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Abstract—The recent rise of the Cloud Virtual Reality (VR)
paradigm, in which VR frames are streamed from a remote
server to the user’s Head-Mounted Display (HMD), poses some
interesting challenges from a networking perspective. VR flows
are high-throughput and have strict latency requirements. In this
paper, we analyze on-the-fly edge transcoding, which follows the
opposite philosophy from the more common slicing approach:
instead of adapting resource allocation to the content, we com-
press the frames to fit into the allocated bandwidth, guaranteeing
limited latency. Our results show that this strategy is effective
in maintaining low latency, but the picture quality is highly
dependent on the computing power of the Base Station (BS).

I. INTRODUCTION

The development of eXtended Reality (XR) technology
has significantly accelerated over the past few years, helped
along by the strong push by tech giants like Meta and
Steam to commercialize its applications and the COVID-19
lockdowns. Recent forecasts [1] predict that the number of
XR devices sold yearly will exceed 100 million by 2025, and
industrial and manufacturing applications are emerging along
with commercial, recreative ones. One of the most interesting
developments in the field is Cloud XR, which allows for
higher Quality of Experience (QoE) and lighter Head-Mounted
Display (HMD) devices: while the first generation of headsets
was self-contained, performing all the necessary processing
and rendering locally, the significant computing power of the
Cloud and network edge can be used to improve quality,
relying on the 5G and beyond infrastructure to stream the
rendered flow [2]. However, while streaming passive Virtual
Reality (VR) content can use buffered content to provide a
smooth experience even in wireless channels [3], interactive
content cannot be buffered, and the consequences of network
impairments can be much more serious [4]. Excessive delays
can produce a mismatch between visual input and propriocep-
tive sensations, which causes cybersickness [5].

The concept of motion-to-photon latency [6], i.e., the delay
between a control action by the user and its effect in the
virtual environment, as shown to the user through the HMD,
has emerged as a Key Performance Index (KPI) to avoid
these issues. At the same time, we need to consider the strain
that the XR content can put on the Radio Access Network
(RAN), which 3GPP has recently analyzed [7], due to the
extremely challenging requirements for future XR systems [8].
Furthermore, even the use of the intra-frame encoding option,
which is supposed to output a Constant Bit Rate (CBR) stream,
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cannot completely eliminate the random component in the
frame size [9]: as the frame size is only partially predictable,
and might fluctuate by about 30% of the average frame size,
provisioning capacity is complex [10]. In order to fulfil the
latency requirement, the resource allocation algorithm would
need to integrate a prediction on the future frame sizes [11].

Naturally, there are two possible kinds of adaptations to
provide reliable service: the first is network slicing, i.e.,
allocating enough resources to the VR user to maintain the
required QoE, and the second is to compress the content so as
to fit into the available bandwidth. The second approach entails
a certain level of control over the VR application [12], and
direct communication with the Cloud server that generates the
content. However, there are also some issues: firstly, neither
the HMD nor the Cloud server knows the future resource
allocation, which is performed by the Base Station (BS). The
communication between the client and server is also affected
by the propagation delay, as the server might not be close to
the user, making the adaptation relatively sluggish. However,
recent works have demonstrated the capability of Mobile Edge
Computing (MEC)-enabled BSs to set the quality for a video
flow, and even transcode it to adapt its bitrate [13].

In this work, we combine the prediction model from [9]
with an edge transcoding model to solve this issue: we define
a theoretical model of the components of motion-to-photon
latency, then propose an adaptive transcoding solution that
can compress frames to allow them to be delivered within
the required latency. We derive some analytical results on the
distribution of the latency and picture quality for both cases,
then compare our solution with an ideal, fully adaptive net-
work slicing system, as well as with a legacy system without
transcoding. Our simulation results show that transcoding is
an effective way to provide low-latency service under variable
network conditions, at the cost of a slightly lower picture
quality, but that its effectiveness is highly dependent on the
amount of available computational resources on the edge node.

The rest of this paper is divided as follows: first, Sec. II
presents the system model and the basic components of the
motion-to-photon latency. We then evaluate the performance
of the proposed scheme in Sec. III. Finally, Sec. IV concludes
the paper and presents some possible avenues of future work.

II. SYSTEM MODEL

We consider a Cloud VR service, in which a VR user
experiences a virtual environment through an HMD. As high-
quality content requires significant computing capabilities, the
generation and encoding of the content is performed by a
remote server in the Cloud, which streams it to the HMD.
We then consider a stream of individual frames of size F (k),
where k is the frame index, which are generated at a frame rate
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Fig. 1: Components of the motion-to-photon latency for the
considered system model.

of ϕ Frames per Second (FPS). The VR content is encoded
using the H.264 Periodic Intra Refresh option, which makes
the frames quasi-CBR [9].

We then list the components of the motion-to-photon la-
tency, which are shown in Fig. 1: first, the motion of the
VR user is detected using inertial sensors and transmitted
from the HMD to the Cloud, where the results of the actions
are calculated and the new frame is generated. In VR, the
size of the feedback packets from the HMD to the server is
negligible1. Feedback packets from the user are generated with
a frequency ϕ (i.e., one per frame), so the time between the
instant when the server receives the feedback on the user’s
movement and the generation of the next frame is a uniform
random variable τf ∼ U

(
0, ϕ−1

)
. The one-way propagation

time from the BS to the Cloud server is denoted as τp, and
the computation time required by the server to generate and
encode the content is denoted as τg. The propagation time
from the HMD to the BS is considered negligible here, but it
can be easily added to the model. After the new frame of size
F (k) is generated, it is transmitted to the BS through the core
network. Assuming that the back- and fronthaul links are high-
capacity fiber optic, this also requires a time τp, independently
of the frame size. However, the bottleneck of the connection
is in the RAN, i.e., in the wireless connection between the
BS and the HMD. If we consider a network slicing algorithm
to allocate capacity C(k) to frame k, the resulting motion-to-
photon latency T (k) is given by:

T (k) = τf + 2τp + τg +
F (k)

C(k)
. (1)

While the first two terms are constant, and mostly independent
from resource provisioning, the third one is highly dependent
on the variable frame size, as even the quasi-CBR encod-
ing results in frame size differences up to 30% around the
average [9]. Maintaining a motion-to-photon latency below
20 ms, the target set by IEEE [14] for XR content, would then
require an extremely fast adaptation of the network slicing for
the RAN, providing the correct amount of resources for each

1In Augmented Reality (AR), we would also have to consider the video
frames sent from the user to the server, as the camera feed needs to be
transmitted to integrate the virtual content into it.

frame, or a huge overprovisioning to accommodate even the
largest frames.

If adapting the resource allocation on such a short timescale
is infeasible, which would be the case in current systems, in
which the network slicing allocation is updated only after sev-
eral seconds, there is another option to maintain T (k) below
the threshold. A MEC-enabled BS can decode and transcode
the oversized frames, i.e., the ones for which T (k) > Tmax, as
defined by (1), performing a rougher quantization of the video
parameters and reducing F (k), at the cost of a slightly reduced
picture quality. Naturally, this operation also requires some
time, which depends on the amount of computational resources
available for the task, denoted as Z(k) in the following. If the
number of operations for the decoding and transcoding is E
(which we assume is independent from the frame size itself),
the overall computation time τr(k) is given by τr(k) = EZ(k).
If we denote the transcoded size as F ′(k), we get the new
motion-to-photon latency T ′(k), shown in red in the figure:

T ′(k) = τf + 2τp + τg + EZ(k) +
F ′(k)

C(k)
. (2)

This on the fly transcoding can be adapted based on the amount
of available computing and communication resources, which
the BS knows, as it is the entity that manages them. We can
then set the constraint on the compression level that allows us
to meet the motion-to-photon latency target Tmax as:

F ′(k) ≤ (Tmax − ϕ−1 − 2τp − τg − EZ(k)) · C(k). (3)

We consider the worst-case scenario in which the motion
happened right after the previous feedback packet was sent,
so the feedback recording delay is ϕ−1. To maintain stability,
we also need to impose a further condition on C(k), i.e.,
E[C(k)] ≥ ϕE[F ′(k)]. Depending on the frame rate and on
the motion-to-photon latency constraint Tmax, this condition
might be stricter or looser than (3). We can then give the
condition in which the transcoding is performed, compressing
the original frame to fit into the latency budget:

F (k) > C(K)min
(
Tmax − (τg + 2τp + ϕ−1), ϕ−1

)
. (4)

We give a visual representation of the effect of different
schemes in Fig. 2, which compares the effects of predictive
slicing and transcoding. The baseline, shown in Fig. 2a, is a
classical slicing scheme, which assigns a fixed capacity to the
VR flow: there is a clear trade-off between overprovisioning
(and consequently wasting some resources, shown in blue) and
latency, as some frames are too big to be transmitted with the
required motion-to-photon latency. Predictive slicing, shown in
Fig. 2b, takes a conservative approach, attempting to predict
the size of the next frame and provisioning resources for the
worst case. In general, using prediction can allow the scheme
to waste fewer resources than setting a large fixed capacity.
Finally, edge transcoding is shown in Fig. 2c: as frames are
compressed to fit into the allocated capacity, latency is limited,
at the cost of a lower picture quality.



Allocated capacity Required capacity Used capacity Extra capacity Needed capacity

0 20 40 60 80 100

20

30

40

Frame index

C
ap

ac
ity

(M
b/

s)

(a) Fixed rate slicing

0 20 40 60 80 100

20

30

40

Frame index

C
ap

ac
ity

(M
b/

s)

(b) Predictive slicing

0 20 40 60 80 100

20

30

40

Frame index

C
ap

ac
ity

(M
b/

s)

(c) Edge transcoding

Fig. 2: Scheduling methods utilizing a fixed data rate compared against an adaptive, and the transcoding principle.
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Fig. 3: Performance of the schemes as a function of the targeted capacity percentile.

III. SIMULATION SETTINGS AND RESULTS

In this section we perform a set of simulation scenarios
to analyze the performance of different scheduling schemes.
These are a predictive slicing scheme presented in [9], which
sets a constant rate for N frames at a time. A baseline
that utilizes a fixed rate for all frames, and the proposed
transcoding scheme also utilizes a fixed rate. All schemes
strive to adhere to a pre-defined maximum motion-to-photon
latency Tmax: the transcoding scheme ensures that the latency
bound will be respected, reducing the picture quality when
necessary as determined in (4). The size of the transcoded
frame is determined in (3), and we simply define the relative
picture quality of compressed frames as F ′(k)

F (k) , without going
into more complex quality metrics [3]. The simulations use
the parameters from Table I, unless otherwise stated.

First, we analyze the effect of changing the capacity in the
fixed slicing. Fig. 3 compares the performance of the schemes
in terms of latency, resource efficiency, and picture quality. As
Fig. 3a shows, the baseline scheme is able to meet the motion-
to-photon latency deadline for 95% of frames (corresponding
to the upper whisker of the boxplot) if C ≥ 38 Mb/s, while
the predictive scheme is able to achieve a slightly better
performance with the same average capacity as the baseline
scheme. As Fig. 3b shows, the predictive slicing scheme has

TABLE I: Scenario parameters.

Par. Value Par. Value Par. Value

Tmax 50 ms τg 4 ms τp 8 ms
τr 3 ms C (fixed) 36 Mb/s ps (pred.) 0.99

S (pred.) 6 frames N (pred.) 6 frames τ (pred.) 1 frame
R 30 Mb/s ϕ 60 FPS Content Virus Popper

a variable capacity, which depends on the predicted size of
the next frame. If we consider the transcoding scheme, we
notice that it can achieve a latency that is guaranteed to be
below Tmax even at the lowest capacity, as the degree of
freedom in this case is the picture quality: when capacity is
insufficient, there is a trade-off between latency and quality,
and the transcoding scheme sacrifices the latter to guarantee
the former, as Fig. 3c shows. In general, a higher capacity
corresponds to a higher picture quality, while the latency
remains the same. The opposite applies for the other schemes,
where quality remains the same, but latency improves.

We can also consider the effect of τr on the efficiency of
the edge transcoding scheme: the computing power available
at the edge node is a critical factor, as longer transcoding
times take up a larger portion of the motion-to-photon latency
budget, reducing the quality. With the specified parameters, the
time available for the downlink transmission of each frame,
equal to Tmax − (2τp + τg + ϕ−1), is 13.33 ms: naturally,
if τr ≥ 13.33 ms, transcoding is impossible at any level of
compression. Even if τr is lower, it has a significant effect
on the performance of the scheme, as Fig. 4 shows. If we
consider latency distribution in Fig. 4a, we can notice that the
transcoding scheme still delivers all frames within the latency
budget. However, this comes at the cost of the picture quality,
as Fig. 4b shows: as τr increases, the quality is significantly
degraded, and the median transcoded frame for τr = 10 ms
is about 25% of the original quality. While actual QoE is
nonlinear, and might be better represented by a logarithmic
curve, this is still an extreme degradation, and computing
power is crucial for the scheme.

Finally, we can take a deeper look at performance by
analyzing the full Cumulative Distribution Functions (CDFs)
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Fig. 4: Performance of the schemes as a function of the transcoding time τr.
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Fig. 5: Performance CDFs for the 4 different schemes using parameters from Table I.

of the main performance metrics, using the parameters from
Table I. Fig. 5a shows the CDF of the latency, and as we
discussed above, the edge transcoding scheme is the only
one that achieves 100% on-time delivery, where Predictive
and Baseline only achieve around 95% and 90%, respectively.
Naturally, the performance of predictive slicing has a cost,
which is clearly visible from Fig. 5b: while the fixed rate
schemes always have C = 36 Mb/s, the required capacity for
predictive slicing is higher, and changes over time depending
on the predicted frame size. Finally, the cost of the transcoding
scheme is presented in Fig. 5c: while the other schemes
always transmit frames at full quality, over 60% of frames are
transcoded and compressed, with a compression ratio between
0.5 and 0.8. Additionally, combining predictive allocation and
transcoding yields a negligible performance increase compared
to the fixed rate scheduling with transcoding. That is when
the fixed rate capacity is set to be equal that of the average
of the predictive. An improvement in average quality can
be found, but is < 0.1%. We believe this is related to the
poor performance of the fixed rate scheme being derived from
poor resource provisioning. Once a frame is delayed, the
consequence is the delay of subsequent frames. This chain
effect is not present in transcoding, as frames are guaranteed
to be transmitted within the time window.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an edge transcoding scheme
that can reduce quality to maintain a limited motion-to-
photon latency. Our transcoding scheme is complementary
to predictive network slicing, which adapts the amount of
resources allocated to a VR flow to the predicted requirements
in terms of capacity, and chooses a different degree of freedom
in the trade-off between capacity requirements, motion-to-
photon latency, and picture quality in VR.

There are several avenues for possible future work on the
subject, which include more realistic models of the MEC-

enabled BS and the slicing operation, as well as a joint
optimization of the communication and computing resources.
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