overfitting, and improves model accuracy and generalizability, making LASSO a valu-
able tool for creating robust and interpretable predictive models [47]. This technique was
encountered in the research line by the Carl von Ossietzky Universität Oldenburg (Old-
enburg, Germany) [30,33,40,73]. Specifically, Saak et al. [40] used ML models to predict a
cluster of previously defined common audiological functional parameters (CAFPAs) [30].
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The CAFPAs—describing functional aspects of the human auditory system (including the
hearing threshold, suprathreshold deficits, binaural hearing, neural processing, cognitive
components, and socioeconomic status)—were empirically instantiated by an expert sur-
vey conducted on a large dataset of audiological measures [33]. Saak et al. [73] had ML
models trained on the same dataset, aiming to improve the objectivity and precision of
diagnostic decisions by automating the estimation of CAFPAs from patient data. LASSO
regression was utilized to identify the most relevant audiological measures influencing
specific CAFPAs [73].

The k-nearest neighbors (k-NN) algorithm is intuitive and straightforward, making it
suitable for both classification and regression tasks. It classifies new data points based on
their similarity to the k-nearest neighbors [122]. In classification, the most common class
among the k neighbors determines the new data’s class, while in regression, predictions are
based on the average values of these neighbors [50]. Distance metrics such as the Euclidean
or Manhattan distance define the term “nearest” [122]. In medical applications, normal-
ization is crucial to ensure variables contribute proportionately to distance calculations,
enhancing accuracy and reliability [50]. Choosing the right k value is vital; too small k
value can make the model sensitive to noise, while too large k value can oversimplify
the model [43]. Although k-NN is easy to implement, it can be sensitive to outliers and
computationally intensive for large datasets [50]. The k-NN and artificial neural network
(ANN) models were used by Szaleniec et al. [122] to predict hearing improvement after tym-
panoplasty surgery in patients with chronic suppurative otitis media. The study involved
150 patients, characterized by variables such as age, gender, preoperative audiometric
results, ear pathology, and surgical procedure details. The k-NN model, optimized using a
10 fold cross-validation method with the City block distance metric, achieved a prediction
accuracy of 75.8% for the validation and test sets. Additionally, the best-performing ANN
model demonstrated superior performance, achieving 98% accuracy in the training set, 89%
accuracy in the validation set, and 84% accuracy in the test set [122].

A support vector machine (SVM) is used to define the boundaries between data points,
treating them as p-dimensional vectors [22]. The goal is to construct a (p-1)-dimensional
hyperplane which maximizes the margin from the nearest data vectors, effectively sep-
arating different classes [48]. SVMs can handle both classification and regression tasks,
making them versatile [25]. SVMs aim to find the global optimal solution, capturing com-
plex relationships within the data. Therefore, they are widely used in medical research.
Recently, Rodrigo et al. [45] used the SVM model to predict the outcomes of Internet-based
cognitive behavioral therapy (ICBT) for tinnitus. The SVM model, including both linear and
radial basis kernel variations, was used to classify treatment success based on a 13-points
reduction in the Tinnitus Functional Index (TFI). A study by Rodrigo et al. [45] involved
secondary analysis of data from 228 individuals who had completed ICBT with 33 predictor
variables, including demographic, tinnitus, hearing-related, and clinical factors. The SVM
models were compared with ANN models, and their performance was evaluated using
the mean predictive accuracy and area under the receiver’s operating characteristic curve
(AUC). Although the ANN model showed the highest predictive accuracy (mean AUC of
0.73), the SVM models also demonstrated adequate discriminative power, with the linear
kernel SVM achieving an AUC of 0.72 and the radial basis kernel SVM reaching an AUC
of 0.70.

Decision tree (DT) algorithms create hierarchical models with tree-like structures,
where nodes represent decision points and branches represent outcomes [28]. This structure
is interpretable and systematic, akin to a flowchart [21]. DTs evaluate input features, making
decisions at each node to predict the target output. They are versatile, being applicable to
both classification and regression tasks [25]. DTs were proposed early to systematically and
interpretably classify oto-neurological diseases based on patient symptoms and history,
achieving a high accuracy (90% on a database of 564 patients) but facing limitations with
insufficient input parameters for certain conditions (e.g., sudden sensorineural hearing
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loss) [21]. DTs often serve as the basis for ensemble learning methods like random forest
(RF) and extreme Gradient Boosting (XGBoost), as discussed below [28].

RF and random forest regression (RFR) combine multiple decision tree algorithms
arranged in parallel, enhancing model robustness through ensemble learning. In clinical
applications, their use of random inputs and features for each tree results in low correlation
between individual trees, effectively capturing diverse patterns in the data [64]. RF and
RFR do not require variable normalization, thus accommodating the variability in clinical
data [43]. They are valuable for exploring feature importance, and their ability to handle
diverse data types, resist overfitting, and provide interpretable insights makes RF and
RFR a preferred choice in clinical research and predictive modeling [25]. Hoppe et al.
(2022) applied the RFR model to analyze the relationship between age-related hearing loss
and speech recognition decline on a large clinical dataset of 19,801 ears. The RFR model
provided more specific information about the time course and amount of degradation
in speech recognition, yielding smaller mean absolute errors (MAEs) compared with the
generalized linear model (GLM). However, the RFR model indicated some degree of
overfitting, as evidenced by the differences between the training and test group MAEs.
The above-mentioned study found that speech scores varied based on the specific type of
hearing loss and the decade of life. Speech recognition deteriorated by up to 25 percentage
points over the entire lifespan for constant pure-tone thresholds, with the most significant
decline being 10 percentage points per decade [64].

XGBoost constructs an ensemble learning model by adding DTs sequentially. Each
new tree corrects the mistakes of its predecessors, creating a highly adaptive model [81].
XGBoost effectively captures complex relationships within data, making it suitable for
intricate patterns. However, it is sensitive to variable selection, affecting performance
significantly [114]. Despite this, when variables are chosen carefully, XGBoost outperforms
other ensemble learning algorithms in predictive accuracy [102]. The investigation by
Balan et al. [81] is an appropriate example. The authors applied various ML models to ana-
lyze how hearing thresholds could predict speech-in-noise recognition among individuals
with normal audiograms. Utilizing archival data of hearing thresholds (0.25–16 kHz) and
speech recognition thresholds (SRTs) from 764 participants, XGBoost outperformed the
other models—the ANN, deep neural network (DNN) and RF—with an MAE of 1.62 dB.
The ANN and RF models showed comparable performances (MAE = 1.68 and 1.67 dB,
respectively), while the DNN exhibited poorer performance (MAE = 1.94 dB) [81]. More-
over, Balan et al. [81] highlighted the significant contributions of age and high-frequency
thresholds (16 kHz and 12.5 kHz) to the SRT, underscoring the relevance of extended high
frequencies in predicting speech-in-noise recognition in individuals with normal hearing.

Inspired by the anatomical model of the human brain, an ANN—more often referred
to as just a neural network (NN)—consists of interconnected nodes (the fundamental com-
putational units (i.e., neurons)) which process information through weighted connections
(i.e., synapses) [2]. Nodes are categorized into input, hidden, and output layers. Input
nodes handle real-world data, hidden nodes process and transform inputs, and output
nodes represent predictions [32]. NNs are powerful tools for predictive modeling and ML
due to their ability to capture relationships within data [31]. DL, a subset of NNs, incor-
porates multiple hidden layers, enabling it to handle complex, nonlinear data effectively.
DL is particularly adept at processing image data, where convolutional neural networks
(CNNs, which are specific DL algorithms able to analyze an input image, assign impor-
tance to objects within the image, and differentiate them from one another) are commonly
used. CNNs recognize intricate patterns in images, combining features into connected
layers for comprehensive analysis. DL’s ability to handle complex datasets has led to its
adoption in fields requiring sophisticated analysis techniques [36]. McKearney et al. [32]
utilized a deep CNN to classify paired auditory brainstem response (ABR) waveforms into
three categories: “clear response”, “inconclusive”, and “response absent”. This innovative
approach involved training the CNN on 190 paired ABR waveforms using stratified 10 fold
cross-validation and evaluating it on a separate test set of 42 paired waveforms. The CNN
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architecture included convolutional, pooling, and fully connected layers optimized to de-
tect complex patterns in the ABR data. The network achieved a high classification accuracy
of 92.9%, with sensitivity and specificity values of 92.9% and 96.4%, respectively. The study
highlighted the potential of DL models to assist clinicians in interpreting ABR waveforms,
ultimately improving the consistency and accuracy of hearing threshold estimations [32].

Generative AI refers to algorithms which create new outputs, such as text, images,
or music, by learning from existing data, with applications ranging from creative con-
tent generation to medical application [108]. Generative AI, particularly large language
models (LLMs), represents a significant advancement in AI [1]. LLMs have been trained
on vast amounts of text data, enabling them to generate human-like text based on given
prompts [11]. These models, such as OpenAI’s GPT-4, have had a disruptive impact and dis-
semination in the last few years and have shown remarkable capabilities in understanding
and generating natural language, making them useful for a wide range of applications [4].
In audiology, the reported use of LLMs encompassed from passing qualification exams to
supporting clinical practice and patient education [108,117]. Wang et al. [117] evaluated
ChatGPT-4’s performance in the Taiwan Audiologist Qualification Examination. ChatGPT-
4 was tasked with answering multiple-choice questions across six subjects, achieving an
overall accuracy of 75%, surpassing the passing criterion of 60%. Quite recently, Jedrze-
jczak et al. [108] longitudinally assessed ChatGPT version 3.5’s effectiveness in providing
information on and support for tinnitus. ChatGPT was presented with a set of questions
related to tinnitus, and the responses were assessed for accuracy by experts. The study
found that ChatGPT’s responses were generally satisfactory and improved over time, but
they also identified some limitations, such as the lack of accurate references and occasional
misleading information.

4. Discussion

The integration of AI in audiology is transforming various aspects of auditory and
vestibular health management. In order to systematically explore the advances in these fields,
we provided five dedicated subsections of the discussion, focusing on hearing tests, vestibular
diagnostics, temporal bone radiology, and therapeutic and prognostic applications.

4.1. Hearing Tests

AI is significantly impacting auditory examination practices, particularly in screening,
diagnostic, and surgical methods. As traditional gold standard tests for hearing impairment
(HI) diagnosis, such as pure-tone hearing tests, are not feasible for large-scale community
implementation, AI has been proposed for the development of HI screening text [118]. As a
consequence, ML-based HI screening tests could be suitable for the general population and
useful for primary care settings [118]. Risk questionnaires have been effectively created
using multiple ML algorithms in order to analyze different variables, including patients’
clinical symptoms and hematological test results [118].

To streamline patients’ selection for audiometric evaluation, a separate ML model was
also developed to predict the speech-frequency pure-tone average (PTA) based on patients’
demographics, clinical factors, and subjective hearing status. This supervised ML model
employed a tree-based architecture to identify individuals needing audiometric testing,
thereby optimizing the screening process [85]. For quantitative prediction of hearing
thresholds, stimulus-frequency otoacoustic emissions (SFOAEs) elicited by swept tones
was also proposed. In this regard, it has been demonstrated that SFOAEs were effective
in predicting hearing thresholds and further enhanced through the application of ML
models [50]. A stacked ensemble detection method also showed greater performance
compared with traditional ABR detection techniques using ML algorithms [69]. It has
also been shown that dynamically masked audiograms achieved accurate true threshold
estimates and reduced test times compared with current clinical masking procedures [37].
With regard to diagnostic applications, ML employment has primarily focused on the
analysis of tympanic membrane images. Advanced DL methods have enabled automatic
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diagnosis of otitis media based on wideband tympanometry measurements, enhancing
the diagnostic capacity [75]. In this context, different studies suggested that AI was able
to detect conditions such as tympanic perforations and otitis media and had a significant
accuracy score, ranging from 93.67% to 97.9% [59,78].

In terms of treatments, AI has been applied in order to support surgeon indications. In
particular, ML was used to assess the effectiveness of Vibrant Soundbridge (VSB) surgery
for conductive or mixed hearing loss [47]. Data suggest that ML enhanced the predictive
accuracy regarding speech discrimination scores after VSB surgery [47]. AI was also used
to predict adult CI appropriate indication using demographic data and standard behavioral
audiometry [101]. ML techniques were also used in order to predict the preservation
of residual acoustic hearing in patients receiving CIs, enhancing shared clinical decision
making and patient outcomes [120]. AI has been used to enhance autonomous CI fitting.
In this regard, psychoacoustic self-testing could improve both the fitting process and
follow-up care for patients [39]. Moreover, an AI-assisted CI mapping model showed
improvements in audiological outcomes, demonstrating comparability or superiority to
manual approaches regarding hearing performance and patient comfort [96,97].

4.2. Vestibular Diagnostics

AI has also been applied in vestibular disorder assessment. In this regard, AI was used
to recognize nystagmus patterns using DL in order to aid physicians in classifying such
conditions [87]. Moreover, various ML algorithms were demonstrated to be effective; they
achieved an accuracy rate of 94.53% in distinguishing recurrent vertigo types [116]. In order
to screen patients earlier, questionnaire-based ML models were also created, predicting
common vestibular disorders. Nonetheless, preliminary data suggested the need for
objective evidence alongside patient-reported history to improve diagnostic accuracy [99].
Moreover, AI was used to evaluate vestibular organ functioning in the presence of acute
or chronic vestibular disorders. In particular, utricular function was assessed in patients
with Meniere’s disease, suggesting that AI might be suitable to support diagnosis and
target therapies [82]. In terms of treatment, predictive analysis for vestibular schwannoma
management showed an accuracy value of approximately 80% using a simple decision tree
model [52]. Conversely, Heman-Ackah et al. [106] found 90.5% accuracy in predicting facial
nerve injury prognoses after surgery for vestibular schwannoma [106]. Figure 3 reports the
current state of the art regarding integration of AI in audiology and vestibology.
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anatomical district often requires specific training and experience. As a result, the applica-
tion of AI paradigms to temporal bone radiology represents a rapidly expanding field [123].
Generally speaking, the AI systems applied to the radiology setting start from a wide range
of input data (including digital radiological images, clinical data, and demographics) and
produce as an output a categorization of the tested cases based on different machine analy-
sis approaches (including supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning) [124,125]. Supervised learning refers to the use of
labeled data (consisting of input features, such as risk factors for specific diseases, clinical
data, and demographics paired with corresponding outputs, such as clinical manifesta-
tions or diagnosis) in training an ML model [125]. Unsupervised learning involves the
use of unlabeled data (with no specific feedback or target variable) to identify patterns of
variable distributions, thus allowing tasks such as clustering, dimensionality reduction,
and anomaly detection [125,126]. Semi-supervised learning combines elements of both
supervised and unsupervised learning (leveraging the smaller amount of labeled data along
with a large amount of unlabeled data) to improve the learning process in situations where
obtaining labeled data is limited, expensive, or time-consuming [127,128]. Reinforcement
learning refers to a trial-and-error training process involving positive or negative feedback
in which constant interaction with the environment urges the AI system to choose the
appropriate actions to achieve rewarding results [129]. Reinforcement learning approaches
include Q-Q-learning, deep Q-Q-networks (DQNs), and policy gradient methods [129].

The applications of AI in temporal bone radiology are mainly based on either su-
pervised or unsupervised learning, with the latter gaining increased interest more re-
cently [123]. The main applications of AI in this field are automated segmentation of tem-
poral bone anatomical structures and assisted diagnosis of middle and inner ear diseases.

4.3.2. Automated Temporal Bone Image Segmentation

Image segmentation refers to the process of partitioning a digital image into multi-
ple segments by identifying and labeling discrete sets of pixels or voxels, representing
objects of interest which can be individually analyzed [130]. In temporal bone imaging,
the possibility to individually identify anatomical structures, obtaining a quantitative
evaluation of their morphological and volumetric parameters, may be valuable support
in identifying pathological conditions and anatomical variants [131]. In segmenting the
3D bony structures of the skull, manual and semi-automated tools have long been em-
ployed to extract the 3D volume and quantitative information [132]. More recently, the
spread of AI-powered technologies has prompted the development of automated segmen-
tation tools specifically for temporal bone anatomic structures [133,134]. The application
in medical images of convolutional neural networks specific to image classification and
analysis, such as U-Net, allowed the development of automated tools to identify and
segment inner and middle ear structures in either RM or CT images with a limited amount
of training data [133–135]. By analyzing 944 MRI images as a training dataset and 99
for validation, Vaidyanathan et al. [133] aimed to apply U-Net to implement an auto-
matic segmentation system specifically for inner ear structures, including the cochlea and
labyrinthic structures, with high performance (true positive rate = 91.5%; false discovery
rate = 14.8%; false negative rate = 8.49%). Similarly, Wu et al. [134] and Heutink et al. [135]
developed U-Net-powered automated segmentation tools based on CT images specifically
for identification of the semicircular canals and cochlea, reporting high accuracy levels
(Dice coefficients ≥0.90). Aside from the possibility of in-house development of specific
AI-assisted tools, commercially available advanced image analysis software such as Materi-
alise Mimics version 20.0 (Leuven, Belgium: Materialise NV) may also offer the possibility
of implementing automated segmentation [131]. When training the Materialise Mimics soft-
ware with 60 annotated CT scans, Ke et al. [131] reported reliable automatic segmentation of
temporal bone structures, obtaining correct identification of facial nerves, ossicles, inner ear
(including the cochlea, vestibule, and semicircular canals), internal auditory canal, internal
carotid artery, jugular bulb, and external auditory canal in most of the validation images.
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4.3.3. AI and Radiological Imaging of Middle Ear Diseases

Moving from technical to clinical aspects, the application of AI models to temporal
bone radiology has shown promising results in the field of middle ear disease diagnosis.
In this setting, differentiating chronic suppurative otitis media from cholesteatoma is
a challenging task, often requiring multi-modal imaging strategies (including both CT
and MRI with specific diffusion-weighted sequences) [136,137]. Although still limited to
experimental settings, the attempts to employ AI-based image classification models to
reduce the need for multiple exams have shown promising results. In 2020, Wang et al. [128]
proposed a deep learning framework specifically for the diagnosis of chronic otitis media
and cholesteatoma based on temporal bone computed CT scans. A dataset of 975 labeled
CT scans was used for training, while the deep learning framework contained two distinct
networks: one to extract regions of interest from two-dimensional CT slices and the other
to classify images into diagnostic groups based on the extracted regions scans. Such a
system showed higher overall accuracy and recall rates in identifying chronic suppurative
otitis media and cholesteatoma compared with clinical experts [128]. Using a convolutional
neural network architecture trained to perform two consecutive classification tasks on CT
images, similar results were found by Chen et al. [138] when discriminating normal versus
pathological cases and identifying cholesteatoma versus chronic suppurative otitis media.
Such a model showed a substantial gain in identifying cholesteatoma compared with the
diagnostic performances of resident fellows and attending otologists [138]. Aside from
the automatic image analysis setting, AI has been raising interest as a tool to facilitate the
extraction and classification of anatomic and diagnostic information contained in radiology
reports. In this intriguing field, Masino et al. [25] proposed an ML system based on natural
language processing libraries trained with 726 radiology reports (mainly from temporal
bone CTs). In this investigation, they achieved an overall good accuracy in classifying
reports by both free-text keywords and ICD-9 terms [25].

4.3.4. AI and Radiological Imaging of Inner Ear

In temporal bone radiology, the need to reliably detect extremely thin anatomical struc-
tures on CT and MRI images has raised the issue of optimizing the spatial resolution limit,
possibly with no increased image noise. During the last decade, iterative CT reconstruction
algorithms allowed the reduction of noise [139]. As a further evolution, the introduction of
DL tools has allowed the implementation of more effective image reconstruction algorithms,
aiming to obtain substantial noise reduction and, at the same time, improve the spatial
resolution [140]. Fujita et al. [141] proposed a deep learning reconstruction algorithm
specifically for high-resolution CT images of the temporal bone. They reported a significant
reduction in image noise obtained with the deep learning-based reconstruction algorithm,
compared with the iterative CT reconstruction approaches. In particular, the depiction of
the otic capsule, auditory ossicles, and tympanic membrane was significantly improved
in images reconstructed with the deep learning algorithm [141]. Aside from the technical
aspects, the possibility to automatedly identify and morphologically classify anatomical
structures on temporal bone CT or MRI images, provided by the development of AI-based
technologies, has prompted the application of such approaches to the field of inner ear
radiology. Ogawa et al. [142] described an unsupervised deep learning system based on
a 3D variational autoencoder for detecting and localizing inner ear abnormalities in CT
images. They trained their system with unlabeled CT images of a normal subject and
used both malformation and normal cases for the test. The unsupervised deep learning
system showed good diagnostic performance in identifying cases of malformation, with a
specificity of 92% and a sensitivity of around 99% [142].

4.4. Therapeutic and Prognostic Tools

During the last decade, accumulating evidence has shown the possible application of
AI technologies in supporting clinical decision making by providing clinical experts with
probabilities for medical findings or diagnoses which are based on large amounts of patient
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data [143]. In the field of audiology, the aim of AI-based decision-making support systems
is to characterize patients’ clinical profiles, provide presumptive diagnoses, and suggest
appropriate treatment or rehabilitation to compensate for functional impairment [62,63].
Such concepts may be applied in clinical practice as the employment of specific AI tools for
counseling or self-counseling, therapeutic guidance, and prognostic assessment.

4.4.1. Expert Systems for Counseling and Peer Support in Chronic Audiological Diseases

One of the first applications of AI in clinical management of chronic audiological
diseases was the development of expert systems based on inference engines for peer
support purposes [23]. In the management of chronic diseases, many forms of peer support
have been explored (including person-to-person support, telephone calls, and Internet-
based support), with the goal of giving and receiving help founded on the key principles of
mutual agreement of what is helpful [144]. AI allows the development of computer-based
solutions for self-assessment of symptom severity which can be directly used by patients.
Rasku et al. [23] developed an inference engine trained via the collection of necessary
and supportive clinical data to profile the severity of Ménière’s disease, as well as the
quality-of-life impact in terms of hearing loss, tinnitus, and vertigo. Similarly, Pyykkö
et al. [26] reported the impact of an Internet-based, AI-driven peer support program for
Ménière’s disease on 740 patients, with 78% of recent onset cases as well as 55% of those
with chronic disease rating the program as useful or very useful.

4.4.2. AI-Assisted Therapy and Hearing Rehabilitation

In the audiological field, the application of AI to support therapeutic decisions may
be useful, especially in cases in which defining reliable predictive factors of treatment
response is intrinsically difficult, such as in patients with tinnitus [45,63]. Regarding this
specific setting, in 2021, Schlee et al. [53] proposed some criteria to develop a clinical
decision support system specific to tinnitus treatment based on medical, epidemiological,
audiological, electrophysiological, genetic, and clinical subtyping data [53]. According to
the authors, such a specific clinical decision support system should be able to suggest an
optimal treatment strategy for each individual patient, based on the specific input data and
in consideration of the previous training dataset [53]. In line with this, Doborjeh et al. [84]
proposed the use of a convolutional neural network approach based on electroencephalo-
graphic data to identify patients who could most likely benefit from sound therapy. In
such an investigation, the prediction accuracy of the convolutional neural network system
was 99.07% for the non-responder group and 98.86% for responders [84]. Also, in the field
of non-pharmacological approaches to tinnitus, Yin et al. [119] implemented a machine
learning model based on the knowledge graph method to identify the likelihood of re-
sponse of patients with tinnitus to traditional Chinese medicine, based on clinical features
and aspects derived from traditional Chinese semiology. According to the authors, such
an AI model achieved high prediction performances (99.4% accuracy, 98.5% sensitivity,
99.6% specificity, and 98.7% precision, with an area under the receiver operating char-
acteristic curve of 99%) across 253 test patients [119]. Aside from identification of the
predictive factors for treatment purposes in chronic conditions, AI approaches have also
been proposed to optimize hearing rehabilitation. In this sense, one of the first applications
was AI-based cochlear implant fitting. In 2018, the clinical trial “Programming Cochlear
Implant with Artificial Intelligence” [27], based in Belgium, aimed to compare the results
in terms of hearing thresholds and speech discrimination of cochlear implants fitted via the
AI-powered software FOX® (2G version) with those fitted manually. The first explorative
study published from this trial [145] preliminarily showed that patients initially fitted with
a traditional approach may experience an improvement in their auditory results when
submitted to AI-assisted fitting. In a subsequent study by the same group, a significant
improvement in the pure-tone audiometric threshold at 6000 Hz, phonemic discrimination
scores, and soft intensity to normal-intensity speech audiometric scores was found after
AI-based cochlear implant fitting [96]. The same authors [97] found over a population



Sensors 2024, 24, 7126 13 of 21

of 24 patients who received their first cochlear implant, who were randomly assigned to
either the manual or FOX®-assisted fitting arms, less variability and significantly better
speech intelligibility in the experimental group. However, in some cases, the participants
reported preferring the manual map because it felt more comfortable, even if the FOX map
gave better measured outcomes [97].

4.4.3. AI-Based Prognostic Models

The possibility of managing large data amounts, while also identifying in a hypostasis-
free statistical setting the patterns of variable distributions, has led to many AI-based
analysis approaches being increasingly employed to identify prognosticators in many med-
ical fields [11,12]. Audiology is no exception among the clinical fields potentially involved
in this use of AI. One of the possible applications of AI technology in prognostic assessment
regards estimation of the functional hearing correlates of certain clinical conditions. Gath-
man et al. [85] proposed a machine learning model to predict PTA based on anamnestic
data from the patients [85]. Such a system was trained with demographic, medical, and
subjectively assessed hearing data labeled with hearing thresholds, and it was able to pre-
dict the PTA with a mean absolute error of 5.29 dB [85]. In 2022, Zeng et al. [78] developed a
deep learning model based on otoscopic images to estimate the related conductive hearing
loss degree. The model was trained on 2232 otoscopic images and validated on 558 images,
showing promising performance in predicting conductive hearing loss, with an area under
the ROC curve of 0.74 and an accuracy of 81% [78]. In the prediction setting, AI-based
models have also been proposed to estimate the functional prognoses of specific diseases.
For example, in sudden sensorineural hearing loss, several machine learning models have
been proposed to estimate the residual functional outcome, with most of them based on
logistic regression, although especially in recent years, other AI-based statistical approaches
have been employed, including support vector machines, multilayer perceptron, random
forest, deep belief networks, decision tree, k-nearest neighbor, and least absolute shrinkage
and selection operator (LASSO) [16]. AI-based predictive models have also been proposed
as valuable tools in the prevention and early diagnosis setting. Regarding the prevention
of occupational hearing loss, Madahana et al. [67] developed and described a machine
learning model based on logistic regression, support vector machine, decision tree and
random forest classifier algorithms to classify in real time the levels of noise recorded
by sensors worn by mine workers and generate warning reports. Such systems showed
good performance in terms of detecting noise exposure, analyzing signals, and generating
recommendations to the workers [67]. Finally, many predictive AI-based models have
been proposed to estimate the functional yield of cochlear implants [54]. In 2024, Carlson
et al. [101] proposed a machine learning model to predict speech discrimination scores after
receiving a cochlear implant based on preoperative audiometric and basic demographical
data. Such a model achieved an accuracy of 87% in predicting final speech discrimination
performances, with a sensitivity of 90% and precision of 80% [101]. Moreover, AI has also
been employed to predict the association between brain cross-modal plasticity patterns in
deaf patients and the functional outcomes of cochlear implants. In 2021, Kyong et al. [48]
tried to predict via a machine learning approach the outcome of cochlear implants based
on patients’ brain cross-modal plasticity, measured using event-related responses. In their
pilot study, based on the machine learning classification outputs, the authors found that
tactile and visual central processing patterns best classified the cochlear implant outcomes,
with an accuracy of 98.83 ± 2.57% and 93.50 ± 4.89%, respectively [48].

4.5. AI-Driven Augmented Sensors in Audiology

Audiological prostheses, including CIs and HAs, have progressively evolved over
the past five decades, transitioning from analog to digital signal processing. The recent
integration of AI has further propelled advancements in these technologies, notably im-
proving speech recognition, noise reduction, sound source localization, and the fitting
process. These innovations have contributed to significantly better hearing outcomes for
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users [41]. For HA, AI-driven advancements, such as ML with Bayesian and Gaussian
optimization, have allowed personalized real-time fitting parameter adjustments, which
improve sound quality in different environments. This is crucial as HAs traditionally rely
on average models which do not fully account for individual user needs, despite adequate
audiological fitting. An example is Widex’s SSL (WS Audiology, Nymoellevej, Denmark),
an AI system integrated into an HA which adapts performance through active patient
feedback, improving user satisfaction by optimizing gain and adjusting sound parameters
to match its preferences [41]. In a survey on SSL satisfaction, among 118 experienced users,
53 participants had used the functionality. Of those, over 70% reported improvements in at
least one listening environment, and 80% would recommend the feature [41]. Speech clarity
in noisy environments is one of the primary concerns for HA users. The study by Ting
et al. [56] showed how deep learning architectures and data augmentation can improve
noise reduction in HAs, specifically through optimizing classification of different ambient
noise, leading to better speech clarity in noisy environments [56]. Enhancing the fitting
process for HAs and CIs can significantly improve audiologists’ effectiveness, expanding
their ability to manage a larger patient population and more effectively addressing the
healthcare challenges associated with hearing loss. As discussed in Section 4.4.2, the FOX
AI-based fitting systems have proven to be equivalent or more effective than manual fittings
while reducing the number of visits required in the first year post operation [96,97]. AI
has potential to transform CIs and HAs from traditional prosthetic devices into intelligent
augmented sensors. A notable example is the incorporation of inertial sensors into HAs for
fall detection and step tracking, as demonstrated by Rahme et al.’s study on the Starkey
Livio (Starkey Hearing Technologies, Eden Prairie, MN, USA) [44]. These devices can
track steps accurately in real-world and treadmill conditions and detect falls effectively
during daily activities, establishing HAs’ role as multi-functional health monitors [44].
Similarly, the “EarGait” system integrated AI and inertial sensors into HAs, allowing
for continuous monitoring of gait parameters such as stride time and cadence, with the
advantage of bilaterality over traditional gait sensor systems integrated into mobile phones
and watches. The system provides valuable insights into the user’s mobility, detecting
abnormalities which may indicate fall risk or mobility impairments [95]. The use of CIs as
augmented sensors includes their ability to capture valuable electrophysiological data from
the cochlear nerve and brain. Real-time analysis of these data can be used to monitor and
predict cochlear nerve function and auditory outcomes. In a study by Skidmore et al., ML
models were developed to predict the functional status of the cochlear nerve in CI users
based on electrically evoked compound-action potential parameters [55]. By analyzing
these signals, the model can stratify patients based on their neural function, cochlear nerve
dimension, and speech recognition results, offering a way to predict CI outcomes and
tailor individual treatment plans. This integration of AI has the potential to improve our
understanding of how cochlear nerve health influences auditory processing and long-term
CI success. To assist the scientific community in interpreting complex electrophysiological
signals, Schuerch et al. [94] provided their intracochlear electrocochleography (ECochG)
dataset, which consisted of 4924 signals recorded from 46 ears with CIs during and after
surgery. These measures provide insight into cochlear health and neural responses. Ac-
cording to the authors, AI algorithms—particularly deep learning networks—will allow an
accurate interpretation of these electrophysiological traces [94]. Thus, AI is transforming
CIs and HAs into sensors which not only restore hearing, but also provide real-time data
on several different biological parameters. This dual role of CIs as both prosthetic devices
and diagnostic tools opens new avenues for hearing function understanding, personalized
auditory rehabilitation, and continuous monitoring of auditory health.

5. Conclusions

At this moment, a fully comprehensive picture of the state of the art of AI applications
in audiology and otology may be hard to achieve, due to the ongoing dramatic evolution
of this technology. However, the current review tried to depict an updated summary of
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the most promising applications of various AI models in this medical discipline, while
recognizing the inherent limitations related to the broad inclusion criteria. Judging from
this review’s results, a large variety of AI models, based on different algorithms and
computational approaches, have been described in the field of audiology. As a result, there
are no universally accepted approaches. However, within such a variety, some types of
AI models appeared to be consistently used for specific purposes, such as convolutional
neural networks for radiological image analysis, large language models for automatic
generation of diagnostic reports, and logistic regression or other statistical machine learning
tools (e.g., support vector machine, multilayer perceptron, random forest, deep belief
network, decision tree, k-nearest neighbor, or LASSO) for clinical predictions. In the field
of audiology, despite the promising advances in AI technologies, different challenges,
such as the availability of limited datasets and biases inherent in single studies, are still
present, underscoring the need for larger and more diverse data collection to enhance
predictive capabilities of AI models. Moreover, the ethical and professional concerns which
have been raised regarding the application of AI tools in the medical setting should be
addressed by specific bioethics studies in the field of audiology. Currently, professional
healthcare supervision is essential in every instance where AI is integrated into audiology
for patient care.
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26. Pyykkő, I.; Manchaiah, V.; Levo, H.; Kentala, E.; Juhola, M. Internet-based peer support for Ménière’s disease: A summary of
web-based data collection, impact evaluation, and user evaluation. Int. J. Audiol. 2017, 56, 453–463. [CrossRef]

27. Programming Cochlear Implant with Artificial Intelligence. ClinicalTrials.gov Identifier NCT03700268. Available online:
https://clinicaltrials.gov/study/NCT03700268 (accessed on 4 September 2024).

28. Sanchez Lopez, R.; Bianchi, F.; Fereczkowski, M.; Santurette, S.; Dau, T. Data-driven approach for auditory profiling and
characterization of individual hearing loss. Trends Hear. 2018, 22, 2331216518807400. [CrossRef]

29. Barbour, D.L.; Howard, R.T.; Song, X.D.; Metzger, N.; Sukesan, K.A.; DiLorenzo, J.C.; Snyder, B.R.D.; Chen, J.Y.; Degen, E.A.;
Buchbinder, J.M.; et al. Online machine learning audiometry. Ear Hear. 2019, 40, 918–926. [CrossRef]

30. Buhl, M.; Warzybok, A.; Schädler, M.R.; Lenarz, T.; Majdani, O.; Kollmeier, B. Common Audiological Functional Parameters
(CAFPAs): Statistical and compact representation of rehabilitative audiological classification based on expert knowledge. Int. J.
Audiol. 2019, 58, 231–245. [CrossRef]

31. Lee, J.Y.; Choi, S.-H.; Chung, J.W. Automated classification of the tympanic membrane using a convolutional neural network.
Appl. Sci. 2019, 9, 1827. [CrossRef]

32. McKearney, R.M.; MacKinnon, R.C. Objective auditory brainstem response classification using machine learning. Int. J. Audiol.
2019, 58, 224–230. [CrossRef]

33. Buhl, M.; Warzybok, A.; Schädler, M.R.; Majdani, O.; Kollmeier, B. Common Audiological Functional Parameters (CAFPAs) for
single patient cases: Deriving statistical models from an expert-labelled data set. Int. J. Audiol. 2020, 59, 534–547. [CrossRef]
[PubMed]

34. Charih, F.; Bromwich, M.; Mark, A.E. Data-driven audiogram classification for mobile audiometry. Sci. Rep. 2020, 10, 3962.
[CrossRef] [PubMed]

https://www.openai.com/
https://doi.org/10.3390/diagnostics14080839
https://doi.org/10.2196/20346
https://www.ncbi.nlm.nih.gov/pubmed/33090118
https://doi.org/10.1007/s00405-024-08710-0
https://www.ncbi.nlm.nih.gov/pubmed/38703195
https://doi.org/10.1007/s00405-024-08512-4
https://www.ncbi.nlm.nih.gov/pubmed/38393353
https://doi.org/10.1016/j.otc.2024.04.009
https://www.ncbi.nlm.nih.gov/pubmed/38871535
https://doi.org/10.1177/00034894231206902
https://doi.org/10.1177/01455613231185074
https://doi.org/10.1146/annurev-psych-030123-113559
https://doi.org/10.7326/M18-0850
https://doi.org/10.3109/14639239008997662
https://doi.org/10.1080/010503901300007209
https://www.ncbi.nlm.nih.gov/pubmed/17911922
https://doi.org/10.2196/rehab.4109
https://www.ncbi.nlm.nih.gov/pubmed/28582248
https://doi.org/10.1097/AUD.0000000000000186
https://www.ncbi.nlm.nih.gov/pubmed/26258575
https://doi.org/10.1186/s12911-016-0306-3
https://doi.org/10.1080/14992027.2017.1282631
https://clinicaltrials.gov/study/NCT03700268
https://doi.org/10.1177/2331216518807400
https://doi.org/10.1097/AUD.0000000000000669
https://doi.org/10.1080/14992027.2018.1554912
https://doi.org/10.3390/app9091827
https://doi.org/10.1080/14992027.2018.1551633
https://doi.org/10.1080/14992027.2020.1728401
https://www.ncbi.nlm.nih.gov/pubmed/32091289
https://doi.org/10.1038/s41598-020-60898-3
https://www.ncbi.nlm.nih.gov/pubmed/32127604


Sensors 2024, 24, 7126 17 of 21

35. Crowson, M.G.; Franck, K.H.; Rosella, L.C.; Chan, T.C.Y. Predicting depression from hearing loss using machine learning. Ear
Hear. 2021, 42, 982–989. [CrossRef] [PubMed]

36. Crowson, M.G.; Lee, J.W.; Hamour, A.; Mahmood, R.; Babier, A.; Lin, V.; Tucci, D.L.; Chan, T.C.Y. AutoAudio: Deep learning for
automatic audiogram interpretation. J. Med. Syst. 2020, 44, 163. [CrossRef] [PubMed]

37. Heisey, K.L.; Walker, A.M.; Xie, K.; Abrams, J.M.; Barbour, D.L. Dynamically masked audiograms with machine learning
audiometry. Ear Hear. 2020, 41, 1692–1702. [CrossRef]

38. Losorelli, S.; Kaneshiro, B.; Musacchia, G.A.; Blevins, N.H.; Fitzgerald, M.B. Factors influencing classification of frequency
following responses to speech and music stimuli. Hear. Res. 2020, 398, 108101. [CrossRef]

39. Meeuws, M.; Pascoal, D.; Janssens de Varebeke, S.; De Ceulaer, G.; Govaerts, P.J. Cochlear implant telemedicine: Remote fitting
based on psychoacoustic self-tests and artificial intelligence. Cochlear Implants Int. 2020, 21, 260–268. [CrossRef]

40. Saak, S.K.; Hildebrandt, A.; Kollmeier, B.; Buhl, M. Predicting Common Audiological Functional Parameters (CAFPAs) as
interpretable intermediate representation in a clinical decision-support system for audiology. Front. Digit. Health 2020, 2, 596433.
[CrossRef]

41. Balling, L.W.; Mølgaard, L.L.; Townend, O.; Nielsen, J.B.B. The collaboration between hearing aid users and artificial intelligence
to optimize sound. Semin. Hear. 2021, 42, 282–294. [CrossRef]

42. Buhl, M.; Warzybok, A.; Schädler, M.R.; Kollmeier, B. Sensitivity and specificity of automatic audiological classification using
expert-labelled audiological data and Common Audiological Functional Parameters. Int. J. Audiol. 2021, 60, 16–26. [CrossRef]

43. Ellis, G.M.; Souza, P.E. Using machine learning and the National Health and Nutrition Examination Survey to classify individuals
with hearing loss. Front. Digit. Health 2021, 3, 723533. [CrossRef] [PubMed]

44. Rahme, M.; Folkeard, P.; Scollie, S. Evaluating the accuracy of step tracking and fall detection in the Starkey Livio artificial
intelligence hearing aids: A pilot study. Am. J. Audiol. 2021, 30, 182–189. [CrossRef] [PubMed]

45. Rodrigo, H.; Beukes, E.W.; Andersson, G.; Manchaiah, V. Exploratory data mining techniques (decision tree models) for examining
the impact of internet-based cognitive behavioral therapy for tinnitus: Machine learning approach. J. Med. Internet Res. 2021,
23, e28999. [CrossRef] [PubMed]

46. Hart, B.N.; Jeng, F.C. A Demonstration of machine learning in detecting frequency following responses in American neonates.
Percept. Mot. Skills 2021, 128, 48–58. [CrossRef]

47. Koyama, H.; Mori, A.; Nagatomi, D.; Fujita, T.; Saito, K.; Osaki, Y.; Yamasoba, T.; Doi, K. Machine learning technique reveals
prognostic factors of vibrant soundbridge for conductive or mixed hearing loss patients. Otol. Neurotol. 2021, 42, e1286–e1292.
[CrossRef]

48. Kyong, J.S.; Suh, M.W.; Han, J.J.; Park, M.K.; Noh, T.S.; Oh, S.H.; Lee, J.H. Cross-modal cortical activity in the brain can predict
cochlear implantation outcome in adults: A machine learning study. J. Int. Adv. Otol. 2021, 17, 380–386. [CrossRef]

49. Li, L.P.; Han, J.Y.; Zheng, W.Z.; Huang, R.J.; Lai, Y.H. Improved environment-aware-based noise reduction system for cochlear
implant users based on a knowledge transfer approach: Development and usability study. J. Med. Internet Res. 2021, 23, e25460.
[CrossRef]

50. Liu, Y.; Xu, R.; Gong, Q. Maximising the ability of stimulus-frequency otoacoustic emissions to predict hearing status and
thresholds using machine-learning models. Int. J. Audiol. 2021, 60, 263–273. [CrossRef]
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