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A global transcriptional atlas
of the effect of acute sleep
deprivation in the mouse frontal cortex

Kaitlyn Ford,1,8 Elena Zuin,2,3,8 Dario Righelli,3 Elizabeth Medina,1 Hannah Schoch,1 Kristan Singletary,1

Christine Muheim,1 Marcos G. Frank,1 Stephanie C. Hicks,4,5,6,7 Davide Risso,3 and Lucia Peixoto1,9,*
SUMMARY

Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a
variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the
molecular consequences of SD is of fundamental importance in biology. In this study, we present the first
simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male
mouse frontal cortex.We show that SD predominantly affects glutamatergic neurons, specifically in layers
4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and
RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcrip-
tion, downregulating thousands of genes and transcripts. As a resource we provide extensive character-
izations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available
tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.

INTRODUCTION

Sleep is an evolutionary conserved powerful drive, but its function remains a mystery. It is well established that sleep deprivation (SD) has

negative effects on brain function and affects a wide array of molecular processes.1 Sleep problems are widely observed in neurodeve-

lopmental, neurodegenerative, and psychiatric disorders.2,3 Thus, understanding the molecular consequences of SD is of fundamental

importance in neuroscience. We and others have shown that in rodents SD strongly affects the brain transcriptome.4–13 It was initially

thought that there was little agreement on the effects of SD. However, we have shown that if biological and technical noise are properly

accounted for, hundreds of genes are differentially expressed after SD in the mouse brain regardless of technology, site or brain re-

gion.14 Currently, studies of the effect of SD on the brain transcriptome are focused on genes. However, in mammals, cells often express

multiple transcripts of the same gene (isoforms). Also, most current studies also lack resolution at the cell-type level with sufficient sta-

tistical power.

To further our understanding of the molecular consequences of acute SD, in this study we present the first simultaneous bulk and single-

nuclear (sn) RNA sequencing (RNA-seq) characterization of the effects of SD in the frontal cortex of adult male mice at high resolution. We

chose the frontal cortex based on EEG data in humans (which can only assess cortical areas) as it is the brain region most strongly affected by

SD.15 Using snRNA-seq we show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5. Using bulk RNA-seq we

performed differential gene and transcript expression (DGE/DTE), as well as differential transcript usage (DTU) analyses. We show that at the

bulk level, SD affects half of the frontal cortex transcriptome and produces isoform switching of thousands of genes. Both bulk and snRNA-seq

analysis show that SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts both globally and in

specific cell-types. This large yet cell-specific effect underscores the importance of controlling or accounting for the effects of sleep in any

transcriptome studies of brain function. As a resource to the neuroscience community, we provide extensive characterization of which genes,

transcripts and pathways are affected by SD and in which cell types; as well as guided tutorials for reproducible bulk (DGE, DTE, andDTU) and

snRNA-seq differential expression analyses.
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RESULTS
Sleep deprivation preferentially affects gene expression in neurons

It is currently unknown how different cell types respond to SD in the mouse frontal cortex, and which genes and pathways are differentially

affected across different types of neurons (e.g., glutamatergic and GABAergic). To address this, we carried out snRNA-seq using 10X Geno-

mics Chromium v3 technology followed by Illumina sequencing of adult male mice, either allowed to sleep in their home cages (HC) or sleep

deprived (SD, n= 3 per group). After gene abundance quantification and removal of low quality data (Figure S1), we performed cell-type label

assignment using a reference dataset obtained from the Brain Initiative Cell Census Network (BICCN) to avoid the lack of reproducibility of

cell-type labels that can arise from cluster-based assignment.16 Nuclei counts for each replicate for each cell type are available in Figure S2.

Cell-type nomenclature follows BICCN guidelines as per Yao et al., 2021.16 Glutamatergic neurons are labeled based on the layer in which

they reside (L1-6) as well as where they project. Across the cortex, there are threemain classes of projection neurons: IT intratelencephalic tract

(IT), pyramidal tract (PT), and corticothalamic tract (CT). GABAergic neurons are labeled based on marker expression (e.g., parvalbumin, so-

matostatin, and vasoactive intestinal polypeptide). First, we used an independent dataset from the BICCN as a gold standard and show that

our pipeline shows good consistency with known cell labels when the Yao et al., 2021 dataset is used as a reference (Figure S3) even when two

different methods are used (Azimuth and SingleR). Subsequently we applied Azimuth and the Yao et al. 2021 dataset as reference to assign

cell-type labels. Figure 1A depicts a UMAP visualization of the top principal components after transfer of all cell type labels in all biological

replicates (3 HC, 3 SD). Figure S4 shows the UMAP visualization per condition (SD vs. HC). This indicates that the reference dataset seems to

be the most important aspect when assigning cell-type labels. Subsequently, to further validate the cell-type assignments in our datasets, we

created heatmaps using known mouse cortex cell-specific marker expression from the literature, as well as those in the Allen Brain Transcrip-

tomics explorer in each cell type. Both show good consistency between marker expression and cell-type assignment (Figure S5).

To uncover which factors, drive the variance in gene expression across different cell-types, we performed multidimensional scaling (MDS)

of the pseudo-bulk sum of all nuclei assigned to a cell-type per independent biological replicate (color-coded by cell type and shaped by

condition, HC as circles, SD as triangles). Our data show that SD has a larger effect on glutamatergic (Figure 1B) than GABAergic neurons

(Figure 1C). SD does not seem to causemajor differences in gene expression in non-neuronal cell types such as Astrocytes, Oligodendrocytes

or Microglia (Figure S6A). Differences between conditions cannot be detected if we restrict the MDS plot to genes less likely to be differen-

tially expressed by SD according to publicly available microarray data14 (Figure S6B).

Sleep deprivation disproportionally affects glutamatergic neurons of the deeper layers of the cortex, particularly layer 4/5

To define differentially expressed genes (DEGs) after SD in each neuronal cell-type, we performed pseudo-bulk analysis after normalization to

remove unwanted variation using negative control samples (replicates) and genes (defined using publicly available microarray data).17,18 Fig-

ure 2A summarizes, for each neuronal cell type, the number of nuclei, DEGs, and positive controls recovered. Positive controls were defined

based on publicly availablemicroarray data (see STARmethods). Figure 2B shows the proportion of DEGs relative to the abundance (number

of nuclei) for each cell-type in ln-scale. Our results are robust to differences in normalization, as they can also be observed when only negative

control samples are used to estimate the unwanted variance (Figure S7). Since the number of DEGs is expected to increase linearly with the

number of nuclei sequenced due to the distributional properties of count models, cell-types above the line are affected more than expected

by SD, while those below the line are affected less than expected. Consistent with what we observed using MDS, glutamatergic neurons are

preferentially affected, specifically in neurons in layers 4/5 and 5 that project to the intra-telencephalic tract (L4/5 IT and L5 IT) neurons. Results

of differential expression analysis for all cell-types (neuronal and non-neuronal) can be seen in Figure S8. To properly control for the effect of

different sample sizes on different cell-types, we ran differential expression analysis on 100 random subsets of 200 nuclei per cell-type, which

confirms that SD disproportionally affects glutamatergic neurons (Figure S9). In particular, glutamatergic neurons of L4/5 IT, which express

high levels of Ror-beta were the most affected with 1492 DEGs (522 upregulated, 970 downregulated, and 142 positive controls, Figure 2C).

In contrast, themost affected of theGABAergic neurons, Pvalb, only had 395DEGs after SD (129 upregulated, 266 downregulated, 37 positive

controls, Figure 2D). Most cell types had more downregulated than upregulated DEGs, thus SD seems to disproportionately repress tran-

scription. Principal component analysis (PCA), histograms of uncorrected p-values, and volcano plots for each cell-type are available in

Figures S10–S12, respectively. A full list of DEGs per cell-type is available in Table S1.

Sleep deprivation affects distinct pathways and molecular functions in glutamatergic and GABAergic neurons

To better understand which genes and pathways are shared between or unique to glutamatergic or GABAergic neurons, we intersected the

union of all DEGs in glutamatergic neurons with the union of all DEGs in GABAergic neurons (Figure 3; Table S3). Glutamatergic neurons

contain over 20-fold more DEGs at FDR <0.05 that are unique relative to GABAergic neurons (2239 vs. 108). This enrichment if robust to

the choice of FDR, as it can be seen at FDR <0.01 or FDR <0.10, as well (Figure S13). The majority of DEGs in GABAergic neurons are shared

with glutamatergic neurons (417) and contain immediate-early genes (IEGs, Arc, Homer1, Bdnf) and stress response genes (Hspa5, Hspa8,

Figure 3A). To further understand which pathways (KEGG, https://www.genome.jp/kegg/pathway.html), molecular functions (MF, https://

www.uniprot.org) and biological processes (BP, https://www.uniprot.org) weremore affected by SD than by chance in GABAergic versus glu-

tamatergic neurons, we carried out functional enrichment analysis (Figures 3B and 3C; Table S4) of the unique sets of DEGs. When multiple

terms had overlapping sets of genes, they were clustered for ease of interpretation (see STAR methods). Neurotransmitter receptors were

downregulated in response to SD in both glutamatergic and GABAergic neurons (KEGG pathway: Neuroactive-ligand receptor interaction,

Vip, Sst, Gria4, Grin2d). However, neurogenesis (Figure 3C Cluster 1 in red, BP and MF), cell adhesion (Figure 3C Cluster 2 in red, BP and
2 iScience 27, 110752, September 20, 2024
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Figure 1. SD has a large detectable effect on glutamatergic and GABAergic cell-types

(A) Uniform Manifold Approximation and Projection (UMAP) plot for the 52,651 frontal cortex nuclei from all 6 replicates, annotated with a reference-based

Azimuth method,16 Brain Initiative Cell Census Network, BICCN). Glutamatergic, GABAergic and non-neuronal cell-types are shaded in unique colors.

(B) Multidimensional scaling (MDS) plot for glutamatergic cell-types with more than 500 nuclei shows cell-types are separated along MDS1, accounting for the

largest source of dissimilarity in the data, while HC (circles, N = 3) and SD (triangles, N = 3) are separated along MDS2, accounting for the remainder of

dissimilarity in the data.

(C) MDS plot for GABAergic cell-types with more than 500 nuclei shows cell-types are separated along MDS1, accounting for the largest source of dissimilarity in

the data, while HC (circles, N = 3) and SD (triangles, N = 3) are separated along MDS2, accounting for the remainder of dissimilarity in the data. HC, Home Cage

Controls. SD, Sleep Deprived.
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KEGG), MAPK PI3K-Akt signaling (Figure 3C Cluster 3 in red, MF and KEGG), circadian rhythm (KEGG in red) were enriched in genes upre-

gulated by SD. Genes that belong to development and differentiation (Figure 3C Cluster 1 in blue, BP and MF) were downregulated by SD

only in glutamatergic neurons.

We then determined which DEGs were unique to a neuronal cell-type (Figure 4A; Table S5) Glutamatergic neurons had the largest

numbers of unique DEGs, specifically L2/3 IT CTX and L4/5 IT CTX. Next, we asked which KEGG, MF, and BP were more affected by SD

than expected by chance in some cell-types. Despite similar numbers of DEGs after SD, functional enrichment analysis shows a higher level

of specificity for DEGs in L4/5 IT CTX (Figure 4B) relative to L2/3 IT CTX (Figure 4C). Only in L4/5 IT CTXglutamatergic neurons, SD upregulates
iScience 27, 110752, September 20, 2024 3
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Figure 2. SD predominantly affects deep layers of glutamatergic cell-types

(A) Table shows the total number of nuclei in a neuronal cell-type, the number of genes detected, and up- and downregulated differentially expressed genes

(DEGs). Also shown are the recovery of positive control genes from a prior, independent analysis.14 The bottom row shows the pseudo-bulk sum for the

expression analysis.

(B) Scatterplot with the natural log of the total number of nuclei on the x axis and the natural log of the DEGs on the y axis. A line of best fit was drawn through the

points, with cell-types that appear to be more affected by the treatment above the line, and cell-types that appear to be less affected by the treatment below

the line.

(C) Volcano plot for L4/5 IT CTX shows the log2FC on the x axis and the -log10 of the p-value on the y axis. Expressed genes (13,592) are in gray. Significantly

differentially expressed genes are in black (2,405), FDR <0.05 and positive controls are shown in red (177).

(D) Volcano plot for Pvalb shows the log2FC on the x axis and the -log10 of the p-value on the y axis. Expressed genes (11,585) are in gray. Significantly

differentially expressed genes are in black (275), FDR <0.05 and positive controls are shown in red (32). A subset of genes from Table S2 are shown in (C) and

(D). N = 3 per condition. SD, Sleep Deprivation.
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certain components of the MAPK, PI3K-Akt, and Ras signaling pathways (Figure 4B, Cluster 1 in red, KEGG), such asGadd45a, Reln, Cdkn1b

(p27) and Sgk1.

Sleep deprivation affects half of the cortical transcriptome and elicits extensive differential isoform usage

Although the effect of SD on brain gene expression is well-documented, it has never been investigated at the isoform level. We chose to

perform isoform-level analyses in bulk RNA-seq, in contrast to 10X Chromium snRNA-seq data which has a 30 bias and limited our ability
4 iScience 27, 110752, September 20, 2024
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Figure 3. Glutamatergic neurons are preferentially affected by SD

(A) Venn diagram of differentially expressed genes (DEGs) within glutamatergic and GABAergic neuronal cell-types (FDR <0.05, >500 nuclei). Genes from

Table S2 are highlighted.

(B and C) Bubbles show enriched terms (modified Fisher’s Exact p-value <0.05) of upregulated (red) and downregulated (blue) DEGs that are unique to (B)

GABAergic or (C) glutamatergic neurons, as compared to the union of expressed genes within the respective category. Bubble size reflects the number of

genes per term (minimum of 3). Gray boxes outline clustered terms (similarity threshold >0.2, and enrichment score >1.5). Enrichment scores for each cluster;

Cluster 1 Up (3.00), Cluster 2 Up (2.69), Cluster 3 Up (2.16), Cluster 1 Down (3.67), Cluster 2 Down (1.92). Terms were intersected with genes from Table S2 2.

N = 3 per condition. SD, Sleep Deprivation. BP, Uniprot biological process. MF, Uniprot molecular function. KEGG, Kegg pathways.
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to recover all transcripts of a gene. We performed differential transcript and gene expression (DTE and DGE) as well as differential transcript

usage (DTU) analysis using nonparametric testing of inferential replicate counts after correcting for unwanted variation.17–19

Figure 5 shows that after SD we detect 8,505 DEGs (q-value <0.05, Figures 5A, S14A, and S1C; Table S7) of 18,334 expressed genes,

including several genes previously shown to be affected by SD (highlighted in Figure 5A). These include 83% of positive control genes

(558/671) we previously detected acrossmultiple published studies (Table S8).14We then chose the optimal log2 fold-change threshold based

on the balance between the recovery of positive control genes, while simultaneously not recovering genes less likely to be differentially ex-

pressed after SD from public data (Figure S15). This resulted in an |log2 fold-change| >0.2 for downstream analysis. Following DGE analysis,

we investigated DTE. We show that 15,525 transcripts (from 10,439 genes) are differentially expressed after SD (q-value <0.05, Figures 5B,

S14B, and S14D; Table S7), of which 9,709 are downregulated and 5,816 are upregulated after SD. This indicates that transcript level analysis

increases our ability to detect DEGs. Given the discrepancy in downregulated transcripts, we investigated which genes were shared between

or unique to genes and transcript analyses (Figures 5C and 5D): 3,269 upregulated, and 3,836 downregulated genes were shared between

analyses, while an additional 3,117 downregulated genes were detected at the transcript level, but not the gene level. This suggests there is

more variation happening at the transcript-level, which is obscured when aggregating to the gene-level. To further explore this we focused on

eukaryotic initiation factors, which were previously reported to be repressed by SD and are known tomediate the detrimental effects of SD on

learning and memory.13,20 We show that, several eukaryotic initiation factors were significantly differentially expressed at the transcript level

that were not detected at the gene level (Figure S14E; q-value <0.05, |log2FC| > 0.20).

Our transcript analysis also shows that several genes have both upregulated and downregulated transcripts after SD (e.g., Bdnf). To inves-

tigate potential opposing effects on transcripts of the same gene, we performed differential transcript usage analysis (DTU). Specifically, this

allowed us to detect which isoforms of a gene changed the proportion after SD. We detected 2,314 transcripts (corresponding 1,575 genes,

Table S9) with significant changes in usage (q-value <0.05) in response to SD (Figure 6A). These include transcripts that were upregulated at

both the gene and transcript level, but SD changes which transcript is primarily transcribed (e.g., Homer1, Figures 6B and 6C; Table S10), as

well as transcripts in which the gene level analysis obscured transcripts being both up and downregulated (e.g., Bdnf, Figures 6D, 6E, and 6;

Table S10). For Bdnf in particular, Bdnf I (201, somatic) increases in proportion, while Bdnf VI (205, dendritic) decreases in proportion. These

examples suggest that SD may influence splicing, RNA-binding and transport of somatic versus dendritic isoforms. To further understand

which kinds of processes and pathways were affected by isoform switching after SD, we carried out functional enrichment analysis (Figure 7),

which revealed 16 enriched pathways/biological processes with 3 clusters of related pathways (Table S11). Genes that undergo isoform usage

switching in response to SD are related to RNA binding/splicing (e.g., Rbmx), chromatin regulation (e.g., Hdac3), and kinases (e.g., Camk1).

DISCUSSION

In this study, we performed for the first time parallel snRNA-seq and bulk RNA-seq with multiple independent biological replicates in

response to SD in the adult male mouse frontal cortex. Prior analyses have focused on bulk gene-level analysis,4–13,24 or do not include inde-

pendent biological replicates.25 Thus, to date it was not possible to define what may be occurring at the isoform level or to detect changes

specific to cell-types in response to SD. Because SD has a profound effect on brain function, and insufficient sleep is a hallmark of many brain

disorders, understanding its molecular impact is not only important to understand the function of sleep, but also to understand how behav-

ioral impairments in response to SD arise.

We focused on the frontal cortex based on EEG data in humans (which can only assess cortical areas) as it is the brain areamost affected by

acute SD.15 The frontal cortex plays an essential role in higher-order brain processes, including cognition, attention, reward and emotion pro-

cessing, all of which are affected by lack of sleep. Our snRNA-seq results indicate that SD has a disproportionate effect on neurons (Figure 1).

Surprisingly, we do not detect a strong effect of SD on the transcriptome of glia, despite the documented role of glia such as astrocytes and

microglia in sleep homeostasis.26,27 The lower proportion than expected of glia present in our snRNA-seq data (Figure S2) suggests that to

detect the true effect of SD in glia, it may be necessary to first enrich those populations using glia-specific marker sorting. However, in our

dataset we havemore than 500 nuclei for all the glial types explored, which is a larger number than some neuronal cell-types. This, in conjunc-

tion with previous transcriptome studies that find only�1.4% of the astrocyte transcriptome seems responsive to sleep/wake state,28 suggests

it may be possible that at the transcriptome, glia do not respond to acute SD at the same magnitude that neurons do. Within neurons, the

effect of SD is most prominent in glutamatergic neurons (Figure 2), with 2,239 genes exclusively regulated in this neuronal type (Figure 3A).

Functional enrichment analysis shows that SD disproportionately affects pathways, molecular functions and biological processes involved in

neurogenesis, MAPK PI3K-Akt signaling, circadian rhythms and development in glutamatergic neurons (Figure 3C). Interestingly, downregu-

lation of neurotransmitter receptors by SD is detected in both glutamatergic and GABAergic neurons (KEGG pathway: Neuroactive-ligand

receptor interaction, Vip, Sst, Gria4, Grin2d). Furthermore, it is important to note that stress response genes (such as those mediating o the
6 iScience 27, 110752, September 20, 2024
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Figure 4. L4/5 IT CTX is preferentially affected by SD relative to other cell-types

(A) Upset plot showing the unique differentially expressed genes (DEGs) within neuronal cell-types (FDR <0.05, >500 nuclei).

(B andC) Bubbles show enriched terms (modified Fisher’s Exact p-value <0.05) of upregulated (red) and downregulated (blue) DEGs and unique to (B) L4/5 IT CTX

and (C) L2/3 IT CTX, as compared with the expressed genes within those cell-types. Bubble size corresponds to the number of genes per term (minimum of 3).

Gray boxes outline clustered terms (similarity threshold >0.2, and enrichment score >1.5). Enrichment scores for each cluster; L4/5 IT CTX Cluster 1 Up (2.17), L2/3

IT CTX Cluster 1 Down (1.59).N = 3 per condition. SD, Sleep Deprivation. BP, Uniprot biological process. MF, Uniprot molecular function. KEGG, Kegg pathways.
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unfolded protein response (e.g., Hspa5) are shared between both glutamatergic and GABAergic neurons, thus suggesting that the differ-

ences in neuronal cell-type response are not related to stress. Nonetheless, the disproportionate effect of SD in glutamatergic versus

GABAergic neuronsmay suggest that by predominantly altering the glutamatergic transcriptome, SDmay alter excitatory/inhibitory balance.

Indeed, in the visual cortex, excitation and inhibition have been shown to be modulated in a sleep-dependent manner in adult mice.29

Although is not clear whether or not the rodent frontal cortex possesses a layer 4 as defined in sensory cortices,30 our data indicates that

ROR-beta positive L4/5 IT glutamatergic neurons are the second most abundant type of neuron in the rodent frontal cortex (Figure 2A) and

disproportionately responsive to SD at the transcriptome level (Figure 2B). This includes 522 upregulated and 970 downregulated genes after

SD (Figures 2A and 2C), 395 of which are unique to these neurons (Figure 4A). ROR-beta expression is more prominent in frontal brain areas in

rodents and primates, and drives the development of cortico-thalamic connectivity.31 In addition to its role as a genetic marker for glutama-

tergic neurons of layers 4 and 5 in the cortex, ROR-beta is a key transcription factor controlling brain development and differentiation. ROR-

beta expression has also been shown to be circadian and its deletion affects circadian behavior.32 Furthermore, a previous exome sequencing

study showed that ROR-beta variants may be implicated in autism spectrum disorder risk,33 which is often co-morbid with sleep impair-

ments.34 Furthermore, it has been suggested that ROR-beta disruption may be linked to thalamocortical axon innervation and circuitry35 (Ja-

baudon 2012). In ROR-beta positive neurons, SD uniquely upregulates genes (Reln,Cdkn1b (p27) andGadd45a) and signaling pathways (PI3K,

Akt, Ras and MAPK) involved in brain development and neurogenesis and differentiation. The fact that SD specifically affects ROR-beta ex-

pressing glutamatergic neurons in the frontal cortex may reflect the importance of sleep in regulating the function of these neurons and tha-

lamocortical circuitry through these pathways.

Using bulk RNA-seq we detect 8,505 differentially expressed genes after SD, while simultaneously recovering 83% of known positive control

genes (Figure5).Although this isnot thefirst studytousebulkRNA-seqtounderstand theeffectofSDonthebulk cortical transcriptome,wedetect

between 2000 and7000more differentially expressedgenes driven by sleep/wake thanpreviously published studies in the cortex andhippocam-

pus.5,6,9,24 This increase in sensitivity is largely due to differences in methodology on RNA-seq data analysis, such as additional normalization to

removal unwanted variance (e.g., RUV-seq) and simultaneous transcript and gene level analysis using nonparametric testing and inferential un-

certainty (Fishpond/Swish).19 Incorporating inferential uncertainty alone increases the number of DEGs considerably in our own data compared

to our recently published study,9 while also allowing for differential transcript expression and usage analysis after SD for the first time.We detect

15,525 differentially expressed (Figure 5B) and 2,314 differentially used (corresponding 1,575 genes) transcripts (Figure 6A). The latter indicates

that SD can induce many isoform switches. Isoform switching is a phenomenon in which the relative contribution of one or many isoforms to

the total expression of a particular gene changes significantly between conditions. Two notable examples of the effect of SDon isoformswitching

areHomer1 and Bdnf (Figures 6B–6D), two genes with known roles in brain function which we show are altered in all neuronal cell-types after SD

(Figure 3A). The upregulation ofHomer1a after SD iswell-known, and it is commonly referred to as a coremolecular correlate of sleep loss.8 Here,

however,we show that upregulationofHomer1aafter SDcomesat the expenseof a lowerproportionof long isoformsofHomer1, which aremore

stably bound to the synapse.21,22 In our analysis, we also find that Bdnf I (201, somatic) increases in proportion, while Bdnf VI (205, dendritic) de-

creases inproportion.23 Theseexamples suggest that SDmay influence splicingorRNA-binding. Thoseprocesseswerenot identifiedas enriched

in our snRNA-seq analysis. This may be because only some isoforms of such genes are affected, and thus when analyzing differential expression

only at thegene level, theeffect is not detectableoraveragedout.Our functional enrichment analysisof genes that are affectedby isoformswitch-

ingafter SD, shows that splicingandRNAbindingare indeedaffectedbySDat the isoform level (Figure7). If SDaffects splicingandRNAbinding, it

may perhaps also affect transport of those isoforms to different neuronal compartments (soma vs. synapse). Our results suggest that the role of

sleep and SD on isoform expression and transport, and its implication on brain function, needs to be further explored.

Limitations of our study include the fact that we focused on the adult male frontal cortex in our experiments. Future studies aimed at un-

derstanding the effect of both sex and developmental age on the transcriptional response to SD, with cell-type resolution, are needed in

different brain regions. Recent spatial-transcriptomic studies suggest that different brain regions may have different responses to SD.36 How-

ever, to achieve a full picture of the effect of SD in different brain areas, it will be necessary to combine different technologies (spatial, single

cell and bulk RNA-seq) to balance their strengths and weaknesses. For example, our present study shows that the number of detected genes

in snRNA-seq data formost cell-types (Figure 2A) is lower than for bulk RNA-seq. This is because the number of genes detected scaleswith the

number of nuclei sequenced, and even over 15,000 nuclei fall short fromdetecting the 18,334 expressedgeneswe obtain using bulk RNA-seq.

Thus, cell-type resolution may come at a cost of lower sensitivity for differential gene expression. Sensitivity of spatial transcriptomic exper-

iments for differential expression analysis is likely lower than snRNA-seq. Given the inherent differences in the ability to recover DEGs by

different technologies, we need to be cautious of the potential for false negatives to alter our interpretation if using only one technology.

Overall, we present the first global transcriptional atlas of the homeostatic response to SD in the adult male mouse frontal cortex,

combining the advantages of both snRNA-seq and bulk RNA-seq with robust and reproducible data analysis pipelines. We show that SD

has a large mostly repressive effect on the cortical transcriptome, that this effect is more prominent in glutamatergic neurons, in particular

in L4/5 IT ROR-beta positive neurons. We also show that SD can cause isoform switching of thousands of genes. Because sleep and sleep
8 iScience 27, 110752, September 20, 2024
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Figure 5. SD predominantly represses transcription at the gene and transcript level

(A) Differential gene expression (DGE) following SD. On the x axis, expression is shown as log10mean, and on the y axis, fold change is shown as log2FC.

Expressed genes (18,334) are gray. Significantly differentially expressed genes (8,505), q-value <0.05, are black. Positive control genes previously shown to

respond to sleep deprivation are red.14 83.16% positive control genes (558/671) were significantly differentially expressed in response to SD, q-value <0.05.

(B) Differential transcript expression (DTE) following SD. On the x axis, expression is shown as log10mean, and on the y axis, fold change is shown as log2FC. Each

gray point shows an expressed transcript (54,030). Significantly differentially expressed transcripts (15,525 from 10,439 genes), q-value <0.05, are black. A subset

of genes from Table S2 are shown in (A and B).

(C) Venn diagram shows the intersection of upregulated, significantly differentially expressed genes and upregulated, significantly differentially expressed

transcripts.

(D) Venn diagram shows the intersection of downregulated, significantly differentially expressed genes and downregulated, significantly differentially expressed

transcripts. Genes from Table S2 that have a qvalue <0.05 and |log2FC| > 0.2 are shown as examples in (C and D). N = 5 per condition. SD, Sleep Deprivation.
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loss are often confounded in rodent studies of brain and behavior, these effects need to be accounted for in in vivo transcriptomic studies. As

a resource to the community, we provide detailed lists of genes, cells and pathways affected by SD as well as tutorials to reproduce our data

analysis. Importantly, wemade our analyses completely reproducible by sharing all the code used to generate the results of this article and by

providing a docker image to run the code with the exact software setup used for this study. In addition, our tutorials can serve as a starting

point for the analysis of bulk and snRNA-seq data generated by future studies.

Limitations of the study

Limitations of our study include the use of adult male mouse frontal cortex tissue only. Therefore, this study cannot draw any conclusions

about the effect of SD in other parts of the brain, at different developmental ages or in female mice. In addition, it is important to consider
iScience 27, 110752, September 20, 2024 9
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Figure 6. SD promotes differential transcript usage (DTU) for 1,575 genes, including Homer1 and Bdnf

(A) DTU following SD. On the x axis, expression is shown as log10mean, and on the y axis, change in proportion is shown as log2FC. Gray points are expressed

transcripts, with a log10mean >1. In black are transcripts that have significant changes in usage, q-value <0.05 and log10mean >1.

(B and C) Dot plot shows the change in (B) transcript proportion (from 0 to 1) and (C) expression levels in normalized transcript counts of ‘‘short’’ (Homer1a) and

‘‘long’’ (Homer1b/c, Homer1d) Homer1 transcripts.21,22

(D and E) Dot plots show the (D) change in proportion (from 0 to 1) and (C) expression levels in normalized transcript counts of ‘‘synaptic’’ (Bdnf VI) and ‘‘somatic’’

(Bdnf I) Bdnf transcripts.23 For (B–E), Home cage (HC) animals are circles and SD animals are triangles. Mean G standard error is shown. N = 5 per condition.

Homer1 and Bdnf transcripts shown have significant DTE and DTU using Swish, q-value <0.05.19 SD, Sleep Deprivation.
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that because number of detected genes in snRNA-seq data for most cell-types (Figure 2A) is lower than for bulk RNA-seq, the cell-type res-

olution may come at a cost of lower sensitivity for differential gene expression. Thus, many more genes can be detected as differentially ex-

pressed after SD in the bulk-analysis, but not in the snRNA-seq analysis.
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Lucia Peixoto (lucia.peixoto@wsu.edu).
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Figure 7. Genes for which SD affects isoform usage are mainly involved in splicing and chromatin regulation

Bubbles show enriched terms (modified Fisher’s Exact p-value <0.05) following functional enrichment analysis of 1,575 genes that have significant DTU

(qvalue <0.05), as compared with the expressed transcript list. Bubble size corresponds to the number of genes per term (minimum of 3), and color gradient

represents p-values. Gray boxes outline clustered terms (similarity threshold >0.2, and enrichment score >1.5). Enrichment scores for each cluster; Cluster 1

(3.02), Cluster 2 (2.60), Cluster 3 (1.79). Example genes are shown for each cluster. SD, Sleep Deprivation. DTU, Differential Transcript Usage. BP, Uniprot

biological process. MF, Uniprot molecular function. KEGG, KEGG pathways.
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Materials availability

This study did not generate new unique reagents.
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Data and code availability

� Single-cell and bulk RNA-sequencing data have been deposited at GEO and are publicly available as of the data of publication. Accession numbers are
listed in the key resources table.

� All original code has been deposited at Github (https://github.com/PeixotoLab/RNAseq_sleep) and is publicly available as of the date of publication.
Furthermore, tutorials for reference-based cell-type annotation, differential expression and usage analyses can be found at: https://rissolab.github.io/
AtlasCortexSD/index.html. A Docker container is also provided to ensure version control and reproducibility.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

Adult, male wild-type (WT) C57BL6/J mice (8–10-week-old) were housed in standard cages at 24G 1�C on a 12:12 h light:dark cycle with food

and water ad libitum. All experimental procedures were approved by the Institutional Animal Care and Use Committee of Washington State

University under ASAF 6841 and conducted in accordance with National Research Council guidelines and regulations for experiments in live

animals.
METHOD DETAILS

Single nuclear RNA-seq study after SD

Tissue collection

Adult male (8–10-week-old) WT C57BL6/J mice were divided into 2 groups (n = 3 independent animals per group): sleep deprived (SD5) and

home cage controls (HC5). All mice were individually housed. Home cage control mice were left undisturbed and sacrificed 5 h after light

onset (ZT5). Mice in the sleep-deprived group were sleep-deprived for 5 h via gentle handling starting at light onset and then sacrificed

upon completion of sleep deprivation (ZT5) without allowing for recovery sleep. Mice were sacrificed by live cervical dislocation (alternating

between home cage controls and sleep-deprived mice), decapitated, and the frontal cortex was swiftly dissected on a cold block. Tissue was

flash frozen in liquid nitrogen and stored at �80�C until processing.9,37

RNA isolation, library preparation and sequencing

Nuclei were extracted frommouse frontal cortical tissue using the Nuclei PURE Prep kit (NUC201-1KT, Millipore Sigma, Burlington MA, USA)

with volumes reduced to a quarter of the recommended amount. Briefly, frontal cortex tissue (�0.035 g per sample/mouse) were lysed using

2 mL glass dounce homogenizers (Kimble-Chase, Vineland, NJ USA) in cold phosphate buffered saline and RNAase inhibitor (03335399001,

Roche, Basel, Switzerland). Nuclei was then isolated using a sucrose gradient and ultracentrifugation at 13,000 rcf for 45 min at 4�C (Sorvall

WX-100, F65L-6 x 13.5 rotor, Thermo Fisher, Waltham,MAUSA). Isolated nuclei were resuspended in Nuclei PURE Prep kit storage buffer and

RNAase inhibitor. Nuclei count and integrity was assessed prior to library preparation.

SinglenuclearRNA-seq librariesweregeneratedusing theChromiumSingleCell 30 Solutionmicrofluidicsplatform (103Technologies, Pleas-

onton, CA USA). Single-nuclei libraries were generated from the nuclei suspensions using the 103Genomics Chromium Controller and Single

Cell 30 ReagentKits v3Chemistry followingmanufacturer’s instructions.Briefly,we targetedcaptureof 10,000 singlenuclei throughgenerationof

gel beads in emulsion (GEMs) which allowed partitioning of an individual nuclei along with a bead containing barcoded oligonucleotides.

Reverse transcription and barcoding occurred within this emulsion resulting in transcripts from an individual nucleus having a uniquemolecular

identifier (UMI). After barcoding, the emulsionwasbroken, and thecDNAprocessed inbulk. Thebarcoded cDNAwasfirst amplified togenerate

sufficient mass for library construction and then sample index, P5 and P7 adapters were added for Illumina sequencing. The sizes of 103 cDNA

libraries were assessed by Fragment Analyzer with the High Sensitivity NGS Fragment Analysis Kit. The concentrations were measured by

StepOnePlusReal-TimePCRSystem (ThermoFisher Scientific, SanJose,CA)with theKAPALibraryQuantificationKit (Kapabiosystems,Wilming-

ton, MA). The libraries were diluted to 2 nMwith RSB (10 mMTris-HCl, pH8.5) and denatured with 0.1 NNaOH. Three pM libraries were loaded

onto NextSeq 500 (Illumina, San Diego, CA) for sequencing using the NextSeq 500/550 High Output Kit v2.5 (150 Cycles). The libraries were

sequenced from both ends with 28 + 8+0 + 91 cycles (read length 100 bp) at an average depth of 40 million paired-end reads per sample.

Quantification of raw sequencing reads

We processed the raw sequencing reads in FASTQ files using the Salmon (v. 1.3.0) package using the ‘mapping mode’ that runs in two phases:

(i) the indexing step and (ii) the quantification step.38 To prepare to create the index, we downloadedGencode (releaseM25) reference genome

(‘GRCm38.primary_assembly.genome.fa.gz’) and reference transcriptome (‘gencode.vM25.transcripts.fa.gz)’, alongwithGTF coordinates (‘gen-

code.vM25.annotation.gtf.gz’). To improve the accuracy of quantification estimates from Salmon, we built an index that incorporated a set of

genome targets asdecoys (https://combine-lab.github.io/alevin-tutorial/2019/selective-alignment).Using theconcatenated listof transcriptome

targetsalongwithgenome targets,weused ‘salmon index‘ function tobuild the indexwith theflags: ‘–gencode‘, ‘–threads40, and ‘-k 31‘.Next,we

used ‘salmon quant‘ to perform quantification with the flags ‘–threads 60 and ‘–numBootstraps 30‘. Using this index, we used ‘salmon alevin‘ to

quantify reads to the gene level with flags ‘–chromiumV30, ‘–threads 60, ‘–forceCells 100000, ‘–dumpFeatures –dumpBfh‘, and ‘–numCellBoot-

straps 30‘58,59. Next, we created an R/Bioconductor SingleCellExperiment object60 with the tximeta (v. 1.15.2) R/Bioconductor package,39 where
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we quantified counts for both spliced mRNA and introns using the ‘getFeatureRanges()‘ function from the eisaR R/Bioconductor package.40,41

Also, we used the alevinQC R/Bioconductor package to calculate QC metrics for each sample processed with ‘salmon alevin‘.42

Data setting, quality control, normalization and doublets removal

We summed the UMI counts of spliced mRNA and introns sharing the same Ensembl Gene ID. To identify mitochondrial genes, we retrieved

the chromosome location of each Ensembl Gene ID with the EnsDb.Mmusculus.v79 (v. 2.99.0) R/Bioconductor package.43 We then split the

data into six SingleCellExperiment objects, one for each mouse.

For each sample, we used the scuttle (v. 1.8.4) R/Bioconductor package to detect low-quality and damaged droplets.49 Particularly, we

computed per-cell (nuclei) quality-control metrics with the perCellQCMetrics function. Furthermore, we employed the isOutlier function

and set ‘‘type = lower,’’ which removed any nuclei that were more than three median absolute deviations from the median. The sum of

UMI counts, the number of detected genes, and the percentage of mitochondrial counts were visualized with violin plots for each biological

replicate (Figure S1). Lastly, for each sample, we removed potential doublets with the scDblFinder (v. 1.12.0) R/Bioconductor package,44 using

the computeDoubletDensity function to calculate the scores and the doubletThresholding function to set the doublet scores threshold (0.5)

with the griffithsmethod. To correct for ambient RNA, the FastCAR (v. 0.1.0) R package45 was employed. After reviewing the results, we found

that the corrected matrix after removing the ambient RNA was the same as our expression matrix.

Overall, our quality control procedure retained 52,651 high-quality nuclei, with an average of 8,775 nuclei per mouse.

Cell-type annotation and validation of cell-type labels

To identify cell types, we used the Allen Whole Cortex & Hippocampus - 10x genomics data (http://portal.brain-map.org/atlases-and-data/

rnaseq/mouse-whole-cortex-and-hippocampus-10x) as a reference dataset.16 This dataset was imported with the AllenInstituteBrainData

function of the AllenInstituteBrainData (v. 0.99.1) package (available at https://github.com/drighelli/AllenInstituteBrainData). We then

selected the ‘‘Non-Neuronal’’, ‘‘Glutamatergic’’ and ‘‘GABAergic’’ clusters coming from the Visual Cortex (VIS, VISl, VISm, VISp) to annotate

our dataset. For computational issues, we selected a random subset of 100,000 cortical cells.

To identify the best cell annotationmethod, we used two datasets of primary motor cortex tissue. The first dataset, ‘‘103Nuclei v3 Broad,’’

(http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/sncell/10x_v3/mouse/processed/analysis/10X_nuclei_v3_Broad/) was from the

Broad (Macosko Lab), while the second dataset, ‘‘103 Nuclei v2 AIBS,’’ (http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/

sncell/10x_v2/mouse/processed/analysis/10X_nuclei_v2_AIBS/) was from the Allen Institute for Brain Science.16

We then annotated these datasets using two methods: Azimuth and SingleR. For Azimuth, the reference data was converted into a Seurat

object and into an Azimuth compatible object, using theAzimuthReference function of the Azimuth (v. 0.4.6) package https://satijalab.github.

io/azimuth/articles/run_azimuth_tutorial.html.46 Then query samples were merged and converted into a Seurat object. Cell annotation was

computed using the RunAzimuth function of the Azimuth package. The t-SNE and the UMAP embeddings were computed using the Run-

TSNE and RunUMAP functions of the Seurat (v. 4.3.0) package,48 https://cran.r-project.org/web/packages/Seurat/index.html with seed.use =

1. For SingleR, the reference dataset was aggregated across groups of cell types andwas normalized, using the aggregateAcrossCells and the

logNormCounts functions of the scuttle (v. 1.8.4) package. Then, cell annotation was computed using the SingleR function of the SingleR (v.

2.0.0) R/Bioconductor package,47 https://bioconductor.org/packages/release/bioc/html/SingleR.html. We found that Azimuth was the best-

performing method on these already annotated datasets and hence we chose this annotation method for the annotation of our rodent PFC

snRNA-seq dataset.

In addition, to evaluate the cell-type assignments in our dataset, we visualized cell-type specificmarkers based on ref.,61–65 with a heatmap

of the log2-normalized count average in each group. We used the pheatmap function of the pheatmap (v. 1.0.12) package (https://cran.r-

project.org/web/packages/pheatmap/index.html).50 Furthermore, we used the Seurat package to visualize cell-type specific markers as a

bubble plot, with the size of the bubbles corresponding to the percentage of cells expressing the marker. Additional cell-type markers

from the Allen Brain Atlas Transcriptomics Explorer (https://celltypes.brain-map.org/rnaseq/mouse_ctx-hpf_10x?selectedVisualization=

Heatmap&colorByFeature=Gene+Expression&colorByFeatureValue=Cux2) were visualized with the pheatmap package. If a gene was differ-

entially expressed in a given cell-type, a black box surrounding the respective square was added.

As an additional quality control, we checked if there were cell types with a low proportion of intronic reads, as this could be a sign of cyto-

plasmic RNA (likely from cell debris) and assigned incorrectly to nuclei. All cell types had a high proportion of intronic reads, as expected in

single-nuclear RNA-seq.66 To visualize the assigned cell-type labels in two dimensions, the UMAP embeddings were computed using the

DimPlot function of the Seurat package, with option reduction = ‘‘integrated_dr’’, where ‘‘integrated_dr’’ is the supervised principal compo-

nent analysis obtained by the Azimuthmethod. Finally, a pseudo-bulk level Multidimensional Scaling (MDS) plot was createdwith the pbMDS

function of themuscat (v. 1.12.1) R/Bioconductor package.51 Each point represents one subpopulation-sample instance; points are colored by

subpopulation and shaped by treatment. A tutorial for mouse brain reference-based cell-type assignment is available through GitHub and at

the following website: https://rissolab.github.io/AtlasCortexSD/articles/1_ct_anno.html.

Pseudo-bulk differential expression analysis for snRNA-seq data

For each neuronal cell type with more than 500 nuclei, differential gene expression analysis was carried out with a negative binomial gener-

alized linearmodel (GLM) on pseudo-bulk samples. Specifically, we created the pseudo-bulk samples with the function aggregateAcrossCells

of the scuttle package by summing the counts of each gene for each cell type and mouse combination.
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Then, we normalized the raw counts for each cell type with the upper-quartile method, using the betweenLaneNormalization function of

the EDASeq (v. 2.32.0) R/Bioconductor package with option which = "upper".52 To account for latent confounders, we computed the factors

of unwanted variation on the normalized data, using the RUVs function of the RUVSeq R/Bioconductor (v. 1.32.0) package with k = 2,17,18 and

using a list of genes previously characterized as non-differential in sleep deprivation in a largemicroarraymeta-analysis,14 herein referred to as

‘‘negative control genes.’’ Specifically, 10% of negative control genes were randomly selected to be used for evaluation and the remaining

control genes were used to fit RUV normalization. Analysis and visualization was also repeated while using all rownames as negative control

genes during RUVseq analysis.

We then used the edgeR R/Bioconductor (v. 3.40.2) package to perform differential expression after filtering the lowly expressed genes

with the filterByExpr function (with parameters: min.count = 10, min.total.count = 15, large.n = 10, min.prop = 0.7).53 The raw counts were

normalized with the upper-quartile method, using the function calcNormFactors.67 The factors of unwanted variation were added to the

design matrix. The differential gene expression analysis was performed with the function glmLRT by specifying ‘‘SD-HC’’ (Sleep Deprived

vs. Home Cage Control) as contrast. We used the Benjamini-Hochberg procedure to control for the false discovery rate (FDR), i.e., we consid-

ered as differentially expressed those genes that had an adjusted p-value less than 5%.68

For each cell type, we visualized differentially expressed genes (DEGs) with volcano plots and assessed the model’s goodness-of-fit by

visualizing the p-value histograms. We incorporated cross-study, cross-brain tissue positive controls (Additional File 2 from Gerstner et al.,

2016 to evaluate the performance of our differential gene expression pipeline.

To understandwhich cell-typesmaybepreferentially affectedby treatment, the natural log of theDEGswereplotted against the natural log

of the number of nuclei.With this approach, the number of DEGswere expected to increase linearly with the number of nuclei sequenced. Due

to the distributional properties of count models, cell-types above the line can be said to be affected more than expected by SD, while those

below the line are affected less than expected. If therewere nodifferences betweenSDandHCcontrol animals in a given cell-type, the number

of DEGs would be zero. To further the effect of sample size differences, differential expression was run on 100 random subsets of 200 nuclei in

each cell-type. The results of this analysis were depicted on a scatterplot with the cell-types on the x axis, and the number of DEGson the y axis.

For glutamatergic and GABAergic neurons, we used the upset function of the UpSetR (v. 1.4.0) package to compare the lists of differen-

tially expressed genes within each cell type with more than 500 nuclei.54 A minimum of 20 unique genes were required. To better understand

which genes were shared between glutamatergic and GABAergic cell types, the union of all glutamatergic DEGs and GABAergic DEGs was

determined. To visualize shared and unique genes, a Venn Diagram was generated using the venn.diagram function of the VennDiagram

package (v. 1.7.3, https://cran.r-project.org/web/packages/VennDiagram/index.html).55 Select genes were highlighted.

A tutorial for pseudo-bulk differential gene expression analysis in response to treatment of sc/snRNA-seq data is available throughGitHub

and at the following website: https://rissolab.github.io/AtlasCortexSD/articles/2_pb_dgea.html.

Functional enrichment analysis of snRNA-seq data

Additionally, functional enrichment analysis of genes that were shared between glutamatergic andGABAergic cell types, or unique to a given

category (glutamatergic only or GABAergic only) were subjected to functional annotation using theDatabase for Annotation, Visualization and

Integrated Discovery v2021 (DAVID).69,70 Prior to the analysis, genes were separated by fold change to obtain one list of upregulated and one

list of downregulated genes per category. Genes that were upregulated in one cell type, but downregulated in another were excluded from

analysis. The following categories were used: Uniprot Biological Process, Uniprot Molecular Function (https://www.uniprot.org) and KEGG

Pathways (https://www.genome.jp/kegg/pathway.html). Enrichment was relative to the union of all expressed genes within a category: unique

to glutamatergic cell types or unique to GABAergic cell types. An EASE Score <0.05 and similarity threshold >0.20 were used to allow for in-

clusive clustering. Clustered and unclustered terms were visualized with a bubble plot using the ggplot function from the ggplot2 (v. 3.4.2,

https://cran.r-project.org/web/packages/ggplot2/index.html) package,56 with the size of the bubbles corresponding to the number of genes

within a term. For glutamatergic and GABAergic bubble plots, clustered terms were reduced to one bubble, with the size of the bubble cor-

responding to the union of genes within all terms in that category. Duplicated genes were removed. Fold enrichment is visualized along the x

axis. For clustered terms, the geometric mean of the fold enrichments was determined and plotted along the x axis. P-values are shown as a

color gradient, red for upregulated and blue for downregulated. For clustered terms, the geometric mean of the p-values was plotted.

Functional enrichment of genes that were differentially expressed, and unique to a cell type, was performed using DAVID. DGE lists were

separated by fold change to obtain one list of upregulated, and one list of downregulated genes per cell type. The same categories were used

as detailed above: Uniprot Biological Process (https://www.uniprot.org), Uniprot Molecular Function (https://www.uniprot.org) and KEGG

Pathways (https://www.genome.jp/kegg/pathway.html). Again, an EASE Score <0.05 and similarity threshold >0.20 were used to allow for

inclusive clustering. For L2/3 IT CTX and L4/5 IT CTX, clustered and unclustered terms were visualized with a bubble plot using the ggplot

function from the ggplot2 (v. 3.4.2, https://cran.r-project.org/web/packages/ggplot2/index.html) package, with the size of the bubbles cor-

responding to the number of genes within a term. The fold enrichment is visualized along the x axis. P-values are shown as a color gradient,

red for upregulated and blue for downregulated.

Bulk RNA-seq gene expression study after SD

Tissue collection

Adult male (8–10-week-old) WT C57BL6/J mice were divided into 2 groups (n = 5 independent animals per group): sleep deprived (SD5) and

home cage controls (HC5). All mice were individually housed. Home cage control mice were left undisturbed and sacrificed 5 h after light
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onset (ZT5). Mice in the sleep deprived group were sleep deprived for 5 h via gentle handling starting at light onset and then sacrificed upon

completion of sleep deprivation (ZT5) without allowing for recovery sleep. Mice were sacrificed by live cervical dislocation (alternating be-

tween home cage controls and sleep deprived mice), decapitated, and the frontal cortex was swiftly dissected on a cold block. Tissue was

flash frozen in liquid nitrogen and stored at �80�C until processing.9,37 This protocol was repeated over a 5 day period, and all tissue was

collected within the first 15 min of the hour.

RNA isolation, library preparation and sequencing

Frontal cortex tissue was homogenized in Qiazol buffer (Qiagen, Hilden, Germany) using a TissueLyser (Qiagen) and all RNA was extracted

using theQiagen RNAeasy kit (Qiagen) on the same day. The integrity of total RNAwas assessed using Fragment Analyzer (Advanced Analyt-

ical Technologies, Inc., Ankeny, IA) with the High Sensitivity RNA Analysis Kit (Advanced Analytical Technologies, Inc.). RNAQuality Numbers

(RQNs) from 1 to 10 were assigned to each sample to indicate its integrity or quality. ‘‘10’’ stands for a perfect RNA sample without any degra-

dation, whereas ‘‘1’’ marks a completely degraded sample. RNA samples with RQNs ranging from 8 to 10 were used for RNA library prepa-

ration with the TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, CA). Briefly, mRNA was isolated from 2.5 mg of total RNA using

poly-T oligo attached to magnetic beads and then subjected to fragmentation, followed by cDNA synthesis, dA-tailing, adaptor ligation and

PCR enrichment. The sizes of RNA libraries were assessed by Fragment Analyzer with the High Sensitivity NGS Fragment Analysis Kit

(Advanced Analytical Technologies, Inc.). The concentrations of RNA libraries were measured by StepOnePlus Real-Time PCR System

(ThermoFisher Scientific, San Jose, CA) with the KAPA LibraryQuantification Kit (Kapabiosystems,Wilmington,MA). The libraries were diluted

to 2 nM with Tris buffer (10 mM Tris-HCl, pH8.5) and denatured with 0.1 N NaOH. Eighteen pM libraries were clustered in a high-output flow

cell using HiSeq Cluster Kit v4 on a cBot (Illumina). After cluster generation, the flow cell was loaded onto HiSeq 2500 for sequencing using

HiSeq SBS kit v4 (Illumina). DNA was sequenced from both ends (paired-end) with a read length of 100 bp. The average depth for all samples

was 52 million read pairs.

Quantification of raw sequencing reads

To process the raw sequencing reads from the bulk RNA-seq experiments, we again used Salmon alongwith the same index built with decoys,

which is detailed in the ‘Quantification of raw sequencing reads’ in the ‘single nuclear RNA-seq study after SD’ section. Again, we used the

tximeta to create a SummarizedExperiment object at the transcript level and a second object summarized to the gene level using the ‘sum-

marizeToGene()‘ from tximeta.

Differential gene and transcript expression

Following tximeta, inferential replicates were scaled and filtered using the default parameters in the fishpond R/Bioconductor package (v.

2.4.0) so that only features with a minimum of 3 samples with a minimum count of 10 reads remained, herein referred to as ‘‘expressed’’.19

To correct for unwanted variation, raw counts were first normalized with the upper-quartile method, using the betweenLaneNormalization

function of the EDASeq (v. 2.32.0) R/Bioconductor package with option which = "upper".52 Next, RUVs (k = 4) from the RUVseq (v. 1.32.0)

R/Bioconductor package was used to generate ‘W,’ the factors of unwanted variation.17,18 For RUVs at the gene level, we implemented

the same list of genes less likely to be affected by sleep deprivation according tomicroarrays detailed previously, herein referred to as ‘‘nega-

tive control genes’’.14 For RUVs at the transcript level, we used all expressed transcripts as controls. We then used ‘removeBatchEffect’ from

the limmaR/Bioconductor package (v. 3.54.0) to remove the variation from the inferential replicates.57 After correcting for unwanted variation,

differential expression was performed using Swish from the fishpond package. Genes and transcripts with a q-value <0.05 (multiple test cor-

rected p-value)71 were deemed to be significantly differentially expressed. We incorporated the same cross-study, cross-brain tissue positive

controls detailed previously (Additional File 2 fromGerstner et al., 2016 to evaluate the performance of our differential gene expression pipe-

line.We recovered 83.2% (558/671) of the positive control genes detected in thematrix at the gene level. To determinewhich genes were only

detected with expression analysis at the gene or transcript level, the venn.diagram function of the VennDiagram package (v. 1.7.3, https://

cran.r-project.org/web/packages/VennDiagram/index.html) was implemented.

A tutorial to perform DGE and DTE analysis is available through GitHub and at the following website: https://rissolab.github.io/

AtlasCortexSD/.

Differential transcript usage

During our differential expression analysis, we discovered genes that had both upregulated and downregulated transcripts. Therefore, we

decided to perform differential transcript usage (DTU) analysis, to detect which genes had transcripts with differential proportion in response

to sleep deprivation. To do so, we incorporated ‘isoformProportions’ from the fishpond package, to convert the counts of inferential repli-

cates to proportions before proceeding with Swish. To increase the reproducibility of the results presented, a secondary filter was immedi-

ately applied following the initial filtering which kept transcripts with a minimum of 10 reads across 3 samples. Only transcripts that had a

log10mean >1 were kept, removing transcripts with low counts that passed the initial filtering.

To better visualize the change in the proportion of transcripts within genes of particular interest (Homer1 and Bdnf), dot plots were gener-

ated using the ggplot function from the ggplot2 (v. 3.4.2, https://cran.r-project.org/web/packages/ggplot2/index.html) package. Briefly, for

each biological replicate, the median of the inferential replicates was determined to obtain one value per transcript per animal. Transcripts
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were only included if they had significant changes in both proportion and expression, q-value <0.05. Additionally, the mean and standard

error within each condition was determined for each transcript and are shown.

In addition to plotting the proportions of transcripts that had significant changes in proportion, dot plots were also generated to show the

normalized counts of the same transcripts following DTE analysis. To generate these plots, the median of the inferential replicates was deter-

mined following swish to obtain one value per transcript per animal. The normalized counts were only plotted for transcripts that had signif-

icant changes in proportion and expression, q-value <0.05. Additionally, the mean and standard error within each condition was determined

for each transcript and are shown.

A tutorial to perform DTU analysis is available through GitHub and at the following website: https://rissolab.github.io/AtlasCortexSD/.

Functional enrichment analysis of bulk RNA-seq data

Functional enrichment analysis of the 1,575 genes with significant differential transcript usage (q-value <0.05) was performed using DAVID as

detailed in the ‘Functional enrichment analysis of snRNA-seq data’ section within the ‘single nuclear RNA-seq study after SD’. The same cat-

egories were used as detailed previously: Uniprot Biological Process (https://www.uniprot.org), Uniprot Molecular Function (https://www.

uniprot.org) and KEGG Pathways (https://www.genome.jp/kegg/pathway.html). Enrichment was relative to the expressed genes after the

initial filter preserving transcripts with a minimum of 10 reads across 3 samples, and before the additional log10mean filter. A p-value

threshold for gene enrichment analysis (EASE Score) < 0.05 was used. A similarity threshold >0.20 was used to allow for inclusive clustering.

Both clustered and unclustered terms were visualized with a bubble plot using the ggplot function from the ggplot2 (v. 3.4.2, https://cran.r-

project.org/web/packages/ggplot2/index.html) package. For functional annotation of genes with significant changes in expression in

response to sleep deprivation, please see Muheim et al., 2023.9
QUANTIFICATION AND STATISTICAL ANALYSIS

R was used to perform statistical analyses pertaining to differential expression analyses. For single-nuclear analysis with edgeR, p-values were

adjusted using the Benjamini-Hochberg procedure, and significant when the FDR <0.05. For bulk analysis, p-values were adjusted using the

Storey Tibshirani method, and significant when the q-value <0.05. For functional enrichment analysis using DAVID, a p-value <0.05 was

considered significantly enriched, and a similarity threshold >0.20 was required for clustering.
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