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Abstract. We prove that the solution of the periodic Dirichlet prob-
lem for the Laplace equation depends real analytically on a suitable
parametrization of the shape of the domain, on the periodicity param-
eters, and on the Dirichlet datum.
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1. Introduction

In this paper we study the dependence of the solution of the periodic Dirichlet
problem for the Laplace equation in Rn upon joint perturbation of the shape
of the domain, of the periodicity structure, and of the Dirichlet datum. The
shape of the domain is determined by the image of a fixed domain through a
map φ in a suitable class of diffeomorphisms and the periodicity cell is a box
of edges of length q11, . . . , qnn. As a main result, we prove that the solution
of the problem depends real analytically on the ‘periodicity-domain-Dirichlet
datum’ triple ((q11, . . . , qnn), φ, g). Our method is based on a periodic version
of potential theory which has already revealed to be a powerful tool to an-
alyze boundary value problems for elliptic differential equations in periodic
domains.

Many authors have exploited potential theory to analyze perturbation
problems. In the non-periodic setting, Potthast [20] and Potthast and Stratis
[21] have proved a Fréchet differentiability result for layer potentials associ-
ated to the Helmholtz operator, with an application to inverse problems in
scattering theory. Lanza de Cristoforis and Preciso [15] have shown that the
Cauchy integral depends real analytically on domain perturbations. Lanza
de Cristoforis and Rossi [16] have considered the case of layer potentials as-
sociated to the Laplace operator and have obtained real analyticity results.
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Later on, Lanza de Cristoforis [11, 12] has exploited these results to prove
that the solutions of boundary value problems for the Laplace and Poisson
equations depend real analytically upon domain perturbation. Then, these
results have been extended to singular perturbation problems and to systems
of partial differential equations (see, e.g., Dalla Riva and Lanza de Cristoforis
[4] for the Lamé equations and Dalla Riva [3] for the Stokes’ system). More-
over, analyticity results for domain perturbation problems for eigenvalues
and eigenfunctions have been obtained for example for the Laplace equation
by Lanza de Cristoforis and Lamberti [10] and for the biharmonic operator
by Buoso [2]. We mention also Keldysh [9], Henry [8] and Sokolowski and
Zolésio [22] for elliptic domain perturbation problems.

Now, we introduce our problem. We fix once for all n ∈ N \ {0, 1}.
If (q11, . . . , qnn) ∈ ]0,+∞[n we introduce a periodicity cell Q and a matrix
q ∈ D+

n (R) by setting

Q ≡
n∏
j=1

]0, qjj [, q ≡


q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...
0 0 · · · qnn

 ,

where Dn(R) is the space of n × n diagonal matrices with real entries and
D+
n (R) is the set of elements of Dn(R) with diagonal entries in ]0,+∞[. We

also denote by |Q|n the n-dimensional measure of the cell Q, by νQ the
outward unit normal to ∂Q, where it exists, and by q−1 the inverse matrix of q.
Clearly qZn is the set of vertices of a periodic subdivision of Rn corresponding
to the fundamental cell Q. Moreover, we find convenient to set

Q̃ ≡ ]0, 1[n , q̃ ≡ In ≡


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

Then we take

α ∈ ]0, 1[ and a bounded open connected subset Ω of Rn

of class C1,α such that Rn \ Ω is connected.
(1.1)

The symbol ‘·’ denotes the closure of a set. For the definition of sets and func-
tions of the Schauder class C1,α we refer, e.g., to Gilbarg and Trudinger [7].

Then we consider a class of diffeomorphisms AQ̃∂Ω from ∂Ω into their images

contained in Q̃ (see (2.1) below). If φ ∈ AQ̃∂Ω, the Jordan-Leray separation
theorem ensures that Rn\φ(∂Ω) has exactly two open connected components
(see, e.g, Deimling [6, Thm. 5.2, p. 26]), and we denote by I[φ] the bounded

open connected component of Rn \ φ(∂Ω). Since φ(∂Ω) ⊆ Q̃, a simple topo-

logical argument shows that Q̃ \ I[φ] is also connected. Then we consider the



Domain perturbation for the solution of a periodic Dirichlet problem 3

following two periodic domains:

Sq[qI[φ]] ≡
⋃
z∈Zn

(qz + qI[φ]) , Sq[qI[φ]]− ≡ Rn \ Sq[qI[φ]] .

Now, we take g ∈ C1,α(∂Ω) and we consider the following periodic Dirichlet
problem for the Laplace equation:

∆u = 0 in Sq[qI[φ]]− ,

u(x+ qz) = u(x) ∀x ∈ Sq[qI[φ]]− ,∀z ∈ Zn ,
u(x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] .

(1.2)

If φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃∂Ω, then the solution of problem (1.2) in the space

C1,α
q (Sq[qI[φ]]−) of q-periodic functions in Sq[qI[φ]]− of class C1,α exists and

is unique and we denote it by u[q, φ, g]. Then we pose the following question:

What can be said on the regularity of the map (q, φ, g) 7→ u[q, φ, g]? (1.3)

Our work stems from Lanza de Cristoforis [11, 12] where the author proved
the real analytic dependence of the solution of the Dirichlet problem for the
Laplace and Poisson equations upon domain perturbations. Moreover, it can
be thought as a continuation of [17] where the authors proved a real analyt-
icity result for the periodic layer potentials upon variation of the periodicity,
of the shape of the support of integration, and of the density. We note that
this paper generalizes a part of [18] where the authors proved an analyticity
result for the longitudinal flow along a periodic array of cylinders.

In this work, we answer to the question in (1.3) by proving that the
map (q, φ, g) 7→ u[q, φ, g] is real analytic between suitable Banach spaces (see
Theorem 3.6). Such a result implies that if δ0 > 0 and we have a family of
triples {(qδ, φδ, gδ)}δ∈]−δ0,δ0[ in a suitable Banach space such that the map
δ 7→ (qδ, φδ, gδ) is real analytic, then, if x belongs to the domain of u[qδ, φδ, gδ]
for all δ ∈ ]−δ0, δ0[, we can deduce the possibility to expand u[qδ, φδ, gδ](x)
as a power series in δ, i.e.,

u[qδ, φδ, gδ](x) =

∞∑
k=0

ckδ
k (1.4)

for δ close to zero. Moreover, the coefficients (ck)k∈N in (1.4) can be construc-
tively determined by exploiting the method developed in [5].

2. Preliminary results

In order to consider shape perturbations, we introduce a class of diffeomor-
phisms. Let Ω be as in (1.1). We denote by A∂Ω the set of functions of class
C1(∂Ω,Rn) which are injective and whose differential is injective at all points
of ∂Ω. One can verify that A∂Ω is open in C1(∂Ω,Rn) (see, e.g., Lanza de
Cristoforis and Rossi [16, Lem. 2.5, p. 143]). Then we set

AQ̃∂Ω ≡ {φ ∈ A∂Ω : φ(∂Ω) ⊆ Q̃}. (2.1)
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Our method is based on a periodic version of classical potential theory.
Therefore, to introduce layer potentials, we replace the fundamental solution
of the Laplace operator by a q-periodic tempered distribution Sq,n such that
∆Sq,n =

∑
z∈Zn δqz − 1

|Q|n , where δqz is the Dirac measure with mass in qz

(see e.g., [13, p. 84]). The distribution Sq,n is determined up to an additive
constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2
e2πi(q−1z)·x

in the sense of distributions in Rn (see e.g., Ammari and Kang [1, p. 53], [13,
§3]). Moreover, Sq,n is even, real analytic in Rn\qZn, and locally integrable in
Rn (see e.g., [13, §3]). We now introduce the periodic double layer potential.
Let ΩQ be a bounded open subset of Rn of class C1,α for some α ∈ ]0, 1[ such

that ΩQ ⊆ Q. Then we consider the following two periodic domains:

Sq[ΩQ] ≡
⋃
z∈Zn

(qz + ΩQ) , Sq[ΩQ]− ≡ Rn \ Sq[ΩQ] .

We set

wq[∂ΩQ, µ](x) ≡ −
∫
∂ΩQ

νΩQ
(y) ·DSq,n(x− y)µ(y) dσy ∀x ∈ Rn

for all µ ∈ L2(∂ΩQ). The symbol νΩQ
denotes the outward unit normal field to

∂ΩQ, dσ denotes the area element on ∂ΩQ, and DSq,n(ξ) denotes the gradient
of Sq,n computed at the point ξ ∈ Rn\qZn. The function wq[∂ΩQ, µ] is called
the q-periodic double layer potential. As is well known, if µ ∈ C0(∂ΩQ)

then wq[∂ΩQ, µ]|Sq [ΩQ] admits a continuous extension to Sq[ΩQ], which we

denote by w+
q [∂ΩQ, µ] and wq[∂ΩQ, µ]|Sq [ΩQ]− admits a continuous extension

to Sq[ΩQ]−, which we denote by w−q [∂ΩQ, µ] (cf. e.g., [13, §3]). We also need
the following lemma about the real analyticity upon the diffeomorphism φ of
some maps related to the change of variables in the integrals and to the outer
normal field (for a proof, see Lanza de Cristoforis and Rossi [16, p. 166]).

Lemma 2.1. Let α, Ω be as in (1.1). Then the following statements hold.

(i) For each φ ∈ C1,α(∂Ω,Rn)∩A∂Ω, there exists a unique σ̃[φ] ∈ C0,α(∂Ω)
such that σ̃[φ] > 0 and∫
φ(∂Ω)

w(s) dσs =

∫
∂Ω

w ◦ φ(y)σ̃[φ](y) dσy, ∀ω ∈ L1(φ(∂Ω)).

Moreover, the map σ̃[·] from C1,α(∂Ω,Rn) ∩ A∂Ω to C0,α(∂Ω) is real
analytic.

(ii) The map from C1,α(∂Ω,Rn) ∩ A∂Ω to C0,α(∂Ω,Rn) which takes φ to
νI[φ] ◦ φ is real analytic.
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3. Analyticity of the solution

As we shall see, we will reduce the analysis of the solution u[q, φ, g] of problem
(1.2) to that of a related integral equation. To do so, we start with a result
on a boundary integral operator, which is proved in [19, Prop. A.3].

Lemma 3.1. Let q ∈ D+
n (R). Let α, Ω be as in (1.1). Let φ ∈ C1,α(∂Ω,Rn)∩

AQ̃∂Ω. Let N be the map from C1,α(∂qI[φ]) to itself, defined by

N [µ] ≡ −1

2
µ+ wq[∂qI[φ], µ] ∀µ ∈ C1,α(∂qI[φ]).

Then N is a linear homeomorphism from C1,α(∂qI[φ]) to C1,α(∂qI[φ]).

Now we are able to establish a correspondence between the solution of
our Dirichlet problem and the solution of an integral equation in the propo-
sition below, whose proof follows from a straightforward modification of the
proof of [17, Prop. 5.2].

Proposition 3.2. Let q ∈ D+
n (R). Let α, Ω be as in (1.1). Let φ ∈ C1,α(∂Ω,Rn)∩

AQ̃∂Ω. Let g ∈ C1,α(∂Ω). Then the boundary value problem
∆u = 0 in Sq[qI[φ]]−,

u(x+ qz) = u(x) ∀x ∈ Sq[qI[φ]]−,∀z ∈ Zn,
u(x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ]

has a unique solution u[q, φ, g] in C1,α
q (Sq[qI[φ]]−). Moreover,

u[q, φ, g](x) = w−q [∂qI[φ], µ](x) ∀x ∈ Sq[qI[φ]]−,

where µ is the unique solution in C1,α(∂qI[φ]) of the integral equation

−1

2
µ(x) + wq[∂qI[φ], µ](x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] . (3.1)

Next, we analyze the dependence of the solution of (3.1) upon (q, φ, g).
Since equation (3.1) is defined on the (q, φ)-dependent domain ∂qI[φ], the
first step is to provide a reformulation on a fixed domain. More precisely, we
have the following lemma. The proof follows by a change of variable and by
Lemma 3.1 (cf. [19, Lem. 3.4]).

Lemma 3.3. Let q ∈ D+
n (R). Let α, Ω be as in (1.1). Let φ ∈ C1,α(∂Ω,Rn)∩

AQ̃∂Ω. Let g ∈ C1,α(∂Ω). Then the function θ ∈ C1,α(∂Ω) solves the equation

−1

2
θ(t)−

∫
qφ(∂Ω)

νqI[φ](s) ·DSq,n(qφ(t)− s)(θ ◦ φ(−1))(q−1s)dσs = g(t)

∀t ∈ ∂Ω ,

(3.2)

if and only if the function µ ∈ C1,α(∂qI[φ]), with µ delivered by

µ(x) = (θ ◦ φ(−1))(q−1x) ∀x ∈ ∂qI[φ],
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solves the equation

−1

2
µ(x) + wq[∂qI[φ], µ](x) = g ◦ φ(−1)(q−1x) ∀x ∈ ∂qI[φ] .

Moreover, equation (3.2) has a unique solution θ in C1,α(∂Ω).

Now, our aim is to prove the analyticity upon (q, φ, g) of the function θ
which solves equation (3.2). Inspired by Lemma 3.3, we introduce the map Λ

from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×
(
C1,α(∂Ω)

)2
to C1,α(∂Ω) by setting

Λ[q, φ, g, θ](t) ≡ −1

2
θ(t)

−
∫
qφ(∂Ω)

νqI[φ](s) ·DSq,n(qφ(t)− s)(θ ◦ φ(−1))(q−1s)dσs − g(t) ∀t ∈ ∂Ω,

for all (q, φ, g, θ) ∈ D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×
(
C1,α(∂Ω)

)2
. Next, we

apply the implicit function theorem to the equation Λ[q, φ, g, θ] = 0.

Proposition 3.4. Let α, Ω be as in (1.1). Then the following statements
hold.

(i) Λ is real analytic.

(ii) For each (q, φ, g) ∈ D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω), there

exists a unique θ in C1,α(∂Ω) such that

Λ[q, φ, g, θ] = 0 on ∂Ω,

and we denote such a function by θ[q, φ, g].

(iii) The map θ[·, ·, ·] from D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω) to

C1,α(∂Ω) which takes (q, φ, g) to θ[q, φ, g] is real analytic.

Proof. Statement (i) follows from [17, Thm. 3.2 (ii)], while (ii) is a conse-
quence of Lemma 3.3. Next we consider (iii). Since the analyticity is a local

property, we fix (q0, φ0, g0) in D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω)

and we show that θ[·, ·, ·] is real analytic in a neighborhood of (q0, φ0, g0) in

the product space D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
×C1,α(∂Ω). By standard

calculus in normed spaces, the partial differential ∂θΛ[q0, φ0, g0, θ[q0, φ0, g0]]
of Λ at (q0, φ0, g0, θ[q0, φ0, g0]) with respect to the variable θ is delivered by

∂θΛ[q0,φ0, g0, θ[q0, φ0, g0]](ψ)(t)

= −1

2
ψ(t)−

∫
q0φ0(∂Ω)

νq0I[φ0](s) ·DSq0,n(q0φ0(t)− s)(ψ ◦ φ(−1)
0 )(q−1

0 s) dσs

∀t ∈ ∂Ω,

for all ψ ∈ C1,α(∂Ω). By Lemma 3.1, ∂θΛ[q0, φ0, g0, θ[q0, φ0, g0]] is a linear
homeomorphism from C1,α(∂Ω) onto C1,α(∂Ω). Then the implicit function
theorem for real analytic maps in Banach spaces (see, e.g., Deimling [6, Thm.
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15.3]) implies that θ[·, ·, ·] is real analytic in a neighborhood of (q0, φ0, g0) in

D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω). �

Remark 3.5. By Lemma 2.1, Proposition 3.2 and Proposition 3.4, the solution
u[q, φ, g] of problem (1.2) can be written as

u[q, φ, g](x) = −
∫
∂Ω

νqI[φ](qφ(s)) ·DSq,n(x− qφ(s))θ[q,φ, g](s)σ̃[qφ] dσs

∀x ∈ Sq[qI[φ]]−,

for all (q, φ, g) ∈ D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω).

We are now able to deduce our main result, which answers to (1.3).

Theorem 3.6. Let α, Ω be as in (1.1). Let

(q0, φ0, g0) ∈ D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω).

Let U be a bounded open subset of Rn such that U ⊆ Sq0 [q0I[φ0]]−. Then
there exists an open neighborhood U of (q0, φ0, g0) in

D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
× C1,α(∂Ω)

such that the following statements hold.

(i) U ⊆ Sq[qI[φ]]− for all (q, φ, g) ∈ U
(ii) Let k ∈ N. Then the map of U to Ck(U) which takes (q, φ, g) to the

restriction u[q, φ, g]|U of u[q, φ, g] to U is real analytic.

Proof. By taking U small enough, we can deduce the validity of statement
(i). Statement (ii) follows from the representation formula of Remark 3.5
together with Lemma 2.1, Proposition 3.4 and standard properties of integral
operators with real analytic kernels and with no singularity (cf. [14]). �

Remark 3.7. We considered the periodic Dirichlet problem for the Laplace
equation. Our method can be used for other periodic problems. For example,
one can consider the Dirichlet problem

∆v = 1 in Sq[qI[φ]]− ,

v(x+ qz) = v(x) ∀x ∈ Sq[qI[φ]]− ,∀z ∈ Zn ,
v(x) = 0 ∀x ∈ ∂qI[φ] ,

(3.3)

which generalizes the one considered in [18]. Then, if we denote by v[q, φ] the
solution to problem (3.3), by exploiting the periodic volume potential we can

prove that the map from D+
n (R)×

(
C1,α(∂Ω,Rn) ∩ AQ̃∂Ω

)
to R

(q, φ) 7→
∫
Q\qI[φ]

v[q, φ](x) dx

is real analytic. Moreover, one can replace the right-hand side in the first equa-
tion of problem (3.3) by a more general sufficiently regular periodic function.
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