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Multiscale methods are powerful tools to describe large and complex systems. They are based on a hierarchical parti-

tioning of the degrees of freedom (d.o.f.) of the system, allowing one to treat each set of d.o.f. in the most computational

efficient way. In the context of coupled nuclear and electronic dynamics, a multiscale approach would offer the op-

portunity to overcome the computational limits that, at present, do not allow one to treat a complex system (such as a

biological macromolecule in explicit solvent) fully at quantum mechanical level. Based on the pioneering work of R.

Kapral and G. Ciccotti [R. Kapral, G. Ciccotti, J. Chem. Phys. 110, 8919 (1999)], this work is intended to present a

nonadiabatic theory that describes the evolution of electronic populations coupled with the dynamics of the nuclei of a

molecule in a dissipative environment (condensed phases). The two elements of novelty that are here introduced are:

i) the casting of the theory in the natural, internal coordinates, that are bond lengths, bond angles, and dihedral angles;

ii) the projection of those nuclear d.o.f. which can be considered at the level of a thermal bath, therefore leading to

a quantum-stochastic Liouville equation. Using natural coordinates allows the description of structure and dynamics

in the way chemists are used to describe molecular geometry and its changes. The projection of the bath coordinates

provides an important reduction of complexity and allows to formulate the approach that can be used directly in the

statistical thermodynamics description of chemical systems.

I. INTRODUCTION

In this work a multiscale approach for the simulation of the

coupled quantum-classical dynamics of a flexible molecule in

a solvent is presented. The objective is to provide a framework

to interpret nonadiabatic phenomena, such as photophysical

and photochemical processes (including those at the biologi-

cal level),1–14 as well as charge transfer processes,15–18 occur-

ring in a condensed phase. The full quantum mechanical de-

scription of the dynamics for such complex systems, based on

the solution of the Liouville-von Neumann equation, is unfea-

sible. Therefore, approximated methods to describe the cou-

pled electron and nuclear dynamics are required to interpret

those experiments where the nuclear dynamics is in the same

time scale of the evolution of the exquisitely quantum me-

chanical d.o.f. and/or a change of the electronic quantum state

impacts the nuclear dynamics. An important example of the

first scenario is the interpretation of the electronic or nuclear

magnetic relaxation experiments. Here, the spin dynamics is

coupled with the nuclear dynamics since in the semi-classical

interpretation nuclear fluctuations are responsible for the time

perturbation of the magnetic Hamiltonian of the system. To

approach this problem, in 1989 Schneider and Freed19 intro-

duced the well known stochastic Liouville equation (SLE). It

couples the stochastic, diffusive slow dynamics of the system

with the spin relaxation dynamics without the back-effect of

spin d.o.f. on the nuclei. An example of the second scenario

is the photo-acoustic effect, where a system absorbs photons

promoting the electrons to an excited energy level and then

dissipates the electronic energy in a nonradiative way, thus

transferring energy to the nuclei in the form of kinetic energy.

In this case, differently from the SLE, a nonadiabatic descrip-

a)Electronic mail: mirco.zerbetto@unipd.it

tion is required to describe the energy transfer between elec-

trons and nuclei. Also, because of the fast time scales of elec-

tron dynamics, an inertial description of the time evolution of

the nuclei is required.

In the vast panorama of nonadiabatic quantum-classical meth-

ods, the most popular approach is the trajectory surface

hopping (TSH) for its conceptual simplicity and straightfor-

ward implementation.3,9 The idea behind TSH is to com-

pute a swarm of classical and independent trajectories to

approximate the nuclear motion on the adiabatic electronic

PES. The nonadiabatic transitions are ruled by a stochas-

tic algorithm that decides if the system remains in the cur-

rent electronic state or it hops to another one. The popu-

larity of TSH has risen after the implementation known as

Fewest-switches surface-hopping (FSSH), which can be de-

rived from a quantum-classical description of the dynamics of

the system.20,21

A second popular formalism is the so-called mean-field

Ehrernfest dynamics.22 Here, a simultaneous solution of both

the quantum evolution for the electronic state to recover the

density matrix elements, and the classical evolution to obtain

the nuclear coordinates is carried out. This framework has two

main limits. Firstly, the mean-field treatment does not allow

to simulate the situation when a system leaves regions of high

nonadiabatic coupling. Secondly, the principle of detailed bal-

ance is not satisfied.

Another approach is the multiple spawning method.23,24 In

this theory, the nuclear wavefunction is expanded in Gaussian

functions that are classically propagated. The number of nu-

clear functions is allowed to change after spawning events to

reproduce the bifurcation of the wave packet inside regions

with a high nonadiabatic coupling. The bottleneck of this

kind of simulations is the evaluation of the Hamiltonian ma-

trix whose integrals are often calculated by a zero-order saddle

point approximation.

Finally, the description of the dynamics based on the defini-
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tion of a quantum-classical Liouville equation25 (QCLE) is

introduced, as it is the approach that has inspired this work.

The method is based on a partial Wigner transform (see next

Section), which leads in a natural way to a hybrid quantum-

classical density matrix. Its time evolution depends on a quan-

tum mechanical Hamiltonian operator acting on the electrons

and a classical Hamiltonian giving the internucelar energy.

The nuclear-electronic coupling depends on both the PESs

and the nonadiabatic coupling matrix obtained from the Born-

Oppenheimer electronic eigenstates.

In this work, the QCLE equation is derived in the rigid

body plus natural internal coordinates. The latter are bond

lengths, bond angles, and dihedral angles. Despite the fact

describing the dynamics in curvilinear coordinates is more

complicated from a formal point of view, the advantage is

the simpler description of the changes in geometry of the

molecule. Moreover, adopting a philosophy similar to that

followed by Kapral in his work on quantum dynamics in clas-

sical baths,26 the classical (nuclear) degrees of freedom will

be divided into relevant and irrelevant. Such a distinction

is relative to the effect of the d.o.f. on the physical observ-

able that is being interpreted. Here, the irrelevant d.o.f. will

be intended as those nuclear degrees of freedom that are i)

fast with respect to the relevant nuclear coordinates, and ii)

energetically uncoupled from the quantum d.o.f.. The sec-

ond requirement implies that for the irrelevant nuclear coordi-

nates, the adiabatic Born-Oppenheimer approximation should

hold. A Zwanzig projection27 will be carried out, leading to a

quantum-stochastic Liouville equation (QSLE), which consti-

tutes a multiscale description of the time evolution of the sys-

tem dividing the d.o.f. into three categories: quantum, classi-

cal relevant, and classical irrelevant. In what follows, we shall

split the degrees of freedom in subsystem + bath. The subsys-

tem is composed by the quantum (QS) and classical relevant

(CS) d.o.f., while the classical irrelevant ones are included in

the bath (CB).

This paper is organized as follows. In Section II the QCLE

is briefly derived in natural internal coordinates. In Section

III the QSLE is obtained by means of the Zwanzig projec-

tion. In Section IV a discussion over the obtained equation is

provided, oriented especially on the numerical solution. The

computation of the nonradiative jumps among the PESs will

be at the center of such a discussion to introduce the work

reported on the companion paper, where a model for the fast

calculation of the jump rates will be presented.

II. DERIVATION OF THE QCLE IN INTERNAL NATURAL
COORDINATES

As outlined in the Introduction, a hierarchical separation of

the d.o.f. is carried out according to this scheme: the system is

divided into the ”relevant” subsystem (S) and the ”irrelevant”

bath (B). The bath includes only nuclear degrees of freedom,

which are treated as classical d.o.f.. As anticipated above, CB

is the set of d.o.f. that are fast with respect to the relevant nu-

clear coordinates, and uncoupled from the relevant quantum

degrees of freedom. The subsystem is divided into quantum

(QS) and classical (CS) coordinates. In a first approximation,

CS will be the set of relevant nuclear coordinates, while QS

will be the set of electronic coordinates. The QS set may also

include nuclear coordinates that need to be treated at quan-

tum mechanical level. However, this is beyond the scope of

this paper and is postponed to further advancements of the

methodology.

Figure 1 provides an example of the separation of the de-

grees of freedom. In what follows we shall go through the

steps to define the QCLE in the set of nuclear coordinates di-

vided into rigid body + internal. The rigid body coordinates

are the center of mass translation and the global tumbling of

the molecule. The natural, Z-Matrix like, internal coordinates

are here chosen, which make the description of the dynam-

ics of the molecule in line with the way chemists describe

molecular geometry. The derivation of the QCLE will follow

that of Grunwald and Kapral25,28, based on the partial Wigner

transform of the quantum Liouville equation, followed by a

Zwanzig projection of the irrelevant quantum degrees of free-

dom. For the classical Hamiltonian in internal coordinates,

results from a recent work of Polimeno et al.29 will be used.

A. Partial Wigner transform in natural coordinates

As a starting point, it is useful to work in Cartesian coordi-

nates. If r are the positions of the electrons, and R those of

the nuclei, the Liouville-von Neumann equation in the posi-

tion representation reads

∂

∂ t
ρ̂(r,R, t) =−

i

h̄
[Ĥ(r,R), ρ̂(r,R, t)] (1)

where Ĥ is the system Hamiltonian, and ρ̂ is the matrix den-

sity. From here, a partial Wigner transform with respect to

the nuclei coordinates is performed, followed by the heavy

mass limit.25,30 This first step is fundamental to separate the

quantum d.o.f. of the electrons from the classical d.o.f. of

the nuclei. In this way, the Liouville equation for the mixed

quantum-classical system is obtained

∂ ρ̂W(r,X, t)

∂ t
=−

i

h̄
[ĤW(r,X), ρ̂W(r,X, t)]

+
1

2
{ĤW(r,X), ρ̂W(r,X, t)}

−
1

2
{ρ̂W(r,X, t), ĤW(r,X)}

(2)

where X= (R,P) are the positions and momenta of the nuclei,

ρ̂W(r,X, t) is the quantum-classical density matrix, ĤW(r,X)
is the transformed Hamiltonian (see below), the subscript W

states the action of partial Wigner transform, and the Poisson

brackets stand for

{ĤW, ρ̂W}=
∂ ĤW

∂R
·

∂ ρ̂W

∂P
−

∂ ĤW

∂P
·

∂ ρ̂W

∂R
(3)

where the dependence of the Hamiltonian and of the den-

sity matrix on the spatial and temporal coordinates has been
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FIG. 1: A possible scheme for partitioning the coordinates of the molecular system if the QSLE approach was applied, for

example, to study the photoswitching properties of azobenzene. Here, the quantum degrees of freedom of the system (QS) are

the electrons, especially those responsible for the HOMO and LUMO orbitals (for this picture, obtained at B3LYP/6-31G* level

in the optimum geometry). The relevant classical internal coordinates (CS) are the rigid body roto-translations and the ϕ
dihedral angle highlighted with a red arrow in the picture. Finally, all the other molecular internal degrees of freedom and the

solvent coordinates (represented as a blue surface in the background) constitute the set of irrelevant bath coordinates (CB).

dropped to keep the expression more compact. The Hamilto-

nian has the form

ĤW(r,X) = K̂(r)+K(X)+V̂ (r,R) = ĥ(r,X)+K(X) (4)

where the first addend is the kinetic energy operator of the

electrons, the second term is the kinetic energy of the nuclei,

and the third addend is the total potential energy, coupling the

electrons with the nuclei. In the rightmost part of the equa-

tion, the kinetic energy of the electrons and the potential en-

ergy term have been grouped into the ”electronic” Hamilto-

nian ĥ(r,X). As in the BO approximation, the eigenvalues of

such an operator will be used to compute the PESs where the

(classical) nuclear motion occurs.

From now on, we shall address only the partially Wigner

transformed variables. For this reason, the subscript W is

dropped from now on. An operator will be recognized as a

partial Wigner transform since it will depend on the classical

nuclear momenta.

Next, the change of nuclear coordinates from Cartesian to

internal is carried out. Following the work of Polimeno et

al.29, the configuration of j-th molecule in the system is ex-

pressed by three sets of coordinates Q j = (RCM, j,Ω j,p j)
where RCM, j providing the instantaneous position of the cen-

ter of mass, Ω j is the instantaneous orientation, and q j are

the internal coordinates providing the instantaneous confor-

mation of the molecule. Π j = (PCM, j,L j,p j) is the set of the

momenta conjugated to Q j, and the set of phase-space coor-

dinates of the j-th molecule is labeled as χ j = (Q j,Π j). If

the system is composed by the solute (with index j = 0) and

N solvent molecules ( j = 1,2, . . . ,N), then the whole set of

phase-space coordinates is χ = (χ0,χ1, . . . ,χN). According

to Polimeno et al.29, equation 3 can be written as the sum of
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three terms

{Ĥ, ρ̂}= {Ĥ, ρ̂}TRA +{Ĥ, ρ̂}ROT +{Ĥ, ρ̂}INT (5)

where the subscripts stand for translational (TRA), rotational

(ROT), and internal (INT), and

{Ĥ, ρ̂}TRA =
N

∑
j=0

[

(∇̂RCM, j
Ĥ) · ∇̂PCM, j

ρ̂ − (∇̂PCM, j
Ĥ) · ∇̂RCM, j

ρ̂
]

{Ĥ, ρ̂}ROT =
N

∑
j=0

[

(M̂ jĤ) · ∇̂L j
ρ̂ − (∇̂L j

Ĥ) ·M̂ jρ̂

−L j · (∇̂L j
Ĥ × ∇̂L j

ρ̂)
]

{Ĥ, ρ̂}INT =
N

∑
j=0

[

(∇̂q j
Ĥ) · ∇̂p j

ρ̂ +(∇̂p j
Ĥ) · ∇̂q j

ρ̂
]

(6)

where M̂ j is the generator of infinitesimal rotations of the j-th

molecule, and the gradients entering in the Poisson brackets

are the elements of the gradient operator over nuclear phase-

space coordinates

∇̂χ j
=

(

∇̂Q j

∇̂Π j

)

=



















∇̂RCM, j

M̂ j

∇̂q j

∇̂PCM, j

∇̂L j

∇̂p j



















(7)

The expression for the M̂ j operators depend on the way the

molecular orientation is expressed. For example, if Euler an-

gles are employed, then M̂ =−iĴ, with Ĵ an angular momen-

tum operator whose eigenfunctions are the Wigner matrices,

which can be conveniently employed to span the functions of

the orientation of the molecule.29

The Hamiltonian in the new set of variables is

Ĥ(r,χ) = K̂(r)+K(χ)+V̂ (r,Q) = ĥ(r,Q)+K(χ) (8)

For molecules showing low anisotropy, the precessional term

∇̂L j
Ĥ × ∇̂L j

ρ̂ is responsible for second order, negligible cor-

rections to the time evolution of the system, and for this reason

it will be dropped.

The kinetic energy of the nuclei is K(χ) = ∑
N
j=0 K j(χ j),

where29

K j(χ j) =Π j ·µ
−1
j (χ j)Π j =





PCM, j

L j

p j





tr



M−1
j 13 0 0

0 I−1
j −Atr

j g jA j −Atr
j g j

0 −g jA j g j









PCM j

L j

p j



= (9)

=
PCM, j ·PCM, j

2M j

+
1

2
L j · (I

−1
j L j)+

1

2
(p j −A jL j) ·g j(p j −A jL j)

where µ j(χ j) is the generalized inertia matrix, M j is the total

mass of the j-th molecule, 13 is the 3×3 identity matrix, I j is

the inertia tensor, A j is the Gauge potential matrix, g j is the

contravariant metric tensor, and the superscript ”tr” stands for

transposition. The reader interested in the details is referred

to the work of Polimeno et al.29.

Different partitioning schemes of the nuclear coordinates into

the relevant (CS) and the irrelevant (bath, CB) sets can be ap-

plied. In case of weak interaction between the solute and sol-

vent molecules, the latter can be included in the thermal bath.

However, in case of solutes with many degrees of freedom,

part of the solute internal coordinates may be considered irrel-

evant (and thus, fast and weakly coupled to QS), and therefore

be included in the CB set. By splitting the solute coordinates

into χ0 = (RCM,0,L0,q
(slow)
0 ,q(fast)

0 ) = (χCS,q
(fast)
0 ), since the

interaction between χCS and q
(fast)
0 is expected to build a short-

time correlation, the following approximation is introduced

µ−1
0 (χ0)≈

(

µ−1
CS(χCS) 0

0 g
(fast)
0 (q(fast)

0 )

)

(10)

where g
(fast)
0 is the square diagonal block of the metric con-

travariant tensor of the solute with the number of rows equal

to the number of the fast internal coordinates. The CS subma-

trix reads

µCS =







M−1
0 13 0 0

0 I−1
0 −A

(slow)
0 ·g(slow)

0 A
(slow)
0 −A

(slow)
j ·g(slow)

0

0 −g
(slow)
0 A

(slow)
0 g

(slow)
0







(11)

where A
(slow)
0 and g

(slow)
0 are, respectively, the Gauge and the

contravariant metric tensors that have the dimensions compat-

ible with the number of the slow internal coordinates. All the

tensors in Equation 11 are computed considering the fast co-

ordinates fixed in their minimum energy configuration.

Under such an approximation, the two sets of rele-

vant and irrelevant coordinates read, respectively, QCS =

(RCS,0,L0,q
(slow)
0 ), and QCB = (q(fast)

0 ,Q1, . . . ,QN), and the

conjugated momenta are partitioned accordingly to this

scheme.
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The Hamiltonian can be approximated as

Ĥ(r,χ)≈ K̂(r)+K(χCS)+K(χCB)+V̂ (r,QCS,QCB) (12)

where K(χCS) and K(χCB) are the kinetic energies of the CS

and CB sets, respectively. In Equation 12, it has been made

explicit the dependence of the potential energy on the three

sets of coordinates (QS, CS, and CB), with the QS coordinates

being the position of the electrons, r.

B. Expansion in the adiabatic basis

The next step is to represent the equation 2 in the adiabatic

basis given by the eigenstates of ĥ(r,Q). Here it is introduced

the approximation of small coupling between QS and CB

V̂ (r̂,QCS,QCB)≈ V̂QS-CS(r̂,QCS)+VCS-CB(QCS,QCB) (13)

Under this approximation, the eigenstates of the electronic

Hamiltonian do not depend on QCB. Therefore, the adiabatic

basis reads

ĥ(r,Q) |α;QCS〉= Eα(Q) |α;QCS〉 (14)

where |α;QCS〉 is the eigenstate that in the BO notation keeps

the parametric dependence on the nuclear (here only CS) co-

ordinates, and α is an index that catalogs the electronic sta-

tionary states.

Following Grunwald and Kapral28, Equation 2 is spanned over

the set of adiabatic states obtained in Equation 14, leading to

∂

∂ t
ραα ′(χ, t) =− i

[

ωαα ′(QCS)+ L̂αα ′(χ)
]

ραα ′(χ, t)

+ ∑
ββ ′

Ĵαα ′,ββ ′(χ)ρββ ′(χ, t)
(15)

where

ωαα ′(QCS) =
∆Eαα ′(QCS)

h̄
=

Eα(Q)−Eα ′(Q)

h̄
(16)

iL̂αα ′(χ) = (∇̂ΠK(χ)) · ∇̂Q +
1

2
(Fαα(Q)+Fα ′α ′(Q)) · ∇̂Π

(17)

Ĵαα ′,ββ ′(χ) =−D∗
αβ (χCS)

(

1+
F∗

αβ (Q)

2D∗
αβ

(χCS)
· ∇̂ΠCS

)

δα ′β ′

−Dα ′β ′(χCS)

(

1+
Fα ′β ′(Q)

2Dα ′β ′(χCS)
· ∇̂ΠCS

)

δαβ

(18)

with the force

Fαβ (Q) =−〈α;QCS|(∇̂QĤ(χ)) |β ;QCS〉

=−∇̂QEα(Q)δαβ + h̄ωαβ (QCS)dαβ (QCS)
(19)

the nonadiabatic coupling term

dαβ (QCS) = 〈α;QCS| ∇̂QCS
|β ;QCS〉 (20)

and

Dαβ (χCS) = (∇̂ΠCS
K(χCS)) ·dαβ (QCS) (21)

where dαβ is in general a function of all the CS coordinates,

including center of mass translation and molecular rotations

since non-adiabatic coupling can occur even just because elec-

trons are traveling along with the nuclei.31

The classical Liouville operator iL̂αα ′(χ) accounts for the

adiabatic evolution on the mean potential energy surface

given by Eαα ′(Q) = (Eα(Q)+Eα ′(Q))/2, while the operator

Ĵαα ′,ββ ′(χ) accounts for quantum transitions. The adiabatic

basis is supposed to be real so that the complex conjugate

superscript "∗" of the nonadiabatic coupling matrix element

dαβ (QCS) is dropped.

The coherences (out of diagonal elements) of the quantum-

classical density matrix can be considered fast (irrelevant)

quantum d.o.f., compared to the populations (the diagonal el-

ements). For this reason, the following Zwanzig projection

operator is introduced

P̂αα ′,ββ ′ = δαα ′δαβ δα ′β ′ (22)

as well as its complement

Q̂αα ′,ββ ′ = (1−δαα ′)δαβ δα ′β ′ (23)

The reader interested in the details of the Zwanzig projection

is addressed to the work of Kapral and Ciccotti25. The pro-

jected evolution of the populations is given by28

∂ρα(χ, t)

∂ t
=− iL̂α(χ)ρα(χ, t)

+
∫ t

0
dt ′∑

β

M̂αβ (t
′)ρβ (χ, t − t ′)

(24)

where ρα(χ, t) ≡ ραα(χ, t), iL̂α(χ) ≡ iL̂αα(χ), and the

memory kernel operator M̂αβ (χ, t) is

M̂αβ (χ, t) = ∑
νν ′

∑
µµ ′

Ĵαα,νν ′

(

e−i
ˆ̂

Q
ˆ̂L

ˆ̂
Q t
)

νν ′,µµ ′ Ĵµµ ′,ββ . (25)

The double hat indicates a superoperator acting in the Liou-

ville space. In this way, a generalized master equation is ob-

tained introducing memory effects.

C. Momentum-jump approximation

Equation 24 is the exact result of the application of the

Zwanzig projection. However, usually it is not used as it

is. In particular, two approximations are introduced. One is

called the momentum-jump approximation,30,32,33 while the

second one is the Markovian approximation. The former is

introduced to simplify the action of the operator Ĵ that enters

in the memory kernel operator (Equation 25). Such an ap-

proximation is useful if one is interested in calculating trajec-

tories, since allows for a faster and more stable algorithm.30

The scope of the derivation presented in this work is slightly
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different. We are interested in the direct solution of the Liou-

ville equation. Therefore, no surface-hopping trajectories are

planned and the momentum-jump approximation is not really

needed. However, this approximation provides a clear inter-

pretation of the diabatic evolution of the quantum and classi-

cal coordinates. In particular, the interpretation is that a jump

between two adiabatic PESs is accompanied by a change in

the kinetic energy (and thus momentum) of the nuclei. An up-

ward electronic transition can occur only if nuclei possess suf-

ficient momentum; a downward electronic transition is always

possible, with the energy transferred to the nuclei. Therefore,

we decided to adopt this approximation, which is described in

this subsection. A discussion on the Markovian approxima-

tion is postponed to the next Section.

The momentum-jump approximation is here translated to the

care of curvilinear internal coordinates χ. To this purpose,

Equation 21 is rewritten as

Dαβ (χCS) = (µ−1
CSΠCS) ·dαβ (QCS)

= (VGCSVtr
ΠCS) ·dαβ (QCS)

= (VG
1/2

CS G
1/2

CS Vtr
ΠCS) ·dαβ (QCS)

= (G
1/2

CS Vtr
ΠCS) · (G

1/2

CS Vtrdαβ (QCS))

= Π̃CS · d̃αβ (QCS)

= ‖d̃αβ (QCS)‖ Π̃CS ·
ˆ̃dαβ (QCS) (26)

where GCS and V are respectively the matrix of the eigenval-

ues and the eigenvectors associated to µ−1
CS , the tilde means

pre-multiplication by G
1/2

CS Vtr, ‖d̃αβ (QCS)‖ and ˆ̃dαβ (QCS)

are respectively the norm and the versor of d̃αβ (QCS).
The term that depends on the gradient over the momenta in

the Ĵ operator can be reformulated as

Fαβ (Q)

2Dαβ (χCS)
· ∇̂ΠCS

=
∆Eαβ (QCS)

2Dαβ (χCS)
dαβ (QCS) · ∇̂ΠCS

=
∆Eαβ (QCS)

2Π̃CS ·
ˆ̃dINT

αβ
(QCS)

ˆ̃dαβ (QCS) · ∇̂Π̃CS

= ∆Eαβ (QCS)
∂

∂ (Π̃CS ·
ˆ̃dαβ (QCS))2

(27)

Finally, the momentum-jump approximation is applied to

equation 18

Ĵαα ′,ββ ′(χ) =−Dαβ (χCS) ĵαβ (χCS)δα ′β ′

−Dα ′β ′(χCS) ĵα ′β ′(χCS)δαβ

(28)

and the effect of ĵαβ (χCS) on a generic function f (χCS) is

ĵαβ (χCS) f (χCS) = e∆Eαβ (QCS)∂/∂ (Π̃CS·
ˆ̃dαβ (QCS))

2

f (χCS)

= f (χCS,αβ )

(29)

where f (χCS,αβ ) is the function evaluated over the same co-

ordinates, but shifted momenta. In particular, the new phase-

space point is χCS,αβ = (QCS,ΠCS +∆ΠCS,αβ (χCS)), with

∆ΠCS,αβ (χCS) = VG
−1/2

CS
ˆ̃dαβ (QCS)

[

sgn
(

Π̃CS ·
ˆ̃dαβ (QCS)

)

×

√

(

Π̃CS ·
ˆ̃dαβ (QCS)

)2
+∆Eαβ (QCS)

−Π̃CS ·
ˆ̃dαβ (QCS)

]

(30)

In order to an upward electronic transition (∆Eαβ < 0) to oc-

cur, the nuclei must posses sufficient kinetic energy. If not, the

argument in the square root is negative and since this would

lead to a complex momentum, in such a case the jump among

the PESs is considered forbidden.

III. DERIVATION OF THE QSLE

Within the momentum-jump approximation equation 24

can be recast as

∂ρα(χ, t)

∂ t
=−iL̂α(χ)ρα(χ, t)

+
∫ t

0
dt ′∑

β

M
αβ
αβ

(χ, t ′)ρβ (χ
αβ
CS,αβ ,t ′ ,χCB,t ′ , t − t ′)

+
∫ t

0
dt ′∑

β

M
βα
αβ

(χ, t ′)ρα(χ
βα
CS,αβ ,t ′ ,χCB,t ′ , t − t ′)

(31)

where the formalism of the time-reversed trajectory25,28 is

used

χCS,αβ ,t = e−iL̂αβ (χCS,αβ ,χCB)t χCS,αβ (32)

χCB,αβ ,t = e−iL̂αβ (χCS,αβ ,χCB)t χCB (33)

and

χ
βα
CS,αβ ,t = ĵβα(χCS)χCS,αβ ,t (34)

The memory functions M
αβ
αβ

(χ, t) and M
βα
αβ

(χ, t) are defined

as follows

M
αβ
αβ

(χ, t) = 2Re[Wαβ (χ, t)]Dαβ (χCS)Dαβ (χCS,αβ ,t) (35)

M
βα
αβ

(χ, t) = 2Re[Wαβ (χ, t)]Dαβ (χCS)Dβα(χCS,αβ ,t) (36)

where the phase factor is

Wαβ (χ, t) = e−i
∫ 0
t dτωαβ (QCS,αβ ,τ ) (37)

with QCS,αβ ,t = e−iL̂αβ (χCS,αβ ,χCB)t QCS. It has to be men-

tioned that this result is exact only for two-level systems.

However, it is applicable to multilevel systems if the terms

higher than quadratic order in dαβ (QCS) in the evolution op-

erators are negligible.28 Considering the fast d.o.f. of the CB,

a further projection operator28,29,34 is introduced

P̂= ρc(χCB|χCS)〈...〉CB (38)
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and its complement Q̂. The conditional equilibrium probabil-

ity density, ρc(χCB|χCS), is defined as follows28,29

ρc(χCB|χCS) =
ρeq(χ)

ρCS
eq (χCS)

(39)

where ρeq(χ) is the equilibrium population density indepen-

dent from the state, and ρCS
eq (χCS) = 〈ρeq(χ)〉CB

. Applying

the projection operator to Equation 31 and neglecting the os-

cillations of the memory function around its bath average lead

to the following result28

∂P̂ρα(χ, t)

∂ t
=− P̂iL̂α(χ)P̂ρα(χ, t)

+
∫ t

0
dt ′P̂iL̂α(χ)e

−iQ̂L̂α (χ)tQ̂L̂α(χ)P̂ρα(χ, t)

− P̂iL̂α(χ)e
−iQ̂L̂α (χ)tQ̂ρα(χ,0)

+
∫ t

0
dt ′∑

β

P̂M
αβ
αβ

(χ, t ′)P̂ρβ (χ
αβ
CS,αβ ,t ′ ,χCB,t ′ , t − t ′)

+
∫ t

0
dt ′∑

β

P̂M
βα
αβ

(χ, t ′)P̂ρα(χ
βα
CS,αβ ,t ′ ,χCB,t ′ , t − t ′)

(40)

Given the subsystem density matrix population ρα
CS(χCS, t) =

〈ρα(χ, t)〉CB, the initial condition

ρα(χ,0) = ρα
CS(χCS,0)ρc(χCB|χCS) (41)

is assumed.29 In this way, the third term of equation 40 is

equal to zero. In the standard limit of fast relaxing bath coor-

dinates, the first two terms corresponds to the Fokker-Planck

evolution −Γ̂α
FP(χCS)ρ

α
CS(χCS, t).

The detailed derivation of the Fokker-Planck operator Γ̂FP is

found in reference 29. To make this paper self-consistent the

final form of the operator is given here

Γ̂α
FP =−kBT

[

∇̂QCS

∇̂ΠCS

]tr [
0 −1

1 ξ

]

ρα,eq

[

∇̂QCS

∇̂ΠCS

]

ρ−1
α,eq

(42)

where

ρα,eq(χCS) =
exp{− [Eα(QCS)+K(χCS)]/kBT}

〈exp{− [Eα(QCS)+K(χCS)]/kBT}〉
(43)

with 〈. . .〉 meaning integration over χCS. Also, in Equation

42, ξ is the generalized friction tensor that is obtained by as-

suming the Markovian approximation after the Zwanzig-Mori

projection of the CB degrees of freedom, and can be computed

via hydrodynamic modeling.35

While usually in the QCLE the dynamics of the nuclei is

treated at a deterministic level, in the QSLE the nuclear de-

grees of freedom that were included in the irrelevant set (act-

ing as a thermal bath) are projected out. In this way, the dy-

namics of the relevant CS degrees of freedom is stochastic.

The irrelevant d.o.f. affect the dynamics of CS coordinates by

providing a mean field correction to the CS potential energy,

and providing fluctuation-dissipation to the momenta conju-

gated to the CS coordinates, where the important ingredient

is the friction, which is usually obtained from hydrodynamic

arguments.35 It should be noticed that the projection of the CB

coordinates to describe the (stochastic) dynamics of the CS

coordinates only has also been presented by Kapral in Carte-

sian coordinates.26 In fact, the work presented in this paper

is based on the same philosophy of formulating a quantum-

classical description of the dynamics of a molecule in liquid

phases (dissipative environment), but in internal curvilinear

coordinates.

The last two terms in Equation 40 involve the bath average of

the memory function, that results in a decaying function on

a time scale characterized by the decoherence time τdecoh.28

If the characteristic time scales of the time evolution of the

populations is larger than τdecoh, then the Markovian approxi-

mation can be invoked

〈M
αβ
αβ

(χ, t)ρc
α,CB(χCB|χCS)〉

CB
≈

≈ 2δ (t)
∫ ∞

0
dt ′ 〈M

αβ
αβ

(χ, t ′)ρc(χCB|χCS)〉
CB

≡

≡ 2δ (t)mαβ (χCS) (44)

Introducing all the previous approximation into Equation 40,

the QSLE is obtained

∂ρα
CS(χCS, t)

∂ t
=−Γ̂α

FP(χCS)ρ
α
CS(χCS, t)

+∑
β

mαβ (χCS) ĵα→β (χCS)ρ
β
CS(χCS, t)

−mαα(χCS)ρ
α
CS(χCS, t) (45)

where

mαα(χCS) =−∑
β

∫ ∞

0
dt ′ 〈M

βα
αβ

(χ, t ′)ρc(χCB|χCS)〉
CB

(46)

and the effect of ĵα→β (χCS) is equivalent to the one described

in section II C except for

∆ΠCS,α→β (χCS) = VG
−1/2

CS
ˆ̃dαβ (QCS)

[

sgn
(

Π̃CS ·
ˆ̃dαβ (QCS)

)

×

√

(

Π̃CS ·
ˆ̃dαβ (QCS)

)2
+2∆Eαβ (QCS)− Π̃CS ·

ˆ̃dαβ (QCS)
]

(47)

IV. DISCUSSION

Figure 2 summarizes in a flowchart the sequence of ap-

proximations that have been introduced in the derivation of

the QSLE starting from first principles, i.e. the Liouville-von

Neumann equation.

The partitioning of the degrees of freedom into the three sets

QS, CS, and CB is the most important choice to model the

dynamics of the system in such a way that it can simulate

realistically the physical observable to be reproduced. The

coordinates that have to be considered at quantum mechani-

cal level of theory enter in the QS set. Of course electrons
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FIG. 2: Flowchart summarizing the approximations that lead from the quantum mechanical Liouville-von Neumann equation to

the QSLE. On the right of each block the main resulting equation is reported. In the red boxes the dynamics is described at

deterministic level. In the cyan box a decision is taken regarding the hierarchy division of the degrees of freedom of the system.

In the green boxes the dynamics takes on a stochastic connotation. In the yellow box the momentum-jump approximation is

carried out. The purple box summarizes the final QSLE set of equations under the Markovian approximation for the jumps

among the PESs and for the dynamics of the CS degrees of freedom.

positions are automatically included here. Nuclear degrees of

freedom may also be added to QS, with the necessity of calcu-

lating the adiabatic electronic and nuclear eigenstates. A way

to simplify the problem, in this case, would be to assume as

ansatz an harmonic dynamics of the QM nuclei. The CS set

includes all the nuclear degrees of freedom treated at classical

level that are considered relevant for the physical observable

to be computed. As an example, if one is interested in the

photoswitching properties of a molecule, such as azobenzene,

then CS should contain at least the torsion angle that is respon-

sible for the cis-trans change in conformation. Finally, the CB

set collects all of the remaining nuclear classical d.o.f., which

are considered a perturbation to the dynamics of QS and CS,

with the important approximation that the eigenstates of the

QS Hamiltonian do not depend on CB. It is important to stress

that in cases where the solvent can have specific interactions

with the molecule (such as the formation of hydrogen bonds),

it may be important to include in CS (or even in QS) the rel-

evant solvent coordinates, which will be a small subset of all

the coordinates of the solvent molecules.

The approximations that are then carried out are the follow-

ing: i) a partial Wigner transform is used to obtain the time

evolution of a quantum-classical density matrix; ii) such a

density matrix is spanned over the adiabatic quantum states,
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so that the time evolution of each element is obtained; iii) a

Zwanzig projection is carried out over the out of diagonal el-

ements of the density matrix that are involved in fast relaxing

processes with respect to the time evolution of the populations

(diagonal elements), leading to a classical evolution of CS and

CB coupled to a master equation-like behavior with jumps

among states; iv) the momentum-jump approximation is here

introduced to simplify the shape of the jump operators; v) a

Zwanzig projection is carried out over the CB d.o.f., leading

to the stochastic dynamics of the CS coordinates; vi) finally,

the Markovian approximation is carried out under the idea that

in a condensed phase the memory on the populations jumps is

readily lost before a changing in the conformation of the sys-

tem occurs. At the end of such a process of approximations,

Equation 45 is obtained, which resembles a diffusion-reaction

equation. A first important difference is that the stochastic

dynamics of the nuclei is not diffusive, rather it is inertial.

This is important since the nuclear momenta conjugated to

CS d.o.f. are affected by changes in the quantum state and, on

the contrary, a change in momentum of the classical coordi-

nates can induce a jump between quantum states. Therefore,

the stochastic part is described by a Fokker-Plank operator. It

should be said here that a further approximation may be intro-

duced if part of the CS d.o.f. are not responsible for the jumps

among quantum states. In this case, if such coordinates are

slow with respect to the dynamics of the rest of the relevant

degrees of freedom, then a further Zwanzig projection on the

momenta conjugated to such slow CS coordinates may be car-

ried out, leading to a mixed Fokker-Planck/Smoluchowski de-

scription of the nuclear dynamics. Despite the complexity to

treat numerically such an equation (multiple time step strate-

gies should be required) the advantage is the reduction on the

number of coordinates that can be decisive in a computational

approach.

The second difference with a diffusion-reaction equation is

that usually the transitions are ”vertical”, i.e. the jump occurs

between two populations evaluated in the same point in phase-

space. The energy required for the jump is expected to be

exchanged with the thermal bath. Here, energy exchange is

expected especially between the QS and CS degrees of free-

dom. Therefore, a jump between two quantum states connects

the probability densities of the states evaluated in two phase-

space points separated by a value of the momenta of the CS

subsystem such that the variation of their kinetic energy corre-

sponds to the difference in energy of the two quantum states.

As a final point of discussion, it should be mentioned that a

further complexity reduction would be possible in the case

part of the electronic states constitute a fast-relaxing mani-

fold with respect to the dynamics of the remaining QS, and

of the CS degrees of freedom. In this case, the projection of

the dynamics over such a fast manifold leads to the motion

of the nuclei over a potential of mean force surface obtained

by the Boltzmann weighting of the electronic stated involved

in the manifold. Also, a fluctuation-dissipation effect is ob-

tained because of the dynamics of the projected dynamics of

the electrons, where the important parameter is the electronic

friction.36 If such an approximation can be applied, part (or

all) of the random-walk over electronic PESs can be converted

in "electronic" contributions (together with the hydrodynamic

ones) to the potential of mean force and to the friction.

V. CONCLUSIONS

In this work, a quantum-stochastic Liouville equation has

been formulated to describe the coupled quantum-classical

dynamics of molecules in condensed phases. In the derivation

of the QSLE (Equation 45), two Markovian approximations

have been done because the dynamics of the molecule is oc-

curring in a dissipative bath: i) on the classical dynamics of

the CS d.o.f., and ii) on the master equation part that describes

jumps among PESs. Therefore, Equation 45 is expected to be

not applicable in the gas phase, or in general in inertial condi-

tions, where the friction due to the thermal bath is low and the

memory kernel given in Equation 25 is not expected to relax

in a fast timescale with respect to the to the decay time of the

phenomenon under consideration.37 It can happen that while

the Markovian approximation is possible for the dynamics of

the CS subsystem, it is not applicable to the QS d.o.f. (jumps

among PESs). In this case, the QSLE should be solved includ-

ing memory effects.

The two main differences with respect to state-of-the-art

methods based on a partial Wigner transform are that here

the nuclear degrees of freedom are partitioned in the relevant

and irrelevant sets, the former treated explicitly, the latter de-

scribed at the level of a thermal bath inducing fluctuation and

dissipation to the relevant coordinates. The second element

of novelty is the derivation of the QSLE (and in an interme-

diate step, the derivation of the QCLE) expressed in internal

natural coordinates. To pursue such a derivation the main ap-

proximation introduced was that CB and CS sets of degrees

of freedom interact weakly. The introduction of curvilinear

coordinates implies a mathematical treatment which is more

tedious than working in Cartesian coordinates. The advantage

is in the fact that using internal coordinates as bond lengths,

bond angles and dihedral angles makes the interpretation of

which coordinates are relevant or irrelevant very easy.

The next steps to make the approach operative are the param-

eterization and the numerical solution of the QSLE. To fully

parameterize the equation one needs i) to calculate the poten-

tial energy surfaces, i.e. the energies of the quantum states as

functions of the CS coordinates; ii) to estimate the friction

tensor along the CS coordinates; iii) to evaluate the nonradia-

tive rates mαβ given in Equation 46. Energies can be obtained

by finding the eigenstates of the full electronic Hamiltonian,

or they can be built from a model Hamiltonian description

of the relevant part of the electronic structure. For example,

if π → π∗ interactions are those relevant for the system, it

may be sufficient to use a Hückel-like model Hamiltonian.

The friction tensor can also be easily evaluated if an hydro-

dynamic approach is employed. The authors developed in the

past a computational tool, named DiTe2, which computes the

hydrodynamic friction tensor of a flexible molecule in terms

of the friction that the molecule experiences while translat-

ing, rotating, and changing conformation in a fluid medium.35

Conformational changes are expressed in terms of natural in-
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ternal coordinates.

The computation of transition rates needs a separate discus-

sion. The average that must be computed inside the integral

over time in Equation 46 is an integral to be carried out in the

CB phase-space. Is it an integral over O(103)-O(105) or even

more coordinates. While in some cases unbiased or biased

molecular dynamics simulations can be employed to compute

such integrals, it must be noted that the average is carried out

over the conditional probability density ρc(χCB|χCS). This

means that the calculation of such an heavy integral may be

repeated in any point of the CS phase-space. The computa-

tion is expected to become unaffordable as soon as the CS set

contains just a few coordinates. A solution to this problem is

to find a proper approximation that allows one to substitute

the average in Equation 46 with a reasonable function. This is

the work presented in paper following the present one. In pa-

per II, an approximated expression for the calculation of mαβ

is presented and tested against the exact solution evaluated

by molecular dynamics simulations. To keep a low compu-

tational effort, the testing is carried out over a very simple

sand-box system with two quantum states and a single CS co-

ordinate (and its conjugated momentum). A simple function

with a single adjustable parameter has been obtained. In pa-

per II, the estimation of such a parameter and the application

to higher dimensional cases are discussed.
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