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Ancestry deconvolution and partial polygenic score
can improve susceptibility predictions in recently
admixed individuals
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Toomas Haller1, Mait Metspalu 1, Reedik Mägi1, Krista Fischer1,4 & Luca Pagani 1,5✉

Polygenic Scores (PSs) describe the genetic component of an individual’s quantitative phe-

notype or their susceptibility to diseases with a genetic basis. Currently, PSs rely on

population-dependent contributions of many associated alleles, with limited applicability to

understudied populations and recently admixed individuals. Here we introduce a combination

of local ancestry deconvolution and partial PS computation to account for the population-

specific nature of the association signals in individuals with admixed ancestry. We demon-

strate partial PS to be a proxy for the total PS and that a portion of the genome is enough to

improve susceptibility predictions for the traits we test. By combining partial PSs from dif-

ferent populations, we are able to improve trait predictability in admixed individuals with

some European ancestry. These results may extend the applicability of PSs to subjects with a

complex history of admixture, where current methods cannot be applied.
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Polygenic Scores (PSs) are computed by summing
the contribution of many associated alleles across the
genome1,2. These contributions are weighted by allele

effect sizes. Such effect sizes are extrapolated from Genome
Wide Association Studies (GWAS)3,4 carried out in a specific
population, or across multi-ethnic sample sets5–7. Most of the
times, associated SNPs are thus merely correlated with a phe-
notype and are not really causal3. Furthermore, as environment
interactions, Linkage Disequilibrium patterns, allele frequencies
and rare polymorphisms are often population specific, effect
sizes might be in part population dependent3,8,9. This may lead
PS to exhibit a directional bias and a lower predictivity in
individuals from populations not closely related to the one
where the GWAS study was performed10–14 or even from
the same population as it was shown for UK and Finnish
cohorts15–17. This is particularly problematic with recently
admixed individuals, where the various ancestries composing a
given genome may be closely or distantly related to the popu-
lation used to infer the adopted genetic effect sizes18. Admixed
individuals are indeed expected to constitute a considerable
portion of contemporary and future societies19. Therefore, it is
crucial to include them within the promising vault of the
emerging predictive and personalized healthcare.

While any human genome can be seen as the mixture of its
ancestors, here we focus on individuals such as African-
Americans in the USA; Afro Caribbeans in the UK; Central
and South Americans with European descent; Ethiopians and
North Africans and others, who trace their ancestry from a recent
admixture event (less than 100 generations ago)20 between two or
more human populations separated by at least 1000 generations
of independent genetic drift. Over these few generations,
recombination events created a unique tiling of ancestry blocks
for each recently admixed individual21,22. Importantly, even if the
current PS models assume so, there is no evidence on whether
any expressed phenotype of an admixed genome should be seen
as the linear sum of ancestry-specific effect sizes calculated along
the genome, considering its specific local ancestry composition. In
addition, the genetic effect sizes reported for certain ancestries
may be more accurate than others, due to the greater amount of
studies available10,23. Thus, local PS accuracy may vary along the
genome and among individuals, depending on the relative frac-
tion and on the particular tiling of a given ancestry each
person has.

PS transferability has been proved exceptionally difficult across
deeply divergent populations10–14,18,23, while ancestry deconvo-
lution softwares display reliable performances in discerning
genetic contributions from these groups of individuals22,24.
Although human genetic diversity is distributed as a continuum
across all continents, here we focus on the extremes of such a
genetic gradient (i.e. genetic drift components that are modal in
European, East Asian or Sub-Saharan African populations) to
ease a preliminary exploration of the viability of our approach,
and assume within population stratification as a lesser, yet
important, source of bias. Hence, the drift components, or genetic
ancestry labels, used here should just be seen as proxies for a
broader gradient, not necessarily overlapping with cultural
identity or self reported ethnicity of the analyzed individuals.
Accordingly, we relied on a sample set including 120 Ethiopians,
100 Egyptians25 and 49 African-Americans26, all of which
resulted from the admixture of African and West Eurasian
populations approximately 100, 30, and 6 generations ago,
respectively20,25. We also included 22054 samples from UK
Biobank27, 5793 of which present an admixed genetic background
(Supplementary Table 2). These samples display a polarized
combination of highly studied and severely understudied genomic
segments.

We focus on PS of four thoroughly studied traits (Type 2
Diabetes (T2D)28, height29, Body Mass Index (BMI)29 and breast
cancer30. By introducing the concept of partial PS and applying it
on the sample groups above, we find that a small portion of the
genome is enough to improve trait predictions and that such
approach can be used to correct for population level PS bias.
Finally, we test the predictivity of ancestry specific partial PSs and
their combination on datasets for which both phenotypic and
genotypic information are available, namely the Estonian Bio-
bank31 and the UK Biobank27. The results show that, when
GWAS data are available for more than one ancestry, the com-
bination of multiple partial PSs improves trait predictability in
individuals with a mixed genetic background.

Results
Proposed model and workflow. As introduced above, current
PSs are often poorly transferable across populations. Considering
PS as a normally distributed variable which is partially correlated
with the trait of interest, we can mimic the poor transferability of
PS across populations by applying a directional bias to the PS and
reducing the correlation with the trait. In particular, this decrease
in correlation and therefore predictivity can be absent, with fully
transferable PSs, or complete, leading to a PS altogether dis-
connected with the trait of interest.

Let us consider an admixed genome which descends with
proportion p from population A and with proportion 1−p from
population B. We can compute a PS for this individual adopting
summary statistics obtained from a GWAS performed in
population A, PSA. We define a model to simulate such admixed
genome by combining an unbiased PS with a biased and poorly
predictive PS with a proportion p in one single individual. As
expected in case of poor PSA transferability, the proportion of
ancestry A (p) is positively correlated with predictability of PSA
for the trait of interest (Supplementary Fig. 1, yellow line).

We can also define ancestry specific partial PS (aspPSA) as a
proxy for the total standardized PS that uses only the genomic
portion pertaining to the ancestry A, losing therefore information
as p decreases, but remaining virtually unbiased. A model
including this metric (Supplementary Fig. 1, blue line) would
outperform the traditional PS (PSA) in case of high directional
bias and p and, with low transferability, even a model that takes
into account p as a separate variable to explain the directional bias
(Supplementary Fig. 1, red line). The limitation of not consider-
ing parts of the genome, makes the aspPS only partially useful in
improving trait predictability. On the other hand, considering the
availability of another PS (PSB) originating from a GWAS on a
population closer to the other ancestry B, and therefore not
suffering of transferability issues, one can imagine to combine the
two aspPS, weighting for p, in order to obtain a combined
ancestry specific PS (casPS). In our simulation, the casPS would
outperform the traditional PS in all cases where PS transferability
represents a problem and where a sufficiently predictive PS is
present for the two ancestries independently (Supplementary
Fig. 1, purple line).

We thus proceeded defining a way to compute partial PS (pPS),
a statistic that estimates the total standardized PS using only a
subset of the genome, as

pPSj ¼
x0j � μx0

σx0
; ð1Þ

where x0j is the raw partial PS for individual j, defined as the
weighted average of associated allelic states using only a fraction p
of all available SNPs. In turn, μx0 and σx0 are, respectively, mean
and standard deviation of the raw PS (x0) in a population of
reference. Hence, pPS is essentially a Z-score which yields the
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traditional standardized PS when applied to the full genome.
Furthermore, we call the pPS calculated on ancestry specific
portions of a given genome “ancestry-specific pPS” (aspPS). The
model described above ignores entirely the problem of coupling
the correct portions of the genome with the appropriate PS,
especially important due to the unique tiling of ancestry blocks
and with unequal genomic patterns of phenotypic association.
We overcome this obstacle by defining the genomic subsets used
to compute aspPS through an accurate local ancestry deconvolu-
tion process (Fig. 1).

Local ancestry deconvolution. We started by assessing the
accuracy of ELAI24, a local ancestry inference (LAI) or decon-
volution (LAD) software, in simulated scenarios resembling our
studied populations. We tested several combinations of admix-
tures between deeply divergent populations (i.e that trace their
ancestry to East Asia, Africa and Europe) and number of gen-
erations elapsed since the admixture (Supplementary Fig. 2),
reporting in all cases a classified accuracy equal or higher than
0.98 when using 0.9 as the minimum inferred ancestry dosage.
We then subdivided the real admixed whole genome sequences of
individuals with both African and West-Eurasian background
into their ancestral components through this process. This gave
us two genomic portions, one African- and one European-related,
together with an unassigned fraction for each genome (Supple-
mentary Fig. 3).

Population-level aspPS distributions. The PS population dis-
tributions of the four traits considered here, calculated on the
whole genomes of our reference panel and standardized on the
European populations (CEU, IBS, TSI, light blue boxes in Fig. 2)
show that the effect sizes ascertained on European populations
may generate spuriously positively- or negatively-shifted PS dis-
tributions in non-European groups (i.e. YRI, LWK, CHB...), as
observed before12. As mentioned in the introduction, this phe-
nomenon is combined with poor predictive performance of PS
based on European effect sizes applied to those non-European
populations18. The same pattern is observed in Egyptians,

Ethiopians, and African-Americans, most remarkably for T2D
(Fig. 2a), where the PS distribution can be described as a linear
combination between a 0-centered European and a positively-
shifted African distributions. When computing aspPS instead, the
two ancestries always returned distributions shifted in opposite
directions, each towards the population-wide values of non-
admixed European and African populations. This cannot be
attributed to a casual fragmentation of the genome: shifts towards
or away from 0 are found significant in most cases when com-
paring with simulated aspPSs distributions obtained assigning a
random local ancestry pattern (one-sided Wilcoxon signed-rank
test, see Fig. 2, Supplementary Data 1). However, decreasing the
size of the genomic portion p, used in computing aspPS, also
decreases the directional bias following a squared root relation
with the forenamed genomic fraction p. We can eliminate this
effect by correcting the aspPS for 1=

ffiffiffi
p

p
, at the expense of an

increased standard deviation for small genomic fractions.
Nevertheless, including these “corrected” aspPS in parameter
fitting proved to disrupt trait predictability, thus suggesting to
bypass this correction. See Supplementary Note 1 for a more
detailed description of this correction and related data.

These preliminary results on admixed genomes showed
promising evidences for the usage of aspPS in dissecting the
contributions of two ancestries towards the total PS. We therefore
investigated the possibility to predict the phenotype for the
studied individuals, when reliable effect sizes are available for at
least one of the two ancestries.

Partial PS predictivity in uniform genomes. Before introducing
differential ancestry effects in our system we tested whether a PS
computed on a partial genome (pPS) can be used as proxy for the
total PS and as predictor of the expressed phenotype. We relied
on genomes for which phenotypes (T2D, breast cancer, BMI,
height) and total PS were both available: the Estonian Biobank31

(EstBB). We mimicked a history of non-European admixture in
EstBB samples by applying onto them the local ancestry patterns
resulting from the analysis in the previous section. Importantly,
even if it has been shown that PS performance can vary even

Admixed genomes Ancestry
deconvolution Ancestry specific

subset A
Ancestry specific

subset B

Reference for
subset A

Reference for
subset B

Non-admixed
reference genomes

GWAS
summary
statistics

pPS computation

Raw pPS
computation

(weighted allele
average)

Raw pPS

Reference
raw pPS

pPS
normalization

(Z score)

Traditional whole-genome PS pPS for ancestry A pPS for ancestry B

Fig. 1 Schematic workflow. A graphical representation of the workflow we adopted to obtain normalized PS and ancestry specific pPS. White boxes
represent input data, the two key steps of ancestry deconvolution and partial PS computation have an orange background.
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among European populations15,16, we do not expect macroscopic
inefficiencies adopting available GWAS results in Estonians12,18.
We therefore investigated whether the pPS could be used to
obtain a significant improvement in the phenotype prediction,
compared to the baseline linear model calculated with no genetic
information. For all traits, we show that pPS calculated with even
a small portion of available genome are capable of significantly
improving the phenotype prediction accuracy, to an extent that
depends on the SNPs included in that portion and its size (Fig. 3,
likelihood ratio test). Moreover, pPS calculated using certain local
subsetting patterns tend to perform better than others, regardless
of the amount of SNPs included. In essence, on the one hand we
observe a macroscopic trend which broadly agrees with the
hypothesis that a given genomic subset contributes additively to
the phenotypes studied. On the other hand, each subsetting
pattern has its own phenotype prediction performance, which we
can estimate by using that particular pattern on a set of control
individuals as shown above. These results suggest that in indivi-
duals where a fraction of the genome is missing or assigned to

another ancestry (as in the case of Fig. 2), the pPS can be used as a
proxy for the actual PS.

AspPS in admixed genomes from UK Biobank. We then moved
on testing the conclusions drawn from EstBB on the UK Bio-
bank27 (UKBB), particularly focusing on the samples for which at
least two major ancestry components could be detected, and for
whom phenotypes were available. We used the first six principal
components to select 5000 samples from the core of European
UKBB individuals27, and to define 34212 samples as genetically
non-European and putatively admixed based on their distance
from the main unadmixed core (Supplementary Fig. 4a). We
further explored the ancestry makeup of these individuals
through an ADMIXTURE32 analysis, projecting the individuals
onto the allele frequency spectrum inferred by the software for a
set of 1000 Genomes samples, for which global ancestry
and country of origin is known (Supplementary Fig. 4b). By
this way we confirmed the admixed/unadmixed nature of the
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Fig. 2 Population-wide Polygenic Scores (PS) and ancestry specific partial PS. PS distributions for seven reference populations (pastel colors), three
admixed populations (yellow) and their relative ancestry specific partial PS (red and blue). Reference population medians are represented with dashed
lines. The width of the boxplots is proportional to the median size of the ancestry fraction used to compute each aspPS. Four different PS for different
phenotypes are shown: (a) T2D28, (b) breast cancer30 (c) height29, (d) BMI29. Significant differences with randomly assigned ancestral components are
encoded as: *: p≤ 0.05, **: p≤ 0.005, ***: p≤ 10−5, (one-sided Wilcoxon signed-rank test). Sample sizes and exact P-values are reported in Supplementary
Data 1. For each distribution, the box represent the interquartile range (IQR = Q3−Q1), the line across the box indicate the median, the whiskers extend to
the most extreme data points within Q1−1.5IQR and Q3 + 1.5IQR, outliers are omitted. CEU: North-West Europeans from Utah; IBS: Iberians from Spain;
TSI: Tuscans from Italy; CHB: Han from Beijing; YRI: Yoruba from Nigeria; LWK: Luhya from Kenya; GUMUZ: Gumuz from Ethiopia; EGYPT: Egyptians;
ETHIOPIA: Amhara, Oromo, Wolayta and Ethiopian Somali from Ethiopia; ASW: African-Americans from South-West USA.
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non-European samples selected from the UKBB and we further
labeled the observed major ancestry components. We divided the
selected UKBB samples into genetically “African”, “East Asian”,
“European” and “Admixed” individuals, based on their PCA and
ADMIXTURE scores, and used the former three groups as
sources to perform ancestry deconvolution on the latter, see
Supplementary Table 2 for sample sizes.

The ancestry deconvoluted UKBB admixed samples were then
grouped according to their inferred ancestry fractions (Supple-
mentary Table 2), and pPS calculated for height and BMI traits.
We chose to explore only these two phenotypes due to the
shortage of clearly labeled T2D or Breast Cancer cases in our
admixed UKBB cohort, and because of the higher precision
achievable in discerning genetic contribution to continuous traits.
Similarly to the Egyptian, Ethiopian and ASW case, aspPS on the
European component of the UKBB admixed samples recovered a
distribution of scores within the European ranges. Conversely, PS
on the non-European component of the UKBB samples shows
non-zero median, as shown in Fig. 4a, b, (see also Supplementary
Data 1). By correcting the population-level PS with the real
phenotypic deviation, we were able to quantitatively describe this
directional bias, which showed a suggestive correspondence with
the FST distance between each Non-European group and our
reference set of European descent, see Fig. 4c.

Additionally, the same effect was observed in PSs derived from
Biobank Japan33,34 (BBJ) and standardized against our sample set
of East Asian descent from UKBB (Supplementary Fig. 5). Here
East Asian aspPSs shifted towards 0 and PS bias was propor-
tionate with FST against the East Asian reference set (Fig. 4c).

AspPS predictivity in admixed genomes. We then tested the
phenotype predictivity of aspPS on admixed genomes extracted
from UKBB. We fitted a model on a joint, balanced set of
admixed and unadmixed European individuals, and adopting as
predictor a) the traditional PS or b) aspPSs, in addition to non-
genetic covariates and the global ancestry proportion. This last
predictor was introduced to account for predictivity gained
simply scaling the total PS with the ancestry fraction: according to
our simulations (Supplementary Fig. 1), this approach would be
enough to recover predictivity loss due to PS directional bias
alone. As shown in Fig. 5 (blue and yellow lines) aspPS computed
on the European ancestral component, although comparable,
never outperform the predictivity of the total PS for the admixed
individuals. As anticipated by our simulations (Supplementary
Fig. 1), this is expected when (A) transferability to the non-
European ancestry of the trait-SNP associations discovered in
Europeans is greater than zero and (B) the directional bias in PS
introduced by the non-European genetic component is moderate.
Nonetheless, this result confirms that the genomic portion dis-
carded by the local ancestry deconvolution only adds, indeed, a
negligible amount of information: this is further substantiated by
the poor performance achieved by a control where the local
ancestry patterns were randomly assigned by design, see Sup-
plementary Fig. 6.

As anticipated by our simulations, the main advantage of
computing aspPS over simple PS lies in the possibility of
combining multiple aspPS into a single, global, ancestry-informed
PS. We therefore focused on samples for which at least two aspPS
could be computed (i.e. individuals with East Asian and European
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ancestral components), thanks to the availability of European-
and East Asian-derived trait-SNP associations, from UKBB and
BBJ respectively. When adding together the two aspPS weighted
for ancestry proportions, to generate a combined ancestry specific
PS (casPS), we show that the phenotype predictivity outperforms
both aspPS and at least one of the total PS (Fig. 5b, d purple line).
Again, this is not achieved with incorrect local ancestry inference
(Supplementary Fig. 6b, d). Different fitting sets were adopted: no
macroscopic differences were evident when fitting the model
parameters on either admixed samples alone or European
samples only, see Supplementary Fig. 7. Lastly, we compared
models including casPS with the traditional total PS, performing a
Vuong’s closeness test to detect which one fared better when
predicting traits in admixed samples. For BMI, our approach
resulted significantly closer to the real data than a traditional PS
using either BBJ or UKBB associations, whereas for height the PS
derived from UKBB still performed better (Supplementary
Table 3).

Discussion
We showed that in admixed individuals aspPS can recover an
unbiased distribution of PS by masking out the spurious shifting

effect introduced by genomic segments derived from deeply
divergent populations. This enables the assessment of a sample’s
PS within a European reference set when dealing with PS calcu-
lated using European genetic effect sizes (Figs. 2, 4). The aspPS
approach can be transferred to samples where a fraction of the
genome is simply missing (pPS). On the other hand our approach
allows the evaluation of the pPS predictivity (Fig. 3) on an
individual-basis, hence enabling a per-sample evaluation of the
reliability of the phenotype prediction. Our simulations and
analyses on real admixed individuals from the UKBB show that,
depending on the cross-population transferability of the adopted
trait-SNP associations, the aspPS we introduced here provides an
alternative mean of assessing an admixed individual’s PS and,
when multiple aspPS are combined in a casPS, the casPS pre-
dictivity outperforms both aspPS and at least one of the total PS
scores (European or East Asian total PS, in our examples).
Intuitively, and according to our simulation, casPS performance is
enhanced by the lack of PS transferability across ancestries and if
the Non-European PS performs at least as well as the European
one on Non-European sample sets. Our results show that this is
not the case, since PSs calculated using BBJ (East Asian) asso-
ciations perform worse on East Asians than PSs calculated using
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UKBB associations, regardless of the adopted fitting (Fig. 5 and
Supplementary Fig. 7). The difference in overall performance
between the two PSs on the respective unadmixed individuals,
possibly due to differences in statistical power between the
underlying GWAS, might be the reason why casPS for height did
not show a significant improvement over the total PS calculated
using UKBB trait-SNP associations (Fig. 5b), although it did
compared to total PS computed with weights from BBJ. In either
cases, however, we maintain that aspPS and casPS are preferable
measures than the simple PS, despite their comparable predictive
performance, due to the fact that their features are all based on
the correct pairing of SNP-trait associations and local ancestry. In
conclusion pPS, aspPS and casPS are good predictors of both the
PS and of the underlying phenotypes and provide a crucial step
toward the extension of personalized and predictive healthcare to
individuals of admixed ancestry, where at least part of the
background is still of European origin or from a population with
a solid GWAS groundwork. Future directions will include the
extension of the method to individuals where European ancestry
does not constitute a considerable genomic portion. To this

extent, a better understanding of other ancestry-specific genetic
effect sizes is needed. Such knowledge will provide the final step
to the refinement of a tool, which under an additive model, can
incorporate all aspPS to produce combined ancestry specific
Polygenic Scores (casPS).

Methods
Genetic data. We took advantage of a dataset of 220 modern Ethiopians and
Egyptians jointly called with a subset of the 1000 Genomes Project26 from Pagani
et al.25, adding African-Americans belonging to the “ASW” population from 1000
Genomes Project26, and adding other modern populations from the 1kg project as
reference : “CEU”, “IBS”, “TSI”, “YRI”, “LWK”, “CHB”. All Ethiopians with the
exception of Gumuz were merged and labeled as “ETHIOPIA”. To test pPS pre-
dictivity we relied on two different datasets, one extracted from UK Biobank27,
accessed under Project #17085, and one extracted from Estonian Biobank31,
accessed with Approval Number 285/T-13 obtained on 17/09/2018 by the Uni-
versity of Tartu Ethics Committee.

Samples selection from Biobanks. To test T2D, height, BMI in EstBB we used the
same set of 1923 individuals with 942 cases of diabetes, obtained by removing
samples used in training T2D PS in Läll et al.28 and samples genotyped by
sequencing. To test breast cancer with PS from Michailidou et al.30 we used a set of
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908 women including 308 cases, removing prevalent samples used in training
PS in Michailidou et al.30. All these sets were filtered removing samples with
relatedness of 2nd degree and higher. To test predictivity in UKBB we first
removed all samples with relatedness of 3rd degree and higher, those for which
relatedness could not be computed and those present in the UKBB GWAS training
set29. Then we used a method adapted from Neale Lab (https://github.com/
Nealelab/UK_Biobank_GWAS) to draw ellipses in the space defined by first 6 PCs
pre-computed by the UKBB workgroup, thus selecting individuals which were (a)
closer than 5 and (b) farther than 15 cumulated standard deviations with respect to
the UKBB GWAS training set: this defined a genetically “European” and a “non-
European” sample sets (Supplementary Fig. 4a). The “European” set was randomly
downsampled to 5000, defining “UK EUR”. We performed a preliminary global
ancestry analysis with ADMIXTURE32 at k=5 (Supplementary Fig. 4b) on the
“non-European” set in order to select LAD sources, using only markers available
from chromosome 1 and projecting the samples onto the allele frequencies (P file)
obtained by running the 2305 1000 Genomes Project samples26 under the same
parameters. We also discarded samples which showed cumulative South Asian or
Native American ancestry higher than 20%. We further segmented genetically non-
European samples with the global proportions obtained from the LAD by assuming
a threshold of 5% in order to define presence/absence of a certain ancestry in an
individual, thus defining “UK AFR”, “UK EAS”, “UK EURAFR”, “UK EUREAS”,
“UK EUREASAFR”. “UK FAREUR”, most likely composed by South Europeans
and West Asian individuals, was defined by downsampling to 5000 a group of
samples inferred to be more than 95% European by LAD but coming from “non-
European” PC space. See Supplementary Table 2 for sample sizes of all UKBB-
derived sets.

Local ancestry analysis. To perform the LAD we adopted ELAI24, a two-layer
HMM software designed to learn the structure of local and long distance ancestral
haplotypes. We adopted two combinations of 72 samples equally distributed
among CEU, TSI, IBS and GUM, LWK, YRI, respectively, as sources for West-
Eurasian and African segments for the Egyptian, Ethiopian and ASW samples.
Concerning UKBB samples, to minimize batch effects we resorted to internally
available source samples. To this extent, 100 samples were extracted from the “UK
EUR” set to act as European sources, while as African and East Asian sources we
extracted the 100 with the highest appropriate ancestry fraction according to
ADMIXTURE. The admixture generations parameter was set as 100 for Ethiopians,
30 for Egyptians, 6 for ASW and 10 for UKBB samples. Each time we used 20 EM
steps and performed 10 runs, of which we took the average. We assigned each SNP
to the ancestry with the highest estimated allelic dosage, provided it reached a
threshold of 0.9, or labeled it as unknown otherwise. In all cases we used phased
data, treating haplotypes as independent.

Summary statistics for PSs. To compute PSs we adopted summary statistics from
a collection of studies listed in Supplementary Table 1. Summary statistics were
filtered removing palindromic SNPs and those with MAF < 0.01, then clumped
applying PLINK 1.935, with parameters: -clump-r2 0.05 -clump-p1 0.5
-clump-p2 1 -clump-kb 1000. The best set of SNPs was selected by deter-
mining the best P-value cutoff with PRSice36. Both clumping and cutoff selection
were run on the reference set in Supplementary Table 1. Summary statistics for
T2D were taken as they are and only clumping was run on the ones for Breast
Cancer.

Computing pPS. We formulated a statistic that estimates the total Polygenic Score
(PS) using only a part of the genome: a “partial Polygenic Score” (pPS). Its desired
key properties are: (A) being unbiased with respect to the fraction of genome used
to compute it and (B) being robust to fluctuations in variance due to the different
regions of the genome used to compute pPS.

A common12,28 definition of a raw PS for the individual j is the sum of its alleles
weighted by their effect sizes:

Sj ¼
XNV

i¼1

βixij; ð2Þ

where xij is the allelic state at site i, individual j, βi is the associated effect size and
NV is the number of variants used to compute it. An equivalent alternative is to
compute the mean, instead of the sum:

xj ¼
1
NV

XNV

i¼1

βixij: ð3Þ

In order to compute partial PS we only consider a subset of variants of the genome,
with size NS (NS < NV); we can therefore define a raw pPS as

x0j ¼
1
NS

XNS

i¼1

βixij: ð4Þ

We then devised a standardized pPS using a Z-score of the raw pPS, as is common:

pPSj ¼
x0j � μx0

σx0
; ð5Þ

where μx0 and σx0 are, respectively, mean and standard deviation of the x0 statistic,
computed across all NI individuals of a reference population and using only a
subset of variants of the genome, with size NS. The traditional standardized PS is a
limit case of such formula where NS = NV. We independently computed PS for
phased haplotypes, using their own local ancestry pattern in case of aspPS, and
subsequently merged the results from the two haplotypes of the same individual.

Population-wide aspPS analyses. The true aspPSs were compared with aspPSs of
the same individual produced with an incorrect local ancestry pattern with a one-
sided Wilcoxon signed-rank test. This control was obtained shuffling the local
ancestry patterns among individuals of the same population, excluding the correct
pattern-individual matching. The test side was always towards 0 for the reference
population and away from 0 otherwise.

PS bias was estimated as mean PS minus mean trait measure, after standardizing
both quantities against the reference population. FST with PS reference populations
was estimated using vcftools 0.1.1637 and the option -weir-fst-pop <P1> -weir-fst-
pop <p2>, where p1 and p2 are all the analyzed groups. In all analyses described in
this section and in the boxplots in Figs. 2, 4 and Supplementary Fig. 5, we removed
aspPS obtained from less than 10% of the genome.

pPS Predictivity in uniform genomes. As a local ancestry pattern is essentially a
subset of the genome obtained superimposing a mask onto the genomic fragments
of other ancestries, we could apply the same subsetting mechanism to other gen-
omes, even if non-admixed. We chose randomly 200 European local ancestry/
subsets from our admixed sets. Each of the drawn subsets (masks) obtained in the
local ancestry analysis was applied to the whole EstBB dataset to obtain a pPS
distribution and predicted R2 was used as measure of predictivity. For binary traits
we adopted a logistic model and the Nagelkerke R2.

aspPS predictivity. We first fitted a glm model for each different PS configuration,
each time including as covariates sex, age, age2, age3, genotyping batch and Eur-
opean SNP fraction: these alone define a “base” model. We adopted different sets
for this fitting step, including: (a) a balanced set of UK EUR plus admixed sets, (b)
a balanced set only including admixed sets, (c) UK EUR as is, (d) a balanced set of
UK EAS plus admixed sets, (e) a balanced set of all populations, see Supplementary
Fig. 7. We then measured R2 on specific sample sets by predicting their phenotypes
with the model fitted above and assessed standard deviation through 5000 boot-
strap replications (boot package from R Software (https://www.r-project.org)).
Added R2 is defined as realized R2 minus base model R2. Comparisons of nested
and non-nested models were performed with likelihood ratio test from lmtest and
Vuong test from nonnest2 R packages, respectively. When testing in EstBB we used
the genotyping platform as covariate in place of genotyping batch. The incorrect
local ancestry was defined as in “Population-wide aspPS analyses”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are publicly available and can be accessed
from the following repositories: data from 1000 Genomes Project at ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/; data from Pagani et al.25 at https://ega-archive.org/
datasets/EGAD00001003296; data from UK Biobank at https://biobank.ndph.ox.ac.uk/
showcase/ (accessed under Project #17085); data from Estonian Biobank at https://
genomics.ut.ee/en/access-biobank (accessed with Approval Number 285/T-13 obtained
on 17/09/2018 by the University of Tartu Ethics Committee). GWAS summary statistics
can be accessed at https://www.nealelab.is/uk-biobank and http://jenger.riken.jp/en/
result for UKBB and BBJ respectively.

Code availability
Code for analyses performed in this paper is accessible at the repository: https://
bitbucket.org/dmarnetto/ancestry-specific-partial-ps.
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