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Abstract

Fruit growth and development consist of a continuous succession of physical, biochemical, and physiological changes driven by a genetic
program that dynamically responds to environmental cues. Establishing recognizable stages over the whole fruit lifetime represents
a fundamental requirement for research and fruit crop cultivation. This is especially relevant in perennial crops like grapevine (Vitis
vinifera L.) to scale the development of its fruit across genotypes and growing conditions. In this work, molecular-based information
from several grape berry transcriptomic datasets was exploited to build a molecular phenology scale (MPhS) and to map the ontogenic
development of the fruit. The proposed statistical pipeline consisted of an unsupervised learning procedure yielding an innovative
combination of semiparametric, smoothing, and dimensionality reduction tools. The transcriptomic distance between fruit samples
was precisely quantified by means of the MPhS that also enabled to highlight the complex dynamics of the transcriptional program
over berry development through the calculation of the rate of variation of MPhS stages by time. The MPhS allowed the alignment of
time-series fruit samples proving to be a complementary method for mapping the progression of grape berry development with higher
detail compared to classic time- or phenotype-based approaches.

Introduction

The ontogenic development of fleshy fruits entails an ordered
sequence of physical, chemical, physiological, and molecular
changes that progressively drive the entire organ towards
maturation. These processes are rather conserved among fruits
of the same species, but the developmental progression may
vary due to both genetic and environmental factors. Moreover,
developmental expression patterns are extremely dynamic
and, especially under fluctuating environmental conditions
[1–3], rapid changes may happen within short time windows,
challenging the setup of meaningful comparisons to study
the fruit response to any factor. In fruit crops, the ontogenic
development of the fruit is tracked by adopting phenological
scales. These are classification tools that describe seasonal and
precisely recognized stages of fruit growth and development
based on specific descriptors such as visual/physical traits or
easy-to-measure compositional parameters [4, 5]. Phenological
scales are widely used in models describing known or hypothetical
cause-effect relationships between growth stages progression and
environmental driving factors [6–8].

In grapevine (Vitis vinifera L.), the fruit phenophases comprise a
large dedicated section of the most adopted phenology scales,
namely the modified Eichhorn and Lorenz (E-L) [9] and the
extended BBCH systems [10], that assign increasing numbers
to the main fruit developmental stages from setting to maturity.

Grape berry development consists of two phases of growth and
lasts up to 150 days [11]. The first phase (also called berry
formation or herbaceous/green phase) involves pericarp growth
due to rapid cell division and elongation. The second phase
(ripening) involves physical and metabolic changes, including
softening, skin pigmentation, accumulation of sugars, loss of
organic acids, and synthesis of volatile aromas [12]. The onset
of ripening (veraison for viticulturists) occurs after a short lag
phase, when the seed maturation is complete [11, 13]. Growth
stages are defined by the assessment of visual/physical traits,
such as color, size, and softness. Only for ripening stages and
harvest decision, are compositional parameters such as the
sugar concentration of the juice considered. However, the precise
definition of developmental stages can be challenging as the fruit
traits used for stage description are highly influenced by several
factors like genotype, climate, water availability, agronomical
practices, and crop load [14–16].

The advent of next-generation sequencing represents an oppor-
tunity to exploit the expression kinetics of large sets of genes to
stage fruit development and enrich the available classification
systems incorporating information at a molecular level [17, 18].
This approach succeeded in developing a transcriptomic aging
clock defining the biological age of organisms such as C. elegans
to an unprecedented accuracy [19] and, in plants, was used to
reconstruct the transcriptional ontogeny of single organs and
correlate the appearance of morphological characteristics with
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molecularly defined developmental stages [20]. Moreover, results
obtained using model organisms such as Arabidopsis, or annual
crops such as rice, revealed seasonal patterns of gene expression
controlled by environmental cues [21, 22] and demonstrated that
the recent advancement in the methods for gene expression
quantification could be exploited to refine phenological stage
classification [23].

A large number of transcriptomic studies of grape berry devel-
opment generated in recent years revealed that the variation of
a portion of the fruit transcriptome is conserved across cultivars
and growing conditions [13, 24–28], and thus may be utilized to
boost the description of the fruit developmental stages with a
molecular dimension.

In this work, we used the most informative portion of sev-
eral grapevine fruit transcriptomic datasets [13, 26] to build a
molecular phenology scale (MPhS). The performance of the scale
in precisely mapping the progression of fruit development, com-
pared to other classical time- or phenotype-based approaches
was assessed. The MPhS was used to reinterpret previously pub-
lished transcriptomic datasets evidencing its potential to trace
and compare fruit developmental stages from different genotypes
and growing conditions.

Results
Molecular phenology map creation
To create a molecular scale of grapevine berry development
we relied on the RNA-sequencing dataset consisting of 219
samples published by Fasoli et al. [13]. Samples were col-
lected from fruit set to full maturity from Cabernet Sauvi-
gnon (CS) and Pinot noir (PN) vines every 7–10 days across
three years (Table S1). The technological and molecular data,
and the related methodologies are reported in the original
paper [13].

Vintage variability impacted ripening progression since its
onset happened earlier in 2013 and 2014 compared to 2012, which
resulted in a substantial advance until the grape technological
maturity as monitored by sugar accumulation (Fig. 1a,b). This
behavior was more evident in PN, an earlier ripening variety
compared to CS.

Fasoli and co-authors looked into the biological functions of the
genes partaking in the berry developmental waves of expression,
specific or shared by the two genotypes, and expounded on
the transcriptome rearrangements associated with the onset of
ripening [13], whereas the transcriptomic data was here analyzed
using statistical and data mining tools to identify the core set of
genes that define the berry development progression (Fig. 1c). The
pipeline comprised an initial screening to discard genes exhibiting
low and/or noisy expression that reduced the dataset from
29 971 to the whole core set (WCS) of 10 129 genes (Dataset S1).
Genes included in the WCS were characterized by consistent
expression behaviors during development across genotypes and
vintages. The comparison with the transcriptomic dataset of
Massonnet et al. [26] was also part of the initial screening to
ensure the congruency of gene expression in white and another
red skinned grapevine varieties. This step was followed by
the application of a local polynomial regression that allowed
smoothing the gene expression patterns over the time points
and averaging the replicates. We then performed a Principal
Component Analysis (PCA) with the data matrix obtained by
column-standardization of the smoothed gene expression. We
selected Principal Components (PCs) 1 and 2 that best described
the general progression of berry development, and PC5 that
improved the discrimination of early-stage samples (Fig. 1d),

whereas the effect of genotype and vintage (PC3, 4 and 6) was
excluded (Fig. S1).

The PC1, 2 and 5 defined a three-dimensional scatter of points,
with each point corresponding to an experimental condition (one
time point for one cultivar in one year) that were then fitted by
one-dimensional space using a Bézier curve. Thirty marks were
evenly distributed along the curve to represent steps of what we
called Molecular Phenology Scale (MPhS) (Fig. 1e). The points of
the 3D scatter were projected onto the MPhS and assigned to
the closest among the set of 30 marks, demonstrating that the
chronological order of all sampling series was maintained along
the MPhS (Fig. 1f), and the core gene set represented a suitable
selection for our purpose.

MPhS offers insights into the ripening stages
reached during CS and PN berry development
The performance of the MPhS was next explored by projecting the
non-smoothed three-year time series of CS and PN onto the MPhS.
We found that, for the most part, the samples were correctly
ordered according to their chronological collection (Fig. 2a and
Table S2). Four sample pairs of CS mapped at the same MPhS
stages and, two instances each genotype, samples collected at the
beginning or at the end of the series showed mapping discrepancy
with the scale sequence, suggesting a lower resolution of the MPhS
at phases with reduced time-related transcriptomic changes. In
fact, the samples were not evenly distributed along the MPhS and
some intervals (e.g. between MPhS stage 7 and 12) were poorly
represented. To evaluate if the differences in the MPhS resolution
could be related to variations in samples uniformity along the
development of the fruit (e.g. samples at the initial and final
timeframes as opposed to mid-development) we averaged the
Coefficients of Variation (CV) of each transcript expression value
in the triplicates at each time point (Fig. S2). This analysis showed
that sample replicates collected in the 7–14 MPhS window are
more consistent than at earlier and later stages. The veraison
phase, as defined by the BBCH scale [10], was pinpointed in
correspondence to the MPhS window 13–15 for both genotypes,
whereas PN always reached sugar maturity at earlier MPhS stage
compared to CS.

When exploring the association between MPhS stage and sugar
content for PN and CS samples, we observed a strict non-linear
relation that clearly varied in the two genotypes, with PN reaching
technological maturity at earlier MPhS stages than CS (Fig. 2b). On
the other hand, an elevated variability, beyond the clear genotype
effect, was observed between MPhS and berry weight, suggesting
that the two variables are poorly related (Fig. 2c and Fig. S3). This
analysis also evidenced that PN berries lost weight during the last
ripening stages, while CS berry weight remained steady.

In order to gain some insights into the biology of late MPhS
ripening stages that appeared to be missing in PN, we explored
the function of genes highly correlated with the 20-to-30 MPhS
stage progression (Fig 2d-e; Fig. S4 and Dataset S2). Among the
top-20 positively correlated genes, several transcription factors
and genes involved in DNA/RNA metabolic process and transport,
were identified, whereas a greater variety of functional categories
was found for the top-20 negatively correlated, among which
response to hormone stimulus, signal transduction and transcrip-
tion factor activity (Fig 2d-e; Fig. S4). At a correlation coefficient
cutoff >|0.7| (selecting 72 positively and 53 negatively correlated
genes; Dataset S2), the functional categories distribution resulted
distinctly different between the positively correlated, enriched in
the DNA/RNA metabolic process category, and the negatively cor-
related genes, involved in carbohydrate metabolic process, amino
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Figure 1. Molecular phenology map creation. (a) Cabernet Sauvignon and Pinot noir time series of berry sample collection. Berries were collected using
a randomized block approach to account for intra-vineyard block variability. This resulted in a collection of 219 samples (CS12: 13 time points; CS13:
14; CS14: 13; PN12: 10; PN13: 11; PN14: 12. Each sample was collected in triplicates). Brix values are specified for time points post veraison (marked by
vertical bar) along the timeline. Veraison: visually defined as the 50% of all berries - in the bunch beings colored. DOY, day of the year. Images on top
show samples depicting five stages of grape cluster development for Cabernet Sauvignon during season 2012. (b) Accumulation trends of reducing
sugars (%) by DOY in Cabernet Sauvignon and Pinot noir samples over three years. Plots were generated using R package ggpplot2 version 3.4.1 [29].
DOY, day of the year. (c) Flow chart of the pipeline. The chart represents the four principal steps (blue rectangles) and related details (white rectangles)
(d) Samples distribution according to the three selected PCs. PC1 (53.6%) by PC2 (15.8%) (left) and by PC5 (4.2%) (right). (e) Three-dimension scatterplot
of the three selected PCs interpolated by the Bézier curve (black line). Red dots along the Bézier curve define a set of 30 evenly spaced molecular
stages. Scattered points correspond to the smoothed samples and changing color highlight berry progression from immature to ripe stages. An
interactive plot of the curve is accessible at the link https://bodai.unibs.it/grapevine-gea/mphs/. (f) Projection of the smoothed three-year time series
of CS and PN to the closest point among the 30 points identified along the Bézier curve. The sample number is reported above each point. Red dots
correspond to the 30 steps of the Molecular Phenology Scale.

acid metabolic process, response to hormone stimulus and cell
wall metabolism (Fig 2d-e). Surprisingly no genes related to sec-
ondary metabolism have been identified in either list (Dataset S2).

We also calculated the correlation of the selected genes with
the 1-to-10 and 10-to-20 MPhS stage progression. This analysis
revealed that the genes positively correlated to the 20-to-30 stage
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Figure 2. Relationship between Molecular Phenology Scale and time during fruit development. (a) Projection of the non-smoothed three-year time
series of CS and PN on the MPhS. Samples collected at veraison phase are marked with asterisks. The light-grey rectangle highlights the MPhS stages
corresponding to the veraison transition. (b) Trend of percentage of reducing sugars accumulation by MPhS in CS and PN. Smoothed conditional means
function of the R package ggpplot2 version 3.4.1 [29] was used to represent the average of the three years per genotype. (c) Trends of berry weight by
MPhS, in CS and PN. Smoothed conditional means function of the R package ggpplot2 version 3.4.1 was used to represent the average of the three years
per genotype. (d-e) Top-20 most positively (d, left) and negatively (e, left) correlated genes with the 20-to-30 MPhS stage progression, example of
expression trend of the highest positively (d, right upper part) and negatively (e, right upper part) correlated genes and pie chart of the functional
category distribution of the 72 positively (d, right lower part) and the 53 negatively (e, right lower part) correlated genes.

progression behaved inconsistently when evaluated in the other
intervals. Instead, large part of the genes negatively correlated to
the 20-to-30 stage progression confirmed a negative association
at previous MPhS intervals (Dataset S2).

Relationship between MPhS and time
Plotting the MPhS by the day of the year (DOY) confirmed dif-
ferences among years and evidenced a transcriptional progres-
sion delayed in 2012 in both varieties, whereas the alignment

on the phenological flowering phase (days after flowering, DAF)
resulted in nearly overlapping curves (Fig. 3a). This representation
unraveled common kinetics, reflecting a non-linear relationship
between time and MPhS stages with the very first phase charac-
terized by slow transcriptional changes followed by a transient
rapid advancement (Fig. 3a). Given the well-known close relation
between temperature and phenology, we evaluated whether sea-
sonal temperature regimes could be the driver of the variable
MPhS stage progression rate. When the MPhS series were plotted
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Figure 3. Relationship between Molecular Phenology Scale and time
during fruit development. (a) Trends of MPhS stages by day of the year
(DOY) (left), day after flowering (DAF) (middle) and Growing Degree Days
(GDD) (right) in CS and PN over the three years. (b) Plot of the
�MPhS/�time over DOY (left) and DAF (right). �MPhS represents the
difference in MPhS between subsequent stages. �time represents the
difference in days between subsequent stages. Plots were generated
using R package ggpplot2 version 3.4.1 [29]. (c) Plot of the �MPhS/�time
over the MPhS. Smoothed conditional means function of the R package
ggpplot2 version 3.4.1 was used to represent the average of the three
years per genotype.

on the heat summation calculated for each season, we found
dynamics alike what observed for DAF (Fig. 3a). This suggests that
the transcriptome evolution is sometimes faster or slower over the
course of fruit development and that such intrinsic variations are
not directly related to seasonal temperature regimes.

The transcriptomic scale dynamics were better highlighted by
the ratio �MPhS/�time (an approximation of the derivative of the
MPhS curve over time) showing clear fluctuations irrespective of

the DOY and was better aligned for each genotype when plotted
against the day after flowering (DAF), with a major peak likely
associated with the onset of ripening, followed by some minor
peaks (Fig. 3b). We further explored the MPhS features by plotting
the �MPhS/�time averaged by year over the MPhS itself, revealing
that indeed some MPhS stages are rapidly passed through by
developing berries (Fig. 3c). A main increase in rate was reached
at stages 9–10 in both genotypes, followed by minor accelerations
at stages 17–18, 22–23 and 27–28 in CS and around stage 22 in PN.

Mapping other transcriptomic samples onto the
MPhS
The performance of the MPhS was then tested on previously pub-
lished berry transcriptomes (performed by RNAseq or microarray
platforms) describing berry development for different varieties
and at varying growing conditions. The relative samples were
mapped onto the MPhS using the core set of 10 129 genes selected
for the scale definition. The RNA-seq dataset from Massonnet et
al. [26] provided information in 10 genotypes across four berry
phenological stages (BBCH scale) of the same season. When scaled
onto the MPhS, the two early stages, Pea Size and Touch, mapped
nearby between stages 6 and 11 (Fig. 4a). Later stages appeared
less aligned across genotypes, spanning from the white-skin vari-
ety Passerina that mapped at MPhS stage 20 at Harvest, to the
red-skin Barbera, Negroamaro and Refosco, exhibiting maturity
at 25.

We also scaled samples from microarray-based transcriptomic
datasets among which the five phenological stages (E-L scale) of
the cultivar Corvina [25]. Albeit obtained by a different transcrip-
tomic technology, samples mapped neatly onto the MPhS, with
green berry samples projected at stages 7 and 10, Veraison at
stage 13, whereas Mid Ripening and Ripening at stages 19 and 20,
respectively (Fig. 4b).

A benefit of the molecular scale consists in recalibrating stud-
ies that organized sampling on a time-based approach rather than
following berry phenology. This was the case of two microarray-
based transcriptomic datasets in which berries of the cultivar
Corvina were collected at three ripening times from 11 sites [24],
whereas for the cultivar Garganega samples were collected at four
ripening times from four sites [30]. As expected, datasets projec-
tion onto the MPhS revealed a fair misalignment of time points
collected from different sites (Fig. 4c,d). The greatest differences
were observed for Corvina samples at the second stage ranging
from MPhS stages 13 to 23, whereas Garganega berries mapped
between MPhS stages 15 and 26 at harvest. Given the availability of
technological ripening data we investigated the relation between
sugar content and MPhS stage in above-mentioned collections. As
expected, samples that could be considered advanced in ripen-
ing by a phenotypic assessment (i.e. sugar content) generally
matched advanced MPhS stages (Fig. S5). However, the relation-
ship between the two variables was far from close, especially
in the Corvina samples collected from different growing sites,
indicating that defining the ripening stage by sugar level may not
meet the actual physiological ripening stage when the grapes are
grown under different environmental conditions.

Mapping the samples from the work of Dal Santo and co-
authors [31] that explored the genotype by environment interac-
tion (GxE), revealed that berries of the cultivar Sangiovese reached
maturity at different MPhS stages by cultivation site and year,
whereas Cabernet Sauvignon samples in comparison appeared
much more aligned (Fig. 4e), affirming the marked transcrip-
tomic plasticity of Sangiovese. The strength of the MPhS mapping
approach to GxE was also assessed when the genotype component
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Figure 4. Scaling of previously published berry transcriptomic samples onto the MPhS. (a) Projection of RNA-seq transcriptomic berry samples of ten
varieties [26] onto the MPhS. The BBCH scale was followed to collect berry samples at specific phenological stages: Pea Size (BBCH 75), Touch (BBCH
77), Soft (BBCH 85) and Harvest (BBCH 89) during the same season. (b) Projection of microarray transcriptomic berry samples of cv Corvina [25] onto
the MPhS. Samples collection was performed at phenological stages defined by the E-L scale: Fruit Set (E-L 29), Post Fruit Set (E-L 32), Veraison (E-L 35),
Mid Ripening (E-L 36) and Ripening (E-L 38). (c) Projection of microarray transcriptomic berry samples of cv Corvina collected at three ripening stages
(Veraison, Pre Ripening and Harvest) from eleven cultivation sites [24], onto the MPhS. (d) Projection of microarray transcriptomic berry samples of cv
Garganega collected at four ripening stages (Veraison, Post Veraison, Pre Ripening and Harvest) from four cultivation sites [30], onto the MPhS. (e)
Projection of microarray transcriptomic berry samples of cv Sangiovese and cv Cabernet Sauvignon compared across three growing sites and over two
years [31], onto the MPhS. Berries were collected at four developmental stages defined by the BBCH phenological scale: Pea Size (BBCH 75), Bunch
Closure (BBCH 79), Pre Ripening (BBCH 83) and Harvest (BBCH 89). (f) Projection of RNA-seq transcriptomic berry samples of three clones of cv
Nebbiolo, compared across three different sites [32], onto the MPhS. Samples were collected at three developmental stages defined by the E-L
phenological scale: Pea Size (E-L 31), Veraison (E-L 35), and Ripening (E-L 38). We represented seven main stages in the legend: stage 1 (Fruit Set and E-L
29; light green), stage 2 (Pea Size and E-L 31; green), stage 3 (Touch, Post Fruit Set, Bunch Closure and E-L 32; olive green), stage 4 (Veraison and E-L 35;
pink), stage 5 (Soft, Mid Ripening, Post Veraison and E-L 36; plum), stage 6 (Pre Ripening and E-L 37; blue) and stage 7 (Harvest, Ripening and E-L 38,
midnight blue). (g) Alignment between MPhS and two phenotype-based phenological scales (BBCH and the modified E-L) during berry development.

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/10/5/uhad048/7077841 by U

niversità degli Studi di Padova user on 15 February 2024



Tornielli et al. | 7

represented different clones, like in the work of Pagliarani et al.
[32] entailing RNA-seq berry samples of three clones of the culti-
var Nebbiolo, grown in three sites, and collected at three develop-
mental stages. Although samples arranged along the MPhS by E-L
phenological classification (Fig. 4f), minor MPhS shifts reflecting
the intrinsic transcriptomic plasticity of each clone interacting
with the growing site were still appreciable.

The available sampling metadata was then exploited to
attempt an alignment between our MPhS and the classical
phenotype-based phenological scales (i.e. the modified E-L and
BBCH systems) during berry development (Fig. 4g), showing the
greater classification detail provided by the MPhS compared to
the traditional scales.

Performance of MPhS based on a reduced core
set of genes
To improve the feasibility of our scale and build it around perform-
ing targeted expression analysis on a limited number of genes, we
focused on identifying the smallest number of genes necessary
to efficiently map berry transcriptomic samples onto the MPhS.
Starting from the core set of genes used to create the MPhS, pools
of 20, 10, 5 and 2 positive and negative loadings of each of the
three PCA components (corresponding to 120, 60, 30 and 12 genes,
respectively) were selected based on their absolute correlation
value (p-corr) and expression profile. Hierarchical cluster analysis
of the top-100 loadings throughout berry development in PN
and CS during the three vintages revealed 20 main clusters of
gene expression (Fig. S6). The selection of the 120 and 60 genes
was based on the loadings with the highest p-corr values, being
representative of the most populated clusters. As genes belonging
to the same metabolic/developmental process likely co-express,
for the more stringent selection of 30 and 12 genes we picked those
with high p-corr value belonging to different clusters to maximize
the information potential thus avoiding redundancy (Dataset S3).
We projected PN and CS sample series defined by the reduced core
sets (RCSs) and compared them with their projection based on the
WCS. This analysis highlighted that the progressive reduction of
the core gene set from 120 to 12 did not substantially impacted the
samples order (Fig. 5a-d left). In order to evaluate any difference in
performance between the projections we calculated the average
of the absolute shift values, the quartile shift using non absolute
values and the Lin’s concordance coefficient [33] (Fig. 5). In both
varieties, the average shift values showed only a slight increase
with the progressive reduction of the number of selected genes
in RCSs and reached the highest value of 0.7 in PN with the RCS
of 12 genes. Accordingly, quartile analysis and Lin’s coefficients
(values between 0.95 to 0.99) indicated a substantial concordance
[33] among MPhS stages obtained by using the WCS, and MPhS
stages obtained using the RCSs from 120 to 12 genes (Fig. 5e).

In order to further evaluate the stability of RCSs across
different genotypes and growing conditions we projected on the
MPhS samples of the abovementioned transcriptomic work of
Massonnet et al. [26] and Dal Santo et al. [24, 30], using the
RCSs of 120 and 30 genes (Fig. S7). Quartile analysis showed a
general slightly higher deviation compared to PN and CS, with
Lin’s coefficients indicating moderate to substantial concordance
(values between 0.9–0.99), except for RCS of 30 genes in
Garganega (0.89).

Discussion
Assembling meaningful comparisons between fruits character-
ized by different developmental rates or seasonal developmental

shifts is a major limitation in studying the biological mechanisms
underpinning the seamless developmental progression that leads
the fruit to maturation. The opportunity of refining the existing
development classification systems by integrating phenotype
with molecular-based information has been explored in model
organisms or annual crops [19, 21, 23]. The transcriptomic
analysis of immature maize tassels and sorghum panicles
throughout development enabled the reconstruction of their
transcriptional ontogeny and correlated the emergence of
species-specific morphological characteristics of these organs
to developmental stages defined at molecular level [20]. Despite
omics technologies being widely applied to unveil and describe
in detail the ongoing developmental changes in fleshy fruits
from many species [13, 34–36], the molecular information has
rarely been exploited to attempt at scaling the fruit ontogeny. In
grapevine, Dai et al. [37] demonstrated that metabolite profiling
can be used in PCAs to define development trajectories for berries,
whereas Wang et al. [38] showed that the expression trend of a
small number of genes involved in grapevine flower and berry
development was associated to some specific phenological stages.

In this study, we selected about ten thousand genes from
several transcriptomic datasets for their consistent expression
throughout berry development regardless genotype and season
[13, 26] and built a molecular phenology scale to map the onto-
genetic development of the fruit with high precision and to align
berry development of different grapes.

The training dataset [13] included the transcriptomic samples
from two red varieties collected at weekly intervals, that to date
represents the most exhaustive survey of the molecular changes
during grape berry development. Although the training dataset
is based on red varieties only, we are confident that the MPhS
could represent the molecular dynamics of both red and white
berry varieties because: (i) it was shown [26] that the majority of
the transcriptomic changes are shared by the developing berries
of both red and white varieties and that (ii) the final steps of
the transcriptomic route crossed by the developing berries are
covered only by the red berries; (iii) the WCS of genes used to build
the scale were selected for the consistency of their expression
among transcriptomic time-series of both red and white berry
varieties. The biological meaning of the shorter transcriptomic
route observed in white berries has been thoroughly discussed by
Massonnet et al. [26].

The proposed statistical pipeline consisted of an unsupervised
learning procedure yielding an innovative combination of
semiparametric, smoothing and dimensionality reduction tools.
In particular the most important elements of novelty that
differentiate our method from similar approaches are: (i)
computing the Principal Components on smoothed data, thanks
to the high number of observed timepoints that allowed to obtain
more stable estimates than those made on raw data; (ii) the
exceptional power of the Principal Components in summarizing
different characteristics of the data (berry variety, vintage,
stage) that allowed to precisely select genes involved in berry
development and rule out those impacted by genotype and
vintage without performing any preliminary gene selection step;
(iii) relying on three Principal Components to account for the
ripening process and the use of a Bézier curve in a 3D space to
estimate the Molecular Phenology Scale. Time information was
exploited by only considering timepoint succession disregarding
their distance so the MPhS units are not time but ideal steps
of the berry development, which can take longer or shorter,
providing the flexibility of accounting for a multiplicity of
factors.
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Figure 5. Performance of MPhS based on a reduced core set of genes. Projections of the sample series defined by the progressively reduced core set of
genes (a) 120 genes, (b) 60 genes, (c) 30 genes and (d) 12 genes (Dataset S3) onto the MPhS (left) and representation of the average shifts between the
distribution of samples defined by reduced core sets versus the distribution defined by the entire core set of genes (10129) (right). The light-grey
rectangle highlights the MPhS stages corresponding to the veraison transition. For each sample the shift between the MPhS stage defined by the
reduced gene core set and the MPhS stage defined by the entire gene core set was calculated. The overall and by variety average shift are shown per
reduced core set of genes. (e) Graphical representation of the agreement between the projection on the MPhS defined using the entire core set of genes
and the MPhS defined by reduced core sets of 120, 60, 30 and 12 genes. The red dashed line represents the line of perfect agreement. The plots report
the estimated Lin’s concordance coefficient and the median (with interquartile range, IQR) of the shift (difference) between the two scales.

When projecting onto the MPhS the sample series used for
its own construction, the distribution was largely by the time of
collection during the season, with very few overlaps or inversions.
These cases were mainly concentrated at the initial and final
stages of the scale suggesting that berry transcriptome evolution
right after fruit set and near maturity is slower than during the
central time frame, therefore samples collected at two consec-
utive weeks could exhibit very similar transcriptomes. Another

cause for the MPhS lower resolution early and late in development
may be represented by higher levels of within-bunch, bunch-to-
bunch or vine-to-vine variation, reflected by increased variability
in the average CV of samples mapping at these stages. This
may have naturally diminished the outline of the transcriptional
profiles at early and late development compared to those from
the more homogenous samples mapping in the central part of
the MPhS. Indeed, the uneven distribution of samples along the
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scale mirrored the complex dynamics of berry transcriptome
over development revealing that some MPhS stages are more
rapidly passed through than other during fruit development. For
both varieties the highest rate of variation of the MPhS stage by
time (represented by a major peak) was recorded well prior the
assessed veraison stage, confirming that the ripening transcrip-
tional program is established one-to-two weeks before berry phe-
notypic changes can be visually appreciated [13, 39, 40]. Following
the onset of ripening, minor peaks were present towards matu-
rity suggesting that the ripening progression is discontinuous at
transcriptional level. It is well known that seasonal temperature
regimes greatly affect the developmental progression of the berry.
However, the MPhS stage-by-time fluctuations do not appear to
be caused by interactions with the environment as the statistical
pipeline was designed to screen out the vintage component and
any erratic variation of gene expression.

An application of the MPhS could be aligning samples to high-
light shifts of fruit development driven by factors like genotype
and environment as well as precisely quantifying their tran-
scriptomic distance. This could represent a start from which to
pinpoint the specific contribution of any variance in fruit devel-
opment and the cultivation environment to the overall plasticity.
Once fruit samples are aligned by MPhS stage, comparing differ-
entially expressed genes could unveil responses uniquely related
to the growing conditions. Projecting RNA-seq and microarray
transcriptomic samples [24–26, 30–32] onto the MPhS indeed high-
lighted phenological differences and provided the basis to under-
stand why samples originally assigned to similar phenological
stage mapped relatively apart along the MPhS. Nevertheless, the
ability of MPhS to discriminate samples collected with a con-
siderable separation in time was not fully confirmed in certain
dataset/time series. This may be related to specific raw data
processing and procedures adopted in each study, prompting the
need of future investigation and development of broader normal-
ization protocols to improve the performance of the MPhS. There-
fore, at this stage, unless recomputed with the same bioinformatic
pipeline, the direct comparison between transcriptomic samples
obtained in different studies should be done with cautious.

Regarding the classification of ripening stage, the molecu-
lar scale represents an innovative approach over the traditional
analytical methods (i.e. total soluble solids or reducing sugars
percentage in the grape juice) that, although rapid, do not always
represent a reliable indicator of the berry physiological ripening
stage. In fact, the great influence of genetics, climate, and agro-
nomic factors on sugar accumulation dynamics in the fruit can
lead to a partial uncoupling from other ripening technological
parameters, like organic acids and skin pigment content [14–16].
We found a close relation between MPhS stage and berry sugar
level at initial stages of maturation in both cultivars, that diverged
at late maturation likely reflecting the different length of ripening
characterizing the two genotypes and indicating that CS berries
reached the target level of soluble solids at an advanced MPhS
stage compared to PN. The early achievement of technological
maturity in PN is further pointed out by the berry weight decrease
in the late developmental stages showing that the final increase in
sugar was largely determined by increased solute concentration
due to water loss rather than active import through the pedicel.
The linkage between MPhS stage and sugars weakened when a
single genotype was grown in different environments evidencing
that similar sugar levels can match different steps in the ripen-
ing transcriptomic program (Fig. S5). Transcriptomic differences
in samples defined at the same ripening stage by sugar level
have already been shown in grapes grown in different locations,

confirming that the sugar level in a berry is an unreliable marker
of berry maturity when comparing grapes from different climates,
and suggesting that considering the abundance of key transcripts
may better fulfill the role of marking ripening progression [41].

Interestingly, our investigation of the molecular events asso-
ciated with the last MPhS stages revealed an activation of genes
mainly involved in nucleic acid metabolism and transcriptional
activity as already highlighted in Fasoli et al. [13]. The biolog-
ical meaning of such finding is not obvious. Ghan et al. [42]
showed that nucleic acid metabolism, chromosome organization
and epigenetic regulation represent the main functional cate-
gories of genes whose expression is significantly modified in the
late stages of ripening of 7 grape varieties. The authors observed
that gene networks falling into such categories appeared inti-
mately connected to the core circadian clock gene subnetwork,
suggesting that the day length decrease associated with advanced
berry ripening and the progression of the season may drive these
molecular events, possibly reflecting senescence-related cellular
processes. The later harvest of CS than PN grapes may account
for the fact that these events are mainly experienced by CS,
which then reached more advanced MPhS stages. Moreover, these
molecular events may not necessarily have an impact on tech-
nological/compositional berry parameters easily detectable by
common analytical approaches, further supporting the use of the
molecular information for a more precise definition of the fruit
developmental stage.

Based upon the metadata available for the datasets mapped
onto our scale, we attempted to approximate the 1–30 MPhS
stages to those specified in the classical grapevine fruit phenol-
ogy scales and we thus attested that the MPhS permits greater
definition of the phenophases respect to the classical scales [9,
10] that cover longer stretches along berry development (Fig. 4g).

We have also explored the performance of MPhS scale based
on a reduced set of genes in different datasets, showing that the
number of expression signals necessary for mapping samples can
be drastically reduced to a few dozen without substantial loss of
precision. Small subsets of (120, 60, 30, 12) genes were identified
among PCA loadings and combined to build different versions of
the MPhS. While all these estimates showed a good agreement
with the MPhS estimated using all genes, the choice of these
subset of genes could be further refined to improve the RCS-based
MPhS performance. Despite the increasing use of genome-wide
approaches, the definition of the molecular phenology stage of
a fruit sample by only performing a small number of targeted
gene expression analysis may represent a low-cost solution in all
those cases where a transcriptomic approach is not an option.
Alternatively, this approach could be used to select those samples
to be subjected to the transcriptomic analysis from a wide col-
lection of berry samples. The expression analysis of the proposed
reduced set of genes, for example by PCR array cards, have the
potential to define the developmental berry stage in an easier
and faster way compared to omic approaches. The proposed scale
paves the way for the development of tools that aspire to predict
the phenological stage of the fruit in various climate conditions,
such as models that can account for temperature and other
environment clues. The quality of these tools will benefit from the
combination of various modeling techniques (molecular, metabo-
lite, physical, visual levels), providing that great coordination and
knowledge-transfer between modelers, biologists and growers will
be established.

The proposed pipeline could be potentially extended and
successfully applied to other fruit species, provided they have
some basic requirements: (i) a relatively frequent sampling
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covering the time-series transcriptomic changes during fruit
development with high detail; (ii) the availability of expression
data from diverse growing conditions and genotypes, allowing the
phenology scale to be representative of the general development
of the fruit of the species; (iii) a reliable and well annotated
reference genome to compute the expression data. The existence
of these conditions ensured the successful implementation of
our MPhS for the grapevine berry phenological classification, that
we foresee will help coping with challenges such as those raised
by climate change, allowing the precise mapping of the berry
developmental progression.

Materials and methods
Data mining process
We used the data described in Fasoli et al. [13] (dataset A) and set
the following variables:

• Cultivar [Cabernet Sauvignon, Pinot Noir]
• Vintage [2012, 2013, 2014]
• Timepoint [from 1 to 10–14 (different combinations Cultivar

x Vintage have different final Timepoints)]

CxV denotes the six possible combinations Cultivar x Vintage
and the term experimental condition represents each of the 73
possible combinations Cultivar x Vintage x Timepoint.

Genetic Variables:

• Gene Expression [RNAseq platform, raw RPKM]

xjri denotes the expression of gene i (i = 1, 2, . . ., 29 971) in the jth
experimental condition (j = 1, 2, . . ., 73) for the rth replicate (r = 1,
2, 3); the subscript h represents the combination CxV (h = 1, 2, . . .,
6). Jh denotes the set of experimental conditions corresponding to
CxV = h.

In addition, mji indicates the average expression (over the three
replicates) of gene i in the jth experimental condition

mji = 1
3

∑3

r=1
xjri

and mhi the average expression (over the replicated and the time-
points) of gene i in the hth CxV combination

mhi = 1
3 |Jh|

∑3

r=1

∑
j∈Jh

xjri

where |·| denotes cardinality of a set.
The expression profiles of each gene were displayed using a

three-panel graphical representation (Fig. S8), with one graph for
each vintage.

The data mining process comprises four steps (Fig. S9):

Step 1: Screening.
We removed 19 842 genes from the 29 971 in the grapevine

transcriptome exhibiting uninteresting profiles (i.e. no expression
in some experimental conditions or expression not associated to
berry development; Fig. S10) based on the criteria summarized in
Table S3. To improve the selection, this screening step exploited
the information of an additional dataset (dataset B), composed of
10 cultivars, observed for 4 timepoints during fruit development
in a single vintage [26]. The resulting final set (denoted as F)
comprised 10129 genes deserving further statistical analysis.

Step 2: Smoothing.
Smoothing was applied to the data matrix (219 x 10 129) con-

taining the expressions xjri with i ∈ F. For each gene i and for each

CxV combination h, we estimated smoothed values xji by means
of a polynomial local regression method called LOESS, introduced
by Cleveland [43] and Cleveland and Devlin [44]. LOESS fits a
low-degree polynomial to a subset of the data in the neighbor-
hood of each observation of the dataset. In other words, simple
parametric models are fitted to localized subsets of the data,
aiming at obtaining a smooth curve. The polynomial parameters
are estimated by a weighted least squares method, where a higher
weight is given to points closer to the observation whose outcome
is being calculated. The fraction of the total number of data points
that were used in each local fit is determined by the smoothing
parameter, usually denoted by α.

In the context of this application, for a gene i, the single
observation was the expression of replicate r of a given cultivar,
in a given vintage, at a given timepoint. The neighborhood was
composed of all the expressions of gene i, for the same cultivar
and in the same vintage, in the nearby timepoints, with higher
weights to the closest ones. We used polynomials of degree 2 and
set α = 0.75. The outcome xji for the experimental condition j ∈ Jh
was then calculated by evaluating the local polynomial at the
timepoint characterizing the experimental condition.

For each gene, a three-panel graphical representation could be
visualized, analogous to that presented in Fig. S8, where, in each
panel, the line shows the pattern of the smoothed gene expression
xji (Fig. S11).

Step 3: Principal Component Analysis.
This step was applied to the data matrix (73 x 10 129) containing

the smoothed expressions xji with i ∈ F . We performed PCA [45] on
the standardized data matrix and extracted six PCs accounting for
a 91% explained variance. Standardization was inherent to PCA, so
it was performed on the overall matrix whose 73 rows are all the
possible combinations Cultivar x Vintage x Timepoint. This allows
to highlight correlations between genes regardless their level
and, at the same time, to identify genotype-specific (PC3/PC6),
vintage-specific (PC4) and stage-specific (PC1, PC2, PC5) principal
components. The interpretation of the PCs was based on the
graphical representations in Fig. S12, where the pattern of each
PC was plotted against the timepoints, with lines corresponding
to the different CxV combinations.

Step 4: Molecular Phenology Scale definition.
This step concerned the data matrix (73 x 3) containing the

values of PC1, PC2 and PC5 for each experimental condition, which
can be represented as a scatter of points in a three-dimensional
Euclidean space, with the implicit additional information of a
timeline expressed by the timepoints and the calendar day. The
scatter of points was interpolated by means of a Bézier curve [46],
which nowadays is employed in several applications, especially
in the field of computer graphics. A Bézier curve aims at fitting
points with a smooth curve completely contained within the
convex hull of a set of k control points (k is called the curve’s
order): the first and last control points are the end points of the
curve, whereas the curve does not pass through the intermediate
ones (if any), which define orientation and shape.

In the context of our application, we set k = 5 and obtained
the curve in Fig. S13. An interactive plot of the curve is acces-
sible at the link https://bodai.unibs.it/grapevine-gea/mphs/. We
projected the scatter on the Bézier curve by assigning each point
of the scatter to the closest point among a set of 30 evenly spaced
points identified along the Bézier curve. We represented the curve
as a linear graduation, called the Molecular Phenology Scale. Each
experimental condition was assigned to one of the 30 marks and
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the Molecular Phenology Scale was represented for each CxV
combination h, thus showing on the map only the experimental
conditions j ∈ Jh.

Projection of transcriptomic data on the MPhS
In this section we describe the procedure to project observations
coming from different case studies onto the Molecular Phenology
Scale. We used the matrix A of the eigenvectors of the three
selected Principal Components used to build the Molecular Phe-
nology Scale.

Let Zobs=
{
zji

}
be a |Jobs| x |Iobs| data matrix containing the

observed expression levels of a set Iobs of genes for a set Jobs

of experimental conditions, where j = 1, 2, · · · , |Jobs| and i =
1, 2, · · · , |Iobs|. The matrix Zobs was column standardized. We con-
sider two cases:

1) F ⊆ Iobs (recall that F is the set of 10 129 selected genes after
the screening step).

In this case we obtained the matrix
∼
Zobs = {

zji
}

(j = 1, 2, · · · , |Jobs|
and i = 1, 2, · · · , 10129) by removing from Zobs the columns not

belonging to F. Using Yobs = ∼
Zobs · A we obtained the estimates of

the three Principal Component values for the observed values of
the |Jobs| experimental conditions;

2) Iobs ⊂ F.

This case typically occurs when a limited number of genes is
observed, for example for cost reasons. When this is the case, it is
recommended to observe genes highly correlated to the Principal
Components, that should help obtaining good estimates in spite
of the scarcity of data.

Starting from the matrix Zobs containing the observations of a
limited number of genes |Iobs|, we obtained the estimates of the
Principal Component values for the observed values of the |Jobs|
experimental conditions as follows:

• we computed the average expression of the |Iobs| genes posi-
tively and negatively correlated to each Principal Component;

• for Principal Component q, we imputed the missing data
(non-observed expressions for genes in F) with the respective
positive or negative average, according to the sign of the
corresponding eigenvector coefficient;

• let this imputed |Jobs|×10129 matrix be denoted with Zobs,q, we
obtained the estimates of Principal Component q as Yobs,q =
Zobs,q · Aq, where Aq was the q-th column of A.

Once the estimates of the three Principal Component values
were obtained, we plotted the estimated three-dimensional scat-
ter. This cloud of points was then projected onto the Bézier curve
estimated in step 4 by assigning each point to its closest marker
among the set of 30 evenly spaced points previously identified
along the curve.

Selection of transcripts highly correlated with the
20 to 30 MPhS stage progression
We used the data described in Fasoli et al. [13] (dataset A) and set
the following variables:

• Cultivar [Cabernet Sauvignon, Pinot Noir]
• Vintage [2012, 2013, 2014]
• Molecular Phenology Scale (MPhS)

We will denote CxV the 6 possible combinations Cultivar x
Vintage and we will use the term experimental condition to

denote each of the 73 possible combinations Cultivar x Vintage
x MPhS.

Genetic Variables:
Gene Expression level
We denote with xjri the expression of gene i (i = 1, 2, . . ., 29 971) in

the j-th experimental condition (j = 1, 2, . . ., 73) for the r-th replicate
(r = 1, 2, 3); we use the subscript h to represent the combination
CxV (h = 1, 2, . . ., 6). Jh denotes the set of experimental conditions
corresponding to CxV = h.

In addition, mji denotes the average expression (over the three
replicates) of gene i in the j-th experimental condition

mji = 1
3

∑3

r=1
xjri

and mhithe average expression (over the replicates and the MPhS)
of gene i in the h-th CxV combination

mhi = 1
3 |Jh|

∑3

r=1

∑
j∈Jh

xjri

where |·| denotes cardinality of a set.
We selected the subset of experimental conditions charac-

terized by MPhS ≥20 (the last portion of the MPhS) and, for
each gene, we applied the part of the data mining procedure
proposed in Dal Santo et al. [31] allowing to evaluate - by means of
an advanced machine learning algorithm, the Gradient Boosting
Machine (GBM, proposed by Friedman [47]) - to what extent each
variable (cultivar, vintage, and MPhS) affects the gene expression
patterns. To this aim, Variable Importance Measures (VIMs) are
computed, a nonparametric tool able to describe the impact of
variables on the gene expression, taking into account the presence
of possible, even complex, interactions among the variables them-
selves, with a multivariable approach. In this case study, for each
gene we computed 3 VIMs, related to the variables Cultivar, Year
and MPhS, that will be denoted VIMc, VIMy, and VIMs, respectively.
In order to select those genes whose expression pattern is strongly
associated with the MPhS and is only mildly affected by the other
two factors, we set the following criterion: let q10

c , q20
y , and q20

s be
respectively the 10th, the 20th and the 20th quantiles of VIMc, VIMy
and VIMs, respectively; we selected those genes having VIMc ≤
q10

c , VIMy ≤ q20
y and VIMs ≥ q20

s .
In order to confirm the goodness of the choice, we computed

the Spearman correlation between MPhS and the standardized
expression level. All the selected signals exhibit high values of the
Spearman correlation which means that strong (linear or nonlin-
ear) monotonic associations are present. VIMs estimated by GBM
are able to detect more complex (monotonic or nonmonotonic)
nonlinear relationships and interactions between covariates, that
can be present even when the Spearman correlation is low.

Selection of transcripts for the reduced core
set-based scale
We investigated four scenarios in case 2 (Iobs ⊂ F), characterized
by different subsets of genes with |I_obs| = 120, 60, 30, 12, respec-
tively. For the selection of 120, 60, 30, 12 genes, the expression
profile of the top-100 loadings characterized by the highest and
lowest correlation values with the three dimensions of the PCA
were hierarchically clustered based on average Pearson’s distance
metric (Tmev 4.3 software). We selected genes from each of the
20 different clusters. Genes with the highest p-corr value within
a cluster were preferred. For the PC5 the selection was based only
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on the p-corr values (and not on their cluster membership) given
their general low levels.

The concordance between two MPhSs, one calculated using
all genes and one using a subset of genes, was estimated by
Lin’s concordance coefficient [48]. It ranges from −1 to 1, with
perfect agreement at 1. According to McBride [33], we used the
following interpretation for the coefficient values: < 0.90: poor;
0.90 to 0.95: moderate; 0.95 to 0.99: substantial; > 0.99 almost
perfect.
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