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A B S T R A C T   

The human inability to notice plants and recognise their importance on Earth has been termed “plant blindness”. 
Among the main reasons (e.g., cultural and biological factors) underlying this phenomenon, the lack of visible 
movement of plants seems to be the main factor that makes plants less prominent to the human eye. Here, we 
tested the idea that observing plants moving on our time scale might change the way we attend to them. We 
combined single-pulse transcranial magnetic stimulation (TMS) and motor-evoked potential (MEP) recordings to 
assess the activation of observers’ motor system during the observation of an action performed by either a pea 
plant or a human when approaching and grasping a pole. Control conditions involving a stationary hand or pea 
plant, a hand or pea plant rotating along their axes, and a hand grasping the pole in the style of a plant were also 
considered. The participants’ sensitivity to the role and importance of plants for human life and other living 
organisms was assessed by means of an ad-hoc questionnaire. The results showed a specific effect of motor 
facilitation relative to baseline values when observing plants rotating and grasping, but not for plants standing 
still. Higher levels of motor activation may indicate a greater degree of effort in interpreting the observed action, 
when it is perceived as unfamiliar by the observer. An effort that can be reduced through awareness and 
knowledge of the role and importance of the green kingdom for life on Earth. Notably, people more sensitive to 
plants showed similar levels of motor activation when observing both plant and human actions.   

1. Introduction 

Plants make up about 80% of all biomass on Earth, surpassing 
humans and livestock in sheer mass (Bar-On et al., 2018). They are 
crucial in almost all ecosystems, contributing to climate hazard miti
gation (Knapp, 2003; Ziska et al., 2009) and supporting humans and 
other animals by providing shelter, oxygen, and food. Despite this, 
people tend to overlook plants as living organisms (e.g., Pany et al., 
2022), often viewing them as unassuming backdrops. This phenomenon 
is known as “plant blindness” (Amprazis & Papadopoulou, 2020; Wan
dersee & Schussler, 1999). Plant blindness, described by Wandersee & 
Schussler in 1999, is the inability of a person to perceive plants in their 
environment, acknowledge their importance in the biosphere or 
appreciate plants’ esthetic and unique biological features. It also refers 
to the misguided anthropocentric view of plants as inferior to animals 
(Wandersee & Schussler, 1999). Since then, various other terms for plant 
blindness have been suggested including “plant unawareness”, “biodi
versity naivety” or “plant awareness disparity” (Niemiller et al., 2021; 
Parsley, 2020). According to a recent review (Stagg & Dillon, 2022), the 

most common characteristics of plant awareness disparity is a deficit of 
knowledge, followed by an attention or memory advantage for animals 
compared to plants, and low interest in plants. This language, however, 
attaches a negative connotation to those who experience these phe
nomena, and several educators have suggested alternative concepts to 
move from a deficit-focused concept to one that focuses on plants more 
holistically, such as ‘plant awareness’ (Bacon & Peacock, 2021; Stroud 
et al., 2022). 

Among the main reasons behind plant awareness is a shortage of 
knowledge about plants. Life sciences curricula tend to be zoocentric or 
zoochauvinistic, suggesting that studying animals is more important 
than studying plants (e.g., Bozniak, 1994; Darley, 1990; Flannery, 1991; 
Hershey, 1996, 2002). School science textbooks, for instance, include 
more content on animals than on plants, as shown by the number and 
diversity of images, the quantity of text, and the number of animal ex
amples of core biological concepts (Link-Pérez et al., 2010; Schussler 
et al., 2010). As a result, plants are often ignored and neglected by 
teachers, students, and the general public. Efforts to combat the lack of 
plant awareness through plant-focused education or experiences have 
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recently been implemented with some success (e.g., Borsos et al., 2023; 
Pany et al., 2019). Some strategies include gamification (Borsos et al., 
2023), and out-of-school learning experiences like visiting botanical 
gardens (Lindemann-Matthies, 2006) or utilizing digital tools in extra
curricular activities (Kissi & Dreesmann, 2018). 

Apart from educational issues, other factors contribute to lack of 
plant awareness, including a failure to distinguish between the differing 
biology of plants and animals and the perceived slow lifecycles and 
behaviors of most plants that do not captivate our attention in the same 
way that animals do (New et al., 2007). Balas and Momsen (2014) 
adapted a technique from research in visual perception to provide 
empirical evidence that our attention is captured differently by plants 
than by animals. They capitalized on an established phenomenon in 
visual perception known as the “attentional blink”. “Attentional blink” 
occurs when a sequence of images is rapidly presented, and identifying 
the first target can temporarily hinder the detection of the second target. 
That is, when attentional resources are deployed on the first image, 
attention “blinks” and misses a closely presented second image. In 
particular, Balas and Momsen (2014) used this paradigm to objectively 
measure the extent to which people detect plants and animals in a 
quantitatively different way. Participants in their experiment were 
better in detecting the second target when the first target was a plant 
compared to when it was an animal, indicating that people may not pay 
attention to plants. Schussler and Olzak (2008) also found that adults are 
better in detecting animals than plants. In their study, they presented a 
series of pictures depicting plants and animals to psychology and botany 
undergraduate students. Following a brief distraction, students were 
asked to recall as many of the images as they could. The results showed 
that, despite being botany students, participants had better recall for 
animal images than plant images. This suggests that animals are more 
strongly encoded in memory than plants. However, a point worth noting 
is that recall tasks mainly adopted pictures showing a single plant or 
animal, thus limiting the possibility of understanding whether plant 
blindness would affect recall of elements in more complex naturalistic 
scenes. In this regard, Zani and Low (2022) recently conducted a 
memory task involving the simultaneous presentation of a plant item 
and an animal item. They found inferior recall of plants than animals, 
suggesting that plant blindness impacts the way adults process 
real-world scenes. Indeed, plant blindness appeared to affect the ability 
to encode complex scenes and to bind elements together to form richer 
memory representations. 

So far, plant awareness has been an area of limited research, with 
studies primarily focused on static images and no consideration of plants 
acting in the environment. Crucially, plants produce movements, and 
these movements can be too slow to be perceived with the naked eye, 
such as the helical organ movement (i.e., circumnutation movement) 
which is common in climbing plants (Darwin, 1875; Darwin & Darwin, 
1880). In this respect, Forterre (2013) showed that plants do not attract 
people’s attention because they are too slow to be perceived. In fact, the 
animal characteristic that generates the most interest in humans is 
movement (Kinchin, 1999). Therefore, it appears that lack of plant 
awareness is inherently a complex phenomenon which may also include 
a motor component. Here we aim to test for the first time whether the 
degree of plant blindness/awareness can be measured at the motoric 
level. Our hypothesis is that displaying videos featuring plants exhibit
ing movement patterns akin to those commonly observed in animals 
would promote an enhanced awareness of (or attention to) plants. In 
particular, it would facilitate the mapping of plant movements into the 
observer’s motor repertoire, leading to motor resonance (Fadiga et al., 
1995; for an example of attentional effect on motor resonance, see also 
Betti, Castiello, et al., 2019; Betti et al., 2018). To investigate this aspect, 
we implemented an action observation paradigm based on the evidence 
that the motor system is activated sub-threshold when we observe 
another person in motion, but not when we observe that person at rest 
(e.g., Urgesi et al., 2006). This kind of covert motor activation in 
response to observed actions has been investigated between conspecifics 

(i.e., humans) and non-conspecific (i.e., other animals). For instance, 
White et al. (2014) measured the corticospinal excitability of in
dividuals’ hand muscles while they watched grasping actions performed 
by a human, a robotic arm, a rat, and an elephant. Their results indicate 
a facilitatory effect for non-conspecific actions (White et al., 2014). That 
is, the corticospinal excitability (CSE) of subjects’ hand muscles was 
greater during the observation of a grasping action performed by an 
elephant and a rat, and lower for actions performed by a human and a 
robotic effector. Amoruso and Urgesi (2016) also found that individuals 
with long-lasting familiarity with dogs showed similar levels of motor 
activation for human and canine grasping actions. This effect suggests 
that humans can resonate at a motoric level also to non-human actions 
and that activation of the human motor cortex may be related to a 
general process of inferring goals from observed dynamics, particularly 
when the observer has been familiarized with them (see also Buccino 
et al., 2004). An associative mechanism (i.e., the correlation of 
perceptual and action-related components; Catmur et al., 2007) may 
explain the occurrence of motor activation during the observation of 
non-conspecific actions. It is also crucial to note that motor resonance 
does not occur when observing moving objects or moving water (e.g., 
waterfall; Avenanti et al., 2013; Urgesi et al., 2006). Therefore, motor 
resonance appears to be closely related to the perception of a biological 
movement. In the present study, we investigate whether a moving plant 
is capable of activating a motor response in the observer, thus deter
mining a similarity with agents of other species. As the motor facilitation 
triggered while watching an action has significant implications for the 
way we perceive and represent the world (e.g., Wilson & Knoblich, 
2005), we propose to extend this research paradigm to the investigation 
of plant blindness. That is, here we combined single-pulse transcranial 
magnetic stimulation and motor-evoked potential recording of a hand 
muscle of the observer (i.e., the first dorsal interosseous muscle, FDI) to 
explore the activation of the observers’ motor system during the 
observation of an action performed by a pea plant, namely the elliptical 
movements made around their axes of elongation by pea plants (i.e., 
circumnutation; Darwin and Darwin, 1880) when approaching and 
grasping a potential support. To date, recent evidence suggests that 
during the approach to a potential support, pea plants preshape their 
tendrils (i.e., modified leaves used by plants to climb a potential sup
port) by following the same kinematic principles underlying a human 
hand reaching towards and grasping an object (Bonato et al., 2023; 
Ceccarini et al., 2020, 2021, Guerra et al., 2019, 2021, 2022, Wang 
et al., 2023). 

With this in mind, videos displaying grasping actions toward a pole 
performed either by a human or by a pea plant were shown to in
dividuals. Control conditions implying a still hand or a still pea plant, 
and a hand or a pea plant rotating along their axes were also considered 
(i.e., non-goal-directed behavior). A further control condition was set 
showing a hand which mirrored the approach and grasp movement 
performed by the pea plant to balance the direction and the amount of 
movement displayed among the two actions. We thought that if plant 
blindness stems primarily from the idea that plants do not move while 
animals do, then the presentation of moving plants with the same time 
scale as a human movement should cause a corticospinal activation. In 
addition, we administered an ad-hoc questionnaire to measure the in
dividual’s sensitivity to plants and to correlate results with the corti
cospinal activation detected during the observation task. In other words, 
our conjecture is that displaying videos featuring plants exhibiting 
movement patterns akin to those commonly observed in animals would 
promote an enhanced awareness of (or attention to) plants, leading to 
motor resonance (Fadiga et al., 1995). Alternatively, if plant movement 
cannot be associated with our behavioral repertoire, then it would not 
be possible to exploit our motor system to motorically map moving 
plants, and plant blindness effects should emerge as an absence of cor
ticospinal activation for plant movement. 
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2. Method 

2.1. Participants 

Thirty-two healthy Italian adult participants (males 16; females 16), 
aged 19–29 years (mean age 24.37 ± 2.78 years), took part in the study. 
All participants were right-handed, as assessed with the Edinburgh 
Handedness Inventory (EHI; Oldfield, 1971), with normal or 
corrected-to-normal visual acuity. Participants were screened for TMS 
exclusion criteria (Rossi et al., 2009; Wassermann, 1998). The study was 
approved by the University of Padua Ethics Committee and carried out 
in accordance with the Declaration of Helsinki (Protocol Number: 
4733). Written informed consent was obtained prior to the experiment. 
No discomfort or other adverse effects were reported during the 
experiment. 

2.2. Experimental stimuli 

Seven greyscale video clips were used as experimental stimuli (see 
Fig. 1 and supplementary material). The human video clips were filmed 
from a frontal point of view with the use of a Canon Legria HFM36 
(Tokyo, Japan) mounted on a tripod. All videos included the effector at 
rest before the action, followed by a rotation or a grasp of the object. The 
model was instructed to minimize any time variations between the start 
and the grasp. The grasp occurred approximately 1.665 ms after video 
onset. The pea plant movement was recorded by means of an infrared 
camera which took a picture every 180 s (total number of frames: 119, 
total duration: 21,420 s, average velocity: 0.006 mm/s). The wooden 
pole was coloured in red to increase the tendrils’ contrast with the 
background (Fig. 1C–F). The movement was then presented within a 
time window of 4.5 s (average velocity: 30 mm/s), so that the time 
window was the same for both the pea plant and the hand movements. 
For all the video clips, the animation effect was obtained by presenting 

each frame for 33 ms in series. All last frames lasted 600 ms. The order in 
which the videos were presented was randomized for each participant. 
The inter-stimulus interval between videos was 10-s. The first 8 s of rest 
were accompanied by a message urging participants to keep their hands 
as still and relaxed as possible. Subsequently, in the last 2 s of rest, a 
white fixation cross on a black background appeared at the center of the 
computer screen. The experimental conditions were:  

i) Still condition: a static picture of either a hand (Fig. 1A) or a pea 
plant (Fig. 1D).  

ii) Rotation condition: a video of either a hand (Fig. 1B) or a pea 
plant (Fig. 1E) rotating around their central axis (i.e., 
circumnutation). 

iii) Grasping condition: a video of a reach-to-grasp movement per
formed by either a hand (Fig. 1C) with the thumb opposing the 
index and middle fingers (i.e., the most appropriate grasp type 
according to object size, shape and orientation; Feix et al., 2016; 
Lee & Jung, 2014) or a pea plant (Fig. 1F) on a wooden pole (60 
cm height, 3 cm diameter) placed at a distance of 120 mm from 
the starting position. 

Given that the kinematics characterizing plant and human reach-to- 
grasp movements differs (i.e., pea plants do circumnutates in the 
reaching phase while humans do not), in addition to the three main 
conditions (Still, Rotation, Grasping), we decided to have an additional 
control condition to better compare the plant and the human reaching 
phase. We then filmed a Plant-style Grasping condition, having a reach- 
to-grasp movement performed by a hand with comparable goals and 
comparable motion features with respect to the grasping movement 
performed by the pea plant. That is, the human model simulated the 
movement of the pea plant by performing circular movements during 
the reaching phase. 

Fig. 1. The video clips used in the present study showing a human hand (left) or a pea plant (right). (A) A static picture of a hand (Still); (B) a hand rotating along its 
axis (Rotation); (C) a reach-to-grasp movement toward a wooden pole (Grasping); (D) a static picture of a pea plant (Still); (E) a pea plant rotating along its central 
axis (Rotation); (F) a reach-to-grasp movement toward a pole by a pea plant (Grasping). 
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2.3. Transcranial magnetic stimulation (TMS) and motor evoked 
potentials (MEPs) recordings 

Single-pulse TMS was administered to the hand region of the left 
primary motor cortex (M1) using a 70 mm figure-of-eight coil connected 
to a Magstim Bistim2 stimulator (Magstim Co., Whitland, UK). The coil 
was held tangentially on the scalp at a 45-degree angle relative to the 
interhemispheric fissure, with the handle pointing laterally and caudally 
(Brasil-Neto et al., 1992; Mills et al., 1992). The optimal scalp position 
(OSP) for the target muscle, that is the position where MEPs with 
maximal amplitude are recorded with minimal stimulation intensity, 
was identified by delivering single TMS pulses at fixed intensity while 
moving the coil of 0.5 cm around the target area until the best position 
was reached. The OSP was marked on a tight cap the participant wore. 
MEPs were acquired from the first dorsal interosseous (FDI) muscle of 
the right hand. The resting motor threshold (rMT) was determined by 
applying ten consecutive pulses at the minimum stimulation intensity 
required to produce, in the relaxed contralateral FDI muscle, MEPs of 
more than 50 μV in the 50% of the trials (Rossini et al., 1994). rMT 
ranged from 28 to 62% (mean 42%; SD = 5.96) of the maximum stim
ulator output. The stimulation intensity was then set at 120% of the rMT 
to record a clear and stable MEPs signal throughout the experiment 
(ranged from 34 to 74%; mean 51%; SD = 7.11). During the experi
mental sessions the coil was held by a tripod and continuously checked 
by the experimenters to maintain a constant positioning with respect to 
the marked OSP. MEPs were recorded through a pair of Ag/AgCl elec
trodes (1 cm diameter) placed in a belly-tendon montage. After the skin 
was cleaned, electrodes with a small amount of water-soluble EEG 
conductive paste were placed and fixed on the target positions. The 
active electrode was placed over the belly of the muscle, determined by 
palpation during maximum voluntary contraction, and the reference 
electrode was placed over the proximal interphalangeal juncture. The 
ground electrode was placed on the participant’s right wrist. The skin 
impedance, evaluated at rest prior to beginning the experimental ses
sion, was considered of good quality when below the threshold level (5 
kOhm). The electrodes were connected to an isolable portable ExG input 
box linked to the main EMG amplifier for signal transmission via a twin 
fiber optic cable (Professional BrainAmp ExG MR, Munich, Germany). A 
high-pass filter of 20 Hz and a low-pass filter of 1000 Hz were applied to 
the raw myographic signal, which was amplified prior to being digita
lized (5 kHz sampling rate) and stored on a computer for off-line anal
ysis. EMG signals were recorded with Brain Vision Recorder software 
(Brain Products GmbH, Munich, Germany). 

2.4. Importance of plants questionnaire (IPQ) 

Participants were requested to fill the Importance of Plant ques
tionnaire (IPQ) after attending the experimental session. The IPQ is an 
ad-hoc questionnaire, not yet validated, designed to assess the role and 
importance of plants for human life and other living organisms. 
Nevertheless, the reliability (i.e., Cronbach’s alpha) of our questionnaire 
was calculated as a minimum level of validation (α = 0.73). The IPQ 
consists of ten items (in Italian; see Supplementary materials), namely: 
(i) life would be impossible without plants; (ii) trees are very important 
in urban centres because they provide shade and for their natural 
freshness; (iii) municipal authorities should take care of urban greenery; 
(iv) plants use solar energy; (v) plants produce oxygen (vi) environ
mental pollution affects plant life; (vii) plants are very important for 
medicine; (viii) plants should be introduced in cities to increase their 
attractiveness; (ix) plants are also affected by diseases; (x) plants absorb 
carbon dioxide and help to regulate the climate. IPQ was developed 
based on previous questionnaires on plant awareness disparity 
(Fančovičová & Prokop, 2010; Marmaroti & Galanopoulou, 2006; Pany 
et al., 2022; Parsley et al., 2022; see Supplementary Material). Partici
pants scored each item using a Likert-type scale ranging from 1 (strongly 
disagree) to 5 (strongly agree). Positive and negative items were used in 

the scale, negative items were scored in the reverse order (e.g., point 5 
equates point 1). 

2.5. Procedure 

Participants were tested individually in a single experimental session 
lasting 1 h and 30 min. Participants were seated in a comfortable 
armchair in front of a 19″ computer screen (i.e., resolution of 1920 x 
1080 pixels, refresh rate of 60 Hz) at a distance of 80 cm; their right arm 
was positioned on a pillow and their head on a fixed head rest. Partic
ipants were requested to remain still and relaxed during the entire 
experimental session. A single TMS pulse was released during each video 
presentation at the timing of 2805 ms and MEPs from the right hand FDI 
muscle were acquired. This timing corresponds to the time the human 
model reached the maximum hand grip aperture before getting in con
tact with the red pole (Fig. 1C). Concerning the plant model, the elec
tromagnetic pulse was delivered when the tendrils (i.e., modified leaves 
used by the plant to clasp potential supports) reached the maximum 
aperture (Fig. 1F). A total of 105 MEPs (7 conditions × 15 repetitions) 
were recorded for each participant during video presentation. Prior and 
after the experimental block, each participant’s baseline corticospinal 
excitability was assessed by acquiring 15 MEPs while they passively 
watched a white fixation cross on a black background presented on the 
computer screen. The average MEPs amplitudes recorded during the two 
baseline periods (i.e., 30 MEPs in total) was used to set each partici
pant’s individual baseline for data normalization procedures and to test 
for facilitation/inhibition relative to baseline under the experimental 
conditions. For baseline recording, an inter-pulse interval lasting 5.25 s 
was adopted between trials. During this interval participants were 
reminded to remain fully relaxed for 5 s and a fixation cross was pre
sented for the remaining 0.25 s. The presentation of a fixation cross 
before each trial ensured that participants always started the trial by 
observing the videos from a neutral position. At the end of the experi
mental phase, a brief open-ended interview followed, in which the 
participant was asked about the impressions he/she felt while watching 
the videos. The experimental task was designed and run with the use of 
E-prime software (Psychology Software Tools, version 2.0). 

2.6. Data analysis 

Data were analyzed offline using Brain Vision Analyzer software 
(Brain Products GmbH, Munich, Germany) for EMG data and the R 
software package (R package version 4.2.2; R Core Team, 2013) and 
JASP 0.16.3 (JASP Team, 2022) for statistical analysis. The MEPs 
peak-to-peak amplitude (mV) for the FDI muscle was determined as a 
measure of participants’ corticospinal excitability. MEPs amplitude that 
deviated more than three standard deviations (SD) from the mean for 
each experimental condition (outliers), and trials in which muscle 
pre-activation in a time window preceding of 100 ms the TMS pulse was 
recorded were excluded from the data analysis (<5%). A paired sample 
t-test (two-tailed) was used to compare the amplitude of MEPs recorded 
during the two baseline periods carried out at the beginning and at the 
end of each block. This comparison is useful to ascertain that modula
tions in MEPs amplitudes are due to the experimental manipulation and 
not to other influences. In addition, to assess possible differences be
tween experimental conditions with baseline data (i.e., facili
tation/inhibition), paired sample t-tests (two-tailed) were performed. 

MEPs were then normalized computing a ratio between mean MEPs 
amplitude values recorded during each experimental condition and 
during the two baseline periods (MEP ratio = MEPobtained/MEPbase
line). A repeated-measure ANOVA (rmANOVA) with the type of model 
(human or plant) and movement performed (still, rotation or grasping) 
as within-subject factors was performed on MEP amplitudes of the FDI 
muscle. The partial eta square (partial-η2) value was calculated as an 
estimate of effect size. In the presence of significant interactions, 
Bonferroni-corrected post-hoc comparisons were performed. To control 
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for the effect of the amount of perceived motion on corticospinal 
excitability modulation while observing a grasping action performed by 
a plant or a human model, paired sample t-tests (two-tailed) were used 
to compare the amplitude of MEPs recorded during the observation of 
the plant and human grasping with the human grasping plant-style 
movement. The Pearson correlation coefficient was used to assess the 
relationship between the score of the PBQ and the MEPs values for each 
experimental condition. The significance threshold was set at p < .05 for 
all statistical analyses. 

3. Results 

The mean raw MEPs amplitudes recorded at the beginning and at the 
end of the experimental session were not significantly different (877.13 
vs. 717.77 μV; t31 = 1.49; p = .147). Therefore, TMS per se did not induce 
any nonspecific change in corticospinal excitability that could have 
biased the results. 

The comparison between raw MEP data for each condition and 
baseline values showed that MEPs were facilitated during the observa
tion of the rotation of a human hand (t31 = 2.07; p = .047), as well as 
during the rotation (t31 = 2.2; p = .036) and grasping (t31 = 2.09; p =
.045) of a plant. No significant facilitation emerged during the obser
vation of a stationary plant (t31 = 1.47; p = .150) or a stationary human 
hand (t31 = 0.97; p = .339). A lack of facilitation for the human grasping 
condition was also shown (t31 = − 0.52; p = .610; see Fig. 2). 

3.1. Human versus plant: same goal, but different motion features 

The normalized MEP amplitudes of the FDI muscle during the 
observation of a gesture performed by a human (Fig. 1A, B, C) or a plant 
(Fig. 1D, E, F) were compared. Results showed a significant main effect 
of the type of model (Human vs. Plant; F1,31 = 6.250; p = .018; partial-η2 

= 0.168), a significant main effect of the type of action (still, rotation or 
grasping; F2,62 = 3.232; p = .046; partial-η2 = 0.094), together with the 
interaction between the type of model and type of action (F2,62 = 3.652; 
p = .032; partial-η2 = 0.105; Fig. 3). Post-hoc contrasts revealed that FDI 
MEP amplitude was lower when participants observed a grasping 
gesture performed by the human model compared to a rotation gesture 
performed by either a human (p = .008) or a plant (p = .019), and lower 
than a grasping gesture performed by a plant (p = .011). No other sig
nificant differences emerged. 

3.2. Human versus plant: same goal and same motion features 

The normalized MEP amplitude of the FDI muscle recorded during 

the observation of a reach-to-grasp movement performed by either a 
human or a plant model having the same goal (i.e., to grasp the red pole) 
and similar motion features (i.e., the model simulated the reaching 
movement of a plant by performing circular movements during the 
reaching phase) were compared. No significant differences were 
observed when comparing the grasping gestures performed by a human 
model mimicking a plant (i.e., grasping plant-style) and a plant model 
(t31 = − 1.72; p = .094; Fig. 4A). 

3.3. Human: same goal and different motion features 

The normalized MEP amplitude of the FDI muscle recorded during 
the observation of a reach-to-grasp movement performed by a human 
model having the same goal (i.e., to grasp the pole) but different motion 
features (i.e., plant-style vs. prototypical grasping) were compared. A 
significant facilitation emerged when the observed gesture was 
mimicking a plant (i.e., grasping plant-style, Fig. 4B; t31 = 2.06; p =
.048). 

3.4. Human versus plant: impact of sensitivity to plants on motor 
resonance 

To assess whether sensitivity to plants might influence motor reso
nance, the relationship between the scores to a questionnaire aimed at 
testing sensitivity to plants and MEPs values for the FDI muscle in each 
experimental condition were assessed by means of the Pearson corre
lation coefficient test. Results showed a significant negative correlation 
between MEPs amplitudes of the FDI muscle and the questionnaire 
scorings for all experimental conditions, except for the condition in 
which participants observed a still hand. For the remaining conditions, 
MEPs of the FDI muscle decrease in amplitude as the questionnaire 
scores increases (Fig. 5). 

4. Discussion 

In the present study, we investigated the corticospinal activation 
following the observation of videos depicting actions performed either 
by a human or by a pea plant. In general, we found that the level of 
corticospinal excitability was higher than the baseline when a grasping 
and a rotating plant was observed compared to a still plant. And that 
people more sensitive to plants showed similar levels of motor activation 
when observing both plant and human actions. To our knowledge, this is 
the first study reporting such effect on motor activation in response to 
the observation of actions performed by plants. We therefore support the 

Fig. 2. Graphical representation of the mean values for the raw MEPs ampli
tude of the FDI muscle when participants observed a still, rotation or a grasping 
gesture performed either by a plant (white) or a human (black) model. The 
dashed bar represents the mean raw MEP amplitude for baseline data. The error 
bar represents the standard error of the mean. Asterisk indicate a significant 
difference (p < .05) between condition and baseline data. 

Fig. 3. Graphical representation of the mean values for the MEP amplitude of 
the FDI muscle when participants observed a still, rotational or a grasping 
gesture performed either by a human (black) or a plant (white) model. The 
error bar represents the standard error of the mean. Asterisks indicate signifi
cant differences (p < .05) between conditions. 
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inclusion of a motor component in the definition of plant blindness 
(Achurra, 2022; Parsley, 2020; Wandersee & Schussler, 1999). 

In terms of generalized motor activation, our findings are in line with 
previous studies involving the observation of actions performed by non- 
conspecifics (Amoruso & Urgesi, 2016; White et al., 2014) and extend 
this literature by showing that this “tuning” is not restricted to human or 
other animal actions, but also accounts for actions performed by plants. 
The similar activation of the motor cortex found for both the plant-style 
hand grasping and the grasping plant may be related to a general process 
of inferring goals from observed dynamics (Cross et al., 2012; Engel 
et al., 2008; Fiorio et al., 2010; Gazzola et al., 2007; Gowen & Poliakoff, 
2012; Petroni et al., 2010). Support to this contention comes from 
several studies showing the activation of motor system areas during 
observation of recognizable actions performed by other agents and 
species (for review see Kemmerer, 2021). In this view, the observed 
motor activation effect may reflect the attribution of goal/intention to 
the plant’s action. In other words, individuals might have coded the 
plants’ actions at the goal or outcome level (i.e., grasping the pole). 

4.1. Sensitivity to plants 

An important aspect of the present study is a motor facilitation 
during the observation of a rotational movement of either a human hand 
or a plant, as well as during the grasping of a plant, when compared to 
baseline values. Participants may need a greater degree of interpretive 
effort when observing unfamiliar actions, that reflects in increased 
corticospinal activity (e.g., Betti et al., 2019; Buccino et al., 2004). The 
motor system being more recruited when sensory information is 
incomplete (D’Ausilio et al., 2012). This motor-driven process would 
help to disambiguate the goal of the action trough anticipatory mech
anisms (Amoruso & Finisguerra, 2019; Betti et al., 2022). 

The reduction in MEP amplitude for the prototypical grasping action 
is a novel finding in the action observation literature (but see Betti et al., 
2019; Naish et al., 2014) and could indicate a paradigm effect. In the 
framework of a “plant study”, the one movement (i.e., the prototypical 
hand grip) perceived as unrelated to the paradigm might have changed 
the way the hand grip was coded (for a review of factors influencing 
action observation, see Kemmerer, 2021). From an action-oriented 
predictive coding approach, an empirical Bayesian inference process 
might have created top-down priors that helped reduce uncertainty in 
the observation of plant and plant-style movements at the expense of the 

prototypical grasping action (Amoruso & Finisguerra, 2019). Rens et al. 
(2020) recently found that when observers’ expectations were violated, 
their mirror responses were reduced. Specifically, motor resonance is 
eradicated when an observed grasping action deviates from what is 
expected (Craighero et al., 2014; Gangitano et al., 2004; Rens et al., 
2020; Senot et al., 2011; for other relevant studies see Obhi & Hogeveen, 
2010; Ondobaka et al., 2015). Indeed, in our study we found a statisti
cally significant decrease in corticospinal excitability comparing a hand 
performing a prototypical grip with a plant-style grasping. 

The lack of facilitation for the prototypical human grasping condi
tion, on the other hand, could suggest a task-related inhibitory effect: as 
grasping actions are performed quite automatically dozens of times in 
daily life, but participants were asked to remain as still as possible, a 
muscular deactivation may have been triggered to keep the hand fixed 
on the hand rest and to avoid imitation reactions (i.e., a mechanism to 
suppress the observation-evoked response codes from generating overt 
muscle activity; Betti et al., 2023; Coxon et al., 2006; Duque et al., 2017; 
Villiger et al., 2011). Naish et al. (2014) formulated a corticospinal in
hibition hypothesis linked to action observation in an influential review. 
Corticospinal inhibition would act as a dam to restrain the impulse to 
move or to respond, i.e. to execute the automatically triggered action. 
Remember that humans have much greater visual familiarity and direct 
motor experience with human actions than with any other moving 
stimuli, including other species’ biological movements, and this might 
have led to the task-related inhibition. 

In this light, an important result supporting the inhibitory hypothesis 
is the negative correlation between MEP amplitudes and the IPQ scores. 
Considering that greater familiarity induces greater inhibition, it is not 
surprising that individuals who acknowledge the importance of plants 
exhibit lower MEP amplitude. We propose that a greater impulse to 
imitate - generated by observing familiar actions - needs greater inhi
bition (Betti et al., 2023). Empathy might also be the key to understand 
why higher scores in the Importance of plants questionnaire (IPQ) are 
associated with similar motor output (i.e., decreased CSE) for both 
plants and human movements, as they were perceived to be similar. 
Empathy has been already associated to modulations in motor activation 
(Lepage et al., 2010; see also Balding & Williams, 2016 for consider
ations on empathy and plant blindness). 

To our knowledge, this is the first study reporting such effect on 
motor activation in response to the observation of actions performed by 
plants. 

Fig. 4. Graphical representation of the comparison between normalized MEP amplitudes acquired during the observation of a grasping gesture performed by a 
human model mimicking a plant and (A) a plant model, or (B) a canonical grasping movement performed by a hand. Asterisks indicate significant differences (p <
.05) between conditions. 
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4.2. Plant-style vs. human-style grasping 

Our results show that the primary motor cortex was more active 
during the observation of a hand performing a plant-style grasping 

action than during the observation of a hand performing a prototypical 
grasping action. This effect might be due to the effort required to 
interpret an unfamiliar action (see above). Novel movements demand 
more attention compared to familiar movements (an effect known as 

Fig. 5. Graphical representation of the relationship between the amplitude of MEPs of the FDI muscle and the Importance of Plant Questionnaire (IPQ) for each 
experimental condition. * = p < .05; ** = p < .01. 
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odd ball effect) and require more activation for recognition and learning 
of the new motor pattern. The fronto-parietal regions of the perception- 
action system are in fact mostly recruited during the observation of 
meaningless than meaningful actions (Hétu et al., 2011). In line with 
this study, the data presented here on the observation of plant-style 
grasping movements provide the literature with new information 
regarding the effect of observing unfamiliar actions on corticospinal 
activation. 

4.3. Plant awareness and the educational context 

Broader implications of the present findings are concerned on how 
conceptual knowledge is somewhat organized in our brain. Do animals 
and plants fell into the same partition? It has been hypothesized that in 
our brain there is a categorical distinction for animals, plants and arti
facts (Caramazza & Shelton, 1998). A categorization that subsequently 
has been compressed in the literature into animates and inanimates. In 
this respect, it has been reported that animates are better remembered 
than inanimates, but the study did not include plants (Nairne et al., 
2013). To date, studies on animates versus inanimates do not specifically 
compare plants versus animals but the majority of them use fruits (e.g., 
Jackson & Calvillo, 2013) and flowers (e.g., Guerrero & Calvillo, 2016) 
as the only images of plants. Therefore, it is fundamental to enrich the 
animacy dimension, which refers to the state of being alive and animate, 
with plants movements. We need to determine the necessary and suffi
cient properties of ‘animated’ plants that allow for a rapid and successful 
recognition of plants by our brain. 

The results of studies conducted on samples of students of different 
ages agree that they show greater interest in studying animals than in 
studying plants (Wandersee, 1986), a preference attributable primarily 
to the fact that animals move. Indeed, the concept of life appears to be 
intimately related to movement. Plants are seen as background char
acters for the animals which live out their dynamic lives (Balding & 
Williams, 2016; Yorek et al., 2009). However, plants also move and 
manifest behaviors very similar to those observed in animals (Simonetti 
et al., 2021). What solutions can be proposed to address globally a 
problem as pervasive as the lack of plant awareness? This effect is indeed 
common, but not inevitable (Stagg & Dillon, 2022). The most 
forward-looking answer is therefore to “start at the grassroots,” i.e., 
education: it is necessary to raise teachers’ awareness of plant and 
channel students’ attention with hands-on experiences (e.g., “The Pet 
Plant Project”; Krosnick et al., 2018) that can foster the development of 
positive and respectful behaviors, knowledge, and attitudes toward the 
environment (Fančovičová & Prokop, 2011; Stagg & Dillon, 2022). Balas 
& Momsen suggested that our visual system process plants in a manner 
that may contribute to lack of plant awareness (Balas & Momsen, 2014). 
They argued that educators should focus on materials that increases 
plant awareness to overcome these inherent perceptual limitations 
(Balas & Momsen, 2014). Making the movement of plants explicit and 
manifest, as well as enhancing awareness toward plants - as we did in 
this study - produced an effect at the level of motor activation. The visual 
familiarity effect found in people most sensitive to plants may reflect the 
attribution of a goal/intention to plant action and highlight the enor
mous potential of observational learning. Our results might be explained 
by embodied cognition theories as an automatic involvement of the 
corticospinal system induced by the observation of a movement repro
ducible by the observer (Buccino et al., 2004; Craighero et al., 2016). An 
intense visual experience of the actions performed by plants can engage 
the observer’s motor system and increase our motor resonance with the 
green world. From this perspective, we propose that having people “see” 
plant movement could be a feasible way to reduce lack of plant 
awareness. 

To conclude, lack of plant awareness is inherently a complex phe
nomenon. The cultural underpinnings of plant blindness have been well 
recognized; here, we add to a growing body of research documenting a 
physiological component. Further studies that will clarify how the 

human brain perceives and attends to plants can help to take concrete 
steps toward increasing plant awareness. 
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