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A semi-analytical solution for the in-plane stress fields in isotropic convex 
finite solids with circular holes reinforced with cylindrically 
orthotropic rings 
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A B S T R A C T   

In this paper a semi-analytical solution for the stress distribution in a finite convex plate with a reinforced hole 
and subjected to a general loading condition is presented. The method described accounts for the geometrical 
parameters of the plate, as well as material properties and loading conditions, which can be applied internally to 
the hole boundary and externally to the outside boundaries of the plate. An extensive validation of the proposed 
solution is carried out comparing the theoretical predictions with results from various finite element analyses, 
showing an excellent agreement.   

1. Introduction 

Panels, plates, and shells are among the most common primary ele-
ments used in engineering structures, varying widely in shapes but all 
with the common characteristic of having one geometric dimension 
much greater or smaller than the other two. The need to meet usual 
service requirements imposes the necessity to create holes and notches 
in these elements, hampering the structural strength of such compo-
nents. Starting from Kirsch in 1898 [1] many authors devoted a great 
effort to predict the effective stress distributions of plates weakened by 
such geometrical variations under plane stress or strain hypotheses. 
Muskhelishvili [2], proposed a complex potential approach for isotropic 
plates, making easier and more intuitive the study of complex geome-
tries. Lekhnitskii [3] and Savin [4] developed similar approaches for 
anisotropic materials, using conformal mapping to study holes of 
various shapes. Many authors later verified and further improved Savin 
and Muskhelishvili solutions, applying their approaches to holes and 
notches of different shapes (see [5–12] and reference reported therein). 
In particular, Batista [5] developed efficient algorithms to calculate 
stress fields around complex non convex hole shapes, Sharma [13] 
analyzed polygonal holes, and Rezaeepazhand and Jafari [14] studied 
metallic panels with special shaped cutouts. Great efforts were also 
devoted in the recent years to characterize analytically the stress dis-
tribution associated to several notch geometries and loading conditions 
(see [8–12] and references reported therein). 

Despite the intense scrutiny carried out on this topic, the subject of 
notch stress analysis and notch strength still attracts the attention of 
many researchers (see, among the others, [15–21]). 

Within this context, it is worth mentioning that few researchers were 
able to determine analytical solutions valid on the whole domain of 
finite bodies weakened by holes or notches with dimensions comparable 
with the plate size. Within this context, worth mentioning are the pio-
neering results of Howland [22] and Ling [23] who approached these 
problems in the first half of the past century, investigating the case of 
notched strips. More recently, Wah [24] first studied the effect of a 
circular hole in a polygonal plate, and later Pan et al. [25] analyzed 
rectangular shaped holes in finite plates. Lin and Ko [26], and Xu et al. 
[27], instead, developed solutions for a finite composite laminate 
weakened by an elliptical hole, whereas the problem of finite size bodies 
under mode III was solved analytically by Salviato and Zappalorto 
[28,29]. 

In order to prevent, or reduce, the damage caused by stress con-
centrations it is possible to reinforce the regions close to holes and 
notches with stronger and stiffer materials (see for example [30] and 
references reported therein). Stiff rings, inserts and patches were used, 
initially, for this purpose. In composites laminates, the strengthening 
effect can also be obtained by stacking various laminae with grading 
stiffness (see for example Dave and Sharma [31]). But it is only recently, 
with additive manufacturing technologies, that functionally graded 
materials can be effectively engineered (see Yang et al [32]) expanding 
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the design flexibility to unprecedented levels. However, the additional 
degrees of freedom demand new theoretical and numerical tools for 
driving the design and it is in this perspective that the current research 
effort finds a valuable place. 

The problem of findings analytical solutions for the stress distribu-
tions in finite size plates with locally reinforced geometrical variations is 
that of considerable difficulty, but these solutions would be very useful 
for engineering applications, especially in the design of additively 
manufactured mechanical components. 

Within this field of research, the main aim of this paper is to expand 
the previously developed solution for an infinite plate with a concen-
trically reinforced hole [30] and to propose a method for deriving stress 
fields in finite convex plates of arbitrary geometry weakened by a 
concentrically reinforced hole and subjected to arbitrary loads, applied 
both to the external boundaries of the plate and internally along the hole 
surface. 

The problem is initially analytically stated in its most generic form, 
using Muskhelishvili complex potential approach and the general solu-
tion for a polarly orthotropic annulus. Several boundary conditions are 
considered. In particular, the boundary conditions for the hole edges are 
described and applied exactly by solving the corresponding linear sys-
tem. External boundary conditions are then approximated by mini-
mizing the square residual stresses and obtaining approximated, yet 
accurate, stress fields for the entire region of the plate. The accuracy of 
the proposed solution is checked against the results of a large variety of 
Finite Element analyses varying all the relevant geometrical parameters 
of the plate. 

2. Analytical solution 

2.1. Statement of the problem 

Consider a generic convex isotropic plate with a circular hole of 
radius r0, surrounded by a concentric polarly orthotropic annulus of 
thickness s (reinforced region) and outer radius r1, (s = r1 − r0) as shown 
in Fig. 1. Suppose that the solid is subjected to shear and radial stresses 
along the hole boundary, that can be expressed in the following Fourier 
series form: 

σ̄rr(θ) = S0 +
∑N

n=1

(
Sn,1cos(nθ) + Sn,2sin(nθ)

)

σ̄rθ(θ) = T0 +
∑N

n=1

(
Tn,1cos(nθ) + Tn,2sin(nθ)

)
(1)  

where S0, T0, Sij, Tij ∈ R∀ i : 1 ≤ i ≤ N ∈ N; j ∈ {1,2}. Suppose also that 
external stresses are applied to the solid’s external boundaries, described 
according to the following Fourier series (see Fig. 1): 

σg
ij(θ) = Ωij

0 +
∑M

n=1

(
Ωij

n,1cos(nθ) + Ωij
n,1sin(nθ)

)
(2)  

where Ωij
0, Ωij

n,p ∈ R∀n : 1 ≤ n ≤ M ∈ N; p ∈ {1,2}, i and j are the direc-
tion perpendicular or tangent to the external surface of the solid in every 
point. 

2.2. Universal form for the stress and displacement fields in the reinforced 
region (reinforcing annulus) 

The reinforced region is an annulus concentric with the hole, made of 
polarly orthotropic material having principal directions of elasticity in 
the radial and circumferential directions (Fig. 1). Stress and displace-
ments fields in this region can be sought in the same form used by 
Pastrello et al. [30]: 

u(1)
r =A0

(r0

r

)α0
+a0

(
r
r1

)α0

− E1

(
1+d− 2

1+∊− 2

)

cosθ+(E1cosθ+F1sinθ)log
(

r
r0

)

+

+
∑P

n=1

(

(Ancosnθ+Bnsinnθ)
(r0

r

)αn
+(ancosnθ+bnsinnθ)

(
r
r1

)αn)

+

+
∑P

n=2

(

(Encosnθ+Fnsinnθ)
(r0

r

)βn
+(encosnθ+ fnsinnθ)

(
r
r1

)βn
)

(3)   

u(1)
θ =F1

(
1+d− 2

1+∊− 2

)

cosθ − H0

(r0

r

)
+(F1cosθ − E1sinθ)log

(
r
r0

)

+

+
∑P

n=1

(

(Cnsinnθ − Dncosnθ)
(r0

r

)αn
+(cnsinnθ − dncosnθ)

(
r
r1

)αn )

+

+
∑P

n=2

(

(Gnsinnθ − Hncosnθ)
(r0

r

)βn
+(gnsinnθ − hncosnθ)

(
r
r1

)βn
)

(4)      

σ(1)
rr =

G(1)
θr

rc2d2
1

{(r0

r

)α0
A0
(
c2 − d2α0

)
+

(
r
r1

)α0

a0
(
c2 + d2α0

)
+

+E1
d4 −

(
c2( 1 + d2) − d4 )∊2

d2( 1 + ∊2) cosθ + F1
d4 −

(
c2( 1 + d2) − d4 )∊2

d2( 1 + ∊2) sinθ+

+
∑P

n=1

[(r0

r

)αn [
(Ancos(nθ) + Bnsin(nθ) )

(
c2 − d2αn

)
+ (Cncos(nθ) + Dnsin(nθ) )nc2 ]+

+

(
r
r1

)αn [
(ancos(nθ) + bnsin(nθ) )

(
c2 + d2αn

)
+ (cncos(nθ) + dnsin(nθ) )nc2 ]

]

+

+
∑P

n=2

[(r0

r

)βn [
(Encos(nθ) + Fnsin(nθ) )

(
c2 − d2βn

)
+ (Gncos(nθ) + Hnsin(nθ) )nc2 ]+

+

(
r
r1

)βn [
(encos(nθ) + fnsin(nθ) )

(
c2 + d2βn

)
+ (gncos(nθ) + hnsin(nθ) )nc2 ]

]}

(5)   
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In Eqs. (3)–(7), the superscript (1) refers to the elastic constants, stresses 
and displacements of the material the reinforcing region is made of. 

Unknowns An, an, Bn, bn, Cn, cn, Dn, dn, En, en, Fn, fn, Gn, gn, Hn, 
hn, ∀n ≤ P ∈ N |N,M ≤ P as well as all the other constants in Eqs. (3)– 

(7) have the same expressions given in Ref. [30]. 

2.3. Universal form for the stress and displacement fields outside the 
reinforced region (plate) 

The universal form for the stress and displacement fields in the 
isotropic solid outside the reinforced region can be determined by means 
of Muskhelishvili formulation [2]: 

σ(2)
rr + σ(2)

θθ = 4Re
[

dΦ(z)
dz

]

σ(2)
θθ − σ(2)

rr + 2iσ(2)
rθ = 2e2iθ

(

z̄
d2Φ(z)

dz2 +
dX(z)

dz

)

u(2)
r + iu(2)

θ =
1 + ν(2)

E(2)

(

κ Φ
(

z
)

− z
¯dΦ(z)
dz

− ¯X(z)
)

e− iθ

(8)  

where E and ν represent the elastic modulus and the Poisson ratio, and 
superscript (2) identifies the properties of the isotropic unreinforced 
region. 

The following two potential functions are used for the problem under 
investigation, being them suitable forms to apply proper boundary con-
ditions: 

Φ(z)= (Ā0 + iB̄0)log(z)+(Āc + iB̄c)+
∑P− 1

n=1
(Ā− n + iB̄− n)z− n +

∑P+1

n=1
(Ān + iB̄n)zn

X(z)= − κ(Ā0 − iB̄0)log(z)+
∑P+1

n=1
(C̄− n + iD̄− n)z− n +

∑P− 1

n=1
(C̄n + iD̄n)zn

(9) 

σ(1)
θθ =

G(1)
θr

rd2∊2
1

{(r0

r

)α0
A0
(
d2 − ∊2α0

)
+

(
r
r1

)α0

a0
(
d2 + ∊2α0

)
+

+E1
∊2( ∊2 − d2)

1 + ∊2 cosθ + F1
∊2( ∊2 − d2)

1 + ∊2 sinθ+

+
∑P

n=1

[(r0

r

)αn [
(Ancos(nθ) + Bnsin(nθ) )

(
d2 − ∊2αn

)
+ (Cncos(nθ) + Dnsin(nθ) )nd2 ]+

+

(
r
r1

)αn[
(ancos(nθ) + bnsin(nθ) )

(
d2 + ∊2αn

)
+ (cncos(nθ) + dnsin(nθ) )nd2 ]

]

+

+
∑P

n=2

[(r0

r

)βn [
(Encos(nθ) + Fnsin(nθ) )

(
d2 − ∊2βn

)
+ (Gncos(nθ) + Hnsin(nθ) )nd2 ]+

+

(
r
r1

)βn [
(encos(nθ) + fnsin(nθ) )

(
d2 + ∊2βn

)
+ (gncos(nθ) + hnsin(nθ) )nd2 ]

]}

(6)  

σ(1)
rθ =

G(1)
θr

r

{
2r0H0

r
+ F1

d2 −

∫ 2

d2
(

1 +

∫ 2) cosθ + E1

d2 −

∫ 2

d2
(

1 +

∫ 2) sinθ+

+
∑P

n=1

[(r0

r

)αn
[n(Bncos(nθ) − Ansin(nθ) ) + (Dncos(nθ) − Cnsin(nθ) )(αn + 1) ]+

+

(
r
r1

)αn

[n(bncos(nθ) − ansin(nθ) ) + (cnsin(nθ) − dncos(nθ) )(αn − 1) ]
]

+

+
∑P

n=2

[(r0

r

)βn
[n(Fncos(nθ) − Ensin(nθ) ) + (Hncos(nθ) − Gnsin(nθ) )(βn + 1) ]+

+

(
r
r1

)βn

[n(fncos(nθ) − ensin(nθ) ) + (gnsin(nθ) − hncos(nθ) )(βn − 1) ]

]}

(7)  

Fig. 1. Finite plate with a reinforced circular hole under generic 
loading conditions. 
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Substituting Eq. (9) into Eq. (8) it results in the following stress and 
displacement fields: 

u(2)
r =

(
ν(2) + 1

)

E(2)

{
(r2(κ − 1)Ā1 − C̄− 1

)

r
+

+
(r2( ( κlog

(
r2) − 1

)
Ā0 + r2(κ − 2)Ā2 + κĀc

)
− C̄− 2

)

r2 cos(θ)+

+
(r2( ( κlog

(
r2) − 1

)
B̄0 − r2(κ − 2)B̄2 + κB̄c

)
− D̄− 2

)

r2 sin(θ)+

+
∑P

n=3

[(
r2((n − 1) + κ )Ā− (n− 1) + r2(n+1)(κ − (n + 1) )Ā(n+1) − C̄− (n+1) − r2(n− 1)C̄(n− 1)

)

rn+1 cos(nθ) +

+

(
r2((n − 1) + κ )B̄− (n− 1) − r2(n+1)(κ − (n + 1) )B̄(n+1) − D̄− (n+1) + r2(n− 1)D̄(n− 1)

)

rn+1 sin(nθ)
]}

(10)  

u(2)
θ =

(
ν(2) + 1

)

E(2)

{
(r2(1 + κ)B̄1 + D̄− 1

)

r
+

+
(r2( ( 1 + κlog

(
r2) )B̄0 + r2(2 + κ)B̄2 + κB̄c

)
+ D̄− 2

)

r2 cos(θ)−

−
(r2( ( 1 + κlog

(
r2) )Ā0 − r2(2 + κ)Ā2 + κĀc

)
+ C̄− 2

)

r2 sin(θ)+

+
∑P

n=2

[(
r2(κ − (n − 1) )B̄− (n− 1) + r2(n+1)(κ + (n + 1) )B̄(n+1) + D̄− (n+1) + r2nD̄(n− 1)

)

rn+1 cos(nθ) −

+

(
r2((n − 1) − κ )Ā− (n− 1) + r2(n+1)(κ + (n + 1) )Ā(n+1) − C̄− (n+1) + r2nC̄(n− 1)

)

rn+1 sin(nθ)
]}

(11)  

σ(2)
rr =

1
(ν̃ − 1)

{
(C̄− 1(ν̃ − 1) − r2(κ − 1)(ν̃ + 1)Ā1

)

r2 +

+
2(r2(ν̃ − κ)Ā0 − r4(κ + κν̃ − 2)Ā2 + (ν̃ − 1)C̄− 2

)

r3 cos(θ)+

+
2(r2(ν̃ − κ)B̄0 + r4(κ + κν̃ − 2)B̄2 + (ν̃ − 1)D̄− 2

)

r3 sin(θ)+

+
∑P

n=2

[
((n − 1)r2((n − 1) − (n + 1)ν̃ + κ(ν̃ + 1) )Ā− (n− 1) + (n + 1)(ν̃ − 1)C̄− (n+1)

)

rn+1 cos(nθ) −

−
(n + 1)r2(n+1)(κ − (n + 1) + ((n − 1) + κ )ν̃ )Ā(n+1) + (n − 1)(ν̃ − 1)r2nC̄(n− 1)

rn+1 cos(nθ)+

+
((n − 1)r2((n − 1) − (n + 1)ν̃ + κ(ν̃ + 1) )B̄− (n− 1) + (n + 1)(ν̃ − 1)D̄− (n+1)

)

rn+1 sin(nθ)+

+
(n + 1)r2(n+1)(κ − (n + 1) + ((n − 1) + κ )ν̃ )B̄(n+1) + (n − 1)(ν̃ − 1)r2nD̄(n− 1)

rn+1 sin(nθ)
]}

(12)   
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Āc, B̄c, Ān, B̄n, C̄n, D̄n ∀n ≤ P ∈ N are integration constants to determine 
applying proper boundary conditions, remembering that κ = 3 − 4ν(2) for 
plane strain conditions, whilst for plane stress κ = 3− ν(2)

1+ν(2). ν̃ = ν(2) for 

plane stress, while ν̃ = ν(2)
1− ν(2) for plain strain. 

2.4. Boundary conditions and explicit solution for unknown coefficients 

Since compatibility and equilibrium conditions should be guaran-
teed along the boundary of the reinforcing annulus, it is possible to write 
the following system of equations: 

σ(1)
rr (r = r0, θ) = σ̄rr(θ) σ(1)

rθ (r = r1, θ) = σ(2)
rθ (r = r1, θ)

σ(1)
rθ (r = r0, θ) = σ̄rθ(θ) u(1)

r (r = r1, θ) = u(2)
r (r = r1, θ)

σ(1)
rr (r = r1, θ) = σ(2)

rr (r = r1, θ) u(1)
θ (r = r1, θ) = u(2)

θ (r = r1, θ)
(15)  

where, r1 = r0 + s.Eq. (15) can be rewritten in matrix form as it follows: 

Ĥ⋅v̄ = k̄ (16)  

where Ĥ is a diagonal block matrix defined as: 

Ĥ = Diag[Ĥ0, Ĥ1,⋯, ĤN ] (17)  

And Ĥi are defined in Appendix A. v̄ is the coefficient vector: 

v̄ = {v̄0, v̄1,⋯, v̄N} (18)  

Where: 

v̄0 = {A0, a0, C̄− 1, D̄− 1,H0, B̄1} (19)  

v̄1 = {C1, c1,E1, Ā0, C̄− 2, Āc,D1, d1,F1, B̄0, D̄− 2, B̄c} (20)  

v̄n = {Cn,Gn, cn, gn, Ā1− n, C̄− n− 1,Dn,Hn, dn, hn, B̄1− n, D̄− n− 1}∀ 2 ≤ n ≤ P
(21)  

and k̄ is a vector defined in Appendix A. 
Solving the system given by Eq. (16) yields expressions for co-

efficients v̄ as functions of the remaining coefficients: Ā1, Ā2, B̄2, Ān+1,

B̄n+1, C̄n− 1, D̄n− 1 with n ranging from 2 to P. 
In order to calculate these coefficients, boundary conditions have to 

be imposed on the external boundaries. Traditional equilibrium equa-
tions however cannot be solved exactly for a finite value of P, so a nu-
merical approximation relying on the minimization of the residual 
stresses is used in this work. The external boundary can be divided into 
Ndiv number of divisions, each described with parametric equations ln(s),
n ∈ {1,⋯,Ndiv} (for Ndiv = 1, l1(s) is the parametric description of the 
whole external boundary). 

The residual stresses calculated along these curves are: 

Δn
ij =

{
σ(2)

ij (r, θ) − σg
ij(θ)

} ⃒
⃒
⃒
{r,θ}∈ln(s)

(22)  

where σg
ij(r) are the stresses applied to the external boundary with i, j 

being the directions perpendicular or tangent to the boundary. 
Considering the maximum distance of the external boundaries from 

the centre of the hole, rmax, with the aim to normalize the minimization 
procedure to the maximum size of the solid it is possible to apply the 
following substitutions in (22): 

Ān =
Ân

rn
max

; B̄n =
B̂n

rn
max

; C̄n =
Ĉn

rn
max

; D̄n =
D̂n

rn
max

(23)  

with n ranging from 2 to P. From (22) and (23) the following function 
describing the total residual stresses can be defined: 

σ(2)
θθ =

1
(ν̃ − 1)

{
(C̄− 1(ν̃ − 1) + r2(κ − 1)(ν̃ + 1)Ā1

)

r2 +

+
2(r2(1 − ν̃κ)Ā0 + r4(κ + (κ − 2)ν̃ )Ā2 − (ν̃ − 1)C̄− 2

)

r3 cos(θ)

+
2(r2(1 − ν̃κ)B̄0 + r4(κ + (κ − 2)ν̃ )B̄2 − (ν̃ − 1)D̄− 2

)

r3 sin(θ)+

+
∑P

n=2

[
((n − 1)r2((n − 1)ν̃ − (n + 1) + κ(ν̃ + 1) )Ā− (n− 1) − (n + 1)(ν̃ − 1)C̄− (n+1)

)

rn+1 cos(nθ) −

−
(n + 1)r2(n+1)((n − 1) + κ + (κ − (n + 1) )ν̃ )Ā(n+1) + (n − 1)(ν̃ − 1)r2nC̄(n− 1)

rn+1 cos(nθ)+

+
((n − 1)r2((n − 1)ν̃ − (n + 1) + κ(ν̃ + 1) )B̄− (n− 1) − (n + 1)(ν̃ − 1)D̄− (n+1)

)

rn+1 sin(nθ)+

+
(n + 1)r2(n+1)((n − 1) + κ + (κ − (n + 1) )ν̃ )B̄(n+1) + (n − 1)(ν̃ − 1)r2nD̄(n− 1)

rn+1 sin(nθ)
]}

(13)  

σ(2)
rθ = −

D̄− 1

r2 +
(r2(1 − κ)B̄0 + 2

(
r4B̄2 + D̄− 2

) )

r3 cos(θ)+

+
(r2(1 − κ)Ā0 + 2

(
r4Ā2 + C̄− 2

) )

r3 sin(θ)+

+
∑P

n=2

[(
(n2 − n

)
B̄− (n− 1) + (n − 1)r2nD̄(n− 1) − (n + 1)D̄− (n+1) +

(
n2 + n

)
rnB̄(n+1)

)

rn+2 cos(nθ) +

+

(
(n + 1)C̄− (n+1) + (n − 1)r2nC̄(n− 1) −

(
n2 − n

)
Ā− (n− 1) +

(
n2 + n

)
rnĀ(n+1)

)

rn+2 sin(nθ)
]}

(14)   
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FO =
∑Ndiv

n=1

{∫

ln

[
∑

i,j

(
Δn

ij

)2
]

ds

}

(24)  

Function FO is a convex function in the variables Â1, Â2, B̂2, Ân+1,

B̂n+1, Ĉn− 1, D̂n− 1 with n ranging from 2 to P, and has only one minimum 
to be found by solving the linear system: 

∇FO = 0 (25)  

Eventually, solving (25) and substituting the results into the solutions of 
system (16) yields an expression for all the coefficients of Eqs. (3)–(7), 
and (10)–(14). 

3. Particular case: the isotropric reinforced annulus 

Let us consider the case of an isotropic annulus of internal radius r0, 
external radius r2 and reinforced by a polarly orthotropic material of 
width s = r1 − r0. The following internal pressures are applied: 

σ̄rr(θ) = S0 +
∑N

n=2

(
Sn,1cos(nθ) + Sn,2sin(nθ)

)

σ̄rθ(θ) = T0 +
∑N

n=2

(
Tn,1cos(nθ) + Tn,2sin(nθ)

)
(26)  

where S0, Sij, Tij ∈ R∀ i : 2 ≤ i ≤ N ∈ N; j ∈ {1,2}. Moreover, the 
following stresses are applied at the outer boundary of the annulus: 

σg
rr(θ) = Ω0 +

∑M

n=2

(
Ωn,1cos(nθ) + Ωn,2sin(nθ)

)

σg
rθ(θ) =

(
r0

r2

)2

T0 +
∑M

n=2

(
Ψn,1cos(nθ) + Ψn,2sin(nθ)

)
(27) 

Table 1 
Coordinate list of the points used in the convergence analysis.  

Point r coordinate θ coordinate Material phase 

P1 r0 0 CFRP 
P2 r1 0 CFRP 
P3 r1 0 GFRP  

Load C
ase

|| v
ar

 (
) |

|, 
P 1

[%
]

W [mm]
50
60
120

W/H

Fourier terms, P

r1 [mm]

Fig. 2. Convergence analysis for σθθ at point P1 for rectangular plates of width W and height H, under different load cases and r1 values.  
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Ω0, Ωij, Ψij ∈ R∀ i : 2 ≤ i ≤ M ∈ N; j ∈ {1, 2}

This particular problem can be solved exactly imposing the boundary 
conditions: 

σ(1)
rr (r = r0, θ) = σ̄rr(θ) σ(2)

rr (r = r2, θ) = σg
rr(θ)

σ(1)
rθ (r = r0, θ) = σ̄rθ(θ) σ(2)

rθ (r = r2, θ) = σg
rθ(θ)

σ(1)
rr (r = r1, θ) = σ(2)

rr (r = r1, θ) u(1)
θ (r = r1, θ) = u(2)

θ (r = r1, θ)

σ(1)
rθ (r = r1, θ) = σ(2)

rθ (r = r1, θ) u(1)
r (r = r1, θ) = u(2)

r (r = r1, θ)
(28)  

Eq. (14) can be rewritten in matrix form as follows: 

Ĥ
*
⋅v̄*= k̄* (29)  

where Ĥ
* 

is a diagonal block matrix defined as: 

Ĥ
*
= Diag

[
Ĥ

*
0, Ĥ

*
1,⋯, Ĥ

*
N

]
(30)  

And Ĥ
*
i are defined in Appendix B. v̄* is the coefficient vector: 

v̄* =
{

v̄*
0, v̄

*
1,⋯, v̄*

N

}
(31)  

where: 

v̄*
0 = {A0, a0, C̄− 1, Ā1, D̄− 1,H0, B̄1} (32)  

v̄*
1 = {C1, c1,E1, Ā0, C̄− 2, Āc, Ā2,D1, d1,F1, B̄0, D̄− 2, B̄c, B̄2} (33) 

and 

v̄*
n = {Cn,Gn, cn, gn, Ā1− n, C̄− n− 1, Ān+1, C̄n− 1,Dn,Hn, dn, hn, B̄1− n, D̄− n− 1,

B̄n+1, D̄n− 1}∀ 2 ≤ n ≤ P
(34)  

and k̄* is a vector defined in Appendix B. 

Load C
ase

|| v
ar

 (
) |

|, 
P 2

[%
]

W [mm]
50
60
120

W/H

Fourier terms, P

r1 [mm]

Fig. 3. Convergence analysis for σθθ at point P2 for rectangular plates of width W and height H, under different load cases and r1 values.  
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4. Discussion and comparison with numerical results 

4.1. Convergence analysis 

Since the proposed solution relies on a numerical approximation, a 
convergence analysis is due. To this end, different boundary conditions 
have been applied to a set of rectangular plates with different width W, 
height H, internal radius r0 and interface radius r1, while increasing the 
number of Fourier terms, P, used for approximating the loads. 

The following load cases have been considered:  

1. L1: uniaxial tension, with σg
yy = 100 MPa. 

2. L2: biaxial tension, with σg
yy = 100 MPa and σg

xx = 50MPa, and in-
ternal pressure σ̄rr = 100 MPa.  

3. L3: biaxial tension, with σg
yy = 100 MPa and σg

xx = 50MPa, and non- 
uniform internal pressure. In this case, an internal pressure approx-
imating a stress distribution enacted by a pin was described taking 
advantage of the following equation: 

Load C
ase

|| v
ar

 (
) |

|, 
P 3

[%
]

W [mm]
50
60
120

W/H

Fourier terms, P

r1 [mm]

Fig. 4. Convergence analysis for σθθ at point P3 for rectangular plates of width W and height H, under different load cases and r1 values.  

Fig. 5. Schematics of the paths used for comparing the analytical solution with 
numerical (FE) results. 
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σ̄rr(θ) = Φ(θ) =
100
π + 50sin[θ] −

200cos[2θ]
3π −

40cos[4θ]
3π

−
40cos[6θ]

7π −
200cos[8θ]

63π −
200cos[10θ]

99π

(35)    

4. L4: biaxial tension–compression, with σg
yy = 100 MPa and σg

xx =

− 50MPa.  
5. L5: biaxial tension–compression, with σg

yy = 100 MPa and σg
xx =

− 50MPa, and non-uniform internal pressure as per Eq. (35).  
6. L6: harmonic load. With the following expressions:  

a. Pressure applied on the hole boundary as per Eq. (35).  
b. Tension applied on the lateral left and right edges as: 100sin(4θ).  
c. Tension applied to the upper and lower edges as: 

100sin[2(θ − π/4)].  
7. L7: harmonic load. With the following expressions:  

a. Pressure applied on the hole boundary as per Eq. (35).  
b. Tension applied on the lateral edges as: 100[sin(4θ) + sin(8θ)]. 

-20

-10

0

10

20

30

0 30 60 90[°]

Quasi-isotropic GFRP plate 
W=H=60 mm
Solid lines: Eqs. (3-7)
Symbols: FEM
Dashed lines: Infinite plate theory

H

W

Fig. 6. Stress component σθθ evaluated along the boundary of the hole (path 4 
in Fig. 5). 60 × 60 mm isotropic plates made of quasi-isotropic GFRP; hole 
radius r0 = 10 mm reinforced with rings of width s = 2, 5 and 10 mm. Applied 
load according to load case L1. Analytical solution compared with the results 
from FE analyses and infinite plate theory. 

0.0

0.5

1.0

1.5

2.0

2.5

0 30 60 90[°]

Quasi-isotropic GFRP plate
s/r0=1 W=H=60 mm
Solid lines: Eqs. (10-14)
Symbols: FEM
Dashed lines: Infinite plate theory

r

rr

W

H

Fig. 7. Stress components σrr , σθθ , σrθ evaluated along the edge of the rein-
forcing ring (path 5 in Fig. 5) in the plate material. P = 10; 60 × 60 mm plates 
made of quasi-isotropic GFRP; hole radius r0 = 10 mm reinforced with a ring of 
width s = 10 mm. Applied load according to load case L1. Analytical solution 
compared with the results from FE analyses and infinite plate theory. 

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Normalized distance from hole's edge (r-r0)/s

Quasi-isotropic GFRP plate
s/r0=1 W=H=60 mm
Solid lines: (3-7) - (10-14)
Symbols: FEM
Dashed lines: Infinite plate theory

rr

r

W

H

Fig. 8. Stress components σrr , σθθ , σrθ evaluated along a straight path with θ =
90◦ (path 3 in Fig. 5). P = 10; 60 × 60 mm plates made of quasi-isotropic GFRP; 
hole radius r0 = 10 mm reinforced with a ring of width s = 10 mm. Applied load 
according to load case L1. Analytical solution compared with the results from 
FE analyses and infinite plate theory. 

-1
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1

2

3

4

5

6

0 0.5 1 1.5
Normalized distance from hole surface (r-r0)/s

Quasi-isotropic GFRP plate
s/r0=1 W=60 mm H=250 mm
Solid lines: (3-7) - (10-14)
Symbols: FEM
Dashed lines: Infinite plate theory

rr

r

H

W

Fig. 9. Stress components σrr , σθθ, σrθ evaluated along a straight path with θ =
45◦ (path 2 in Fig. 5). P = 10; 60 × 250 mm plates made of quasi-isotropic 
GFRP; hole radius r0 = 10 mm reinforced with a ring of width s = 10 mm. 
Applied load according to load case L2. Analytical solution compared with the 
results from FE analyses and infinite plate theory. 

-1
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Normalized distance from hole surface (r-r0)/s

Quasi-isotropic GFRP plate
s/r0=1 W=60 mm H=250 mm
Solid lines: (3-7) - (10-14)
Symbols: FEM
Dashed lines: Infinite plate theory

r
rr

H

W

Fig. 10. Stress components σrr , σθθ , σrθ evaluated along a straight path with θ 
= 0◦ (path 1 in Fig. 5). P = 10; 60 × 250 mm plates made of quasi-isotropic 
GFRP; hole radius r0 = 10 mm reinforced with a ring of width s = 10 mm. 
Applied load according to load case L2. Analytical solution compared with the 
results from FE analyses and infinite plate theory. 
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c. Tension applied to the upper and lower edges as: 
100{sin[2(θ − π/4)] + sin[4(θ − π/4)] }. 

In all the analysed plates the annular reinforcement was chosen as made 
of Carbon Fibre Reinforced Polymer (CFRP) with the following elastic 
properties: Eθ = 147 GPa, Er = 10.3 GPa, Gθr = 7 GPa, νrθ = 0.02. 

-3

-2

-1

0

1

2

3

4

0 0.5 1 1.5
Normalized distance from hole surface (r-r0)/s

Quasi-isotropic GFRP annulus
s/r0=1 r2=30 mm
Solid lines: (3-7) - (10-14)
Symbols: FEM

rr

r

r2

Fig. 11. Stress components σrr , σθθ, σrθ evaluated along a straight path with θ 
= 45◦ (path 2 in Fig. 5). Quasi-isotropic GFRP annulus of external radius r2 =

30 mm internal radius r0 = 10 mm reinforced with a ring of width s = 10 mm. 
Applied loads: external radial tension (σg

rr = 100 MPa) and internal pressure 
(σ̄rr = − 100 MPa). Analytical solution compared with the results from 
FE analyses. 

(a) 

(b) 

-1

0

1

2
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4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Normalized distance from hole surface (r-r0)/s

Quasi-isotropic GFRP plate
s/r0=1 W=H=50 mm
Solid lines: (3-7) - (10-14)
Symbols: FEM
Dashed lines: Infinite plate theory

rr

r

H

W

Fig. 12. (a) Schematic of the internal pressure exerted by a pin, according to 
the Eq. (35). (b) Stress components σrr , σθθ, σrθ evaluated along a straight path 
with θ = 45◦ (path 2 in Fig. 3). P = 10; 50 × 50 mm plates made of quasi- 
isotropic GFRP; hole radius r0 = 10 mm reinforced with a ring of width s =
10 mm. Applied load according to load case L3, non-uniform internal pressure 
according to Eq. (35) (see also Fig. 12a). Analytical solution compared with the 
results from FE analyses and infinite plate theory. 
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Dashed lines: Infinite plate theory
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Fig. 13. Stress components σrr , σθθ , σrθ evaluated along a straight path with θ 
= 90◦ (path 3 in Fig. 5). P = 10; 50 × 50 mm plates made of quasi-isotropic 
GFRP; hole radius r0 = 10 mm reinforced with a ring of width s = 10 mm. 
Applied load according to load case L3. Analytical solution compared with the 
results from FE analyses and infinite plate theory. 
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Solid lines: (10-14)
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r
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Fig. 14. Stress components σrr , σθθ , σrθ evaluated along the edge of the rein-
forcing ring (path 5 in Fig. 5) in the matrix. 60 × 60 mm plates made of quasi- 
isotropic GFRP; hole radius r0 = 10 mm reinforced with a ring of width s = 10 
mm. Applied load according to load case L5. Analytical solution compared with 
the results from FE analyses and infinite plate theory. 
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Fig. 15. Stress components σrr , σθθ , σrθ evaluated along a straight path with θ 
= 0◦ (path 1 in Fig. 5). P = 14; 50 × 120 mm plates made of quasi-isotropic 
GFRP; hole radius r0 = 10 mm reinforced with a ring of width s = 10 mm. 
Applied load according to load case L4. Analytical solution compared with the 
results from FE analyses and infinite plate theory. 
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Differently, plates were made of quasi-isotropic Glass Fiber Reinforced 
Polymer (GFRP) laminate, with the following elastic properties: Ex = Ey 
= 54 GPa, and ν12 = ν21 = 0.31. In all the considered cases the hole 
diameter was 10 mm. 

The model results are evaluated in terms of σθθ and compared with 
the results of FE analyses carried out with Ansys® version 21 software 
package, using Ansys PLANE183 quadrilateral plane elements under 
plane stress condition and pure displacement formulation. The mesh 
patterns were made following the same procedure reported in [30] as-
suring reliable FE results. The following parameter was used for 
assessing the accuracy of the analytical model: 

Δ =

⃦
⃦
⃦
⃦

σθθ − σθθ,FE

σθθ,FE

⃦
⃦
⃦
⃦ = ‖var(σθθ)‖ (36)  

where σθθ is the stress value predicted by the semi-analytical solution 
proposed in this article, and σθθ,FE is the stress value obtained from the 
numerical analysis. 

The stresses from numerical analyses were evaluated in Points P1, 
P2, and P3 (regarded as representative of the stress field for the purpose 
of studying the solution convergence; see Table 1 and Fig. 1) and 
compared with theoretical predictions (see Figs. 2, 3 and 4). 

Considering point P1 in Fig. 2, the convergence is fast, and at 10 
Fourier terms the deviation is below 5 % in all the considered scenarios. 
Differently, point P2 in Fig. 3 exhibits a lower convergence, especially 
for r1 of 20 mm, and load case L4 seems to be the most affected by this 
behaviour. Eventually, considering point P3 in Fig. 4 the trend is similar 
to that of point P2. 

Regardless of the load case, or the plate and annulus size, adding 
more terms to the Fourier series the stress values converge to asymptotic 
values. Yet, the annulus size and the plate aspect ratio affect the 
convergence speed, as much as the point that is being investigated. 
Convergence seems to be affected by the load case, as well, but 
marginally if compared with the previous parameters. 

The outcome of the convergence analysis is reasonable: as with all 
the methodologies that employ numerical approximations over a 
geometrical domain, whenever the domain presents relevant differences 
among its dimensions, the numerical calculus is less accurate. 

At the same time, the fact that the load case is less important as 
compared to the geometrical dimensions is a consequence of the way in 
which the model makes use of Fourier approximations: the application 
of constant, or non-constant, loadings does not affect the way in which 
the model maps those conditions to its potential formulations. Gener-
ally, in the case of a squared plate, one can reach an acceptable overall 
precision using as much terms in the Fourier expansions as the highest 
degree used to describe the applied loads in (1) and (2) with a minimum 
of 5. For rectangular plates instead, the accuracy of the results is less 
predictable and a general rule that can cover all the aspect ratios and 
load cases cannot be provided a priori; for these cases, a convergence 
analysis is recommended. 

4.2. Stress fields comparisons 

The previous section investigated the deviations in convergence, but 
it did not provide a reference to the absolute value of the stresses in those 
investigated points: high errors in a region with low stresses could still 
be acceptable, thus it is important to evaluate the actual stress values 
and not just their errors. To shed light on this aspect, in this Section the 
comparison between the model predictions and the FE results are re-
ported directly in terms of stresses along several path in selected cases. 
In addition, the results are compared with the prediction of the previous 
model for the case of infinite plates [30], in order to make it explicit the 
improved accuracy of the new solution. 

The analyzed plates had a central hole of radius r0 = 10 mm, width 

varying between 50 and 60 mm, height varying between 50 and 250 
mm, and were reinforced with annuli of thickness equal to s = 2, 5 and 
10 mm. Stresses were evaluated along 5 paths according to Fig. 5, with 3 
straight paths starting from the centre of the hole and inclined along the 
θ = 0◦, 45◦ and 90◦ directions (paths 1, 2 and 3, respectively), one path 
along the hole boundary (path 4) and the last one along the boundary of 
the reinforcing region (path 5). Analysed loading conditions include 
uniaxial tension, biaxial tension, and uniform and non-uniform internal 
pressure. The materials used in the FE analyses are the same as those 
used in the convergence analyses and the number of terms for the 
Fourier expansions used for the analytical evaluations are in all cases 10, 
in accordance with the convergence analysis, targeting an overall error 
of less than 5 %. Comparisons between analytical and numerical ana-
lyses are shown in Figs. 6–15 along with the results from the infinite 
plate model derived in [30]. In all the discussed cases the agreement 
between the proposed model and numerical analyses is excellent. 
Additional comparisons with the exact solution developed for the 
infinite plate [30] were carried out, to provide more information about 
the approximations introduced when dealing with plates characterized 
by holes relatively big with respect to the plate size. In more detail, for 
the infinite plate theory solution the hoop stress is again severely 
affected by the finiteness of the plate. Accordingly, for practical engi-
neering application of finite size bodies the solution presented in this 
manuscript offers a better modelling of the plate stress and displacement 
fields than the closed-form solution presented in [30], thus justifying the 
additional efforts needed to address this problem. 

In Fig. 6 the hoop stress component is shown as evaluated along the 
boundary of the hole for 60 × 60 mm2 plates under uniaxial tension, 
considering 3 different thickness values of the reinforced annulus. It is 
evident how the infinite plate theory either underestimates or over-
estimates stress concentrations depending on the configuration, while 
the proposed model perfectly approximates the stress fields along the 
hole boundary. 

Taking as a reference the 60 × 60 mm2 plate with s/r0 = 1 under the 
same loading conditions, in Figs. 7 and 8 stresses along the boundary of 
the reinforced region (path 5) and along path 3 are shown, according to 
which, conclusions similar to those related to Fig. 6 can be drawn. 
Remarkable are the results for the radial stress of Fig. 7 and for the hoop 
stress of Fig. 8, where the model for infinite plate overestimates the 
stress concentration by almost 30 %. 

Figs. 9 and 10 show the stress components for a 60x250 mm2 rect-
angular plate with s/r0 = 1, under a biaxial tension and internal con-
stant pressure. Stresses were calculated along path 2 (Fig. 9) and path 1 
(Fig. 10). Also for these cases, the accuracy of the proposed solution is 
remarkable. 

Fig. 11 deals with the special case of a circular plate with a central 
hole (see Section 3) under external tension and internal pressure, 
showing that in this particular case the proposed formulation gives an 
exact solution and that the results are in perfect agreement with nu-
merical analyses. 

Figs. 12–14 instead investigate some cases of non-constant loadings, 
particularly assuming as internal pressure that exerted by a pin, as per 
Eq. (35). 

Fig. 15 is intended to show that the convergence analysis done in the 
previous chapter can show very high relative errors in the stresses 
calculated at one point, and nonetheless be an extremely good approx-
imation of the overall stress fields. Referring to Fig. 3, taking as an 
example the case of load case L4 and angular stresses calculated in P2 for 
a 50 × 120 mm plate with a reinforcing annulus of width 10 mm, the 
relative error reaches 75 %. In Fig. 15 the stress components along path 
1 are plotted, and it is shown how the predicted stresses are in excellent 
accordance with the finite element analysis, and the 75 % error at the 
normalized distance (r-r0)/s = 1 is mainly due to the fact that the 
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normalized stresses in that point are close to null. 
In all the discussed cases the agreement between the proposed model 

and numerical analyses is excellent, showing significant improvements 
compared to the infinite plate theory. In more detail, for the latter so-
lution the hoop stress is again severely affected by the finiteness of the 
plate. Accordingly, for practical engineering application of finite size 
bodies the solution presented in this manuscript offers a better model-
ling of the plate stress and displacement fields than the closed-form 
solution presented in [30], thus justifying the additional efforts 
needed to address this problem. 

5. Conclusions 

In this work an approximate solution was proposed for a finite plate 
with a circular hole reinforced with a polarly orthotropic material and a 
generic loading condition. The derived solution for displacements and 
stress fields, although not exact, is extremely accurate for all the possible 
plane loadings as well as geometric parameters of the problem. The 
solution was tested against a bulk of finite element analyses carried out 
on different combinations of geometrical and loading parameters and 
found to be extremely satisfactory in all cases. It was also shown how the 
solution can easily accommodate complex loading conditions with 
arbitrary precision while relying on a stable convergence of the 

numerical method proposed. 
The solution presented in this paper can be regarded as a valuable 

contribution to the toolset of material designers charged with the 
challenging task of handling the additional degrees of freedom offered 
by additive manufacturing technology applied to the field of composite 
materials. 
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Appendix A 

Let’s introduce the following constants: 

ξ =
d2 − ∊2

d2( 1 + ∊2); ζ =

(
1 + d2)∊2

d2( 1 + ∊2); δ =
1
c2 −

(
1 + d2)∊2

d4( 1 + ∊2);

η =
1
d2 −

α0

c2 ; ϱ =
1
d2 +

α0

c2 ;

gγ,n =
n + ϕγ,n

d2 −
γϕγ,n

c2 ; fγ,n = 1 + γ + nϕγ,n;

(A.1)  

Ĥ0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η rα0
0

r1+α0
1

G(1)
θr

ϱG(1)
θr

r1
−

1
r2

1
0 0 0

ηG(1)
θr

r1
ϱ

rα0
0

r0rα0
1

G(1)
θr 0 0 0 0

rα0
0

rα0
1

1
1 + ν(2)

E(2)r1
0 0 0

0 0 0
1
r2

1

2r0G(1)
θr

r2
1

0

0 0 0 −
1 + ν(2)

E(2)r1
−

r0

r1
−

4r1

E(2)

0 0 0 0
2G(1)

θr

r0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.2)  

Ĥn =

[
Ĥn,1 0̂

0̂ Ĥn,2

]

(A.3)  

where 0̂ are 6x6 null matrices and: 
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Ĥ1,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rα1
0

r1+α1
1

gα,1G(1)
θr

g− α,1G(1)
θr

r1

δG(1)
θr

r1
−

2
(
ν(2) + 3

)

r1
(
1 + ν(2)) −

2
r3

1
0

−
rα1

0

r1+α1
1

fα,1G(1)
θr −

f− α,1G(1)
θr

r1
−

ξG(1)
θr

r1

2
(
1 − ν(2))

r1
(
1 + ν(2)) −

2
r3

1
0

gα,1G(1)
θr

r0

rα1
0

r0rα1
1

g− α,1G(1)
θr

δG(1)
θr

r0
0 0 0

−
fα,1G(1)

θr

r0
−

rα1
0

r0rα1
1

f− α,1G(1)
θr −

ξG(1)
θr

r0
0 0 0

rα1
0

rα1
1

ϕα,1 ϕ− α,1 log
[

r1

r0

]

− ζ
1 + ν(2) + 2

(
ν(2) − 3

)
log[r1]

E(2)
1 + ν(2)

E(2)r2
1

ν(2) − 3
E(2)

rα1
0

rα1
1

1 − log
[

r1

r0

]
1 + ν(2) − 2

(
ν(2) − 3

)
log[r1]

E(2)
1 + ν(2)

E(2)r2
1

3 − ν(2)

E(2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.4)  

Ĥ1,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rα1
0

r1+α1
1

gα,1G(1)
θr

g− α,1G(1)
θr

r1

δG(1)
θr

r1
−

2
(
ν(2) + 3

)

r1
(
1 + ν(2)) −

2
r3

1
0

rα1
0

r1+α1
1

fα,1G(1)
θr

f− α,1G(1)
θr

r1

ξG(1)
θr

r1

2
(
ν(2) − 1

)

r1
(
1 + ν(2))

2
r3

1
0

gα,1G(1)
θr

r0

rα1
0

r0rα1
1

g− α,1G(1)
θr

δG(1)
θr

r0
0 0 0

fα,1G(1)
θr

r0

rα1
0

r0rα1
1

f− α,1G(1)
θr

ξG(1)
θr

r0
0 0 0

rα1
0

rα1
1

ϕα,1 ϕ− α,1 log
[

r1

r0

]
1 + ν(2) + 2

(
ν(2) − 3

)
log[r1]

E(2)
1 + ν(2)

E(2)r2
1

ν(2) − 3
E(2)

−
rα1

0

rα1
1

− 1 ζ + log
[

r1

r0

]

−
1 + ν(2) − 2

(
ν(2) − 3

)
log[r1]

E(2) −
1 + ν(2)

E(2)r2
1

ν(2) − 3
E(2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.5)  

Ĥn,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rαn
0

r1+αn
1

gα,nG(1)
θr

rβn
0

r1+βn
1

gβ,nG(1)
θr

g− α,nG(1)
θr

r1

g− β,nG(1)
θr

r1

n2 + n − 2
rn

1
−

n + 1
rn+2

1

−
rαn

0

r1+αn
1

fα,nG(1)
θr −

rβn
0

r1+βn
1

fβ,nG(1)
θr −

f− α,nG(1)
θr

r1
−

f− β,nG(1)
θr

r1

n2 − n
rn

1
−

n + 1
rn+2

1

gα,nG(1)
θr

r0

gβ,nG(1)
θr

r0

rαn
0

r0rαn
1

g− α,nG(1)
θr

rβn
0

r0rβn
1

g− β,nG(1)
θr 0 0

−
fα,nG(1)

θr

r0
−

fβ,nG(1)
θr

r0
−

rαn
0

r0rαn
1

f− α,nG(1)
θr −

rβn
0

r0rβn
1

f− β,nG(1)
θr 0 0

rαn
0

rαn
1

ϕα,n
rβn

0

rβn
1

ϕβ,n ϕ− α,n ϕ− β,n −
n + 2 + (n − 2)ν(2)

E(2)rn− 1
1

ν(2) + 1
E(2)rn+1

1

rαn
0

rαn
1

rβn
0

rβn
1

1 1 −
n − 4 + nν(2)

E(2)rn− 1
1

ν(2) + 1
E(2)rn+1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.6)  

Ĥn,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rαn
0

r1+αn
1

gα,nG(1)
θr

rβn
0

r1+βn
1

gβ,nG(1)
θr

g− α,nG(1)
θr

r1

g− β,nG(1)
θr

r1

n2 + n − 2
rn

1
−

n + 1
rn+2

1

rαn
0

r1+αn
1

fα,nG(1)
θr

rβn
0

r1+βn
1

fβ,nG(1)
θr

f− α,nG(1)
θr

r1

f− β,nG(1)
θr

r1
−

n2 − n
rn

1

n + 1
rn+2

1

gα,nG(1)
θr

r0

gβ,nG(1)
θr

r0

rαn
0

r0rαn
1

g− α,nG(1)
θr

rβn
0

r0rβn
1

g− β,nG(1)
θr 0 0

fα,nG(1)
θr

r0

fβ,nG(1)
θr

r0

rαn
0

r0rαn
1

f− α,nG(1)
θr

rβn
0

r0rβn
1

f− β,nG(1)
θr 0 0

rαn
0

rαn
1

ϕα,n
rβn

0

rβn
1

ϕβ,n ϕ− α,n ϕ− β,n −
n + 2 + (n − 2)ν(2)

E(2)rn− 1
1

ν(2) + 1
E(2)rn+1

1

−
rαn

0

rαn
1

−
rβn

0

rβn
1

− 1 − 1
n − 4 + nν(2)

E(2)rn− 1
1

−
ν(2) + 1
E(2)rn+1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.7) 
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For 2 ≤ n ≤ P 

k̄ = {k̄0, k̄1,⋯, k̄N} (A.9)  

k̄0 =

{

− 2Ā1, − S0,
2
(
ν(2) − 1

)
r1Ā1

E(2) , 0, 0, − T0

}

(A.10)  

k̄1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2r1Ā2

− 2r1Ā2

− S1,1

− T1,2
(
3ν(2) − 1

)
r2

1Ā2

E(2)

−

(
5 + ν(2))r2

1Ā2

E(2)

2r1B̄2

− 2r1B̄2

− S1,2

− T1,1
(
3ν(2) − 1

)
r2

1B̄2

E(2)

−

(
5 + ν(2))r2

1B̄2

E(2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; k̄n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n2 − n − 2

)
rn

1Ān+1 + (n − 1)rn− 2
1 C̄n− 1

−
(
n2 + n

)
rn

1Ān+1 − (n − 1)rn− 2
1 C̄n− 1

− Sn,1

− Tn,2
(
n − 2 + (n + 2)ν(2) )rn+1

1 Ān+1 + rn− 1
1

(
1 + ν(2))C̄n− 1

E(2)

−

(
2n − 1 + nν(2))rn+1

1 Ān+1 + rn− 1
1

(
1 + ν(2))C̄n− 1

E(2)

−
(
n2 − n − 2

)
rn

1B̄n+1 − (n − 1)rn− 2
1 D̄n− 1

−
(
n2 + n

)
rn

1B̄n+1 − (n − 1)rn− 2
1 D̄n− 1

− Sn,2

− Tn,1

−

(
n − 2 + (n + 2)ν(2) )rn+1

1 B̄n+1 + rn− 1
1

(
1 + ν(2))D̄n− 1

E(2)

−

(
2n − 1 + nν(2))rn+1

1 B̄n+1 + rn− 1
1

(
1 + ν(2))D̄n− 1

E(2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.11)  

Appendix B 

Ĥ
*
0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η rα0
0

r1+α0
1

G(1)
θr

〉G(1)
θr

r1
−

1
ρ22

(κ − 1)
(
1 + ν(2))

ν(2) − 1
0 0 0

rα0
0

rα0
1

1
1 + ν(2)

E(2)r1

(1 − κ)
(
1 + ν(2))r1

E(2) 0 0 0

ηG(1)
θr

r1
〉

rα0
0

r0rα0
1

G(1)
θr 0 0 0 0 0

0 0
1
r2

2

(1 − κ)
(
1 + ν(2))

ν(2) − 1
0 0 0

0 0 0 0
1
r2

1

2r0G(1)
θr

r2
1

0

0 0 0 0 −
1 + ν(2)

E(2)r1
−

r0

r1
−
(κ + 1)

(
1 + ν(2))r1

E(2)

0 0 0 0 0
2G(1)

θr

r0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.1)  

Ĥ
*
n =

[
Ĥ

*
n,1 0̂

0̂ Ĥ
*
n,2

]

(B.2)  
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Ĥ
*
1,1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rα1
0

r1+α1
1

gα,1G(1)
θr

g− α,1G(1)
θr

r1

δG(1)
θr

r1

2
(
κ − ν(2))

(ν(2) − 1
)
r1

−
2
r3

1
0

2
(
κ + κν(2) − 2

)
r1

ν(2) − 1

−
rα1

0

r1+α1
1

fα,1G(1)
θr −

f− α,1G(1)
θr

r1
−

ξG(1)
θr

r1

κ − 1
r1

−
2
r3

1
0 − 2r1

gα,1G(1)
θr

r0

rα1
0

r0rα1
1

g− α,1G(1)
θr

δG(1)
θr

r0
0 0 0 0

−
fα,1G(1)

θr

r0
−

rα1
0

r0rα1
1

f− α,1G(1)
θr −

ξG(1)
θr

r0
0 0 0 0

rα1
0

rα1
1

ϕα,1 ϕ− α,1 log
[

r1

r0

]

− ζ −

(
1 + ν(2))( κlog

[
r2

1

]
− 1

)

E(2)
1 + ν(2)

E(2)r2
1

−
κ
(
1 + ν(2))

E(2) −
(κ − 2)

(
1 + ν(2))r2

1

E(2)

rα1
0

rα1
1

1 − log
[

r1

r0

]

−

(
1 + ν(2))( κlog

[
r2

1

]
+ 1

)

E(2)
1 + ν(2)

E(2)r2
1

κ
(
1 + ν(2))

E(2) −
(2 + κ)

(
1 + ν(2))r2

1

E(2)

0 0 0
2
(
κ − ν(2))

r2
(
1 − ν(2))

2
r3

2
0 −

2
(
κ + κν(2) − 2

)
r2

ν(2) − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.3)  

Ĥ
*
1,2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rα1
0

r1+α1
1

gα,1G(1)
θr

g− α,1G(1)
θr

r1

δG(1)
θr

r1

2
(
κ − ν(2))

(ν(2) − 1
)
r1

−
2
r3

1
0 −

2
(
κ + κν(2) − 2

)
r1

ν(2) − 1

rα1
0

r1+α1
1

fα,1G(1)
θr

f− α,1G(1)
θr

r1

ξG(1)
θr

r1

1 − κ
r1

−
2
r3

1
0 − 2r1

gα,1G(1)
θr

r0

rα1
0

r0rα1
1

g− α,1G(1)
θr

δG(1)
θr

r0
0 0 0 0

fα,1G(1)
θr

r0

rα1
0

r0rα1
1

f− α,1G(1)
θr

ξG(1)
θr

r0
0 0 0 0

rα1
0

rα1
1

ϕα,1 ϕ− α,1 log
[

r1

r0

]

−

(
1 + ν(2))( κlog

[
r2

1

]
− 1

)

E(2)
1 + ν(2)

E(2)r2
1

−
κ
(
1 + ν(2))

E(2)

(κ − 2)
(
1 + ν(2))r2

1

E(2)

−
rα1

0

rα1
1

− 1 ζ + log
[

r1

r0

]

−

(
1 + ν(2))( κlog

[
r2

1

]
+ 1

)

E(2) −
1 + ν(2)

E(2)r2
1

−
κ
(
1 + ν(2))

E(2) −
(κ + 2)

(
1 + ν(2))r2

1
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0 0 0
2
(
κ − ν(2))
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(
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2
r3

2
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(
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⎥
⎥
⎥
⎥
⎥
⎥
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⎥
⎥
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(B.6) 
For 2 ≤ n ≤ P

k̄ = {k̄0, k̄1,⋯, k̄N} (B.7)  

k̄*
0 = {0, 0, − S0, − Σ0, 0, 0, 0} (B.8)  

k̄*
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
0
0
0
0
0
0
0
0
0
0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

; k̄*
1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0

− Sn,1
− Tn,2

0
0

− Ωn,1
− Ψn,2

0
0

− Sn,2
− Tn,1

0
0

− Ωn,2
− Ψn,1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B.9)  
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