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PAPER

Use of near-infrared spectroscopy and multivariate approach for estimating
silage fermentation quality from freshly harvested maize

Lorenzo Servaa, Giorgio Marchesinia, Maria Chinelloa, Barbara Contieroa, Sandro Tentia ,
Massimo Mirisolaa, Daniel Grandisb and Igino Andrighettoa

aDipartimento di Medicina Animale, Produzioni e Salute, Universit�a degli Studi di Padova, Legnaro, PD, Italy; bKWS Italia S.p.A.,
Monselice, Italy

ABSTRACT
The study aimed to evaluate the most predictive traits of fresh maize and the most appropriate
multivariate approach for estimating silage fermentation quality. The use of near infrared (NIRs)
instruments allowed rapid, accurate and cheap analysis. Samples of fresh maize plant (n¼ 822)
from hybrids (Class Cultivar) of early and late classes, were harvested at three maturity stages:
early, medium and late, in three areas (level input field) of ‘low’, ‘medium’ and ‘high’ soil fertility,
along three consecutive years. Several algorithms of feature selection, regression, classification
and machine learning, were tested. Maize silage fermentative quality was summarised through a
Fermentative Quality Index (FQI). We found the most predictive traits as dry matter (DM), starch,
and acid detergent lignin (ADL), with negative coefficients, or water-soluble carbohydrates
(WSC) with a positive coefficient. FQI was significantly (p< 0.0001) affected by year (negatively
for 2018), level input field (positively for high level) and maturity stage (negatively for the late
harvest). The most satisfying results were attained using a stepwise regression algorithm (R2 ¼
0.48), improved by the introduction of fixed effects (R2 ¼ 0.55) and partial least square discrim-
inant analysis (PLS-DA), which was assessed through the Mattew Correlation Coefficient (MCC) in
validation (MCC ¼ 0.57). Concluding, among the tested approaches, the use of linear regression
after stepwise algorithm or the use of PLS could be of practical help for the farmers to the
effective management of the ensiling process of maize plants, even though environmental con-
ditions should be considered to improve the predictions.

HIGHLIGHTS

� The prediction of FQ at harvest would allow the farmer to tune up the ensiling process
� The prediction of FQ through the use of portable NIRs instruments was successful
� DM, starch and ADL were negatively related to FQ index
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Introduction

In the context of dairy farming, efforts are being made
to increasingly combine the production and economic
needs of farmers with those of reducing the environ-
mental impact, for greater sustainability (Britt et al.
2018). A possible unifying element between these
needs is represented by the improvement of produc-
tion efficiency (Connor 2015), which is however diffi-
cult to achieve due to the extreme variability that
characterises the composition and quality of the
ration, animals, environment and farm management.
Feed quality, which includes nutrient composition
(Kr€amer-Schmid et al. 2016), digestibility, absence of

contamination (Driehuis 2013), fermentation quality
(Kung et al. 2018) and even the homogeneity of the
ration (Marchesini et al. 2020), can vary over time and
between different batches of feed, silo-bunkers and
even between different areas within the same silo-
bunker (Gallo, Bertuzzi, et al. 2016).

To limit this variability and always guarantee the
animals a high quality ration, it is necessary to fre-
quently measure feed characteristics as recom-
mended within the view of precision feeding
(Wathes et al. 2008; Mottram 2016). In this regard,
repeated measures are made feasible by the use of
Near Infra-red spectroscopy (NIRs) technique, a type
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of analysis that is more and more extensively
adopted in agriculture (Fern�andez-Ahumada et al.
2008) for its low costs, high speed and ease of use
and for the availability of portable devices which
allow performing the analyses in real-time at field
level (Marchesini et al. 2017; Harris et al. 2018).
Among the ingredients used in the ration of dairy
cows, maize silage is one of the most important
(Grant and Adesogan 2018) and is characterised by
a great variability both in composition and fermen-
tation quality (Grant and Ferraretto 2018; Marchesini
et al. 2019), which if not adequate, could reduce
DM intake (DMI) and production (Gerlach et al.
2013) and lead to poor health (Borreani et al. 2008).

Fermentation quality of maize silage is assessed by
the value of pH of the ensiled mass and the concentra-
tion of a complex array of compounds, such as lactic,
acetic, propionic and butyric acids, alcohols and esters
(Kung et al. 2018) and can be summarised by a fermen-
tation quality index (FQI), as reported by Andrighetto et
al. (2018). Because the fermentation products present in
the silage are strongly affected by the characteristics of
the fresh ensiled plant, such as dry matter (DM) content,
protein, fibre, N-free extract and water-soluble carbohy-
drates (WSC) (Archibald et al. 1960; Kung et al. 2018), it
should be possible predicting the fermentation quality
of silage starting from the characteristics of the fresh
plant. This possibility would allow the farmer to compre-
hend the ensiling attitude of fresh maize plants at the
time of harvest and decide how to tune up the ensiling
process adopting suitable choices, such as by con-
sciously delaying the harvesting period to reach maturity
and the ideal composition (Filya 2004; Xie et al. 2012) or
for example, by the proper choice of inoculants
(Wilkinson and Davies 2013). Since the use of multiple
parameters to assess the silage quality requires a multi-
variate approach, which has already been proved useful
in characterising silage conservation methods, post-ensil-
ing composition, digestibility, and fermentation traits as
well (Gallo, Bertuzzi et al. 2016; Gallo, Giuberti et al.
2016), this study aimed to evaluate the best fitting multi-
variate approach, compared with the multiple linear
regression, to predict the potential of maize silage fer-
mentation quality based on the chemical composition of
harvested fresh whole maize plants.

Materials and methods

Experimental design

Data were collected in the harvest season among three
consecutive years (2016, 2017 and 2018) from maize
cultivated in the Veneto Region (Northeast Italy), using

a total of 37 maize hybrids of early (FAO class 200,
n¼ 19) and late (FAO class 600–700, n¼ 18) ripening
classes, as reported: in 2016, 14 early and 15 late; in
2017, seven early and eight late; in 2018, five early and
five late. The average yield per hectare was 23.5, 22.3
and 24.0 tons for the years 2016, 2017 and 2018,
respectively. In 2016 each hybrid was harvested in three
plots, corresponding to three areas (level input field)
defined by different pedoclimatic characteristics. Each
area was characterised by an average yield that could
be referred to as soils of ‘low’ (medium-heavy soil with
an average production of 496 q/ha), ‘medium’
(medium-light soil with an average production of 543
q/ha) and ‘high’ fertility (clay soil with an average pro-
duction of 686 q/ha). In 2017 and 2018, the trial was
performed only in ‘medium’ and ‘high’ productivity
plots. Per each plot, every hybrid was harvested twice in
two different subplots. Each hybrid was sown in both
subplots in a land area of 4 rows � 10 plants. In total,
40 plants were grown per hybrid and subplot. In the
main plot field, some external rows of generic seeds
have been sown and excluded from the trial. In the core
of the field, early and late hybrid were sown at precise
densities to maximise the production, corresponding to
95,000 and 70,000 plants/ha, respectively. Corn silage
was manually harvested at a stubble height of approxi-
mately 20 cm, and chopped at a theoretical length-of-
cut of 20.0mm by the means of a self-propelled forage
harvester. Per each plot and subplot, plants were har-
vested at three maturity phases: early (EH, 1/3 milk line
phase), medium (MH, at 2/3 milk line phase) and late
(LH, 5 d after the 2/3 milk line phase). Per each plot,
subplot and maturity phase, about five plants were har-
vested, chopped and mixed to obtain one sample. Each
sample was split into two subsamples. Any processing
and NIRs analysis were executed with two scans on sub-
samples, but averages of scans and subsamples were
performed before statistical analysis was performed.

The number of samples collected per each year
was 522 (29 hybrids � 3 plots � 2 subplots � 3
maturity phases), 180 (15 hybrids � 2 plots � 2 sub-
plot � 3 maturity phases) and 120 (10 hybrids � 2
plots � 2 subplots � 3 maturity phases), for 2016,
2017 and 2018, respectively.

Fixed effects considered were: growing area (3 lev-
els), maturity phase (3 stages), ripening class (2
classes) and year (3 years).

Sample collection, preparation and analysis

To prevent possible modifications resulting from res-
piration activity, pre-ensiling subsamples were
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immediately collected after harvesting and placed in a
large vessel, which could hold about 1.5–2.0 kg of
fresh product. Each subsample was scanned twice
using a portable NIRs system (poliSPECNIR, ITPhotonics,
Breganze, Italy), and each scan was of 10 s (with an
integration time of about 10ms). Thus, the within-sam-
ple variability was mostly acquired. Subsamples
(n¼ 1644) were suddenly ensiled in vacuum-packed
bags (Orved 2633040, Orved SpA, Musile di Piave, VE,
Italy) as described by Andrighetto et al. (2018) and
stored in a dark room at 23 �C for 60 days (Marchesini
et al. 2019). Post-ensiling subsamples were scanned
twice by the use of a FOSS NIRSysistem 5000 scanning
monochromator (FossNIR-System, Hillerød, Denmark)
and predicted using the calibration curve as previously
reported by Andrighetto et al. (2018). From the ana-
lysis results, a fermentation quality index (FQI) was cal-
culated according to what was reported by
Andrighetto et al. (2018) for quality index I1. The FQ
index is a lab-scale quality index designed for the
evaluation of maize silage fermentation results. The
FQI was intended to evaluate the maize silage fermen-
tation quality upon weighted scores assigned accord-
ing to the main fermentative parameters’ values. The
FQI index has a range of values from 1 to 100, where
all the samples higher than a cut-off limit set at 57.4
(Andrighetto et al. 2018), were classified as excellent
quality (EQ), while the remaining were considered as
not excellent quality (NEQ), obtaining a classification
variable for FQI (FQIc).

NIRs instruments and calibrations

A poliSPECNIR Near Infra-red system, together with a
robust calibration curve was used to analyse DM, ash,
crude protein (CP), ether extract (EE), neutral deter-
gent fibre (aNDF), acid detergent fibre (ADF), acid
detergent lignin (ADL), WSC and starch on fresh har-
vested pre-ensiling subsamples. Calibration performan-
ces are reported in Table 1. A FOSS NIRSystem 5000
scanning monochromator with the same calibration

described by Andrighetto et al. (2018), built with the
use of a large dataset (n¼ 2098), was used to analyse
post-ensiling subsamples. The reference methodolo-
gies used to calibrate both the NIRs instruments were:
#934.01 (AOAC 2003) for DM, 2001.11 (AOAC 2005) for
CP, #942.05 (AOAC 2003) for ash; #996.11 (AOAC 2000)
for starch, 2003.05 (AOAC 2006) for EE; ANKOM
Technology (2015a) for aNDF; ANKOM Technology
(2015b) for ADF; Akon-Technology (2020) for ADL; and
Charles (1981) for WSC. The ammonia was analysed
according to Megazyme’s assay procedure (Megazyme
2014) and pH as proposed by Martillotti et al. (1987)
methods 1.5� 18, and Playne and McDonald (1966).
The volatile fatty acids and lactate, ethanol and man-
nitol were examined according to the method pro-
posed by Martillotti and Puppo (1985) and described
in Andrighetto et al. (2018).

Statistical analysis

In this study, the authors tested many different multi-
variate approaches by the use of different software for
data computation. Thought approaches are intended
to describe the pre-ensiling dataset and the relation of
the latter traits with the FQI and FQIc. The post-
ensiled dataset is presented merely for the calculation
of the FQI and to describe the traits of the silages. A
resuming graphical scheme for multivariate
approaches is reported in the Supplementary Material
Figure 1.

Preliminary investigation
A preliminary investigation was conducted on the
proximate composition database of both pre-ensiling
and post-ensiling subsamples, by the use of R (R ver-
sion 3.5.3 (2019-03-11). To assess the normality of the
data the Shapiro–Wilk test (>0.9¼normally distrib-
uted) was applied. The same datasets were submitted
to a descriptive analysis to evaluate Minimum,
Maximum, Mean and Standard Deviation values. With
the use of SAS release 9.4 (SAS Institute Inc., Cary, NC

Table 1. Specifications of the calibration curve used for fresh harvested pre-ensiling maize (n¼ 205), by the use of
a poliSPECNIR near infrared system.
Constituents (g/kg DM) Mean (�X ) Standard deviation (SD) Standard error of calibration (SEC) R2a

DM (g/kg) 357 54.6 19.8 0.93
Ash 39.6 5.88 3.47 0.82
Crude protein 72.4 13.0 7.67 0.82
Ether extract 24.6 8.99 5.91 0.77
aNDF 424 75.6 28.1 0.93
ADF 225 40.5 16.5 0.92
ADL 23.4 5.46 4.89 0.48
Water-soluble carbohydrates 65.1 26.3 17.4 0.77
Starch 267 93.3 43.1 0.89
aCoefficient of determination.
DM: Dry matter; aNDF: Neutral detergent fibre; ADF: Acid detergent fibre; ADL: Acid detergent lignin.
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2012), an ANOVA model was applied including hybrid
ripening class (two levels: early and late), input level
fields (three levels: low, medium and high), maturity
phase at harvest (three levels: EH, MH, and LH) as
fixed effects. Post-hoc pairwise comparisons were run
between factor levels using Bonferroni correction. The
assumptions of the linear model on the residuals were
graphically tested.

As a preliminary investigation of the pre-ensiled
traits dataset and its relations with the quality out-
comes, a graphical plot of the feature space is useful
to understand its structure. Principal Component
Analysis (PCA) is an unsupervised technique merely
considering the link between the predictors, without
considering any classification factor. PCA permits, by
the calculation of an orthogonal transformation, a pre-
liminary exploration of data (Kim and Kim 2012),
decreasing the original pool of correlated variables
into a reduced number of uncorrelated components.
PCA allows increasing the dataset interpretability with
a few losses of information (Jolliffe et al. 2016). One of
the significant advantages of PCA is the possibility to
accomplish a biplot graphical representation of the
multivariate dataset. Data were submitted to the pre-
process ‘centering’ and ‘scaling.’

Features selection
The Authors applied a features selection to identify
the most predictive variables able to discriminate
between the FQIc or to estimate FQI continu-
ous variables.

Random Forest is a popular ML algorithm character-
ised by a typically easy interpretability. Unlike PCA,
the Random Forest considers the information between
feature values and the target class. Moreover, the
Random Forest does not require the assumption of
normality. From another point of view, it is useful to
select the relevant attributes to solve the problem of
finding the only relevant ones, instead of merely the
non-redundant. One of the primary objectives of RF is
to avoid a decrease in accuracy when too many varia-
bles are present, and their number is significantly
higher than optimal (Kursa 2010).

A Random Forest (RF) feature selection procedure,
based on the Boruta algorithm (Kursa 2010), was
applied to pre-ensiling corn composition parameters.
Such algorithms operate through a wrapper approach
built around a Random Forest classifier, in order to
achieve the best discrimination for the FQIc, by maxi-
mising the distance among EQ Vs. NEQ groups.

Regression algorithms
The use of ‘createDataPartition’ of ‘caret’ package
(Kuhn 2008) in R, splits the original pre-ensiling data-
set in training (training ¼ 70%) and testing (testing ¼
30%), keeping the proportion of the FQIc classes, for
further utilisation.

A stepwise algorithm, with the use of SAS (PROC
REG), performed as a feature selection procedure
applied to pre-ensiling corn composition parameters,
allowed to estimate linear regression relating the pre-
dictors to the FQI variable. Such a stepwise algorithm,
computed on the training dataset, has furtherly been
validated with the testing dataset. The coefficient of
determination (R2v) and the standard error (SEv) in val-
idation were calculated as indicators of the goodness
of the prediction procedure, applying the linear
regression coefficient, estimated in the training set, to
the samples of the testing dataset. To evaluate the
effects of harvesting conditions, a ‘reduced’ dataset
with only three hybrids (n¼ 1 early, n¼ 2 late), har-
vested in the 3 years (2016, 2017 and 2018), and the
two fields (high and medium input field), in total 108
subsamples, was evaluated for FQI in the STEPWISE
algorithm. The fixed effects were previously converted
to dummy variables.

Partial Least Square regression (PLS) is a technique
that combines the feature selection, as for the PCA,
and the computation of a linear regression algorithm
(Cui and Fearn 2017). Moreover, PLS allows good data
interpretability, such as by the use of the Variable
Importance in Projection (VIP) (Mehmood et al. 2012;
Ottavian et al. 2015). A PLS was computed by the use
of Matlab R2017a (software V9.2.0.538062, The
MathWorks Inc., Natick, MA) and PLS Toolbox (PLS
Toolbox V5.8.2.1, Eigenvector Research Inc., Manson
WA) in the pre-ensiling dataset and evaluated by
cross-validation (Venetian blinds w/10 splits and two
samples per split), for the predictions of the FQI. The
coefficient of determination in cross-validation (R2cv)
and the standard error in cross-validation (SEcv) meas-
ured the reliability of the regression method on the
training dataset and, furtherly, tested on the testing
dataset (R2v ¼ coefficient of determination in valid-
ation; SEv ¼ standard error in validation), by compar-
ing the Predicted Vs the Actual FQI values. The
number of the latent variable used to perform the PLS
was chosen by minimising the Root Mean Square
Error in Cross-Validation (RMSEcv). Variable importance
in projection (VIP) index was calculated to underlie
the most critical parameters in the regression
(Ottavian et al. 2014).
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Classification algorithms
Using a preliminary stepwise discriminant analysis
(PROC STEPDISC, SAS) performed as a features selec-
tion algorithm, a canonical discriminant analysis (PROC
CANDISC, SAS) was applied as a classification algo-
rithm for FQIc in the dataset (822 samples, 25 incom-
plete records removed). The predictive variables used
were the pre-ensiling maize composition parameters.
In this case, three classes for FQIc were calculated, and
the thresholds were chosen as silages with FQI < 47.7
are classified as ‘lower’ quality silage, silages whit
47.7� FQI < 57.4 are ‘good’ quality silage, and for
those with FQI � 57.4 are classified as ‘excellent’ qual-
ity silage. The use of Wilks’ k and approximately F
evaluated performances of the algorithm, as well as
the squared Mahalanobis distances (D2-Mahalanobis),
showed the degree of dissimilarity among FQI classifi-
cation (Bisutti et al. 2019). Outcomes of the canonical
discriminant analysis (CDA) are plotted according to
the two main canonical functions CAN1 and CAN2. For
each sample, the Mahalanobis Distances from the
coordinates of the geometric centre of each group
(lower, good, excellent) were calculated, and as a
result, three values per sample were obtained. The
lower of the three values indicated the assigned
group. In such a way, it was built a confusion matrix.
As for stepwise regression, the performance of the
approach in CDA for FQIc was tested in a reduced
dataset (101 samples, 7 incomplete records removed).

Partial Least Square Discriminant Analysis (PLS-DA)
(Barker and Rayens 2003) is a chemometric classifica-
tion based on the PLS algorithm. PLS-DA is an adapta-
tion of PLS regression methods to solve the problems
of supervised clustering, used to sharpen the separ-
ation between groups of observations. Using MATLAB
and PLS Toolbox, PLS-DA for FQIc, after autoscaling of
data, was evaluated by cross-validation (Venetian
blinds w/10 splits and 2 samples per split) on the
training dataset and furtherly tested on the testing
dataset. The PLS-DA model was evaluated by the sen-
sitivity, specificity, accuracy, precision, and Matthews
Correlation Coefficient (MCC) as they are defined in
(Bisutti et al. 2019).

Machine learning approaches
Referring to the pre-ensiling dataset and using the
aforementioned classification for FQIc, the Machine
Learning technique was tested.

The Support Vector Machine (SVMs) is a powerful
technique for classification (James et al. 2013). An
SVMs was modelled by the use of package ‘caret’
(Kuhn 2008) on R software, through both the

svmLinear and svmRadial kernel, and applied on the
training dataset with repeated cross-validation (setting
in number ¼ 10 and repeats ¼ 5). C-value (Cost) in
the Linear classifier was customised by inputting val-
ues in a grid search. Even testing the Radial Basis
Function sigma was customised, adopting a grid
search. Before training the SVMs model, both pre-pro-
cess ‘centering’ and ‘scaling’ were applied to the train-
ing dataset. After training the SVMs model, a
validation was explored on the testing dataset by the
use of the ‘predict method’ for calculating results. A
confusion matrix allowed evaluating the accuracy, sen-
sitivity, specificity and MCC of the method.

K-Nearest Neighbours (KNN) is a classification
method whose principle is to predict a class for a
given test observed by attributing the class of the K-
nearest observed sample (James et al. 2013). The idea
behind KNN is to identify the closest K point in the
training dataset to the tested sample, where K point is
a positive integer. Finally, KNN classifies the tested
sample to the class with the most considerable prob-
ability. In R, with the use of the package ‘caret’, the
KNN method was tested after applying ‘centering’ and
‘scaling’ to the training dataset, with repeated cross-
validation (setting number ¼ 10 and repeats ¼ 5).
After training the KNN, the model was applied to the
testing dataset by the use of the ‘predict method’ to
obtain the results. A confusion matrix is allowed to
evaluate the accuracy, sensitivity, specificity and MCC
of the method.

Results

Dataset

The traits of the pre-ensiling and post-ensiling data-
sets are reported in Tables 2 and 3. Datasets included
the results of analyses made on whole fresh maize
plants harvested in the years 2016 (Marchesini et al.
2019), 2017 and 2018 (Table 2) and on post-ensiling
samples (Table 3). All parameters, except for glucose,
propionic and butyric acids, have a Shapiro test (w)
value higher than 0.9. To better describe the dataset,
the ANOVA analysis for FQIc is reported in Table 4.
The main fixed effects (years, level input field and
maturity) are significant.

Preliminary investigation

The proximate composition of the fresh whole corn
plant was submitted to an ANOVA including FQIc (EQ
Vs. NEQ) as a fixed effect (Table 5). It appears that all
chemical parameters significantly differ for the two
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Table 2. Specifications of the fresh whole corn plant, pre-ensiling dataset.

Variables (g/kg DM) Shapiro test (w) Minimum Maximum Mean (�X )
Standard deviation

(SD)
Coefficient of
variation (CV)

DM (g/kg) 0.97 238 552 352 53.8 15.3%
Ash 0.98 30.8 59.3 38.9 3.70 9.51%
Crude protein 0.98 59.4 81.8 67.1 2.86 4.26%
Ether extract 0.98 13.6 32.9 23.7 3.09 13.0%
aNDF 0.99 376 515 438 22.8 5.20%
ADF 0.99 181 281 228 18.9 8.27%
ADL 0.98 13.0 34.0 22.3 3.84 17.2%
Starch 0.99 173 375 281 37.4 13.3%
Water-soluble Carbohydrates 1.00 6.90 92.7 51.9 12.9 24.8%

DM: Dry matter; aNDF: Neutral detergent fibre; ADF: Acid detergent fibre; ADL: Acid detergent lignin.

Table 3. Specifications of the post-ensiled dataset.

Variables (g/kg DM) Shapiro test (w) Minimum Maximum Mean (�X )
Standard deviation

(SD)
Coefficient of

variation (CV) (%)

DM (g/kg) 0.97 230 544 342 53.0 15.5
Ash 0.98 26.0 46.6 33.9 3.44 10.2
Crude protein 1.00 55.4 92.3 72.3 5.91 8.17
Ether extract 0.98 8.40 31.6 21.9 3.69 16.9
aNDF 0.98 327 496 399 31.3 7.85
ADF 0.98 160 285 211 21.9 10.3
Starch 0.99 186 444 322 43.6 13.6
Water-soluble carbohydrates 0.97 0.20 13.8 5.24 2.23 42.5
pHa 0.99 3.56 4.18 3.83 0.09 2.25
Ammoniab 0.99 3.93 7.85 5.68 0.67 11.7
Glucose 0.83 0.00 11.6 3.00 1.93 64.5
Fructose 0.98 0.00 5.40 2.24 0.93 41.3
Mannitol 0.92 1.30 29.1 11.1 4.48 40.2
Ethanol 0.97 0.40 32.0 10.3 5.04 49.0
Lactic acid 0.99 24.1 99.2 49.4 10.4 21.0
Acetic acid 0.96 2.40 28.4 11.1 4.34 39.3
Propionic acid 0.77 0.00 4.70 0.55 0.68 124
Butyric acid 0.62 0.10 2.50 0.72 0.41 56.8
aExpressed as a pure number.
b% of the total nitrogen.
DM: Dry matter; aNDF: Neutral detergent fibre; ADF: Acid detergent fibre.

Table 4. Fermentation quality index (FQI) of maize silage belonging to different FAO classes (class 200 vs. class 600–700), grown
in different yield potential areas (low vs. medium vs. high) and harvested at different Maturity (early, EH vs. medium, MH vs.
late, LH).

Year Level input field

2016 2017 2018 p Low Medium High p

FQI value
Average 54.4b 57.1a 43.4c <.0001 50.5b 55.4a 48.9b <.0001
Minimum 32.2 28.7 29.7 28.7 31.6 37.4
Maximum 84.6 81.5 63.0 77.8 84.6 67.0
SEMa 0.33 0.59 0.83 0.41 0.40 0.59 0.41

Interaction years � p p p Interaction level input field � p p p
Year — — — <.0001 <.0001 only 2016
Level input field <0.0001 <0.0001 0.0005 — — —
Class cultivar 0.1039 <.0001 0.0102 <0.0001 0.0501 <0.0001
Maturity <.0001 <.0001 <.0001 <0.0001 <0.0001 <0.0001

Class cultivar Maturity

Early (200) Late (600–700) P 1/3 milk line 2/3 milk line þ 5d 2/3 milk line P

FQI value
Average 51.7 51.5 0.71 56.3a 52.0b 46.6c <.0001
Minimum 31.1 28.7 39.6 37.1 28.7
Maximum 84.6 77.3 84.6 77.3 74.5
SEMa 0.41 0.42 0.46 0.46 0.46

Interaction class cultivar � p p Interaction maturity � p p p
Year <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Level Input Field <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Class Cultivar — — 0.0469 0.0140 0.2607
Maturity <0.0001 <0.0001 — — —
aStandard error of means.
SEM: Standard Error of Means.
a,b,cMean values within a row bearing different superscripts differ significantly (p < .05).
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levels of FQIc. Ash, CP, aNDF, ADF and WSC show
higher values in EQ, whereas the remaining parame-
ters show higher values in NEQ.

Figure 1 reports the biplot of the PCA loadings. By
visual inspection of PCA loadings biplot and regarding
FQc, EQ coordinates are nearby to ash, aNDF and WSC
loadings coordinates. The total variance explained by
the two main components accounts for 72%.

Features selection

In this study, as a result of applying RF for FQIc, all
nine components are confirmed as necessary, and the

Z scores were, in order of importance: DM (34.5), ADL
(30.3), EE (23.6), Starch (20.4), WSC (19.3) Ash (18.7),
ADF (15.3), CP (14.8) and aNDF (13).

Regression algorithms

The previous investigation did not identify clearly the
most useful variables for predicting FQIc or FQI.
Conversely, RF suggests that all features should
be used.

Stepwise regression in SAS was performed within
the training set (Table 6) and then validated on the
testing set. FQI regression used a negative coefficient
for DM, ADL and starch and a positive coefficient for
Ash, EE and aNDF, R2 ¼ 0.48. In validation, FQI pro-
duced an R2v ¼ 0.42.

Regression coefficients for the reduced dataset are
reported in Table 6; fixed effects (growing area, matur-
ity phases and years) resulted statistically significant in
the regression.

Using MATLAB and PLS Toolbox, a PLS regression
for FQI was calculated on the training set, X data were
autoscaled. Regression results were R2cv ¼ 0.44 and
SEcv ¼ 7.11. Selecting 4 PC (captured variance for
PC1¼ 49.7%, for PC2¼ 7. 93%, PC3¼ 7.93% and
PC4¼ 4.49%) and applying the regression to the test-
ing set, resulted in Rv

2 ¼ 0.42 and SEv ¼ 7.26.
Variables with VIP > 1, considered significant, are DM
(1.40), Ash (1.01), EE (1.21) and Starch (1.25).

Table 5. Composition of the fresh whole plant maize belong-
ing to different FQI classes (NEQ, EQ).

FQIa classification

Variables (g/kg DM)
NEQ,

FQI < 57.4
EQ,

FQI � 57.4 P

DM (g/kg) 36.5a 32.3b <0.0001
Ash 3.79b 4.05a <0.0001
Crude protein 6.67b 6.77a <0.0001
Ether extract 2.42a 2.18b <0.0001
aNDF 43.1b 44.4a <0.0001
ADF 22.4b 23.3a <0.0001
ADL 2.20a 2.09b 0.0002
Water-soluble carbohydrates 5.01b 5.48a <0.0001
Starch 29.2a 25.8b <0.0001
aFermentative qualitative index (FQI).
NEQ: Not excellent quality; EQ: Excellent quality; DM: Dry matter; aNDF:
Neutral detergent fibre; ADF: Acid detergent fibre; ADL: Acid deter-
gent lignin.
a,b, : Mean values within a row bearing different superscripts differ sig-
nificantly (p < .05).

Figure 1. PC1 and PC2 biplot from PCA algorithm.
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Regression coefficient were DM ¼ �0.53, Ash ¼ 0.005,
EE ¼ 0.003, Starch ¼ �0.092.

Classification algorithms

A CDA allowed a Can1 and Can2 bi-plot chart (Figure
2(A)). The STEPDISC procedure selected DM, Ash, CP,
ADL and Starch for FQIc. The canonical functions

showed a low discriminative power (Wilk’ k¼ 0.60 with
p< 0.0001, approximate F value ¼ 45.5 and 1.87,
df1¼ 10 and 4, df2¼ 1580 and 791, p< 0.0001 and
0.114 for Can1 and Can2, respectively). D2-Mahalanobis
distance between means ¼ 1.35, 4.33 and 0.91,
p< 0.0001 for comparison of classes lower vs. Good,
lower vs. Excellent and good Vs. Excellent, respectively.
The Can1 accounted for 98.6% and Can 2 accounted

Table 6. Results of stepwise regression of constituents for FQI: estimated regression coefficients, intercept
of the model and P (R2 ¼ 0.48 for the training dataset and 0.55 for reduced dataset).

FQIa training dataset
coefficients p

FQIa reduced dataset
coefficients p

Constituents (g/kg DM)
DM (g/kg) �1.10 <0.0001
Ash 6.60 0.001
Ether extract 19.2 0.0002 20.5 0.0181
aNDF 0.72 0.0301
ADL �15.9 <0.0001
Starch �0.76 0.0611 �1.89 0.0043
WSC 1.44 0.0473
The year ¼ 2018 v10.6 <0.0001
Maturity phases¼ late (EH) �3.56 0.0364
Level input field ¼ ‘high’ 3.75 0.0058
Intercept 45.1 0.0004 47.5 <0.0001

aFermentative qualitative index (FQI).
R2: Coeffficient of determination; FQI: Fermentative qualitative index; DM: Dry matter; aNDF: Neutral detergent fibre; ADL: Acid
detergent lignin; WSC: Water-soluble carbohydrates.

Figure 2. scatter plot for the outcomes of the CDA (Can1 and Can2) for the samples of the original dataset, considering the three
classes for FQIc. (A) Green filled area ¼ ‘lower’; red filled area ¼ ‘good’; blue filled area ¼ ‘excellent’. (B) Green filled area ¼
‘lower’; red filled area ¼ ‘good or excellent’. Ellipses represent a 95% confidence interval.
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for 1.40% of the variability. For FQIc 69, 46 and 69% of
correct attributions were for the three-class FQI lower,
good and excellent silage, respectively (Table 7).

However, as many samples are confused between
‘excellent’ and ‘good’ classes, they may be joint in one
‘overall’ class that can be opposed to the ‘lower silage’
class (Figure 2, panel B). In the latter case, correct attri-
butions were 69 and 83% for ‘lower silage’ and
‘overall’ classes for FQIc, respectively.

The reduced dataset was used to evaluate the fixed
effects in the CDA for FQIc. For FQIc, Can1 accounted
for 95.7% and Can2 accounted for 4.30% of the vari-
ability (Figure 3). The selected features were Ripening
Classes, Year, CP, WSC and Starch. The confusion
matrix is reported in Table 7, and 95, 45 and 13% of
correct attributions were found for the three-class
FQIc lower, good, and excellent silage, respectively.
For the reduced dataset, the correct attribution was
95%, and 57% for ‘lower silage’ and ‘overall’ classes,
respectively.

PLS-DA resulted in FQIc with VIP > 1 for DM (1.38),
Ash (1.03), EE (1.27) and Starch (1.31). Regression coef-
ficient for NEQ, were DM ¼ �0.37, Ash ¼ 0.02, EE ¼
0.06, Starch ¼ 0.11 with selected four PCs (captured
variance for PC1¼ 49.5%, for PC2¼ 21.3%, PC 6.53%
and PC4¼ 5.65%). In Table 8, are reported the confu-
sion matrix for PLS-DA in validation (testing set): 80.9
and 78.2.0% were correctly predicted for NEQ, FQI <
57.4 and EQ, FQI � 57.4, respectively.

Machine learning approaches

Support vector machine (SVM) algorithm was tested
for linear and radial basis function, by selecting the c
(cost) function and sigma by the use of a grid. Best
performances were reached by the linear kernel,
C¼ 0.75 which correspond accuracy ¼ 0.78 and Kappa
¼ 0.45, in cross-validation. The confusion matrix was
calculated in the testing set (Table 8), where the 93.0

Table 7. Confusion matrix for CDA in the original dataset (n¼ 797, 25 incomplete records removed) and in the reduced dataset
(n¼ 101, 7 incomplete records removed) for FQIc, classified in three levels.

Original dataset Reduced dataset

Actual Class FQIa < 47.7 47.7� FQIa < 57.4 FQIa � 57.4 FQIa < 47.7 47.7� FQIa < 57.4 FQIa � 57.4
Predicted as FQI < 47.7 153 84 14 36 21 6
Predicted as 47.7� FQI < 57.4 59 148 64 2 18 14
Predicted as FQI � 57.4 9 93 173 0 1 3

Sensitivity 0.69 0.46 0.69 0.95 0.45 0.13
Specificity 0.83 0.74 0.81 0.57 0.74 0.99
Accuracy 0.79 0.62 0.77 0.71 0.62 0.79
Precision 0.61 0.55 0.63 0.57 0.53 0.75
MCCb 0.55 0.35 0.55 0.54 0.33 0.25
aFermentative qualitative index (FQI); bMatthew Correlation Coefficient (MCC).

Figure 3. scatter plot for the outcomes of the CDA (Can1 and Can2) for the samples of the reduced dataset, in the three classes
for FQIc. (A) green filled area ¼ “lower”; red filled area ¼ “good”; blue filled area ¼ “excellent”. (B) Green filled area ¼ “lower”;
red filled area ¼ “good or excellent”. Ellipses represent a 95% confidence interval.
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and 46.0% of true positive are correctly predicted for
NEQ, FQI < 57.4, and EQ, FQI � 57.4, respectively.

By the use of the KNN algorithm, for FQI classifica-
tion, the better cross-validate choice in the training
set was K-point ¼ 13, corresponding to accuracy ¼
0.78 and k¼ 0.43. In Table 8, we report the confusion
matrix for the testing set in FQI classification. The per-
centage of the true positive was 95 and 48% for NEQ,
EQ, respectively, while MCC > 0.54.

Summarising, multiple regression and PLS tested
for FQI reached R2 ¼ 0.42 in the validation. For FQIc
the MCC was greater than 0.57, 0.50 and 0.54 for PLS-
DA, SVM and KNN, respectively, and greater than 0.25
for CDA, in the validation dataset. The most predictive
variables for FQI detected by stepwise were DM, ADL
and starch with negative coefficients, and ash, EE, and
aNDF with positive coefficients. Both VIP in PLS and
the STEPDISC of CDA confirmed the role of DM, ash,
EE and starch, whereas CP and ADL were confirmed
only by the latter algorithm. Results of the ANOVA
underlined that ash, CP, aNDF and WSC positively
influenced the FQI values; similar results (except for
CP) were obtained by the visual inspection of the first
two PCs. The use of the dummy variables affected sig-
nificantly the stepwise multiple regression and
improved the R2 to 0.48. The RF has not identified any
redundant predicting variable among the pre-
ensiled traits.

Discussion

Several multivariate approaches, as well as several
algorithms, have been tested. The first aim was to
identify the right choice of features to be used in
multivariate approaches. In the ANOVA of FQIc, ash,
CP, aNDF, ADF and WSC are positively and signifi-
cantly associated with EQ. In PCA, FQIc (EQ level) coor-
dinates are nearby to Ash, aNDF and WSC loadings
coordinates. Inversely, in Random Forest, all original
variables (the proximate composition of freshly har-
vested corn) seem to be significantly important.

Stepwise regression recognises DM, ADL and starch
as the predictive variables with negative coefficients,
and ash, EE, and aNDF with the positive coefficient,
confirming the ones obtained by PCA. Hence, pre-
ensiling traits taken as indexes of the maturity stage
of the plant (Ferraretto et al. 2018) are negatively
related to FQI indexes. These results are underlying
that the harvest at an early maturity stage leads to
better ensiling processes. This finding confirms the
results from other authors (Johnson et al. 2003;
Neylon and Kung 2003; Arriola et al. 2012) where fresh
maize plants ensiled at different DM content resulted
in higher Lactic Acid content when harvested early
(lower DM content). These responses were attributed
to the combination of low WSC concentrations in late-
harvested maize (Johnson et al. 2003) and reduction
in the growth of lactic acid bacteria because water
activity decreased along with the increasing dryness
as the forage matures (Neylon and Kung 2003). The
regression led to discrete performances for FQI, R2v ¼
0.42; this result could be affected by the interference
of several factors influencing the ensiling processes,
such as year (Kruse et al. 2008; Lou�cka et al. 2015).
The potential influence of the above-mentioned fac-
tors is confirmed by the increase of predicting per-
formance (R2v ¼ 0.55) attained after the introduction
of some fixed factors (growing area, maturity phase,
ripening class and year) in the model applied to the
reduced dataset.

PLS produces results comparable to those of step-
wise regression, both in the cross-validation and valid-
ation of FQI. Using classes instead of continuous
variables could simplify the calculation. The CDA
resumed the variance in Can1 and Can2, but R2

between Can1 and Can2 Vs. CLASS variable was weak
(Can1¼ 0.39 and Can2¼ 0.009 for FQI classification).
The CDA performed with the use of fixed-effects con-
firmed the usefulness of Ripening Classes and Year on
the FQIc.

On the contrary, PLS-DA performed good results,
with 80.9 and 78.2% of correct predictions for NEQ

Table 8. confusion matrix for PLS-DA, SVMs and KNN algorithms, validated on the testing set of FQIc.
PLS-DAe SVMsf KNNg

Actual Class
NEQc,

FQIa < 57.4
EQd,

FQIa � 57.4
NEQc,

FQIa < 57.4
EQd,

FQIa � 57.4
NEQc,

FQIa < 57.4
EQd,

FQIa � 57.4
Predicted as NEQc, FQIa < 57.4 119 15 137 37 140 36
Predicted as EQd, FQIa � 57.4 28 54 10 32 7 33

Sensitivity 0.81 0.78 0.93 0.46 0.95 0.48
Specificity 0.78 0.76 0.46 0.93 0.48 0.95
Accuracy 0.75 0.81 0.78 0.78 0.8 0.8
Precision 0.89 0.66 0.79 0.76 0.8 0.83
MCCb 0.57 0.57 0.51 0.50 0.55 0.54
aFermentative Qualitative Index (FQI); bMatthew Correlation Coefficient (MCC); cnot excellent quality (NEQ); dexcellent quality (EQ); Partial Least Square
Discriminant Analysis (PLS-DA); Support Vector Machine (SVMs); K-Nearest Neighbours (KNN).
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and EQ, respectively. VIP for the PLS-DA algorithm
shows as the most related variable to FQIc: DM, Ash,
EE and Starch.

SVMs improved the ability of discrimination, with
93.0 and 46.0% of true positives which are correctly
predicted for EQ and NEQ, respectively. Finally, the K-
Nearest Neighbours confirmed to be a secure and
robust classifier method with MCC > 0.54 for FQIc.

In this study, the FQI was greater for samples har-
vested at 1/3 milk line maturity phase than in later
maturity phases. These findings confirm the relevance
of the maturity phase at harvest, which is related to
the plant nutrients, such as WSC content (Johnson et
al. 2003) and affects silage fermentation characteristics
determining silage final pH and aerobic stability,
through the differentiated production of acetic and
other organic acids (Filya, 2004). The FQI value
(accordingly to FQIc class) is influenced by the role of
some pre-ensiled traits as shown by this study
(ANOVA, PCA, feature selection and CDA) with nega-
tive coefficients for DM and starch, and positive coeffi-
cients for aNDF. These traits, and their variation are
indicators of the maturity stage of the maize plant
(Johnson et al. 2002; Jensen et al. 2005) and contrib-
ute to the definition of silage quality in terms of DM,
CP, starch, fibre content and nutrients digestibility
(Kuehn et al. 1999; Addah et al. 2011; Kr€amer-Schmid
et al. 2016). In our findings, the influence of the crop
year, level input field and maturity phase in the FQI
value have been shown by the ANOVA as well as by
their relevance in the multiple regression or CDA algo-
rithms. Anyhow, other several factors not considered
in this study, such as genetics, plant ecophysiology,
and different agro-techniques, including seeding dens-
ity, fertilisation, meteorological conditions, might affect
the final fermentation quality (Berzsenyi and Dang
2008; S�arv�ari and Pep�o 2014 together with the ensil-
ing procedures such as the mechanical processing, the
use of inoculants and additives, and the packing dens-
ity (Johnson et al. 2002; Johnson at al. 2003).

Conclusions

NIRs technique applied through the use of portable
instruments was confirmed to be an essential tool to
apply the precision feeding strategy to the assessment
of the composition of maize plants intended for ensil-
ing. The prediction of the fermentation quality, sum-
marised through the FQI index, starting from the
composition of the plant at harvest was successful,
even though it was evident that the inclusion of data
on growing and harvesting conditions can improve

the prediction capacity. Among the traits of the fresh
maize plant DM, starch and ADL appeared to be nega-
tively related to FQI whereas aNDF and WSC were
positively related to FQI. This finding, obtained by the
multivariate approaches, might be relevant to focus
on the desired improvement in the maize selections,
agronomic techniques and ensiling process. Among
several algorithms tested for the predictive or classifi-
cation ability, performances were similar in overall
used models but, due to its simplicity in the applica-
tion and to the fewer calculation requirements, the lin-
ear regression obtained after the stepwise procedure
appeared to be the most convenient method, even
because it might be easily enforced on harvesting
machines. Moreover, the use of a stepwise procedure
before the linear regression would reduce the risk of
multicollinearity of predictive variables and reduce the
optimism in the results, as demonstrated by the like-
ness of the determination coefficient obtained in cali-
bration and validation. Conversely, for research
purposes, the tested multivariate approaches allow to
a deeper description and knowledge of the dataset
and of the relationships within the predictive variables
and among them with the outcomes. In practical
terms, the multivariate approaches would drive to bet-
ter prediction performances using a larger number of
predictive variables which drive to more selectable
features and latent variables. Nevertheless, the unex-
plained variability for the better tested algorithms in
regression was 45%, which let to assume that other
predictors as well as the sample variability within the
field must be furtherly considered for more consistent
results. As the application of technologies in the preci-
sion feeding sector is in strong expansion and con-
tinuous evolution, further research on this topic
is needed.
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