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OPTIMAL IMPULSIVE CONTROL FOR TIME DELAY SYSTEMS

GIOVANNI FUSCO, MONICA MOTTA, AND RICHARD VINTER

Abstract. We introduce discontinuous solutions to nonlinear impulsive control systems
with state time delays in the dynamics and derive necessary optimality conditions in the
form of a Maximum Principle for associated optimal control problems. In the case with-
out delays, if the measure control is scalar valued, the corresponding discontinuous state
trajectory, understood as a limit of classical state trajectories for absolutely continuous con-
trols approximating the measure, is unique. For vector valued measure controls however,
the limiting trajectory is not unique and a full description of the control must include ad-
ditional ‘attached’ controls affecting instantaneous state evolution at a discontinuity. For
impulsive control systems with time delays we reveal a new phenomenon, namely that the
limiting state trajectory resulting from different approximations of a given measure control
needs not to be unique, even in the scalar case. Correspondingly, our framework allows for
additional attached controls, even though the measure control is scalar valued.

1. Introduction

This paper provides a well-posed notion of solution for a control system of the form

(DIS)











dx(t) = f(x(t), x(t− h))dt + g(x(t), x(t − h))dµ(t), t ∈ [0, T ]

in which µ is a non-negative Borel measure on [0, T ], and

x(0) = x0 and x(t) = ξ0 for t ∈ [−h, 0[ ,

and necessary conditions of optimality for associated optimal impulsive control problems.
Here the data comprise a constant T > 0, functions f : Rn×R

n → R
n and g : Rn×R

n → R
n,

vectors x0 ∈ R
n and ξ0 ∈ R

n.
There is an extensive literature on control systems of this kind whenever f and g do not

depend on the delayed state, both in the case of scalar and vector valued control measures,
which includes versions of the maximum principle for optimal impulsive control problems.
Representative papers include [5, 6, 16, 15, 21, 22, 19, 25, 3, 13, 1, 18]. The novel feature
of the class of problems treated in this paper is that the dynamic constraint contains a time
delay. Since first order necessary optimality conditions are available for conventional (‘non-
impulsive’) optimal control problems with time delay (see, e.g, [4] and the references therein),
it might be thought that broadening of the theory to allow for time delays in the state would
be a routine exercise. But, contrary to such expectations, the presence of a time delay gives
rise to interesting and unexpected phenomena which, to the authors’ knowledge, have not
been previously explored in the literature. Furthermore, the derivation of necessary conditions
poses significant challenges, because the ‘change of independent variable’ techniques employed
in the delay free literature, to reduce impulsive optimal control problems to conventional
optimal control problems, cannot be adapted directly to the delay setting, owing to the fact
that the analogous change of variable does not generate a time-delay optimal control problem
of standard form.

Notice that when the ‘control’ µ in (DIS) is absolutely continuous w.r.t. Lebesgue
measure, i.e. dµ(t) = u(t)dt for some integrable function u, the state trajectory is simply a
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solution to the delay differential equation

ẋ(t) = f(x(t), x(t− h)) + g(x(t), x(t − h))u(t), a.e. t ∈ [0, T ]

satisfying the specified left end-point condition. But if the measure µ has an atom at t̄, then
according to the control system, the state variable may jump at time t̄.

The motivation behind the definition of ‘solution’ to the state equation, in the case
without delays, was first provided by aerospace applications, in which (as in (DIS)) the right
side of the dynamic relation is affine in the control variable and where an ‘impulsive control’
is an idealization of high intensity control action over a time interval of short duration. The
appropriate definition of state trajectory is then that it should be the limit of some sequence
of state trajectories associated with a convergent sequence of absolutely continuous controls
[11].

The delay-free impulsive control literature, where the dynamic constraint takes the form










dx(t) = f̃(x(t))dt + g̃(x(t))dµ(t), t ∈ [0, T ]

in which µ is a non-negative Borel measure on [0, T ], and

x(0) = x0,

points the way to defining state trajectories that can be interpreted as limits of non-impulsive
state trajectories. For an arbitrary impulsive control µ, all limits of state trajectories cor-
responding to absolutely continuous controls approximating µ (in a sense specified in the
example below) are the same. If, furthermore, µ({τ}) = ω(τ) at a time τ , then its state tra-
jectory x has a jump y(1)−x(τ−) at τ , where y : [0, 1] → R

n is the solution to the differential
equation

{

ẏ(s) = ω(τ)g̃(y(s)), a.e. s ∈ [0, 1]

y(0) = x(τ−) .

As is well-documented, the property ‘all sequences of state trajectories corresponding to some
sequence of absolutely controls that approximates the nominal impulsive control µ have the
same limit’ depends critically on the assumption that the impulsive control µ is scalar valued
(see [5]). If the delay-free model is modified to include a k-vector valued impulsive control
µ = (µ1, . . . , µk), thus























dx(t) = f̃(x(t))dt +
k
∑

i=1

g̃i(x(t))µi(dt), t ∈ [0, T ]

in which µi, i = 1, . . . , k, are non-negative Borel measures on [0, T ], and

x(0) = x0 ,

the uniqueness property is lost: different approximations of the vector impulsive controls by
absolutely continuous controls can give rise to different state trajectories in the limit, unless
we impose rather stringent ‘commutativity’ hypotheses on the g̃i’s (see [6, 7, 16]). In this
situation, the family of state trajectories associated with a given vector valued impulsive
control µ can be parameterized by collections of control functions attached to each point of
discontinuity in the distribution of µ, which determine the evolution of the state during the
jump (see [2, 13]).

Now let us return to consideration of impulsive control systems with time delay, when
the impulsive control is scalar valued. We might expect, by analogy with the delay-free
case, that all sequences of state trajectories associated with some sequence of absolutely
continuous controls that approximates a given impulsive control, would have the same limit
and this could be defined as the state trajectory for the nominal impulsive control. But
instead we encounter a new phenomenon: the uniqueness property is lost and, to capture the
entire possible family of limiting state trajectories, we need to consider collections of attached
controls describing the evolution of the state during the jump, in a way formerly encountered
only for vector valued impulsive control systems.
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Example 1.1. Consider the impulsive control system with scalar state x:














dx(t) = x(t)x(t− 1)dµ(t) a.e. t ∈ [0, 2],

in which µ is a non-negative Borel measure on [0, 2] and

x(t) = 1 ∀t ∈ [−1, 0] .

Take the nominal measure control to be µ = δ{1/2}+ δ{3/2}, where δ{t̄} denotes the unit Borel
measure concentrated at t = t̄. Take εi ↓ 0 and, for any integer i ≥ 1, let ui dt be the sequence
of absolutely continuous measures approximating µ:

ui(t) =

{

ε−1
i if t ∈ [12 ,

1
2 + εi] ∪ [32 − εi,

3
2 ]

0 otherwise.

(The sequence (ui dt) approximates µ in the sense that ui dt
∗
⇀ µ, in the weak∗ C(0, 2)-

topology.) Write xi for the corresponding state trajectories. A simple calculation reveals that
xi(t) → x(t) for all t ∈ [0, 2] \ {1

2 ,
3
2}, where x(t) = 1 if t ∈ [0, 1/2[, x(t) = e if t ∈ [1/2, 3/2[

and x(t) = e2 if t ∈ [3/2, 2]. Now let (ũi dt) be a different sequence of absolutely continuous
measures approximating the nominal measure control µ given by

ũi(t) =

{

ε−1
i if t ∈ [12 − εi,

1
2 ] ∪ [32 ,

3
2 + εi]

0 otherwise.

Write x̃i for the corresponding state trajectories. We find that x̃i(t) → x̃(t) for all t ∈
[0, 2] \ {1

2 ,
3
2}, where x̃(t) = 1 if t ∈ [0, 1/2[, x̃(t) = e if t ∈ [1/2, 3/2[ and x̃(t) = e1+e if

t ∈ [3/2, 2]. Notice that the arcs x and x̃ differ on the subinterval [32 , 2].

In this paper we provide, for the first time, a framework for studying the multiplicity of
state trajectories associated with a given impulsive control, in the presence of time delays.
We pose an optimal control problem where selection of a state trajectory corresponding to
the chosen impulsive control is part of the optimization procedure. We give conditions for
existence of solutions to this control problem and provide necessary optimality conditions in
the form of a maximum principle.

Let us briefly discuss the methodological challenges of generalizing the techniques previ-
ously employed for studying impulsive control systems, when we introduce time delays. Take
a measure control µ with associated state trajectory x. The key idea in earlier work concern-
ing delay-free systems, was to introduce a measure control dependent change of independent
variable s = ψ(t), satisfying ψ(0) = 0 and ψ(t) = t + µ([0, t]) for t ∈]0, T ], and interpret a
discontinuous state trajectory x as an absolutely continuous arc y, under the discontinuous
change of independent variable, thus x(t) = y(ψ(t)). The discontinuity in x at time t is
captured by the evolution of y on [ψ(t−), ψ(t+)] (the interval between left and right limits of
ψ at t). Each y is governed by a controlled differential equation. The ‘controls’ in this new
system description generate all possible state trajectories for the original control system with
measure control µ, obtainable as appropriate limits of absolutely continuous state trajecto-
ries. We use this property to study the set of impulsive state trajectories via a conventional
control system. We can, for example, derive necessary conditions of optimality for impulsive
control problems in this way.

This approach cannot be directly applied, however, when we introduce time delays,
because the control system description that results from the above change of variable is a
controlled delay differential equation, in which the time delays vary with time and are control
dependent. This complicated delay differential equation is not amenable to analysis. Instead,
we use a more subtle change of independent variable that is, in a sense, uniform over different
time segments of length h and which preserves constancy of the delays under transformation.

Research is currently in progress into various extensions of this paper. These include
generalizations to allow for end-times that are not integer multiples of a single time delay,
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vector-valued measure controls with range a convex cone, and for non-autonomous control
systems with multiple, commensurate time delays. Conditions under which the infimum cost
over classical controls is the same as that over measure controls, so called ‘gap conditions’,
are also under investigation (see e.g. [17, 8, 9] in the case without delays).

It is worth mentioning that in the literature there are several results on the stabilizability
of delayed impulsive control systems and on the optimization of some specific related prob-
lems, but they all concern the so-called ‘impulse model’, where impulsive controls essentially
reduce to a finite or countable number of jump instants, with a preassigned jump-function.
The notion of impulsive control system introduced in the present paper, which includes the use
of strategies with a significant freer allocation of the impulses, might allow the development
of new nonlinear models, for instance, of fed-batch fermentation [24, 12] or of delayed neural
networks with impulsive controls [14]. We also mention [10], in which necessary optimality
conditions are introduced for an impulsive control problem with (possibly non-commensurate)
time delays in the drift term alone of the dynamics.

The paper is structured as follows. In Sec. 2 we give an appropriate definition of solution
to (DIS), in Sec. 3 we introduce an ordinary control system which can be obtained by (DIS)
by means of a suitable change of independent variable, in Sec. 4 we establish the main
properties of solutions to (DIS), while in Sec. 5 we associate with (DIS) a Mayer cost and an
endpoint constraint and we prove a maximum principle for this optimization problem.

1.1. Notation. Given a set X ⊆ R
k, we write W 1,1([a, b];X), L1([a, b];X), L∞([a, b];X),

BV ([a, b];X), for the set of absolutely continuous, Lebesgue integrable, essentially bounded,
and bounded variation functions defined on [a, b] and with values in X, respectively. We will
not specify domains and codomains when the meaning is clear and we will use ‖ · ‖L∞(a,b), or
also ‖ · ‖L∞ , to denote the ess-sup norm. As usual, given T > 0, S > 0 and an increasing,
surjective map σ : [0, T ] → [0, S], σ−(t) and σ+(t) denote the left and right limits of σ at t,
respectively, when t ∈ (0, T ), while σ−(0) := 0 and σ+(T ) := S. Note that we call increasing
any monotone non decreasing function. We denote by C⊕(0, T ) the set of Borel non-negative
scalar valued measures on [0, T ] (from now on we will refer to such µ simply as measures). For
any µ ∈ C⊕(0, T ), we use both the notations ‖µ‖TV and

∫

[0,T ] dµ(t) for the total variation

of µ. In the following, µ-a.e. means “almost everywhere w.r.t. µ”, and when we do not
specify µ we implicitly refer to Lebesgue measure. Given a sequence (µi) ⊂ C⊕(0, T ) and

µ ∈ C⊕(0, T ), as customary we write µi
∗
⇀ µ if limi

∫

[0,T ]Φ(t)µi(dt) =
∫

[0,T ]Φ(t)dµ(t) for all

continuous functions Φ : [0, T ] → R.
The limiting normal cone NT(x̄) to a closed set T ⊆ R

k at x̄ ∈ R
k is

NT(x̄) :=

{

η ∈ R
k : ∃xi

T
→ x̄, ηi → η s. t. lim sup

x→xi

ηi · (x− xi)

|x− xi|
≤ 0 ∀i

}

,

in which the notation xi
T

−→ x̄ means that (xi)i ⊂ T.

2. Impulsive Controls and Extended Processes

Consider the control system

(DIS)











dx(t) = f(x(t), x(t− h))dt + g(x(t), x(t − h))dµ(t), t ∈ [0, T ]

for some µ ∈ C⊕(0, T ) and x ∈ BV ([−h, T ];Rn) satisfying

x(0) = x0 and x(t) = ξ0 for t ∈ [−h, 0[ ,

where f, g : Rn × R
n → R

n, x0 and ξ0 ∈ R
n, and h > 0, T > 0. Assume:

(H1): f and g are C1 and bounded functions.

(H2): T = Nh, for some integer N > 0.
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Definition 2.1 (Impulsive and Strict Sense Controls). An impulsive control (µ, {wr}r∈[0,h])

comprises a function µ ∈ C⊕(0, T ) and a family of measurable functions wr = (wr1, . . . , w
r
N ) :

[0, 1] → [0,+∞[N , parameterized by r ∈ [0, h], with the following properties:

(i): For any r ∈ [0, h],

N
∑

i=1

wri (s) =

N
∑

i=1

∫ 1

0
wri (s)ds, a.e. s ∈ [0, 1];

(ii): For any r ∈]0, h[,

∫ 1

0
wri (s)ds = µ({r + (i− 1)h}), for i = 1, . . . , N.

(iii):

∫ 1

0
[whi (s) + w0

i+1(s)]ds = µ({ih}), for i = 0, . . . , N , where wh0 ≡ 0 and w0
N+1 ≡ 0.

A strict sense control is an impulsive control (µ, {wr}r∈[0,h]), in which dµ(t) = u(t)dt for some

nonnegative function u ∈ L1(0, T ). With a slight abuse of notation, we also call u strict sense
control. (Notice that, for a strict sense control, for any r ∈ [0, h] and i = 1, . . . , N , we have
wri (s) = 0 a.e. since dµ(t) = u(t)dt has no atoms.)

Definition 2.2 (Extended and Strict Sense Processes). We say that a triple (x, µ, {wr}r∈[0,h])
is an extended process (with extended state trajectory x) if x ∈ BV ([−h, T ];Rn) and (µ, {wr}r∈[0,h])
is an impulsive control such that

(i): x(t) = ξ0, for t ∈ [−h, 0[;

(ii): for each i = 1, . . . , N , x(t) =

{

x0 if i = 1

ζ0i (1) if i > 1
for t = (i− 1)h,

x(t) = ζ0i (1) +

∫ t

(i−1)h
f(x(t′), x(t′ − h))dt′ +

∫

[(i−1)h,t]
g(x(t′), x(t′ − h))dµc(t′)

+
∑

r∈]0, t−(i−1)h]

(ζri (1)− x((r + (i− 1)h)−) for t ∈](i− 1)h, ih[

and x(T ) = ζhN (1). Here, for r ∈ [0, h], the functions ζr1 , . . . , ζ
r
N : [0, 1] → R

n satisfy the
coupled differential equations

d

ds
ζri (s) = wri (s) g(ζ

r
i (s), ζ

r
i−1(s)), a.e. s ∈ [0, 1], for i = 1, . . . , N , (2.1)

with boundary conditions

ζri (0) =

{

x−(r + (i− 1)h) if r ∈]0, h]
ζhi−1(1) if r = 0 .

(2.2)

In these relations, ζr0(s) :=

{

ξ0 if s ∈ [0, 1[ or r ∈ [0, h[
x0 if s = 1 and r = h

and µc denotes the continuous

component of the measure µ. (Extended state trajectories have bounded variation and are
right continuous on ]0, T [.)
An extended state process (x, µ, {wr}r∈[0,h]) corresponding to a strict sense control u, also
written simply (x, u), is called a strict sense process. In these circumstances x, referred to as
a strict sense state trajectory, is an absolutely continuous function that satisfies the delayed
differential equation

ẋ(t) = f(x(t), x(t− h)) + g(x(t), x(t − h))u(t), a.e. t ∈ [0, T ] .

Note that if, for some i = 1, . . . , N , t ∈](i−1)h, ih[ is not an atom of µ, then w
t−(i−1)h
i = 0

a.e and the trajectory x is continuous at t, as the function ζ
t−(i−1)h
i describing the jump of

the state at the instant t, turns out to be constant on [0, 1]. On the other hand, when t = ih
for i = 1, . . . , N − 1, the possible atom of the measure µ at t (hence, the corresponding jump
of the trajectory x) is determined by the combined effect of both the attached controls whi
and w0

i+1, due to the presence of the time delay h.
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Remark 2.3. In the earlier Example 1.1 (in which h = 1, N = 2, and T = Nh = 2), we
showed how different approximations of a measure control µ by absolutely continuous controls
can give rise to different state trajectories. We show how these observations are consistent
with the preceding definition of state trajectories corresponding to impulsive controls. Choose
once again µ = δ{1/2} + δ{3/2} . Now consider the following impulsive control (µ, {wr}r∈[0,1]),

in which wr ≡ 0 if r 6= 1
2 and

w
r= 1

2
1 (t) =

{

0 if 0 ≤ t ≤ 1
2

2 if 1
2 < t ≤ 1

and w
r= 1

2
2 (t) =

{

2 if 0 ≤ t ≤ 1
2

0 if 1
2 < t ≤ 1.

Furthermore, consider (µ, {w̃r}r∈[0,1]) in which w̃r ≡ 0, if r 6= 1
2 and

w̃
r= 1

2
1 (t) =

{

2 if 0 ≤ t ≤ 1
2

0 if 1
2 < t ≤ 1

and w̃
r= 1

2
2 (t) =

{

0 if 0 ≤ t ≤ 1
2

2 if 1
2 < t ≤ 1.

Based on the constructions implicit in the preceding definition, the state trajectories x and
x̃, corresponding to the impulsive controls (µ, {wr}r∈[0,1]) and (µ, {w̃r}r∈[0,1]), respectively,
are

x(t) =











1 if t ∈ [0, 12 [

e if t ∈ [12 ,
3
2 [

e2 if t ∈ [32 , 2]

and x̃(t) =











1 if t ∈ [0, 12 [

e if t ∈ [12 ,
3
2 [

e1+e if t ∈ [32 , 2].

These formulae reproduce the two distinct limits of state trajectories corresponding to abso-
lutely continuous controls, identified in the earlier analysis of this example.

3. Reparameterization

Processes for (DIS) will be analysed with the help of a change of independent variable
that replaces possibly discontinuous state trajectories by continuous functions. The new set
of processes that arise in this way are called reparameterized processes for (DIS).

Definition 3.1. A reparameterized process for (DIS) is a collection of elements (S, {yi}, {αi}),
comprising a number S > 0, controls αi ∈ L∞(0, S), i = 1, . . . , N , and functions yi ∈
W 1,1([0, S];Rn), i = 0, . . . , N , that satisfy































































ẏi(s) =
(

1−

N
∑

i=1

αi(s)
)

f(yi(s), yi−1(s)) + αi(s)g(yi(s), yi−1(s)),

a.e. s ∈ [0, S], for i = 1, . . . , N,

αi(s) ≥ 0 for each i = 1, . . . , N and

N
∑

i=1

αi(s) ≤ 1, a.e. s ∈ [0, S],

y0(s) = ξ0 for s ∈ [0, S[, y0(S) = x0, yi+1(0) = yi(S), for i = 0, . . . N − 1 ,

∫ S

0

(

1−
N
∑

i=1

αi(s)
)

ds = h.

Remark 3.2. Because f and g are C1, bounded functions, for any S > 0 and all controls

α1, . . . , αN ∈ L1(0, S) such that αi(s) ≥ 0 for each i,
∑N

i=1 αi(s) ≤ 1 a.e., and
∫ S
0 (1 −

∑N
i=1 αi(s))ds = h, there exists a unique set of functions y1, . . . , yN ∈ W 1,1([0, S];Rn) such

that (S, {yi}, {αi}) is a reparameterized process for (DIS).

Theorem 3.3. The following statements hold true:

(A): Let (S, {yi}, {αi}) be a reparameterized process for (DIS). Then, there exists an ex-
tended process (x, µ, {wr}r∈[0,h]) for (DIS) such that x(T ) = yN (S) and

‖µ‖TV =
∑N

i=1

∫ S

0
αi(s)ds. (3.1)
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(B): Let (x, µ, {wr}r∈[0,h]) be an extended process for (DIS). Then there exists a reparame-
terized process (S, {yi}, {αi}) for (DIS) such that yN (S) = x(T ) and (3.1) is satisfied.

Proof of this theorem requires the following lemma.

Lemma 3.4. Take an increasing function A : [0, a] → [0, b] such that A(0) = 0, A(a) = b,
and A is right continuous on ]0, a[. Define its right inverse as the function B : [0, b] → [0, a]
such that

B(0) := 0, B(r) := inf{s ∈ [0, a] : A(s) > r} for r ∈]0, b[, B(b) := a.

Then, B is increasing, right continuous on ]0, b[, and it is continuous iff A is strictly increas-
ing. For any r ∈ [0, b] one has A(B(r)) ≥ r and, when A is continuous at B(r), A(B(r)) = r.
Moreover, A is the right inverse of B, namely

A(s) = inf{r ∈ [0, b] : B(r) > s} for s ∈]0, a[.

Furthermore, if F : [0, a] → R
n is a Borel function, then

∫

[B(r1),B(r2)]
F (s)dA(s) =

∫

[r1,r2]
F (B(r))dr for every 0 ≤ r1 < r2 ≤ b,

where dA(s) is the measure associated with the increasing function A.

Proof. If we consider A as the restriction to [0, a] of an increasing and right continuous
function, continuous outside [0, a], the properties of B follow from [20, Lemma 4.8, Ch. 0].
For each ℓ = 1, . . . , n, let F+

ℓ and F−
ℓ be the positive and the negative part of the component

Fℓ of F , so that F
+
ℓ , F−

ℓ ≥ 0, and Fℓ(s) = F+
ℓ (s)−F−

ℓ (s) for all s ∈ [0, a]. Fix 0 ≤ r1 < r2 ≤ b.

Then, if we extend F+
ℓ , F−

ℓ as nonnegative Borel functions on [0,+∞[, [20, Prop. 4.9, Ch. 0]
implies that

∫

[0,+∞[
F±
ℓ (s)χ[B(r1),B(r2)](s)dA(s) =

∫

[0,+∞[
F±
ℓ (B(r))χ[r1,r2](r)dr,

from which we immediately derive
∫

[B(r1),B(r2)]
Fℓ(s)dA(s) =

∫

[r1,r2]
Fℓ(B(r))dr, for each value

of the index ℓ. �

Proof of Thm. 3.3. (A): Take a reparameterized process (S, {yi}, {αi}) for (DIS). Define
the mapping ψ : [0, S] → R to be

ψ(s) :=

∫ s

0

(

1−

N
∑

i=1

αi(s
′)
)

ds′, for s ∈ [0, S] . (3.2)

Directly from the definition of reparameterized processes for (DIS), we know that ψ(S) = h.
Because ψ is a continuous, increasing function, by Lemma 3.4 its right inverse function
σ : [0, h] → [0, S], given by

σ(0) := 0, σ(r) := inf{s ∈ [0, S] : ψ(s) > r} for r ∈]0, h[, σ(h) := S,

is strictly increasing, right continuous on ]0, h[, and satisfies

σ(r) ≥ r, ψ(σ(r)) = r, for any r ∈ [0, h].

Moreover, it has at most a countable set (rk)k∈N ⊂ [0, h] of discontinuity points, where
σ−(rk) < σ+(rk), which correspond to the constancy intervals of ψ, namely ψ−1({rk}) =
[σ−(rk), σ

+(rk)] for all k ∈ N. Notice that, by the definition of ψ, for any r ∈ [0, h],

N
∑

j=1

αj(s) = 1, for a.e. s ∈ [σ−(r), σ+(r)]. (3.3)
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(If r /∈ (rk)k, we trivially have [σ−(r), σ+(r)] = {σ(r)}.) Integrating across this relation over
the subinterval [σ−(r), σ+(r)], yields

σ+(r)− σ−(r) =

N
∑

j=1

∫ σ+(r)

σ−(r)
αj(s) ds, for any r ∈ [0, h]. (3.4)

Let us also introduce the continuous, increasing function ψ̃ : [0, NS] → R, obtained by an
N -fold time advance and concatenation of ψ, namely

ψ̃(s) := (i− 1)h+ ψ(s − (i− 1)S), for s ∈ [(i− 1)S, iS], i = 1, . . . , N,

and its right inverse σ̃ : [0, T ] → [0, NS]. Note that

σ̃−(r) = σ−(r − (i− 1)h) + (i− 1)S, σ̃+(r) = σ+(r − (i− 1)h) + (i− 1)S, (3.5)

for any i = 1, . . . , N and r ∈](i− 1)h, ih[, while

σ̃−(0) = σ−(0) = 0, σ̃+(0) = σ+(0),

σ̃−(ih) = σ−(h) + (i− 1)S, σ̃+(ih) = σ+(0) + iS, i = 1, . . . , N − 1,

σ̃−(Nh) = σ−(h) + (N − 1)S, σ̃+(Nh) = σ+(h) + (N − 1)S = NS.

(3.6)

We now construct an extended process (x, µ, {wr}r∈[0,h]) for (DIS) with the desired

properties. Consider the functions ỹ ∈W 1,1([0, NS];Rn) and α̃ ∈ L1(0, NS), given by

ỹ(s) = yi(s− (i− 1)S), for s ∈ [(i− 1)S, iS], i = 1, . . . , N

α̃(s) = αi(s− (i− 1)S), a.e. s ∈ [(i− 1)S, iS[, i = 1, . . . , N .
(3.7)

Define µ ∈ C⊕(0, T ) and x : [0, T ] → R
n according to the following relations:

µ([0, t]) :=

∫ σ̃+(t)

0
α̃(s) ds for any t ∈ [0, T ], (3.8)

and x(t) := ỹ(σ̃(t)) for any t ∈ [0, T ], x(t) = ξ0 for t < 0 (notice that σ̃+(t) = σ̃(t) for all
t ∈]0, T ]). Finally, take any r ∈ [0, h]. For all i = 1, . . . , N , define wri : [0, 1] → [0,+∞[ and
ζri : [0, 1] → R

n as follows:

wri (s) := (σ+(r)− σ−(r))αi(σ
−(r) + s (σ+(r)− σ−(r))), a.e. s ∈ [0, 1],

ζri (s) := yi(σ
−(r) + s (σ+(r)− σ−(r))), for all s ∈ [0, 1].

Moreover, set ζr0(s) := ξ0 if s ∈ [0, 1[ or r ∈ [0, h[ and ζh0 (1) := x0. From (3.3) it follows that
∑N

i=1 w
r
i (s) = (σ+(r)− σ−(r)) =

∑N
i=1

∫ σ+(r)
σ−(r)

αi(s)ds for a.e. s ∈ [0, 1].

By changing the independent variable in the integral, we see that

∫ 1

0
wri (s)ds =

∫ σ+(r)

σ−(r)
αi(s)ds for i = 1, . . . , N. (3.9)

Therefore, condition (i) in Definition 2.1 of impulsive control is satisfied. It can be deduced
from (3.8) and (3.5) that, for r ∈]0, h[ and i = 1, . . . , N ,

µ({r + (i− 1)h}) =

∫ σ+(r)+(i−1)S

σ−(r)+(i−1)S
αi(s− (i− 1)S) ds =

∫ σ+(r)

σ−(r)
αi(s) ds.

Together with (3.9), this relation implies condition (ii) in Definition 2.1. Finally, condi-

tion (iii) follows from (3.8), (3.6), and (3.9). Indeed µ({0}) =
∫ σ+(0)
σ−(0)

α1(s) ds =
∫ 1
0 w

0
1(s)ds,
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µ({Nh}) =
∫ σ+(h)
σ−(h)

αN (s) ds =
∫ 1
0 w

h
N (s)ds, and, for i = 1, . . . , N−1, µ({ih}) =

∫ σ̃+(ih)
σ̃−(ih)

α̃(s) ds,

so that:

µ({ih}) =

∫ S+(i−1)S

σ−(h)+(i−1)S
αi(s− (i− 1)S) ds +

∫ σ+(0)+iS

iS
αi+1(s− iS) ds

=

∫ σ+(h)

σ−(h)
αi(s) ds +

∫ σ+(0)

σ−(0)
αi+1(s) ds =

∫ 1

0
whi (s)ds +

∫ 1

0
w0
i+1(s)ds.

Thus, (µ, {wr}r∈[0,h]) is an impulsive control. Notice that, from (3.8),

||µ||TV =
N
∑

i=1

∫ iS

(i−1)S
αi(s− (i− 1)S) ds =

N
∑

i=1

∫ S

0
αi(s) ds.

Take r ∈ [0, h]. Observe that, for i = 1, . . . , N the ζri ’s are absolutely continuous functions

such that d
dsζ

r
i (s) = wri (s) g(ζ

r
i (s), ζ

r
i−1(s)) a.e. s ∈ [0, 1] and ζri (0) = yi(σ

−(r)). Furthermore,

yi(σ
+(r))− yi(σ

−(r)) = ζri (1)− ζri (0) , for every i = 1, . . . , N . (3.10)

Consider now t ∈](i− 1)h, ih[ for some i = 1, . . . , N . Then σ̃+(t) ∈](i− 1)S, iS[ and from the
previous calculations it follows that

ỹ(σ̃+(t))− ỹ(σ̃−(t)) = yi(σ
+(t− (i− 1)h)) − yi(σ

−(t− (i− 1)h))

= ζ
t−(i−1)h
i (1) − ζ

t−(i−1)h
i (0) .

(3.11)

If instead r = ih for some i = 1, . . . , N , (3.7) (together with the fact that yi+1(0) = yi(S))
yield

ỹ(σ̃+(ih)) − ỹ(σ̃−(ih)) = ỹ(σ+(0) + iS)− ỹ(σ−(h) + (i− 1)S)

= [yi+1(σ
+(0)) − yi+1(σ

−(0))] + [yi(σ
+(h)) − yi(σ

−(h))]

= [ζ0i+1(1) − ζ0i+1(0)] + [ζhi (1)− ζhi (0)] , for i = 1, . . . , N − 1,

ỹ(σ̃+(Nh)) − ỹ(σ̃−(Nh)) = yN (σ
+(h)) − yN (σ

−(h)) = ζhN (1)− ζhN (0) .

(3.12)

For each t ∈](i− 1)h, ih[ and i = 1, . . . , N , by (3.7) and (3.5), we have

x(t) = ỹ(σ̃(t)) = ỹ(σ̃+((i − 1)h)) +

∫ σ̃+(t)

σ̃+((i−1)h)
f(ỹ(s), ỹ(s − S))

dψ̃

ds
(s) ds

+

∫ σ̃+(t)

σ̃+((i−1)h)
g(ỹ(s), ỹ(s− S))α̃(s)ds ,

where ỹ(σ̃+((i− 1)h)) = ζ0i (1). We deduce from Lemma 3.4 and (3.5) that
∫ σ̃+(t)

σ̃+((i−1)h)
f(ỹ(s), ỹ(s− S))

dψ̃

ds
(s) ds =

∫ t

(i−1)h
f(ỹ(σ̃+(t′)), ỹ(σ̃+(t′)− S)) dt′

=

∫ t

(i−1)h
f(x(t′), x(t′ − h))dt′ .

Define the set of nondegenerate intervals corresponding to the discontinuity points (tk)k∈N of
σ̃ on [0, T ], namely D := ∪k∈N[σ̃

−(tk), σ̃
+(tk)] ⊂ [0, NS].

Write α̃0(s) =

{

0 if s ∈ D
α̃(s) if s /∈ D

. The continuous component µc of µ is the measure with

distribution function µc([0, t]) =
∫ σ̃+(t)
0 α̃0(s′)ds′ for t ∈ [0, T ]. Notice that, since σ̃(ψ̃(s′)) = s′

for all s′ /∈ D, from Lemma 3.4 (applied to A = σ̃, B = ψ̃, and F (t′) = α̃0(σ̃(t′))) for t ∈ [0, T ]
it follows that

∫

[0,t]=[ψ̃(0),ψ̃(σ̃(t))]
α̃0(σ̃(t′)) dσ̃(t′) =

∫ σ̃(t)

0
α̃0(s′)ds′ = µc([0, t]). (3.13)



10 GIOVANNI FUSCO, MONICA MOTTA, AND RICHARD VINTER

For each t ∈](i− 1)h, ih[ and i = 1, . . . , N , we have
∫ σ̃+(t)

σ̃+((i−1)h)
g(ỹ(s), ỹ(s− S))α̃(s)ds

=

∫ σ̃+(t)

σ̃+((i−1)h)
g(ỹ(s), ỹ(s− S))α̃0(s)ds +

∑

t′∈](i−1)h,t]

(ỹ(σ̃+(t′))− ỹ(σ̃−(t′))).

In view of (3.13), from Lemma 3.4 (applied to F (·) = g(ỹ(σ̃(·)), ỹ(σ̃(·) − S))α̃0(σ̃(·), A = σ̃

and B = ψ̃) it follows that
∫

[(i−1)h,t]
g(x(t′), x(t′ − h))dµc(t′)

=

∫

[ψ̃(σ̃((i−1)h)),ψ̃(σ̃(t))]
g(ỹ(σ̃(t′)), ỹ(σ̃(t′)− S))α̃0(σ̃(t′)) dσ̃(t′)

=

∫ σ̃+(t)

σ̃+((i−1)h)
g(ỹ(s), ỹ(s− S))α̃0(s)ds.

Furthermore, (3.11), (3.12) imply that
∑

t′∈](i−1)h,t]

(ỹ(σ̃+(t′))− ỹ(σ̃−(t′))) =
∑

r ∈]0,t−(i−1)h]

(ζri (1)− ζri (0))

if i = 1, . . . , N − 1 and t ∈](i− 1)h, ih[, or if i = N and t ∈](N − 1)h,Nh].
Notice that the function x is right continuous on ]0, T [, so that the boundary conditions

on the ζri ’s can be expressed in terms of the function x:

ζri (0) =

{

x−(r + (i− 1)h) if r ∈]0, h]
ζhi−1(1) if r = 0

i = 1, . . . , N.

Thus these ζri ’s are consistent with those appearing in Def. 2.2. Reviewing the above relations,
we see that (x, µ, {wr}r∈[0,h]) is a process for (DIS).

(B): Take an extended process (x, µ, {wr}r∈[0,h]) for (DIS). For any i = 1, . . . , N , let µi ∈

C⊕(0, h) be the Borel measure with distribution function

µi([0, r]) :=















∫ 1

0
w0
i (s) ds+ µ(](i− 1)h, r + (i− 1)h]) if r ∈ [0, h[,

∫ 1

0
w0
i (s) ds+ µ(](i− 1)h, h[) +

∫ 1

0
whi (s) ds if r = h.

Notice that µi({r}) = µ({r+(i−1)h}) if r ∈]0, h[, while µi({0}) =
∫ 1
0 w

0
i (s) ds and µi({h}) =

∫ 1
0 w

h
i (s) ds, so that Def. 2.1 (ii) ,(iii) imply the relations

∫ 1

0
wri (s) ds = µi({r}) for r ∈ [0, h], i = 1, . . . , N ,

µi({h}) + µi+1({0}) = µ({ih}), for i = 1, . . . , N − 1.

(3.14)

Define the strictly increasing function,

φ(0) := 0, φ(r) := r +

N
∑

i=1

µi([0, r]) for r ∈]0, h] , (3.15)

and let S := φ(h). The function φ is right continuous on ]0, h[. Take η : [0, S] → [0, h]
be the right inverse of φ, as defined in Lemma 3.4. The function η is increasing, 1-Lipschitz
continuous, such that η(0) = 0 and η(S) = h. Write {rj} for the countable set of discontinuity
points of φ and define D := ∪

j
[φ−(rj), φ

+(rj)] . For each r ∈ [0, h], η−1(r) = [φ−(r), φ+(r)]

and η is constant exactly on the intervals in D. Then, the Lebesgue measure µL and the
measures µci , i = 1, . . . , N , are absolutely continuous w.r.t. the measure dφ. Let mL and mc

i
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be the Radon-Nicodym derivatives of µL and µci , i = 1, . . . , N w.r.t. dφ, respectively. Hence,
0 ≤ mL(r) ≤ 1 and 0 ≤ mc

i ≤ 1, i = 1, . . . , N , dφ-a.e. Furthermore,

mL(r) +
N
∑

i=1

mc
i (r) = 1, dφ-a.e. r ∈ [0, h]\ ∪

j
{rj}. (3.16)

Now 0 = µL({rj}) = mL(rj)[φ
+(rj) − φ+(rj)] and 0 = µci({rj}) = mc

i (rj)[φ
+(rj) − φ+(rj)],

so that mL(rj) = 0, and mc
i (rj) = 0 for all j ∈ N.

We define the Borel measurable functions α0 : [0, S] → R and αi : [0, S] → R, i =
1, . . . , N to be

α0(s) := mL(η(s)), for s ∈ [0, S] (3.17)

(notice that α0(s) = 0 on D) and

αi(s) :=

{

mc
i (η(s)) if s /∈ D

1
φ+(rj)−φ−(rj)

w
rj
i

(

s−φ−(rj)
φ+(rj)−φ−(rj)

)

if s ∈ [φ−(rj), φ
+(rj)] for some j .

(3.18)

We show that

α0(s) +

N
∑

i=1

αi(s) = 1, µL-a.e. s ∈ [0, S]. (3.19)

This is certainly true for µL-a.e. s /∈ D by (3.16). On the other hand, for any j and µL-a.e.
s ∈ [φ−(rj), φ

+(rj)], we know that α0(s) = 0 and

N
∑

i=1

αi(s) =
1

φ+(rj)− φ−(rj)

N
∑

i=1

w
rj
i

(

s− φ−(rj)

φ+(rj)− φ−(rj)

)

=

∑N
i=1 µi(rj)

φ+(rj)− φ−(rj)
,

by Def. 2.1 (i), and (3.14). Since φ+(rj) − φ−(rj) =
∑N

i=1 µi(rj), we obtain that (3.19) is
true for µL-a.e. s ∈ [0, S]. Finally, using Lemma 3.4 for B = η, A = φ, and F = mL, for any
s ∈ [0, S], we get

∫ s

0

(

1−

N
∑

i=1

αi(s
′)

)

ds′ =

∫ s

0
α0(s

′) ds′ =

∫ φ(η(s))

0
mL(η(s)) ds

=

∫

[0,η(s)]
mL(r)dφ(r) = η(s).

(3.20)

Therefore, the functions η and φ coincide with the function ψ defined as in (3.2) and its right

inverse σ, respectively. Notice that the controls αi ∈ L1(0, S) are nonnegative,
∑N

i=1 αi(s) ≤ 1

a.e. s ∈ [0, S], and
∫ S
0 (1 −

∑N
i=1 αi(s))ds = η(S) = h. We next construct functions yi :

[0, S] → R
n from the process (x, µ, {wr}r∈[0,h]) and the corresponding functions ζri : [0, 1] →

R
n appearing in Def. 2.2. Then, we show that (S, {yi}, {αi}) is the (unique) reparameterized

process associated with S > 0 and {αi}. Set y0(s) := ξ0 if s ∈ [0, S[ and y0(S) := x0. For
i = 1, . . . , N , define

yi(0) :=

{

x0 if i = 1

ζhi−1(1) if i > 1
, yi(S) := ζhi (1)

yi(s) :=

{

x((i − 1)h + η(s)) if s ∈]0, S[\D

ζ
rj
i

(

s−φ−(rj)
φ+(rj)−φ−(rj)

)

if s ∈]0, S[∩[φ−(rj), φ
+(rj)] for some j.

We deduce from the differential equations and boundary conditions for the ζri ’s that, for any
index value j of the discontinuity points {rj} of φ, the yi’s satisfy

dyi
ds

(s) = αi(s)g(yi(s), yi−1(s)), a.e. s ∈ [φ−(rj), φ
+(rj)] for i = 1, . . . , N , (3.21)
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with boundary conditions

yi(φ
−(rj)) = ζri (0) (ζri (0) as in (2.2)). (3.22)

For i = 1, . . . , N , take any s ∈]0, S[. Let t = (i− 1)h+ η(s). Then,

x(t) = ζ0i (1) +

∫ t

(i−1)h
f(x(t′), x(t′ − h))dt′ +

∫

[(i−1)h,t]
g(x(t′), x(t′ − h))dµc(t′)

+
∑

{j : rj∈]0,t−(i−1)h]}

yi(φ
+(rj))− yi(φ

−(rj)).

(We have made use of properties of yi on D to obtain the last term on the right.) But, in
consequence of Lemma 3.4,

∫ t

(i−1)h
f(x(t′), x(t′ − h))dt′

=

∫ t−(i−1)h

0
f(x(r′ + (i− 1)h), x(r′ + (i− 1)h − h))dr′

=

∫

[0,t−(i−1)h]
f(x(r′ + (i− 1)h), x(r′ + (i− 1)h− h))mL(r

′)dφ(r′)

=

∫

[0,φ+(t−(i−1)h)]
f(x(η(s′) + (i− 1)h), x(η(s′) + (i− 1)h− h))mL(η(s

′)) ds′

=

∫

[0,s]
f(yi(s

′), yi−1(s
′))α0(s

′) ds′ .

(We have used the facts that yi(s
′) = x(η(s′) + (i − 1)h) for mL-a.e. s

′ /∈ D, and α0(s) = 0,
a.e. on [φ−(t− (i− 1)h), φ+(t− (i− 1)h)].)

Furthermore (since mc
i (η(s)) = 0 a.e. on [φ−(r), φ+(r)], so that s′ = φ(η(s′)) if s′ /∈ D),

applying Lemma 3.4 we get

∫

[(i−1)h,t]
g(x(t′), x(t′ − h))dµc(t′)

=

∫

[0,t−(i−1)h]
g(x(r′ + (i− 1)h), x(r′ + (i− 1)h− h))dµci (r

′)

=

∫

[0,t−(i−1)h]
g(x(r′ + (i− 1)h), x(r′ + (i− 1)h− h))mc

i (r
′)dφ(r′)

=

∫

[0,φ+(t−(i−1)h)]
g(x(η(s′) + (i− 1)h), x(η(s′) + (i− 1)h− h))mc

i (η(s
′)) ds′

=

∫

[0,s]
g(yi(s

′), yi−1(s
′))αi(s

′)χ[0,S]\D(s
′)ds′ .

If s ∈]0, S[\D, then we conclude from the above relations that

yi(s) = ζ0i (1) +

∫

[0,s]
f(yi(s

′), yi−1(s
′))α0(s

′) ds′

+

∫

[0,s]
g(yi(s

′), yi−1(s
′))αi(s

′)χ[0,S]\D(s
′)ds′

+
∑

{j : rj∈]0,t−(i−1)h]}

yi(φ
+(rj))− yi(φ

−(rj)).
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But ζ0i (1) = yi(0) + (yi(φ
+(0)) − yi(φ

−(0))), so

ζ0i (1) +
∑

{j : rj∈]0,r−(i−1)h]}

yi(φ
+(rj))− yi(φ

−(rj))

= yi(0) +
∑

{j : rj∈[0,t−(i−1)h]}

yi(φ
+(rj))− yi(φ

−(rj))

= yi(0) +

∫

[0,s]
g(yi(s

′), yi−1(s
′))αi(s

′)χD(s
′)ds′ .

It follows that, for each i,

yi(s) = yi(0) +

∫

[0,s]
f(yi(s

′), yi−1(s
′))α0(s

′)ds′ +

∫

[0,s]
g(yi(s

′), yi−1(s
′))αi(s

′)ds′. (3.23)

Now assume that s ∈]0, S[∩[φ−(rj), φ
+(rj)] for some index value j. Since φ−(rj) is a density

point of [0, S]\D and the yi’s are continuous, we can deduce from (3.23) that, for each i,

yi(φ
−(rj)) = yi(0) +

∫

[0,φ−(rj)]
f(yi(s

′), yi−1(s
′))αi(s

′)ds′

+

∫

[0,φ−(rj)]
g(yi(s

′), yi−1(s
′))αi(s

′) ds′.

Exploiting the facts that

yi(s)− yi(φ
−(rj)) =

∫ s

φ−(rj)
αi(s

′)g(yi(s
′), yi−1(s

′))ds′ (3.24)

and α0(s) = 0 for µL-a.e. s ∈ [φ−(rj), φ
+(rj)], we see that (3.23) is valid for arbitrary

s ∈]0, S[ . By definition, yi(S) = ζhi (1). Hence, if S /∈ D or i = N , then yi satisfies (3.23)
on ]0, S] by continuity. If, on the other hand, i ∈ {1, . . . , N − 1} and S ∈ [φ−(rj), φ

+(rj)]
for some index value j, then rj = h and we derive that (3.23) still holds on ]0, S] by (3.24).
Furthermore, notice that the yi’s satisfy the boundary conditions in Def. 3.1. In particular,
y1(0) = x0 and yi+1(0) = ζhi (1) = yi(S). Reviewing the preceding relations, we see that
assertion (B) has been confirmed. �

The mapping, constructed in the proof of Part (B) of the theorem, between extended
and reparameterized processes, is actually invertible.

Corollary 3.5. Let I be the map which associates with any extended process (x, µ, {wr}r∈[0,h])
the reparameterized process (S, {yi}, {αi}) for (DIS) constructed in the proof of Thm. 3.3, (B).
Then, the function I is invertible and the extended process (x, µ, {wr}r∈[0,h]) = I−1(S, {yi}, {αi})
coincides with the extended process associated with (S, {yi}, {αi}) constructed in the proof of
Thm. 3.3, (A).

Proof. This assertion is an easy consequence of relation (3.20), which implies that the change
of variable r 7→ φ(r) (see (3.15)) utilized in the proof of Thm. 3.3, statement (B), to
obtain (S, {yi}, {αi}) from (x, µ, {wr}r∈[0,h]) is the right inverse of the change of variable
s 7→ ψ(s) (see (3.2)) employed in the proof of part (A) to construct an extended process from
(S, {yi}, {αi}). (See also the arguments in the proof of Prop. 4.1 below). �

4. Existence, Density and Compactness Properties of Extended Trajectories

We establish some fundamental properties of extended processes.

Proposition 4.1. Given an impulsive control (µ, {wr}r∈[0,h]), there exists an extended tra-
jectory x ∈ BV ([−h, T ];Rn) to (DIS) associated with it and it is unique.
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Proof. Take an impulsive control (µ, {wr}r∈[0,h]). Define S > 0 and the controls {αi} as in
the proof of assertion (B) in Thm. 3.3, and let {yi} be the corresponding (unique) solution to
the reparameterized system. Then, with the reparameterized process (S, {yi}, {αi}) we can
associate an extend process (x̂, µ̂, {ŵr}r∈[0,h]) as in the proof of assertion (A). Since σ ≡ φ
(we use the notation of the proof), it is not difficult to deduce that the impulsive control
(µ̂, {ŵr}r∈[0,h]) actually coincides with (µ, {wr}r∈[0,h]). Therefore, x̂ is an extended trajectory
associated with the given impulsive control. Suppose now that x is another BV function such
that (x, µ, {wr}r∈[0,h]) is an extended process. To this process there corresponds the same
reparameterized process (S, {yi}, {αi}) as above, since, given S > 0 and {αi}, the solution
{yi} is unique. The equality x = x̂ now follows from the properties of the yi’s constructed in
the proof of (B). �

For any K > 0, we define the K-extended reachable set for (DIS), as

R
e
K(T ) := {x(T ) : (x, µ, {wr}r∈[0,h]) is extended process for (DIS) s.t. ||µ||TV ≤ K}

and the K-strict sense reachable set for (DIS), as

R
s
K(T ) := {x(T ) : (x, u) is a strict sense process for (DIS) s.t.

∫ T

0
u(t) dt ≤ K}.

Clearly, R
s
K(T ) is nonempty and R

s
K(T ) ⊆ R

e
K(T ). In control theory an extension of a

family of processes is said to be a ‘relaxation’ of that family, if the reachable set of the
original family is dense in the reachable set of the extension and if the extended reachable is
closed. The role of the extension is then to be ‘close’ to the original family of processes, but
to include extra elements ensuring closure properties. Relaxation procedures have had an
important role in optimal control and system theory, both in the investigation of conditions
that guarantee existence of solutions to optimal control problems and in the derivation of
necessary conditions of optimality. Proposition 4.2 below justifies interpreting extended sense
processes for (DIS) as a relaxation of the family of strict sense processes.

Proposition 4.2. For any K > 0, Re
K(T ) is a non-empty compact set and R

e
K(T ) = Rs

K(T ).

Proof. Let us first show that R
e
K(T ) ⊆ Rs

K(T ). Take z ∈ R
e
K(T ) and let us consider an

extended process (x, µ, {wri }r∈[0,h]) with ||µ||TV ≤ K and such that x(T ) = z. Then, by
Thm. 3.3, there exists (S, {yi}, {αi}) which is a reparameterized process for (DIS) such that

x(T ) = yN (S) and
∑N

i=1

∫ S
0 αi(s) ds = ||µ||TV. Set α0(s) := 1 −

∑N
i=1 αi(s) for s ∈ [0, S],

and ν :=
∑N

i=1

∫ S
0 αi(s) ds. For each index value j ∈ N, j ≥ 1, and a.e. s ∈ [0, S], define

αj0(s) :=
h

h+ ν
j

[

α0(s) +
1
j

∑N
i=1 αi(s)

]

, and

αji (s) :=



















(

1− αj0(s)
) αj(s)
∑N

i=1 αi(s)
if
∑N

i=1 αi(s) 6= 0
(

1− αj0(s)
)

N
if
∑N

i=1 αi(s) = 0

, i = 1, . . . , N.

Notice that αj0(s) +
∑N

i=1 α
j
i (s) = 1 and 0 < 1

j ≤ αj0(s) ≤ 1 a.e. Moreover, since S = h + ν,

one has
∫ S
0

(

1−
∑N

i=1 α
j
i (s)

)

ds =
∫ S
0 αj0(s) ds = h and

∫ S

0

N
∑

i=1

αji (s) ds =

∫ S

0

(

1− αj0(s)
)

ds = S − h = ν ≤ K.

Let (yj1, . . . , y
j
N ) be the unique solution to the reparameterized system associated with S

and the αji ’s. Then, for any j ≥ 1, the element (S, {yji }, {α
j
i }) is a reparameterized process

for (DIS) to which by Thm. 3.3 it corresponds a strict sense process (xj , uj) such that

xj(T ) = yjN(S) and
∫ T
0 uj(s) ds = ν ≤ K. We see that, for any i = 1, . . . , N , the controls αji
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converge to αi in the L∞-norm, so that, by the continuity of the input-output map, one has

|xj(T ) − x(T )| = |yjN (S) − yN (S)| → 0. Therefore, we have shown that all points in R
e
K(T )

lie in the closure of Rs
K(T ).

Let us now prove that Re
K(T ) is compact. Take a sequence (zj)j ⊂ Re

K(T ). For each
j then, there exists an extended process (xj , µj, {wj,r}r∈[0,h]) such that xj(T ) = zj and

||µj ||TV ≤ K. By Thm. 3.3 there exists a reparameterized process (Sj , {yji }, {α
j
i }) for (DIS)

such that yjN (S
j) = zj . Furthermore, it holds ||µj ||TV =

∑

i

∫ Sj

0 αji (s)ds. But then one

obtains h =
∫

[0,Sj ](1−
∑

i α
j
i (s))ds = Sj − ||µj ||TV , so that Sj ≤ h+K. Since the sequence

(Sj)j is bounded, possibly passing to a subsequence (we do not relabel) we have that Sj

converges to some S ≤ h+K. Let us now add to the reparameterized system the equations
of time and total variation, denoted by τ and v, respectively, that is we consider the system










































τ̇(s) =
(

1−

N
∑

i=1

αi(s)
)

v̇(s) =

N
∑

i=1

αi(s)

ẏi(s) =
(

1−

N
∑

i=1

αi(s)
)

f(yi(s), yi−1(s)) + αi(s)g(yi(s), yi−1(s)), i = 1, . . . , N,

(4.1)

with the previous boundary conditions on {yi} and τ(0) = v(0) = 0. For each j ≥ 1, let

(τ j , vj , {yji }) denote the solution to (4.1) on [0, Sj ], associated with the controls {αji} and
satisfying these endpoint conditions. Notice that τ j(Sj) = h and vj(Sj) ≤ K. We may
apply a standard convergence analysis, based on the Compactness of Trajectories Theorem
[23, Thm. 2.5.3] and the fact that the velocity sets associated with (4.1) are convex, to show
that there exists a solution (τ, v, {yi}) to (4.1) on [0, S], corresponding to some control {αi},

such that, along a subsequence (we do not re-label), (τ j , vj , {yji }) converges uniformly to
(τ, v, {yi}) on [0, S] (possibly extending by a constant, continuous extrapolation all functions
to [0, h + K]). In particular, (S, {yi}, {αi}) is a reparameterized process for (DIS) with
∑N

i=1

∫ S
0 αi(s) ds ≤ K, since τ(S) = limj τ

j(Sj) = h and v(S) = limj v
j(Sj) ≤ K. Moreover,

limj z
j = limj y

j
N (S

j) = yN (S). Again, appealing to Thm. 3.3, we deduce that there exists
an extended process (x, µ, {wr}r∈[0,h]) such that x(T ) = yN (S) and ‖µ‖TV ≤ K. This proves

that R
e
K(T ) is compact and R

e
K(T ) ⊆ Rs

K(T ). Since R
s
K(T ) ⊆ R

e
K(T ), the compactness of

Re
K(T ) yields R

e
K(T ) = Rs

K(T ). �

5. Existence of Optimal Extended Processes and a Maximum Principle

We have defined extended processes for the delayed impulsive control system (DIS).
We now consider a related optimal control problem over extended processes for (DIS) with
terminal cost, involving constraints on the total variation of the measure control and the
location of the terminal state.

(P)



















Minimize Ψ(x(T ))
over extended processes (x, µ, {wr}r∈[0,h]) for (DIS), satisfying

‖µ‖TV ≤ K,

x(T ) ∈ T .

The additional data for this problem comprise a function Ψ : R
n → R, a nonempty set

T ⊂ R
n, and K > 0.

We shall say that an extended process (x, µ, {wr}r∈[0,h]) for (DIS) is admissible if x(T ) ∈ T

and ‖µ‖TV ≤ K. An admissible extended process (x̄, µ̄, {w̄r}r∈[0,h]) for (DIS) that minimizes
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Ψ(x(T )) over all admissible extended processes
(x, µ, {wr}r∈[0,h]) for (DIS) is said to be an optimal extended process.

Theorem 5.1 (Existence of Optimal Controls). Consider the optimal control problem (P).
Assume that T is closed and Ψ : Rn → R is lower semicontinuous and that there exists an
admissible extended process. Then, there exists an optimal extended process.

Proof. Under the stated hypotheses, by Prop. 4.2 the set Re
K(T ) ∩ T is non-empty and

compact. Since the function Ψ is lower semicontinuous, there exists z̄ ∈ R
e
K(T ) ∩ T that

minimizes Ψ over this set. Let (x̄, µ̄, {w̄r}r∈[0,h]) be an admissible extended process such
that x̄(T ) = z̄. Take any admissible extended process (x, µ, {wr}r∈[0,h]) and write z = x(T ).
Then, by the minimizing property of z̄,

Ψ(x̄(T )) = Ψ(z̄) ≤ Ψ(z) = Ψ(x(T )).

In other words (x̄, µ̄, {w̄r}r∈[0,h]) is a minimizer for (P). �

The maximum principle of this section is derived by transforming the impulsive optimal
control problem into a conventional, free end-time optimal control problem, to which we apply
standard necessary conditions of optimality. In the following, given a reference extended
process (x̄, µ̄, {w̄r}r∈[0,h]), for any function h = h(x1, x2), (x1, x2) ∈ R

n × R
n, we set h̄(t) :=

h(x̄(t), x̄(t − h)) and write h̄x1(t), h̄x2(t) for the Jacobian of h at (x̄(t), x̄(t − h)) w.r.t. x1
and x2, respectively. For instance, f̄(t) = f(x̄(t), x̄(t− h)) and f̄x1(t) =

∂f
∂x1

(x̄(t), x̄(t− h)).

Theorem 5.2 (Maximum Principle). Let (x̄, µ̄, {w̄r}r∈[0,h]) be a minimizing process for (P).

For i = 1, . . . , N and r ∈ [0, h], let ζ̄ri : [0, 1] → R
n be the corresponding functions describing

the instantaneous evolution of the state of this process, defined by (2.1) and (2.2). Assume
that T ⊆ R

n is closed and Ψ : Rn → R is a C1 function. Then, there exist λ ≥ 0, c ∈ R,
d ≥ 0 and a function p ∈ BV ([0,+∞[;Rn), right continuous on ]0, T [, with the following
properties: d = 0 if ‖µ̄‖TV < K and

(A): λ+ ‖p‖L∞ 6= 0,

(B): for each i = 1, . . . , N and t ∈ [(i− 1)h, ih],

p(t) = η0i (1), when i = 2, . . . , N and t = (i− 1)h,

p(t) = η0i (1)−

∫ t

(i−1)h
p(t′) · f̄x1(t

′)dt′ −

∫

[(i−1)h,t]
p(t′) · ḡx1(t

′)d̄µc(t′)

−

∫ t

(i−1)h
p(t′ + h) · f̄x2(t

′ + h)dt′ −

∫

[(i−1)h,t]
p(t′ + h) · ḡx2(t

′ + h))d̄µc(t′ + h)

−
∑

r∈]0,t−(i−1)h]

(ηri (0) − ηri (1)), when t ∈](i− 1)h, ih[,

Furthermore,
p(T ) = ηhN (1) and p(t) = 0 for t > T.

Here, for each r ∈ [0, h], (ηr1, . . . , η
r
N ) : [0, 1] → (Rn)N satisfies the differential equations

d

ds
ηri (s) = −ηri (s) · gx1(ζ̄

r
i (s), ζ̄

r
i−1(s))w̄

r
i (s) (5.1)

− ηri+1(s) · gx2(ζ̄
r
i+1(s), ζ̄

r
i (s))w̄

r
i+1(s) a.e. s ∈ [0, 1], i = 1, . . . , N ,

with boundary conditions

ηri (0) =

{

p−(r + (i− 1)h) if r ∈]0, h]
ηhi−1(1) if r = 0 .

(5.2)

In these relations, we interpret ηh0 (1) := p(0) and ηrN+1(s) := 0 for all r ∈ [0, h] and s ∈ [0, 1].
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(C): −p(T ) ∈ λ∇Ψ(x̄(T )) +NT(x̄(T )),

(D):

(i):
N
∑

j=1
p(r + (j − 1)h) · f̄(r + (j − 1)h) − c = 0 for all r ∈]0, h[,

and also at r = 0 if
N
∑

j=1

∫ 1
0 w̄

0
j (s) ds = 0, and at r = h if

N
∑

j=1

∫ 1
0 w̄

0
j (s) ds = 0 and

N
∑

j=1

∫ 1
0 w̄

h
j (s) ds = 0,

(ii): p(t) · ḡ(t)− d ≤ 0 for all t ∈ [0, T ],

(iii): supp {µ̄} ⊂ {t ∈ [0, T ] : p(t) · ḡ(t)− d = 0},

(iv): for any r ∈ [0, h] such that
N
∑

j=1

∫ 1
0 w̄

r
j (s) ds > 0,

(a): ηri (s) · g(ζ̄
r
i (s), ζ̄

r
i−1(s)) = max

j
ηrj (s) · g(ζ̄

r
j (s), ζ̄

r
j−1(s)) ,

for L-a.e. s ∈ [0, 1] such that w̄ri (s) > 0.

(b):
N
∑

j=1
ηrj (s) · f(ζ̄

r
j (s), ζ̄

r
j−1(s)))− c ≤ maxj η

r
j (s) · g(ζ̄

r
j (s), ζ̄

r
j−1(s))− d = 0

for all s ∈ [0, 1].

Comments.

(1): Condition (B) is the costate equation in integral form for p. Its corresponding infin-
itesimal form, obtained by differentiating across the relevant equations at points of differ-
entiability is a generalized ‘advance’ differential equation (equivalently, a ‘delay’ differential
equation in reverse time), consistent with standard first order necessary optimality conditions
for impulsive-free optimal control problems. Notice that the ‘attached’ controls s 7→ w̄ri (s)
affect the jumps in the costate function p. In particular, let us observe that p may jump at
some t ∈ [(i−1)h, ih] where µ̄ (and x̄) does not, as the ODE (5.1) involves both the attached

controls w̄
t−(i−1)h
i and w̄

t−(i−1)h
i+1 .

(2): Condition (D), (i) and (D), (iii) are a version of the ‘constancy of the Hamiltonian con-
dition’ appropriate for the impulsive control problem. Specifically, the equality in condition
(D), (i) is satisfied also at r = 0 if t = 0 is not an atom for µ̄ and at r = h if all points t = ih,
h = 1, . . . , N are not atoms for µ̄.

(3): Condition (D), (iv), which is related to the Weierstrass condition of classical optimal
control, combines with (D), (iii) to give information about the location of the support of the
measure µ̄. In particular, condition (D), (iv) describes properties of the attached controls
determining the instantaneous evolution of the state at atoms of µ̄.

(4): In view of the nontriviality relation (A), the transversality condition (C) and the linearity
of the adjoint equations in (B), if the final point x(T ) is unconstrained we can choose λ = 1.

Proof of Thm. 5.2. Let (S̄, {ȳi}, {ᾱi}) be the reparameterized process associated with the
optimal extended process (x̄, µ̄, {w̄r}r∈[0,h]), constructed as in the proof of Thm. 3.3. Define

τ̄(s) :=
∫ s
0

(

1−
N
∑

j=1
ᾱj(s

′)
)

ds′ and v̄(s) :=
∫ s
0

N
∑

j=1
ᾱj(s

′)) ds′ for s ∈ [0, S̄], and

Λ(N) :=
{

(a1, . . . , aN ) ∈ R
N : aj ≥ 0 for each j = 1, . . . , N , and

N
∑

j=1

aj ≤ 1
}

.
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It can be deduced from Thm. 3.3 that (S̄, τ̄ , v̄, {ȳi}, {ᾱi}) is a minimizer for the following
optimal control problem:















































































Minimize Ψ(yN(S))
over controls S > 0, αi ∈ L∞(0, S), and functions
(τi, vi, yi) ∈W 1,1([0, S];R1+1+n), for i = 1, . . . , N , that satisfy

τ̇(s) = 1−

N
∑

j=1

αj(s) a.e. s ∈ [0, S],

v̇(s) =
∑N

j=1 αj(s) a.e. s ∈ [0, S],

ẏi(s) = (1−
∑N

j=1 αj(s))f(yi(s), yi−1(s)) + αi(s)g(yi(s), yi−1(s))

a.e. s ∈ [0, S], for i = 1, . . . , N,

(α1(s), . . . , αN (s)) ∈ Λ(N) a.e. s ∈ [0, S],
y1(0) = x0 and yi+1(0) = yi(S), for i = 1, . . . , N − 1, y0 ≡ ξ0,
τ(0) = 0, v(0) = 0, τ(S) = h, v(S) ≤ K, yN(S) ∈ T.

This is a standard ‘free end-time’ optimal control problem for which necessary conditions
are well known (see, e.g. [23, Thm. 8.7.1]). We deduce existence of λ ≥ 0, c ∈ R, d ≥ 0
(−c and −d is the Lagrange multiplier associated with τ̄ and v̄, respectively) and absolutely
continuous functions qi : [0, S̄] → R

n such that

(a): |c|+ d+ λ+ ‖(q1, . . . , qN )‖L∞ 6= 0,

(b): for each i = 1, . . . , N and a.e. s ∈ [0, S̄]

−q̇i(s) = qi(s) · fx1(ȳi(s), ȳi−1(s))(1 −
N
∑

j=1
ᾱj(s))

+qi(s) · gx1(ȳi(s), ȳi−1(s))ᾱi(s) + qi+1(s) · gx2(ȳi+1(s), ȳi(s))ᾱi+1(s),

+ qi+1(s) · fx2(ȳi+1(s), ȳi(s))(1 −
N
∑

j=1
ᾱj(s))

where qN+1 ≡ 0.

(c): −qN (S̄) ∈ λ∇Ψ(ȳN (S̄)) +NT(ȳN (S̄)) and, for i = 1, . . . , N − 1,
qi(S̄) = qi+1(0),

(d): for a.e. s ∈ [0, S̄],1

H({ȳi(s)}, c, d, {qi(s)}, {ᾱi(s)}) = max
{ai}∈Λ(N)

H({ȳi(s)}, c, d, {qi(s)}, {ai}) = 0,

where
H({yi}, c, d, {qi}, {ai}) = H(y0, y1, . . . , yN , c, d, q1, . . . , qN , a1, . . . , aN )

:= −c(1−
∑N

j=1 aj)− d
∑N

j=1 aj

+
∑N

j=1 qj ·
(

f(yj, yj−1)(1−
∑N

j=1 aj) + g(yj , yj−1(s))aj

)

.

Notice that the non-triviality condition (a) can be replaced by

(a)′: λ+ ‖(q1, . . . , qN )‖L∞ 6= 0.

To prove (a)′, suppose to the contrary that (q, λ) = (0, 0) but |c| + d 6= 0. Then, integrating

condition (d) we obtain that −c τ̄ (S̄) − d v̄(S̄) = −c h − d v̄(S̄) = 0, so c = − v̄(S̄)
h d ≤ 0.

However, for a1 = · · · = aN = 0 the maximality condition in (d) implies that c ≥ 0. Hence
c = d = 0 and we get a contradiction (we remember that, if v̄(S̄) < K, then d = 0).

1Actually, the second equality involving the maximized Hamiltonian is satisfied for all s ∈ [0, S̄], by the
continuity of the functions s 7→ qi(s) · g(ȳi(s), ȳi−1(s)) and s 7→ qi(s) · f(ȳi(s), ȳi−1(s)).
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As we shall see, the assertions of Theorem 5.2 are consequences of relations (a)′–(d)
concerning the re-parameterized process (S̄, {ȳi}, {ᾱi}), re-expressed in terms of the original
minimizing extended process (x̄, µ̄, {w̄r}r∈[0,h]).

Let the continuous mapping ψ̃ : [0, NS̄] → R and its right inverse σ̃ : [0, T ] → [0, NS̄] be

as in the proof of Thm. 3.3, when {αi} = {ᾱi}. Precisely, let ψ̃(s) = (i−1)h+ψ(s− (i−1)S̄)

for any s ∈ [(i−1)S̄, iS̄] and i = 1, . . . , N , where ψ(s) =
∫ s
0 (1−

∑N
j=1 ᾱj(s

′))ds′ for s ∈ [0, S̄].

Observe that, in view of Cor. 3.5 one has x̄(t) = ỹ(σ̃(t)) for any t ∈ [0, T ], where

ỹ(s) =

{

ȳi(s− (i− 1)S̄) if s ∈ [(i− 1)S̄, iS̄] for some i = 1, . . . , N ,

ξ0 if s < 0.

Note also that the measure µ̄ has distribution

µ̄([0, t]) =

∫ σ̃+(t)

0
α̃(s)ds for t ∈ [0, T ], (5.3)

where α̃(s) = ᾱi(s− (i− 1)S̄) for any i = 1, . . . , N and s ∈ [(i− 1)S̄, iS̄[. Moreover, for each
i ∈ {1, . . . , N} and r ∈ [0, h], one has

{

w̄ri (s) = (σ+(r)− σ−(r)) ᾱi(σ
−(r) + s(σ+(r)− σ−(r))) a.e. s ∈ [0, 1],

ζ̄ri (s) = ȳi(σ
−(r) + s(σ+(r)− σ−(r))), all s ∈ [0, 1] ,

(5.4)

where σ denotes the right inverse of ψ above. Here, the ζ̄ri ’s are as in the theorem’s statement.
For each i = 1, . . . , N and r ∈ [0, h], we set ηri (s) = qi(σ

−(r) + s(σ+(r) − σ−(r))) for all
s ∈ [0, 1]. The ηri ’s are the functions used in the theorem statement to calculate the jumps
in the costate. Moreover, we introduce the continuous function q̃ : [0, NS̄] → R

n, given by
q̃(s) := qi(s− (i−1)S̄) for any s ∈ [(i−1)S̄, iS̄] and i = 1, . . . , N , and define p : [0,+∞[→ R

n

by p(t) := q̃(σ̃(t)) for t ∈ [0, T ] and p(t) = 0 for t > T . Notice that p is right continuous on
]0, T [. Since σ̃(T ) = NS̄, our construction together with relation (c) yields condition (C) in
the theorem statement.

By the above definitions, it immediately follows that p(T ) = ηhN (1), p((i − 1)h) = η0i (1)
for any i = 2, . . . , N (since σ̃((i − 1)h) = iS̄ + σ+(0)), and p(0) = η01(0). Moreover, it
is straightforward to check that the functions ηri satisfy (5.1)-(5.2). In particular, for the
boundary condition (5.2) we use that qi(h) = qi+1(0) for i = 1, . . . , N − 1.

Condition (A) of the theorem’s statement follows by relation (a)′ above. Indeed, by (a)′

and the very definition of q̃ we get λ+‖q̃‖L∞ 6= 0. Hence, if it were λ+‖p‖L∞ = 0, then λ = 0
and q̃ ≡ 0 on [0, NS̄] \D, as for any s ∈ [0, NS̄] \D there exists some s ∈ [0, T ] such that
s = σ̃(r). In the previous relations, D = ∪k[σ̃

−(rk), σ̃
+(rk)], where {rk} is the countable set

of jumps of µ̄. By continuity, q̃ ≡ 0 on the boundary of [0, NS̄]\D, so that ηri (0) = ηri (1) = 0
for any i = 1, . . . , N and each r ∈ [0, h]. Accordingly, the linearity of the adjoint equations
yields that ηri ≡ 0 for any i = 1, . . . , N and any r ∈ [0, h], which implies q̃ ≡ 0 on D. A
contradiction.

Let t ∈](i− 1)h, ih[ for some i = 1, . . . , N , then condition (b) implies

p(t) = q̃(σ̃(t)) = q̃(σ̃((i− 1)h)) +

∫ σ̃(t)

σ̃((i−1)h)

dq̃

ds
(s) ds = η0i (1)

−

∫ σ̃(t)

σ̃((i−1)h)
[q̃(s) · fx1(ỹ(s), ỹ(s− S̄)) + q̃(s+ S̄) · fx2(ỹ(s+ S̄), ỹ(s))]

dψ̃

ds
(s) ds

−

∫ σ̃(t)

σ̃((i−1)h)
[q̃(s) · gx1(ỹ(s), ỹ(s− S̄))α̃(s)

+ q̃(s+ S̄) · gx2(ỹ(s+ S̄), ỹ(s))α̃(s+ S̄)]ds,
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in which q̃ ≡ 0 for s > NS̄. Employing analogous analysis to that earlier used in the proof
of Thm. 3.3 part (A) (based on Lemma 3.4), we deduce the ‘advance’ differential equation
in integral form in condition (B).

The second equality in condition (d) tells us: for all s ∈ [0, S̄] and (a1, . . . , aN ) ∈ Γ(N),

(

− c+
N
∑

j=1

qj(s) · f(ȳj(s), ȳj−1(s))
)(

1−
N
∑

j=1

aj

)

+

N
∑

j=1

(

− d+ qj(s) · g(ȳj(s), ȳj−1(s))
)

aj ≤ 0.

Choosing (a1, . . . , aN ) = ej for some element ej of the canonical basis of RN , we get

−d+ qj(s) · g(ȳj(s), ȳj−1(s)) ≤ 0 ∀s ∈ [0, S̄], ∀j = 1, . . . , N, (5.5)

while the choice (a1, . . . , aN ) = 0 yields −c+
N
∑

j=1
qj(s) · f(ȳj(s), ȳj−1(s)) ≤ 0 for all s ∈ [0, S̄].

Take s ∈ [0, S̄] and let (ā1, . . . , āN ) ∈ Λ(N) be a point where the maximum in condition (d) is
obtained. Then, maxj=1,...,N {−d+ qj(s) · g(ȳj(s), ȳj−1(s))} = 0 if (ā1, . . . , āN ) 6= 0 (actually,

−d+qi(s)·g(ȳi(s), ȳi−1(s)) = 0 for each i such that āi > 0), −c+
N
∑

j=1
qj(s)·f(ȳj(s), ȳj−1(s)) = 0

if
N
∑

j=1
āj < 1, and, for any s ∈ [0, S̄],

max
{

N
∑

j=1

qj(s) · f(ȳj(s), ȳj−1(s))− c , max
j=1,...,N

qj(s) · g(ȳj(s), ȳj−1(s))− d
}

= 0. (5.6)

It follows from the above relations and the very definition of {ᾱi} that there exists a mea-
surable set N of zero Lebesgue measure, such that, for all s ∈ [0, S̄] \N:

N
∑

j=1

ᾱj(s) > 0 =⇒ max
j=1,...,N

qj(s) · g(ȳj(s), ȳj−1(s))− d = 0, (5.7)

ᾱi(s) > 0 for some i ∈ {1, . . . , N} =⇒ qi(s) · g(ȳi(s), ȳi−1(s))− d = 0, (5.8)

N
∑

j=1

ᾱj(s) < 1 =⇒
N
∑

j=1

qj(s) · f(ȳj(s), ȳj−1(s))− c = 0. (5.9)

Expressing (5.5) and (5.8) in terms of q̃ and ỹ, we obtain

q̃(s) · g(ỹ(s), ỹ(s − S̄))− d ≤ 0 for all s ∈ [0, NS̄], (5.10)

and

q̃(s) · g(ỹ(s), ỹ(s− S̄))− d = 0 for a.e. s ∈ [0, NS̄] such that α̃(s) > 0, (5.11)

respectively. Inserting into these relations s = σ̃(t) for any t ∈ [0, T ], from (5.10) we derive
immediately condition (D), (ii). As for (D), (iii), take any t ∈ supp (µ̄). Set s := σ̃(t). From
(5.3) it follows that the set {s′ ∈ [0, NS̄] : α̃(s′) > 0 and |s′ − s| ≤ ǫ} has positive Lebesgue
measure for every ǫ > 0. So, by (5.11) and ‘continuity’ we get that q̃(s)·g(ỹ(s), ỹ(s−S̄))−d =
0. Since s := σ̃(t), this yields condition (D), (iii).

Let r ∈]0, h[ and write s = σ+(r). Then s < S̄ and consequently the set {s′ ∈ [0, S̄] :
∑

i ᾱi(s
′) < 1 and |s′ − s| ≤ ǫ} has positive Lebesgue measure for all ǫ > 0. Using (5.9), we

can show that, for some point arbitrarily close to s and therefore, by continuity, at s itself,

N
∑

j=1

q̃(s+ (j − 1)S̄) · f(ỹ(s+ (j − 1)S̄), ỹ(s+ (j − 2)S̄))− c = 0 . (5.12)
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Since s = σ+(r) and σ̃+(r+(j−1)h) = σ+(r)+(j−1)S̄, this implies condition (D), (i). Notice

that if
N
∑

j=1

∫ 1
0 w̄

0
j (s) ds = σ+(0)−σ−(0) = σ+(0) = 0, then the equality in condition (D), (i) is

valid also at r = 0. Similarly, it is satisfied also at r = h whenever both
N
∑

j=1

∫ 1
0 w̄

0
j (s) ds = 0

and
N
∑

j=1

∫ 1
0 w̄

h
j (s) ds = σ+(h)−σ−(h) = S̄−σ−(h) = 0. In this case indeed, (5.12) is satisfied

for s = S̄ = σ−(h) and σ̃(ih) = iS̄ by (3.6).

Now take any r ∈ [0, h] such that
∑N

i=1

∫ 1
0 w̄

r
i (s) ds > 0. Then σ+(r) > σ−(r) and

∑

j ᾱj(s
′) = 1, for a.e. s′ ∈ [σ−(r), σ+(r)]. It follows from (5.6)–(5.9) and ‘continuity’ that

∑

j qj(s)·f(ȳj(s), ȳj−1(s))−c ≤ maxj qj(s)·g(ȳj(s), ȳj−1(s))−d = 0 for all s ∈ [σ−(r), σ+(r)]

and, for any i such that ᾱi(s) > 0, qi(s) · g(ȳi(s), ȳi−1(s)) = maxj qj(s) · g(ȳj(s), ȳj−1(s) for
a.e. s ∈ [σ−(r), σ+(r)]. It follows now from (5.4) and the very definition of ηri that condition
(D), (iv) is satisfied. �
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