
On the Versatility of Open Logical Relations⋆

Continuity, Automatic Differentiation,
and a Containment Theorem

Gilles Barthe1,4 , Raphaëlle Crubillé4, Ugo Dal Lago2,3 , and Francesco
Gavazzo2,3,4

1 MPI for Security and Privacy, Germany
2 University of Bologna, Italy

3 INRIA Sophia Antipolis, France
4 IMDEA Software Institute, Spain

Abstract. Logical relations are one among the most powerful tech-
niques in the theory of programming languages, and have been used
extensively for proving properties of a variety of higher-order calculi.
However, there are properties that cannot be immediately proved by
means of logical relations, for instance program continuity and differen-
tiability in higher-order languages extended with real-valued functions.
Informally, the problem stems from the fact that these properties are
naturally expressed on terms of non-ground type (or, equivalently, on
open terms of base type), and there is no apparent good definition for
a base case (i.e. for closed terms of ground types). To overcome this is-
sue, we study a generalization of the concept of a logical relation, called
open logical relation, and prove that it can be fruitfully applied in sev-
eral contexts in which the property of interest is about expressions of
first-order type. Our setting is a simply-typed λ-calculus enriched with
real numbers and real-valued first-order functions from a given set, such
as the one of continuous or differentiable functions. We first prove a
containment theorem stating that for any collection of real-valued first-
order functions including projection functions and closed under function
composition, any well-typed term of first-order type denotes a function
belonging to that collection. Then, we show by way of open logical re-
lations the correctness of the core of a recently published algorithm for
forward automatic differentiation. Finally, we define a refinement-based
type system for local continuity in an extension of our calculus with con-
ditionals, and prove the soundness of the type system using open logical
relations.

Keywords: Lambda Calculus · Logical Relations · Continuity Analysis
· Automatic Differentiation

⋆ The Second and Fourth Authors are supported by the ANR project 16CE250011
REPAS, the ERC Consolidator Grant DIAPASoN – DLV-818616, and the MIUR
PRIN 201784YSZ5 ASPRA.

http://orcid.org/0000-0002-3853-1777
http://orcid.org/10000-0001-9200-070X
http://orcid.org/0000-0002-2159-0615

2 G. Barthe et al.

1 Introduction

Logical relations have been extremely successful as a way of proving equivalence
between concrete programs as well as correctness of program transformations.
In their “unary” version, they also are a formidable tool to prove termination of
typable programs, through the so-called reducibility technique. The class of pro-
gramming languages in which these techniques have been instantiated includes
not only higher-order calculi with simple types, but also calculi with recursion
[3,2,23], various kinds of effects [14,12,25,36,10,11,34], and concurrency [56,13].

Without any aim to be precise, let us see how reducibility works, in the
setting of a simply typed calculus. The main idea is to define, by induction on
the structure of types, the concept of a well-behaved program, where in the
base case one simply makes reference to the underlying notion of observation
(e.g. being strong normalizing), while the more interesting case is handled by
stipulating that reducible higher-order terms are those which maps reducible
terms to reducible terms, this way exploiting the inductive nature of simple types.
One can even go beyond the basic setting of simple types, and extend reducibility
to, e.g., languages with recursive types [23,2] or even untyped languages [44] by
means of techniques such as step-indexing [3].

The same kind of recipe works in a relational setting, where one wants to
compare programs rather than merely proving properties about them. Again, two
terms are equivalent at base types if they have the same observable behaviour,
while at higher types one wants that equivalent terms are those which maps
equivalent arguments to equivalent results.

There are cases, however, in which the property one observes, or the property
in which the underlying notion of program equivalence or correctness is based,
is formulated for types which are not ground (or equivalently, it is formulated
for open expressions). As an example, one could be interested in proving that in
a higher-order type system all first-order expressions compute numerical func-
tions of a specific kind, for example, continuous or derivable ones. We call such
properties first-order properties5. As we will describe in Section 3 below, logical
relations do not seem to be applicable off-the-shelf to these cases. Informally,
this is due to the fact that we cannot start by defining a base case for ground
types and then build the relation inductively.

In this paper, we show that logical relations and reducibility can deal with
first-order properties in a compositional way without altering their nature. The
main idea behind the resulting definition, known as open logical relations [59],
consists in parameterizing the set of related terms of a certain type (or the
underlying reducibility set) on a ground environment, this way turning it into a
set of pairs of open terms. As a consequence, one can define the target first-order
property in a natural way.

5 To avoid misunderstandings, we emphasize that we use first-order properties to refer
to properties of expressions of first-order types—and not in relation with definability
of properties in first-order predicate logic.

On the Versatility of Logical Relations 3

Generalizations of logical relations to open terms have been used by sev-
eral authors, and in several (oftentimes unrelated) contexts (see, for instance,
[15,39,47,30,53]). In this paper, we show how open logical relations constitute a
powerful technique to systematically prove first-order properties of programs. In
this respect, the paper’s technical contributions are applications of open logical
relations to three distinct problems.
• In Section 4, we use open logical relations to prove a general Containment
Theorem. Such a theorem serves as a vehicle to introduce open logical re-
lations but is also of independent interest. The theorem states that given a
collection F of real-valued functions including projections and closed under
function composition, any first-order term of a simply-typed λ-calculus en-
dowed with primitives for real numbers and operators computing functions in
F, computes itself a function in F. As an instance of such a result, we see that
any first-order term in a simply-typed λ-calculus extended with primitives
for continuous functions, computes a continuous function. Although the Con-
tainment Theorem can be derived from previous results by Lafont [41] (see
Section 7), our proof is purely syntactical and consists of a straightforward
application of open logical relations.

• In Section 5, we use open logical relations to prove correctness of a core
algorithm for forward automatic differentiation of simply-typed terms. The
algorithm is a fragment of the one presented in [50]. More specifically, any
first-order term is proved to be mapped to another first-order term computing
its derivative, in the usual sense of mathematical analysis. This goes beyond
the Containment Theorem by dealing with relational properties.

• In Section 6, we consider an extended language with an if-then-else con-
struction. When dealing with continuity, the introduction of conditionals in-
validates the Containment Theorem, since conditionals naturally introduce
discontinuities. To overcome this deficiency, we introduce a refinement type
system ensuring that first-order typable terms are continuous functions on
some intended domain, and use open logical relations to prove the soundness
of the type system.

Due to space constraints, many details have to be omitted, but can be found in
an Extended Version of this work [7].

2 The Playground

In order to facilitate the communication of the main ideas behind open logical
relations and their applications, this paper deals with several vehicle calculi. All
such calculi can be seen as derived from a unique calculus, denoted by Λ×,→,R,
which thus provides the common ground for our inquiry. The calculus Λ×,→,R is
obtained by adding to the simply typed λ-calculus with product and arrow types
(which we denote by Λ×,→) a ground type R for real numbers and constants r
of type R, for each real number r.

Given a collection F of real-valued functions, i.e. functions f : Rn → R
(with n ≥ 1), we endow Λ×,→,R with an operator f , for any f ∈ F, whose

4 G. Barthe et al.

intended meaning is that whenever t1, . . . , tn compute real numbers r1, . . . , rn,
then f(t1, . . . , tn) compute f(r1, . . . , rn). We call the resulting calculus Λ×,→,R

F .
Depending on the application we are interested in, we will take as F specific
collections of real-valued functions, such as continuous or differentiable functions.

The syntax and static semantics of Λ×,→,R
F are defined in Figure 1, where

f : Rn → R belongs to F. The static semantics of Λ×,→,R
F is based on judgments

of the form Γ ⊢ t : τ , which have the usual intended meaning. We adopt standard
syntactic conventions as in [6], notably the so-called variable convention. In
particular, we denote by FV (t) the collection of free variables of t and by s[t/x]
the capture-avoiding substitution of the expression t for all free occurrences of
x in s.

τ ::= R | τ × τ | τ → τ Γ ::= · | x : τ ,Γ

t ::= x | r | f(t, . . . , t) | λx.t | tt | (t, t) | t.1 | t.2

Γ ,x : τ ⊢ x : τ Γ ⊢ r : R
Γ ⊢ t1 : R · · · Γ ⊢ tn : R

Γ ⊢ f(t1, . . . , tn) : R
Γ ,x : τ1 ⊢ t : τ2
Γ ⊢ λx.t : τ1 → τ2

Γ ⊢ s : τ1 → τ2 Γ ⊢ t : τ1
Γ ⊢ st : τ2

Γ ⊢ t1 : τ Γ ⊢ t2 : σ

Γ ⊢ (t1, t2) : τ × σ

Γ ⊢ t : τ1 × τ2
Γ ⊢ t.i : τi

(i ∈ {1, 2})

Fig. 1: Static semantics of Λ×,→,R
F .

We do not confine ourselves with a fixed operational semantics (e.g. with a call-
by-value operational semantics), but take advantage of the simply-typed nature
of Λ×,→,R

F and opt for a set-theoretic denotational semantics. The category of

sets and functions being cartesian closed, the denotational semantics of Λ×,→,R
F

is standard and associates to any judgment x1 : τ1, . . . ,xn : τn ⊢ t : τ , a function
Jx1 : τ1, . . . ,xn : τn ⊢ t : τK :

∏
iJτiK → JτK, where JτK—the semantics of τ—is

thus defined:

JRK = R; Jτ1 → τ2K = Jτ2KJτ1K; Jτ1 × τ2K = Jτ1K × Jτ2K.

Due to space constraints, we omit the definition of JΓ ⊢ t : τK and refer the
reader to any textbook on the subject (such as [43]).

3 A Fundamental Gap

In this section, we will look informally at a problem which, apparently, cannot
be solved using vanilla reducibility or logical relations. This serves both as a
motivating example and as a justification of some of the design choices we had
to do when designing open logical relations.

On the Versatility of Logical Relations 5

Consider the simply-typed λ-calculus Λ×,→, the prototypical example of a
well-behaved higher-order functional programming language. As is well known,
Λ×,→ is strongly normalizing and the technique of logical relations can be applied
on-the-nose. The proof of strong normalization for Λ×,→ is structured around
the definition of a family of reducibility sets of closed terms {Redτ}τ , indexed by
types. At any atomic type τ , Redτ is defined as the set of terms (of type τ) having
the property of interest, i.e. as the collection of strongly normalizing terms. The
set Redτ1→τ2 , instead, contains those terms which, when applied to a term in
Redτ1 , returns a term in Redτ2 . Reducibility sets are afterwards generalised to
open terms, and finally all typable terms are shown to be reducible.

Let us now consider the calculus Λ×,→,R
F , where F contains the addition and

multiplication functions only. This language has already been considered in the
literature, under the name of higher-order polynomials [22,40], which are crucial
tools in higher-order complexity theory and resource analysis. Now, let us ask
ourselves the following question: can we say anything about the nature of those
functions Rn → R which are denoted by (closed) terms of type Rn → R? Of
course, all the polynomials on the real field can be represented, but can we go
beyond, thanks to higher-order constructions? The answer is negative: terms of
type Rn → R represent all and only the polynomials [5,17]. This result is an
instance of the general containment theorem mentioned at the end of Section 1.

Let us now focus on proofs of this containment result. It turns out that proofs
from the literature are not compositional, and rely on“heavyweight” tools, in-
cluding strong normalization of Λ×,→ and soundness of the underlying opera-
tional semantics. In fact, proving the result using usual reducibility arguments
would not be immediate, precisely because there is no obvious choice for the base
case. If, for example, we define RedR as the set of terms strongly normalizing to
a numeral, RedRn→R as the set of polynomials, and for any other type as usual,
we soon get into troubles: indeed, we would like the two sets of functions

RedR×R→R; RedR→(R→R);

to denote essentially the same set of functions, modulo the adjoint between
R2 → R and R → (R → R). But this is clearly not the case: just consider the
function f in R → (R → R) thus defined:

f(x) =

{
λy.y if x ≥ 0
λy.y + 1 if x < 0.

Clearly, f turns any fixed real number to a polynomial, but when curried, it
is far from being a polynomial. In other words, reducibility seems apparently
inadequate to capture situations like the one above, in which the “base case” is
not the one of ground types, but rather the one of first-order types.

Before proceeding any further, it is useful to fix the boundaries of our in-
vestigation. We are interested in proving that (the semantics of) programs of
first-order type Rn → R enjoy first-order properties, such as continuity or dif-
ferentiability, under their standard interpretation in calculus and real analysis.

6 G. Barthe et al.

More specifically, our results do not cover notions of continuity and differentiabil-
ity studied in fields such as (exact) real-number computation [57] or computable
analysis [58], which have a strong domain-theoretical flavor, and higher-order
generalizations of continuity and differentiability (see, e.g., [26,27,32,29]). We
leave for future work the study of open logical relations in these settings. What
this paper aims to provide, is a family of lightweight techniques that can be
used to show that practical properties of interest of real-valued functions are
guaranteed to hold when programs are written taking advantage of higher-order
constructors. We believe that the three case studies we present in this paper are
both a way to point to the practical scenarios we have in mind and of witnessing
the versatility of our methodology.

4 Warming Up: A Containment Theorem

In this section we introduce open logical relations in their unary version (i.e. open
logical predicates). We do so by proving the following Containment Theorem.

Theorem 1 (Containment Theorem). Let F be a collection of real-valued
functions including projections and closed under function composition. Then,
any Λ×,→,R

F term x1 : R, . . . ,xn : R ⊢ t : R denotes a function (from Rn to R) in
F. That is, Jx1 : R, . . . ,xn : R ⊢ t : RK ∈ F.

As already remarked in previous sections, notable instances of Theorem 1
are obtained by taking F as the collection of continuous functions, or as the
collection of polynomials.

Our strategy to prove Theorem 1 consists in defining a logical predicate,
denoted by F , ensuring the denotation of programs of a first-order type to be
in F, and hereditary preserving this property at higher-order types. However, F
being a property of real-valued functions—and the denotation of an open term
of the form x1 : R, . . . ,xn : R ⊢ t : R being such a function—we shall work with
open terms with free variables of type R and parametrize the candidate logical
predicate by types and environments Θ containing such variables.

This way, we obtain a family of logical predicates FΘ
τ acting on terms of the

form Θ ⊢ t : τ . As a consequence, when considering the ground type R and an
environment Θ = x1 : R, . . . ,xn : R, we obtain a predicate FΘ

R on expressions
Θ ⊢ t : R which naturally corresponds to functions from Rn to R, for which
belonging to F is indeed meaningful.

Definition 1 (Open Logical Predicate). Let Θ = x1 : R, . . . ,xn : R be a fixed
environment. We define the type-indexed family of predicates FΘ

τ by induction
on τ as follows:

t ∈ FΘ
R ⇐⇒ (Θ ⊢ t : R ∧ JΘ ⊢ t : RK ∈ F)

t ∈ FΘ
τ1→τ2 ⇐⇒ (Θ ⊢ t : τ1 → τ2 ∧ ∀s ∈ FΘ

τ1 . ts ∈ FΘ
τ2)

t ∈ FΘ
τ1×τ2 ⇐⇒ (Θ ⊢ t : τ1 × τ2 ∧ ∀i ∈ {1, 2}. t.i ∈ FΘ

τi).

On the Versatility of Logical Relations 7

We extend FΘ
τ to the predicate FΓ ,Θ

τ , where Γ ranges over arbitrary environ-
ments (possibly containing variables of type R) as follows:

t ∈ FΓ ,Θ
τ ⇐⇒ (Γ ,Θ ⊢ t : τ ∧ ∀γ. γ ∈ FΓ

Θ =⇒ tγ ∈ FΘ
τ).

Here, γ ranges over substitutions6 and γ ∈ FΓ
Θ holds if the support of γ is Γ and

γ(x) ∈ FΘ
τ , for any (x : τ) ∈ Γ .

Notice that Definition 1 ensures first-order real-valued functions to be in F,
and asks for such a property to be hereditary preserved at higher-order types.
Lemma 1 states that these conditions are indeed sufficient to guarantee any
Λ×,→,R
F term Θ ⊢ t : R to denote a function in F.

Lemma 1 (Fundamental Lemma). For all environments Γ ,Θ as above, and
for any expression Γ ,Θ ⊢ t : τ , we have t ∈ FΓ ,Θ

τ .

Proof. By induction on t, observing that FΘ
τ is closed under denotational se-

mantics: if s ∈ FΘ
τ and JΘ ⊢ t : τK = JΘ ⊢ s : τK, then t ∈ FΘ

τ . The proof follows
the same structure of Lemma 3, and thus we omit details here.

Finally, a straightforward application of Lemma 1 gives the desired result,
namely Theorem 1.

5 Automatic Differentiation

In this section, we show how we can use open logical relations to prove the
correctness of (a fragment of) the automatic differentiation algorithm of [50]
(suitably adapted to our calculus).

Automatic differentiation [8,9,35] (AD, for short) is a family of techniques
to efficiently compute the numerical (as opposed to symbolical) derivative of
a computer program denoting a real-valued function. Roughly speaking, AD
acts on the code of a program by letting variables incorporate values for their
derivative, and operators propagate derivatives according to the chain rule of
differential calculus [52]. Due to its vast applications in machine learning (back-
propagation [49] being an example of an AD technique) and, most notably, in
deep learning [9], AD is rapidly becoming a topic of interest in the programming
language theory community, as witnessed by the new line of research called dif-
ferentiable programming (see, e.g., [28,50,16,1] for some recent results on AD
and programming language theory developed in the latter field).

AD comes several modes, the two most important ones being the forward
mode (also called tangent mode) and the backward mode (also called reverse
mode). These can be seen as different ways to compute the chain rule, the former
by traversing the chain rule from inside to outside, while the latter from outside
to inside.

6 We write tγ for the result of applying γ to variables in t.

8 G. Barthe et al.

Here we are concerned with forward mode AD. More specifically, we consider
the forward mode AD algorithm recently proposed in [50]. The latter is based
on a source-to-source program transformation extracting out of a program t a
new program Dt whose evaluation simultaneously gives the result of computing
t and its derivative. This is achieved by augmenting the code of t in such a way
to handle dual numbers7.

The transformation roughly goes as follows: expressions s of type R are trans-
formed into dual numbers, i.e. expressions s′ of type R×R, where the first compo-
nent of s′ gives the original value of s, and the second component of s′ gives the
derivative of s. Real-valued function symbols are then extended to handle dual
numbers by applying the chain rule, while other constructors of the language
are extended pointwise.

The algorithm of [50] has been studied by means of benchmarks and, to the
best of the authors’ knowledge, the only proof of its correctness available in the
literature8 has been given at the time of writing by Huot et al. in [37]. However,
the latter proof relies on denotational semantics, and no operational proof of
correctness has been given so far. Differentiability being a first-order concept,
open logical relations are thus a perfect candidate for such a job.

An AD Program Transformation In the rest of this section, given a differentiable
function f : Rn → R, we denote by ∂xf : Rn → R its partial derivative with
respect to the variable x. Let D be the collection of (real-valued) differentiable
functions, and let us fix a collection F of real-valued functions such that, for any
f ∈ D, both f and ∂xf belong to F. We also assume F to contain functions for
real number arithmetic. Notice that since ∂xf is not necessarily differentiable,
in general ∂xf ̸∈ D.

We begin by recalling how the program transformation of [50] works on
Λ×,→,R
D , the extension of Λ×,→,R with operators for functions in D. In order

to define the derivative of a Λ×,→,R
D expression, we first define an intermediate

program transformation D : Λ×,→,R
D → Λ×,→,R

F such that:

Γ ⊢ t : τ =⇒ DΓ ⊢ Dt : Dτ .

The action of D on types, environments, and expressions is defined in Figure 2.
Notice that t is an expression in Λ×,→,R

D , whereas Dt is an expression in Λ×,→,R
F .

Let us comment the definition of D, beginning with its action on types. Follow-
ing the rationale behind forward-mode AD, the map D associates to the type

7 We represent dual numbers [21] as pairs of the form (x,x′), with x,x′ ∈ R. The first
component, namely x, is subject to the usual real number arithmetic, whereas the
second component, namely x′, obeys to first-order differentiation arithmetic. Dual
numbers are usually presented, in analogy with complex numbers, as formal sums
of the form x+ x′ε, where ε is an abstract number (an infinitesimal) subject to the
law ε2 = 0.

8 However, we remark that formal approaches to backward automatic differentiation
for higher-order languages have been recently proposed in [1,16] (see Section 7).

On the Versatility of Logical Relations 9

DR = R× R D(·) = ·
D(τ1 × τ2) = Dτ1 × Dτ2 D(x : τ ,Γ) = dx : Dτ , DΓ

D(τ1 → τ2) = Dτ1 → Dτ2

Dr = (r, 0) D(f(t1, . . . , tn)) = (f(Dt1.1, . . . , Dtn.1),

n∑
i=1

∂xif(Dt1.1, . . . , Dtn.1) ∗ Dti.2)

Dx = dx D(λx.t) = λdx.Dt D(st) = (Ds)(Dt) D(t.i) = Dt.i D(t1, t2) = (Dt1, Dt2)

Fig. 2: Intermediate transformation D

R the product type R × R, the first and second components of its inhabitants
being the original expression and its derivative, respectively. The action of D
on non-basic types is straightforward and it is designed so that the automatic
differentiation machinery can handle higher-order expressions in such a way to
guarantee correctness at real-valued function types.

The action of D on the usual constructors of the λ-calculus is pointwise,
although it is worth noticing that D associates to any variable x of type τ a new
variable, which we denote by dx, of type Dτ . As we are going to see, if τ = R,
then dx acts as a placeholder for a dual number.

More interesting is the action of D on real-valued constructors. To any nu-
meral r, D associates the pair Dr = (r, 0), the derivative of a number being zero.
Let us now inspect the action of D on an operator f associated to f : Rn → R
(we treat f as a function in the variables x1, . . . ,xn). The interesting part is the
second component of D(f(t1, . . . , tn)), namely

n∑
i=1

∂xi
f(Dt1.1, . . . , Dtn.1) ∗ Dti.2

where
∑n
i=1 and ∗ denote the operators (of Λ×,→,R

F) associated to summation
and (binary) multiplication (for readability we omit the underline notation), and
∂xif is the operator (of Λ×,→,R

F) associated to partial derivative ∂xif of f in the
variable xi. It is not hard to recognize that the above expression is nothing but
an instance of the chain rule.

Finally, we notice that if Γ ⊢ t : τ is a (derivable) judgment in Λ×,→,R
D , then

indeed DΓ ⊢ Dt : Dτ is a (derivable) judgment in Λ×,→,R
F .

Example 1. Let us consider the binary function f(x1,x2) = sin(x1) + cos(x2).
For readability, we overload the notation writing f in place of f (and similarly
for ∂xi

f). Given expressions t1, t2, we compute D(sin(t1) + cos(t2)). Recall that
∂x1

f(x1,x2) = cos(x1) and ∂x2
f(x1,x2) = − sin(x2). We have:

D(sin(t1) + cos(t2))

= (sin(Dt1.1) + cos(Dt2.1), ∂x1f(Dt1.1, Dt2.1) ∗ Dt1.2 + ∂x2f(Dt1.1, Dt2.1) ∗ Dt2.2)
= (sin(Dt1.1) + cos(Dt2.1), cos(Dt1.1) ∗ Dt1.2− sin(Dt2.1) ∗ Dt2.2).

10 G. Barthe et al.

As a consequence, we see that D(λx.λy. sin(x) + cos(y)) is

λdx.λdy.(sin(dx.1) + cos(dy.1), cos(dx.1) ∗ dx.2− sin(dy.1) ∗ dy.2).

We now aim to define the derivative of an expression x1 : R, . . . ,xn : R ⊢ t : R
with respect to a variable x (of type R). In order to do so we first associate to
any variable y : R its dual expression dualx(y) : R× R defined as:

dualx(y) =

{
(y, 1) if x = y

(y, 0) otherwise.

Next, we define for x1 : R, . . . ,xn : R ⊢ t : R the derivative deriv(x, t) of t with
respect to x as:

deriv(x, t) = Dt[dualx(x1)/dx1, . . . , dualx(xn)/dxn].2

Let us clarify this passage with a simple example.

Example 2. Let us compute the derivative of x : R, y : R ⊢ t : R, where t = x ∗ y.
We first of all compute Dt, obtaining:

dx : R× R, dy : R× R ⊢ ((dx.1) ∗ (dy.1), (dx.1) ∗ (dy.2) + (dx.2) ∗ (dy.1)) : R× R.

Observing that dualx(x) = (x, 1) and dualx(y) = (y, 0), we indeed obtain the
desired derivative as x : R, y : R ⊢ Dt[dualx(x)/dx, dualx(y)/dy].2 : R. For we
have:

Jx : R, y : R ⊢ Dt[dualx(x)/dx, dualx(y)/dy].2 : RK
= Jx : R, y : R ⊢ (x ∗ y,x ∗ 0 + 1 ∗ y).2 : RK
= Jx : R, y : R ⊢ y : RK = ∂xJx : R, y : R ⊢ x ∗ y : RK.

Remark 1. For Θ = x1 : R, . . . ,xn : R we have Θ ⊢ dualy(xi) : DR and Θ ⊢
Ds[dualy(x1)/dx1, . . . , dualy(xn)/dxn] : Dτ , for any variable y and Θ ⊢ s : τ .

Open Logical relations for AD We have claimed that the operation deriv per-
forms automatic differentiation of Λ×,→,R

D expressions. By that we mean that
once applied to expressions of the form x1 : R, . . . ,xn : R ⊢ t : R, the operation
deriv can be used to compute the derivative of Jx1 : R, . . . ,xn : R ⊢ t : RK. We
now show how we can prove such a statement using open logical relations, this
way providing a proof of correctness of our AD program transformation.

We begin by defining a logical relations R between Λ×,→,R
D and Λ×,→,R

F ex-
pressions. We design R in such a way that (i) tRDt and (ii) if tRs and t inhabits
a first-order type, then indeed s corresponds to the derivative of t. While (ii)
essentially holds by definition, (i) requires some efforts in order to be proved.

Definition 2 (Open Logical Relation). Let Θ = x1 : R, . . . ,xn : R be a fixed,
arbitrary environment. Define the family of relations (RΘ

τ)Θ,τ between Λ×,→,R
D

On the Versatility of Logical Relations 11

and Λ×,→,R
F expressions by induction on τ as follows:

tRΘ
R s ⇐⇒

Θ ⊢ t : R ∧ DΘ ⊢ s : R× R

∀y : R.

JΘ ⊢ s[dualy(x1)/dx1, . . . , dualy(xn)/dxn].1 : RK = JΘ ⊢ t : RK
JΘ ⊢ s[dualy(x1)/dx1, . . . , dualy(xn)/dxn].2 : RK = ∂yJΘ ⊢ t : RK

tRΘ
τ1→τ2 s ⇐⇒

{
Θ ⊢ t : τ1 → τ2 ∧ DΘ ⊢ s : Dτ1 → Dτ2

∀p, q. pRΘ
τ1 q =⇒ tpRΘ

τ2 sq

tRΘ
τ1×τ2 s ⇐⇒

{
Θ ⊢ t : τ1 × τ2 ∧ DΘ ⊢ s : Dτ1 × Dτ2

∀i ∈ {1, 2}. t.iRΘ
τi s.i

We extend RΘ
τ to the family (RΓ ,Θ

τ)Γ ,Θ,τ , where Γ ranges over arbitrary envi-
ronments (possibly containing variables of type R), as follows:

tRΓ ,Θ
τ s ⇐⇒ (Γ ,Θ ⊢ t : τ) ∧ (DΓ , DΘ ⊢ s : Dτ) ∧ (∀γ, δ. γ RΓ

Θ δ =⇒ tγ RΘ
τ sδ)

where γ, δ range over substitutions, and:

γ RΓ
Θ δ ⇐⇒ (supp(γ) = Γ) ∧ (supp(δ) = DΓ) ∧ (∀(x : τ) ∈ Γ . γ(x)RΘ

τ δ(dx)).

Obviously, Definition 2 satisfies condition (ii) above. What remains to be
done is to show that it satisfies condition (i) as well. In order to prove such a
result, we first need to show that the logical relation respects the denotational
semantics of Λ×,→,R

D .

Lemma 2. Let Θ = x1 : R, . . . ,xn : R. Then, the following hold:

t′ RΘ
τ s ∧ JΘ ⊢ t : τK = JΘ ⊢ t′ : τK =⇒ tRΘ

τ s

tRΘ
τ s

′ ∧ JDΘ ⊢ s′ : DτK = JDΘ ⊢ s : DτK =⇒ tRΘ
τ s.

Proof. A standard induction on τ .

We are now ready to state and prove the main result of this section.

Lemma 3 (Fundamental Lemma). For all environments Γ ,Θ and for any
expression Γ ,Θ ⊢ t : τ , we have tRΓ ,Θ

τ Dt.

Proof. We prove the following statement, by induction on t:

∀t. ∀τ . ∀Γ ,Θ. (Γ ,Θ ⊢ t : τ =⇒ tRΓ ,Θ
τ Dt).

We show only the most relevant cases. Suppose t is a variable x. We distinguish
whether x belongs to Γ or Θ.

12 G. Barthe et al.

1. Suppose (x : R) ∈ Θ. We have to show xRΓ ,Θ
R dx, i.e.

JΘ ⊢ dx[dualy(x)/dx].1 : RK = JΘ ⊢ x : RK
JΘ ⊢ dx[dualy(x)/dx].2 : RK = ∂yJΘ ⊢ x : RK

for any variable y (of type R). The first identity obviously holds as

JΘ ⊢ dx[dualy(x)/dx].1 : RK = JΘ ⊢ dx[(x, b)/dx].1 : RK = JΘ ⊢ x : RK,

where b ∈ {0, 1}. For the second identity we distinguish whether y = x or
y ̸= x. In the former case we have dualy(x) = (x, 1), and thus:

JΘ ⊢ dx[dualy(x)/dx].2 : RK = JΘ ⊢ 1 : RK = ∂yJΘ ⊢ y : RK.

In the latter case we have dualy(x) = (x, 0), and thus:

JΘ ⊢ dx[dualy(x)/dx].2 : RK = JΘ ⊢ 0 : RK = ∂yJΘ ⊢ x : RK.

2. Suppose (x : τ) ∈ Γ . We have to show xRΓ ,Θ dx, i.e. γ(x)RΘ
τ δ(dx), for all

substitutions γ, δ such that γ RΓ
Θ δ. Since x belongs to Γ , we are trivially

done.
Suppose t is λx.s, so that we have

Γ ,Θ,x : τ1 ⊢ s : τ2
Γ ,Θ ⊢ λx.s : τ1 → τ2

for some types τ1, τ2. As x is bound in λx.s, without loss of generality we can
assume (x : τ1) ̸∈ Γ ∪ Θ. Let ∆ = Γ ,x : τ1, so that we have ∆,Θ ⊢ s : τ2, and
thus sR∆,Θ

τ2 Ds, by induction hypothesis. By definition of open logical relation,
we have to prove that for arbitrary γ, δ such that γ RΓ

Θ δ, we have

λx.sγ RΘ
τ1→τ2 λdx.(Ds)δ,

i.e. (λx.sγ)pRΘ
τ2 (λdx.(Ds)δ)q, for all pRΘ

τ1 q. Let us fix a pair (p, q) as above.
By Lemma 2, it is sufficient to show (sγ)[p/x]RΘ

τ2 ((Ds)δ)[q/dx]. Let γ
′, δ′ be the

substitutions defined as follows:

γ′(y) =

{
p if y = x

γ(y) otherwise
δ′(y) =

{
q if y = dx

δ(y) otherwise.

It is easy to see that γ′R∆
Θ δ

′, so that by sR∆,Θ
τ2 Ds (recall that the latter follows

by induction hypothesis) we infer sγ′ RΘ
τ2 (Ds)δ

′, by the very definition of open
logical relation. As a consequence, the thesis is proved if we show

(sγ)[p/x] = sγ′; ((Ds)δ)[q/dx] = (Ds)δ′.

The above identities hold if x ̸∈ FV (γ(y)) and dx ̸∈ FV (δ(dy)), for any (y :
τ) ∈ Γ . This is indeed the case, since γ(y) RΘ

τ δ(dy) implies Θ ⊢ γ(y) : τ and
DΘ ⊢ δ(dy) : Dτ , and x ̸∈ Θ (and thus dx ̸∈ DΘ).

On the Versatility of Logical Relations 13

A direct application of Lemma 3 allows us to conclude the correctness of
the program transformation D. In fact, given a first-order term Θ ⊢ t : R, with
Θ = x1 : R, . . . ,xn : R, by Lemma 3 we have tRΘ

R Dt, and thus

∂yJΘ ⊢ t : RK = JΘ ⊢ Dt[dualy(x1)/dx1, . . . , dualy(xn)/dxn].2 : RK,

for any real-valued variable y, meaning that Dt indeed computes the partial
derivative of t.

Theorem 2. For any term Θ ⊢ t : R as above, the term DΘ ⊢ Dt : DR computes
the partial derivative of t, i.e., for any variable y we have

∂yJΘ ⊢ t : RK = JΘ ⊢ Dt[dualy(x1)/dx1, . . . , dualy(xn)/dxn].2 : RK.

6 On Refinement Types and Local Continuity

In Section 4, we exploited open logical relations to establish a containment the-
orem for the calculus Λ×,→,R

F , i.e. the calculus Λ×,→,R extended with real-valued
functions belonging to a set F including projections and closed under function
composition. Since the collection C of (real-valued) continuous functions satisfies
both constraints, Theorem 1 allows us to conclude that all first order terms of
Λ×,→,R
C represent continuous functions.
The aim of the present section is the development of a framework to prove

continuity properties of programs in a calculus that goes beyond Λ×,→,R
C . More

specifically, (i) we do not restrict our analysis to calculi having operators rep-
resenting continuous real-valued functions only, but consider operators for ar-
bitrary real-valued functions, and (ii) we add to our calculus an if-then-else
construct whose static semantics is captured by the following rule:

Γ ⊢ t : R Γ ⊢ s : τ Γ ⊢ p : τ
Γ ⊢ if t then s else p : τ

The intended dynamic semantics of the term if t then s else p is the same as
the one of s whenever t evaluates to any real number r ̸= 0 and the same as the
one of p if it evaluates to 0.

Notice that the crux of the problem we aim to solve is the presence of the
if-then-else construct. Indeed, independently of point (i), such a construct breaks
the global continuity of programs, as illustrated in Figure 3a. As a consequence
we are forced to look at local continuity properties, instead: for instance we
can say that the program of Figure 3a is continuous both on R<0 and R≥0.
Observe that guaranteeing local continuity allows us (up to a certain point) to
recover the ability of approximating the output of a program by approximating
its input. Indeed, if a program t : R × . . . × R → R is locally continuous on a
subset X of Rn, then the value of ts (for some input s) can be approximated

14 G. Barthe et al.

x

JtK(x)

(a) t = λx.if x < 0 then − x else x+ 1

x

JtK(x)

(b) t = λx.if x < 0 then 1 else x+ 1

Fig. 3: Simply typed first-order programs with branches

by passing as argument to t a family (sn)n∈N of approximations of s, as long as
both s and all the (sn)n∈N are indeed elements of X. Notice that the continuity
domains we are interested in are not necessary open sets: we could for instance
be interested in functions that are continuous on the unit circle, i.e. the points
{(a, b) | a2 + b2 = 1} ⊆ R2. For this reason we will work with the notion
of sequential continuity, instead of the usual topological notion of continuity.
It must be observed, however, that these two notions coincide as soon as the
continuity domain X is actually an open set.

Definition 3 (Sequential Continuity). Let f : Rn → R, and X be any subset
of Rn. We say that f is (sequentially) continuous on X if for every x ∈ X, and
for every sequence (xn)n∈N of elements of X such that limn→∞ xn = x, it holds
that limn→∞ f(xn) = f(x).

In [18], Chaudhuri et al. introduced a logical system designed to guarantee
local continuity properties on programs in an imperative (first-order) program-
ming language with conditional branches and loops. In this section, we develop
a similar system in the setting of a higher-order functional language with an
if-then-else construct, and we use open logical relations to prove the sound-
ness of our system. This witnesses, on yet another situation, the versatility of
open logical relations. Compared to [18], we somehow generalize from a result
on programs built from only first-order constructs and primitive functions, to a
containment result for programs built using also higher-order constructs.

We however mention that, although our system is inspired by the work of
Chaudhuri at al., there are significant differences between the two, even at the
first-order level. The consequences these differences have on the expressive power
of our systems are twofold:
• On the one hand, while inferring continuity on some domain X of a program
of the form if t then s else p, we have more flexibility than [18] for the
domains of continuity of s and p. To be more concrete, let us consider the
program λx.(if (x > 0) then 0 else (if x = 4 then 1 else 0)), which is
continuous on R even though the second branch is continuous on R≤0, but
not on R. We are able to show in our system that this program is indeed
continuous on the whole domain R, while Chaudhuri et al. cannot do the

On the Versatility of Logical Relations 15

same in their system for the corresponding imperative program: they ask the
domain of continuity of each of the two branches to coincide with the domain
of continuity of the whole program.

• On the other hand, the system of Chaudhuri at al. allows one to express
continuity along a restricted set of variables, which we cannot do. To illustrate
this, let us look at the program: λx, y.if (x = 0) then (3 ∗ y) else (4 ∗ y):
along the variable y, this program is continuous on the whole of R. Chaudhuri
et al. are able to express and prove this statement in their system, while we
can only say that for every real a, this program is continuous on the domain
{a} × R.

For the sake of simplicity, it is useful to slightly simplify our calculus; the ideas
we present here, however, would still be valid in a more general setting, but
that would make the presentation and proofs more involved. As usual, let F be
a collection of real-valued functions. We consider the restriction of the calculus
Λ×,→,R
F obtained by considering types of the form

τ ::= R | ρ; ρ ::= ρ1 × · · · × ρn × R× · · · × R︸ ︷︷ ︸
m-times

→ τ ;

only. For the sake of readability, we employ the notation (ρ1 . . . , ρn, R, . . . , R) → τ
in place of ρ1 × · · · × ρn × R × · · · × R → τ . We also overload the notation and
keep indicating the resulting calculus as Λ×,→,R

F . Nonetheless, the reader should

keep in mind that from now on, whenever referring to a Λ×,→,R
F term, we are

tacitly referring to a term typable according to the restricted type system, but
that can indeed contain conditionals.

Since we want to be able to talk about composition properties of locally
continuous programs, we actually need to talk not only about the points where
a program is continuous, but also about the image of this continuity domain.
In higher-order languages, a well-established framework for the latter kind of
specifications is the one of refinement types, that have been first introduced
by [31] in the context of ML types: the basic idea is to annotate an existing
type system with logical formulas, with the aim of being more precise about
the underlying program’s behaviors than in simple types. Here, we are going to
adapt this framework by replacing the image annotations provided by standard
refinement types with continuity annotations.

6.1 A Refinement Type System Ensuring Local Continuity

Our refinement type system is developed on top of the simple types system of
Section 2 (actually, on the simplification of such a system we are considering in
this section). We first need to introduce a set of logical formulas which talk about
n-uples of real numbers, and which we use as annotations in our refinement types.
We consider a set V of logical variables, and we construct formulas as follows:

ψ,ϕ ∈ L ::= ⊤ | (e ≤ e) | ψ ∧ ϕ | ¬ψ,

e ∈ E ::= α | a | f(e, . . . , e) with α ∈ V, a ∈ R, f : Rn → R.

16 G. Barthe et al.

Recall that with the connectives in our logic, we are able to encode logical
disjunction and implication, and as customary, we write ϕ ⇒ ψ for ¬ϕ ∨ ψ. A
real assignment is a partial map σ : V → R. When σ has finite support, we
sometimes specify σ by writing (α1 7→ σ(α1), . . . ,αn 7→ σ(αn)). We note σ |= ϕ
when σ is defined on the variables occurring in ϕ, and moreover the real formula
obtained when replacing along σ the logical variables of ϕ is true. We write |= ϕ
when σ |= ϕ always holds, independently on σ.

We can associate to every formula the subset of Rn consisting of all points
where this formula holds: more precisely, if ϕ is a formula, and X = α1, . . . ,αn
is a list of logical variables such that Vars(ϕ) ⊆ X, we call truth domain of ϕ
w.r.t. X the set:

Dom(ϕ)X = {(a1, . . . , an) ∈ Rn | (α1 7→ a1, . . . ,αn 7→ an) |= ϕ}.

We are now ready to define the language of refinement types, which can be
seen as simple types annotated by logical formulas. The type R is annotated by
logical variables: this way we obtain refinement real types of the form {α ∈ R}.
The crux of our refinement type system consists in the annotations we put on
the arrows. We introduce two distinct refined arrow constructs, depending on
the shape of the target type: more precisely we annotate the arrow of a type
(T1, . . . ,Tn) → R with two logical formulas, while we annotate (T1, . . . ,Tn) → H
(whereH is an higher-order type) with only one logical formula. This way, we ob-

tain refined arrow types of the form (T1, . . . ,Tn)
ψ⇝ϕ→ {α ∈ R}, and (T1, . . . ,Tn)

ψ→
H: in both cases the formula ψ specifies the continuity domain, while the formula
ϕ is an image annotation used only when the target type is ground. The intuition

is as follows: a program of type (H1, . . . ,Hn, {α1 ∈ R}, . . . , {αn ∈ R})ψ⇝ϕ→ {α ∈ R}
uses its real arguments continuously on the domain specified by the formula ψ
(w.r.t α1, . . . ,αn), and this domain is sent into the domain specified by the for-

mula ϕ (w.r.t. α). Similarly, a program of the type (T1, . . . ,Tn)
ψ→ H has its real

arguments used in a continuous way on the domain specified by ψ, but it is not
possible anymore to specify an image domain, because H is higher-order.

The general form of our refined types is thus as follows:

T ::= H | F ; F ::= {α ∈ R};

H ::= (H1, . . . ,Hm,F1, . . . ,Fn)
ψ→ H | (H1, . . . ,Hm,F1, . . . ,Fn)

ψ⇝ϕ→ F

with n + m > 0, Vars(ϕ) ⊆ {α}, Vars(ψ) ⊆ {α1, . . . ,αn} when F = {α ∈ R},
Fi = {αi ∈ R}, and the (αi)1≤i≤n are distinct. We take refinement types up to
renaming of logical variables. If T is a refinement type, we write T for the simple
type we obtain by forgetting about the annotations in T .

Example 3. We illustrate in this example the intended meaning of our refinement
types.
• We first look at how to refine R → R: those are types of the form {α1 ∈
R}ϕ1⇝ϕ2→ {α2 ∈ R}. The intended inhabitants of these types are the programs

On the Versatility of Logical Relations 17

t : R → R such that i) JtK is continuous on the truth domain of ϕ1; and
ii) JtK sends the truth domain of ϕ1 into the truth domain of ϕ2. As an
example, ϕ1 could be (α1 < 3), and ϕ2 could be (α2 ≥ 5). An example of a
program having this type is t = λx.(5 + f(x)), where f : R → R is defined

as f(a) =

{
1

3−a when a < 3

0 otherwise
, and moreover we assume that {f , +} ⊆ F.

• We look now at the possible refinements of R → (R → R): those are of the form

{α1 ∈ R} θ1→ ({α2 ∈ R}θ2⇝θ3→ {α3 ∈ R}). The intended inhabitants of these
types are the programs t : R → (R → R) whose interpretation function (x, y) ∈
R2 7→ JtK(x)(y) sends continously Dom(θ1)

α1 × Dom(θ2)
α2 into Dom(θ3)

α3 .
As an example, consider θ1 = (α1 < 1), θ2 = (α2 ≤ 3), and θ3 = (α3 > 0).
An example of a program having this type is λx1.λx2.f(x1 ∗ x2) where we
take f as above.

A refined typing context Γ is a list x1 : T1, . . . ,xn : Tn, where each Ti is a
refinement type. In order to express continuity constraints, we need to annotate
typing judgments by logical formulas, in a similar way as what we do for arrow
types. More precisely, we consider two kinds of refined typing judgments: one
for terms of ground type, and one for terms of higher-order type:

Γ
ψ

⊢r t : H; Γ
ψ⇝ϕ
⊢r t : F .

6.2 Basic Typing Rules

We first consider refinement typing rules for the fragment of our language which
excludes conditionals: they are given in Figure 4. We illustrate them by way of
a series of examples.

Example 4. We first look at the typing rule var-F: if θ implies θ′, then the
variable x—that, in semantics terms, does the projection of the context Γ to
one of its component—sends continuously the truth domain of θ into the truth
domain of θ′. Using this rule we can, for instance, derive the following judgment:

x : {α ∈ R}, y : {β ∈ R}
(α≥0∧β≥0)⇝(α≥0)

⊢r x : {α ∈ R}. (1)

Example 5. We now look at the Rf rule, that deals with functions from F. Using
this rule, we can show that:

x : {α ∈ R}, y : {β ∈ R}
(α≥0∧β≥0)⇝(γ≥0)

⊢r min(x, y) : {γ ∈ R}. (2)

Before giving the refined typing rule for the if-then-else construct, we also
illustrate on an example how the rules in Figure 4 allow us to exploit the conti-
nuity informations we have on functions in F, compositionally.

18 G. Barthe et al.

var-H

Γ ,x : H
ψ

⊢r x : H

|= θ ⇒ θ′

var-F

Γ ,x : {α ∈ R}
θ⇝θ′

⊢r x : {α ∈ R}

f ∈ F is continuous on Dom(θ′1 ∧ . . . ∧ θ′n)α1...αn

f(Dom(θ′1 ∧ . . . ∧ θ′n)α1...αn) ⊆ Dom(θ′)β
Γ
θ⇝θ′i
⊢r ti : {αi ∈ R}

Rf

Γ
θ⇝θ′

⊢r f(t1 . . . tn) : {β ∈ R}

Γ ,x1 : T1, . . . ,xn : Tn
ψ(η)

⊢r t : T |= ψ1 ∧ ψ2 ⇒ ψ
abs

Γ
ψ2

⊢r λ(x1, . . . ,xn).t : (T1, . . . ,Tn)
ψ1(η)→ T

(Γ
ϕ

⊢r si : Hi)1≤i≤m

Γ
ϕ

⊢r t : (H1, . . . ,Hm,F1, . . . ,Fn)
θ(η)→ T

|= θ1 ∧ . . . ∧ θn ⇒ θ

(Γ
ϕ⇝θj
⊢r pj : Fj)1≤j≤m

app

Γ
ϕ(η)

⊢r t(s1, . . . , sm, p1, . . . , pm) : T

The formula ψ(η) should be read as ψ when T is a higher-order type, and as ψ ⇝ η
when T is a ground type.

Fig. 4: Typing Rules

Example 6. Let f : R → R be the function defined as: f(x) =

{
−x if x < 0

x+ 1 otherwise
.

Observe that we can actually regard f as represented by the program in Fig-
ure 3a—but we consider it as a primitive function in F for the time being, since
we have not introduced the typing rule for the if-then-else construct, yet. Con-
sider the program:

t = λ(x, y).f(min(x, y)).

We see that JtK : R2 → R is continuous on the set {(x, y) | x ≥ 0 ∧ y ≥ 0},
and that, moreover, the image of f on this set is contained on [1,+∞). Using
the rules in Figure 4, the fact that f is continuous on R≥0, and that min is
continuous on R2, we see that our refined type system allows us to prove t to be
continuous in the considered domain, i.e.:

⊢r t : ({α ∈ R}, {β ∈ R}) (α≥0∧β≥0)⇝(γ≥1)→ {γ ∈ R}.

6.3 Typing Conditionals

We now look at the rule for the if-then-else construct: as can be seen in the
two programs in Figure 3, the use of conditionals may or may not induce dis-
continuity points. The crux here is the behaviour of the two branches at the

On the Versatility of Logical Relations 19

discontinuity points of the guard function. In the two programs represented in
Figure 3, we see that the only discontinuity point of the guard is in x = 0. How-
ever, in Figure 3b the two branches return the same value in 0, and the resulting
program is thus continuous at x = 0, while in Figure 3a the two branches do
not coincide in 0, and the resulting program is discontinuous at x = 0. We can
generalize this observation: for the program if t then s else p to be continu-
ous, we need the branches s and p to be continuous respectively on the domain
where t is 1, and on the domain where t is 0, and moreover we need s and p
to be continuous and to coincide on the points where t is not continuous. Simi-
larly to the logical system designed by Chaudhuri et al [18], the coincidence of
the branches in the discontinuity points is expressed as a set of logical rules by
way of observational equivalence. It should be observed that such an equivalence
check is less problematic for first-order programs than it is for higher-order one
(the authors of [18] are able to actually check observational equivalence through
an SMT solver). On the other hand, various notions of equivalence which are
included in contextual equivalence and sometimes coincide with it (e.g., applica-
tive bisimilarity, denotational semantics, or logical relations themselves) have
been developed for higher-order languages, and this starts to give rise to actual
automatic tools for deciding contextual equivalence [38].

We give in Figure 5 the typing rule for conditionals. The conclusion of the
rule guarantees the continuity of the program if t then s else p on a do-
main specified by a formula θ. The premises of the rule ask for formulas θq for
q ∈ {t, s, p} that specify continuity domains for the programs t, s, p, and ask also
for two additional formulas θ(t,0) and θ(t,1) that specify domains where the value
of the guard t is 0 and 1, respectively. The target formula θ, and the formulas
(θq)q∈{t,s,p,(t,1),(t,0)} are related by two side-conditions. Side-condition (1) con-
sists of the following four distinct requirements, that must hold for every point a
in the truth domain of θ: i) a is in the truth domain of at least one of the two for-
mulas θt, θs; ii) if a is not in θ(t,1) (i.e., we have no guarantee that t will return 1
at point a, meaning that the program p may be executed) then a must be in the
continuity domain of p; iii) a condition symmetric to the previous one, replacing
1 by 0, and p by s; iv) all points of possible discontinuity (i.e. the points a such
that θt does not hold) must be in the continuity domain of both s and p, and as
a consequence both θs and θp must hold there. The side-condition (2) uses typed
contextual equivalence ≡ctx between terms to express that the two programs s
and p must coincide on all inputs such that θt does not hold–i.e. that are not
in the continuity domain of t. Observe that typed context equivalence here is
defined with respect to the system of simple types.

Notation 1. We use the following notations in Figure 5. When Γ is a typing
environement, we write GΓ and HΓ for the ground and higher-order parts of
Γ , respectively. Moreover, suppose we have a ground refined typing environment
Θ = x1 : {α1 ∈ R}, . . . ,xn : {αn ∈ R}: we say that a logical assignment σ is
compatible with Θ when {αi | 1 ≤ i ≤ n} ⊆ supp(σ). When it is the case,
we build in a natural way the substitution associated to σ along Θ by taking
σΘ(xi) = σ(αi).

20 G. Barthe et al.

Γ
θt⇝(β=0∨β=1)

⊢r t : {β ∈ R}

Γ
θ(t,0)⇝(β=0)

⊢r t : {β ∈ R}

Γ
θ(t,1)⇝(β=1)

⊢r t : {β ∈ R}

Γ
θs(η)

⊢r s : T Γ
θp(η)

⊢r p : T (1), (2)

If

Γ
θ(η)

⊢r if t then s else p : T

Again, the formula ψ(η) should be read as ψ when T is a higher-order type, and as
ψ ⇝ η when T is a ground type. The side-conditions (1), (2) are given as:

1. |= θ ⇒
(
(θs ∨ θp) ∧ (θ(t,1) ∨ θp) ∧ (θ(t,0) ∨ θs) ∧ (θt ∨ (θs ∧ θp))

)
.

2. For all logical assignment σ compatible with GΓ ,σ |= θ ∧ ¬θt implies HΓ ⊢
sσGΓ ≡ctx pσGΓ .

Fig. 5: Typing Rules for the if-then-else construct

Example 7. Using our if-then-else typing rule, we can indeed type the program
in Figure 3b as expected:

⊢ λx.if x < 0 then 1 else x+ 1 : {α ∈ R}⊤⇝⊤→ {β ∈ R}.

6.4 Open-logical Predicates for Refinement Types

Our goal in this section is to show the correctness of our refinement type systems,
that we state below.

Theorem 3. Let t be any program such that:

x1 : {α1 ∈ R}, . . . ,xn : {αn ∈ R}
θ⇝θ′

⊢r t : {β ∈ R}.

Then it holds that:
• JtK(Dom(θ)α1,...,αn) ⊆ Dom(θ′)β;
• JtK is sequentially continuous on Dom(θ)α1,...,αn .

As a first step, we show that our if-then-else rule is reasonable, i.e. that it
behaves well with primitive functions in F. More precisely, if we suppose that
the functions f , g0, g1 are such that the premises of the if-then-else rule hold,
then the program if f(x1, . . . ,xn) then g1(x1, . . . ,xn) else g0(x1, . . . ,xn) is
indeed continuous in the domain specified by the conclusion of the rule. This is
precisely what we prove in the following lemma.

Lemma 4. Let f , g0, g1 : Rn → R be functions in F, and Θ = x1 : {α1 ∈
R}, . . . ,xn : {αn ∈ R}. We denote α⃗ the list of logical variables α1, . . . ,αn. We
consider logical formulas θ and θf , θ(f ,0), θ(f ,1),ϕg0 ,ϕg1 that have their logical
variables in α⃗, and such that:

On the Versatility of Logical Relations 21

1. f is continuous on Dom(θ)α⃗ with f(Dom(θf)
α⃗) ⊆ {0, 1} and f(Dom(θ(f ,b))

α⃗) ⊆
{b} for b ∈ {0, 1}.

2. g0 and g1 are continuous on Dom(ϕg0)
α⃗, and Dom(ϕg1)

α⃗ respectively, and
(α1 7→ a1, . . . ,αn 7→ an) |= θ ∧ ¬θf implies g0(a1, . . . , an) = g1(a1, . . . , an);

3. |= θ ⇒
(
(ϕg1 ∨ ϕg0) ∧ (θ(f ,0) ∨ ϕg1) ∧ (θ(f ,1) ∨ ϕg0) ∧ (θf ∨ (ϕg0 ∧ ϕg1))

)
.

Then it holds that:

JΘ ⊢ if f(x1, . . . ,xn) then g1(x1, . . . ,xn) else g0(x1, . . . ,xn) : RK

is continuous on Dom(θ)α⃗.

Proof. The proof can be found in the extended version [7].

Similarly to what we did in Section 4, we are going to show Theorem 3
by way of a logical predicate. Recall that the logical predicate we defined in
Section 4 consists actually of three kind of predicates—all defined in Definition 1
of Section 4: FΘ

τ , FΘ
Γ , FΘ,Γ

τ , where Θ ranges over ground typing environments,
Γ ranges over arbitrary environments, and τ is a type. The first predicate FΘ

τ

contains admissible terms t of type Θ ⊢ t : τ , the second predicate FΘ
Γ contains

admissible substitutions γ that associate to every (x : τ) in Γ a term of type τ
under the typing context Θ, and the third predicate FΘ,Γ

τ contains admissible
terms t of type Γ ,Θ ⊢ t : τ .

Here, we need to adapt the three kinds of logical predicates to a refinement
scenario: first, we replace τ and Θ, Γ with refinement types and refined typing
contexts respectively. Moreover, for technical reasons, we also need to generalize
our typing contexts, by allowing them to be annotated with any subset of Rn
instead of restricting ourselves to those subsets generated by logical formulas.
Due to this further complexity, we split our definition of logical predicates into
two: we first define the counterpart of the ground typing context predicate FΘ

τ

in Definition 4, then the counterpart of the predicate for substitutions FΘ
Γ and

the counterpart of the predicates FΘ,Γ
τ for higher-order typing environment in

Definition 5.
Let us first see how we can adapt the predicates FΘ

τ to our refinement types
setting. Recall that in Section 4, we defined the predicate FΘ

R as the collection of
terms t such that Θ ⊢ t : R, and its semantics JΘ ⊢ t : RK belongs to F. As we are
interested in local continuity properties, we need to build a predicate expressing
local continuity constraints. Moreover, in order to be consistent with our two
arrow constructs and our two kinds of typing judgments, we actually need to
consider also two kinds of logical predicates, depending on whether the target
type we consider is a real type or an higher-order type. We thus introduce the
following logical predicates:

C(Θ,X ⇝ ϕ,F); C(Θ,X,H);

where Θ is a ground typing environment, X is a subset of Rn, ϕ is a logical
formula, and, as usual, F ranges over the real refinements types, while H ranges
over the higher-order refinement types. As expected, X and ϕ are needed to
encode continuity constraints inside our logical predicates.

22 G. Barthe et al.

Definition 4. Let Θ be a ground typing context of length n, F and H refined
ground type and higher-order type, respectively. We define families of predicates
on terms C(Θ,Y ⇝ ϕ,F) and C(Θ,Y ,H), with Y ⊆ Rn and ϕ a logical formula,
as specified in Figure 6.

• For F = {α ∈ R} we take:

C(Θ,Y ⇝ ψ,F) := {t | x1 : R, . . . ,xn : R ⊢ t : R,
JtK(Y) ⊆ Dom(ψ)α ∧ JtK continuous over Y }.

• ifH is an arrow type of the formH = (H1, . . . ,Hm, {α1 ∈ R1}, . . . , {αp ∈ R}) ψ(η)→
T :

C(Θ,Y ,H) := {t | x1 : R, . . . ,xn : R ⊢ t : H,

∀Z, ∀s⃗ = (s1, . . . , sm) with si ∈ C(Θ,Z,Hi),

∀p⃗ = (p1, . . . pp), ∀ψj with |= ψ1 ∧ . . . ∧ ψp ⇒ ψ,

and pj ∈ C(Θ,Z ⇝ ψj , {αj ∈ R}),
it holds that t(s⃗, p⃗) ∈ C(Θ, (Y ∩ Z)(η),T)},

where as usual we should read ψ(η) = ψ, (Y ∩Z)(η) = Y ∩Z when T is higher-
order, and ψ(η) = ψ ⇝ η, (Y ∩ Z)(η) = (Y ∩ Z) ⇝ η when T is an annnotated
real type.

Fig. 6: Open Logical Predicates for Refinement Types.

Example 8. We illustrate Definition 4 on some examples. We denote by B◦ the
open unit ball in R2, i.e. B◦ = {(a, b) ∈ R2 | a2 + b2 < 1}. We consider the
ground typing context Θ = x1 : {α1 ∈ R},x2 : {α2 ∈ R}.
• We look first at the predicate C(Θ,B◦ ⇝ (β > 0), {β ∈ R}). It consists of all
programs x1 : R,x2 : R ⊢ t : R such that Jx1 : R,x2 : R ⊢ t : RK is continuous
on the open unit ball, and takes only strictly positive values there.

• We look now at an example when the target type T is higher-order. We take

H = {β1 ∈ R}(β1≥0)⇝(β2≥0)→ {β2 ∈ R}, and we look at the logical predicate
C(Θ,B◦,H). We are going to show that the latter contains, for instance, the
program:

t = λw.f(w,x21 + y21) where f(w, a) =
w

1− a
if a < 1; 0 otherwise.

Looking at Figure 6, we see that it is enough to check that for any Y ⊆ R2

and any s ∈ C(Θ,Y ⇝ (β1 ≥ 0), {β1 ∈ R}), it holds that:

ts ∈ C(Θ,B◦ ∩ Y ⇝ (β2 ≥ 0), {β2 ∈ R}).

On the Versatility of Logical Relations 23

Our overall goal—in order to prove Theorem 3—is to show the counterpart
of the Fundamental Lemma from Section 4 (i.e. Lemma 1), which states that
the logical predicate FΘ

R contains all well-typed terms. This lemma only talks
about the logical predicates for ground typing contexts, so we can state it as of
now, but its proof is based on the fact that we dispose of the three predicates.
Observe that from there, Theorem 3 follows just from the definition of the logical
predicates on base types. Similarly to what we did for Lemma 1 in Section 4,
proving it requires to define the logical predicates for substitutions and higher-
order typing contexts. We do this in Definition 5 below. As before, they consist in
an adaptation to our refinement types framework of the open logical predicates
FΓ
Θ and FΘ,Γ

τ of Section 4: as usual, we need to add continuity annotations, and
distinguish whether the target type is a ground type or an higher-order type.

Notation 2. We need to first introduce the following notation: let Γ , Θ be two
ground non-refined typing environments of length m and n respectively–and with
disjoint support. Let γ : supp(Γ) → {t | Θ ⊢ t : R} be a substitution. We write
JγK for the real-valued function:

JγK :Rn → Rn+m

a⃗ 7→ (⃗a, Jγ(x1)K(⃗a), . . . , Jγ(xm)K(⃗a))

Definition 5. Let Θ be a ground typing environment of length n, and Γ an
arbitrary typing environment. We note n and m the lengths of respectively Θ
and GΓ .
• Let Z ⊆ Rn,W ⊆ Rn+m. We define C(Θ,Z ⇝W ,Γ) as the set of those

substitutions γ : supp(Γ) → {t | Θ ⊢ t : R} such that:
• ∀(x : H) ∈ HΓ , γ(x) ∈ C(Θ,Z,H),
• Jγ|GΓ K : Rn → Rn+m sends continuously Z into W ;

• Let W ⊆ Rn+m, F = {α ∈ R} an annotated real type, and ψ a logical formula
with Vars(ψ) ⊆ {α}. We define:

C((Γ ;Θ),W ⇝ ψ,F) := {t | Γ ,Θ ⊢ t : R
∧ ∀X ⊆ Rn,∀γ ∈ C(Θ,X ⇝W ,Γ), tγ ∈ C(Θ,X ⇝ ψ,F)}.

• Let W ⊆ Rn+m, and H an higher-order refined type. We define :

C((Γ ;Θ),W ,H) := {t | Γ ,Θ ⊢ t : H
∧ ∀X ⊆ Rn,∀γ ∈ C(Θ,X ⇝W ,Γ). tγ ∈ C(Θ,X,H)}.

Example 9. We illustrate Definition 5 on an example. We consider the same
context Θ as in Example 8, i.e. Θ = x1 : {α1 ∈ R},x2 : {α2 ∈ R}, and we take

Γ = x3 : {α3 ∈ R}, z : H, with H = {β1 ∈ R}(β1≥0)⇝(β2≥0)→ {β2 ∈ R}. We are
interested in the following logical predicate for substitution:

C(Θ,B◦ ⇝ {(v, |v|) | v ∈ B◦)},Γ)

where the norm of the couple (a, b) is taken as: |(a, b)| =
√
a2 + b2. We are

going to build a substitution γ : {x3, z} → Λ×,→,R
F that belongs to this set. We

take:

24 G. Barthe et al.

• γ(z) = λw.f(w,x21 + x22) where f(w, a) =
w

1−a if a < 1; 0 otherwise.

• γ(x3) = (
√
·)(x21 + x22).

We can check that the requirements of Definition 5 indeed hold for γ:
• γ(z) ∈ C(Θ,B◦,H)—see Example 8;
• Jγ|GΓ K : R × R → R3 is continuous on B◦, and moreover sends B◦ into

{(v, |v|) | v ∈ B◦)}. Looking at our definition of the semantics of a substitu-
tion, we see that Jγ|GΓ K(a, b) = (a, b, |(a, b)|), thus the requirements above
hold.

Lemma 5 (Fundamental Lemma). Let Θ be a ground typing context, and Γ
an arbitrary typing context–thus Γ can contain both ground type variables and
non-ground type variables.

• Suppose that Γ ,Θ
θ⇝η
⊢r t : F : then t ∈ C(Γ ;Θ,Dom(θ)⇝ η,F).

• Suppose that Γ ,Θ
θ

⊢r t : H: then t ∈ C(Γ ;Θ,Dom(θ),H).

Proof Sketch. The proof is by induction on the derivation of the refined typing
judgment. Along the lines, we need to show that our logical predicates play well
with the underlying denotational semantics, but also with logic. The details can
be found in the extended version [7].

From there, we can finally prove the main result of this section, i.e. Theo-
rem 3, that states the correctness of our refinement type system. Indeed, Lemma 5
has Theorem 3 as a corollary: from there it is enough to look at the definition
of the logical predicate for first-order programs to finally show the correctness
of our type system.

7 Related Work

Logical relations are certainly one of the most well-studied concepts in higher-
order programming language theory. In their unary version, they have been
introduced by Tait [54], and further exploited by Girard [33] and Tait [55] him-
self in giving strong normalization proofs for second-order type systems. The
relational counterpart of realizability, namely logical relations proper, have been
introduced by Plotkin [48], and further developed along many different axes, and
in particular towards calculi with fixpoint constructs or recursive types [3,4,2],
probabilistic choice [14], or monadic and algebraic effects [34,11,34]. Without
any hope to be comprehensive, we may refer to Mitchell’s textbook on program-
ming language theory for a comprehensive account about the earlier, classic
definitions [43], or to aforementioned papers for more recent developments.

Extensions of logical relations to open terms have been introduced by several
authors [39,47,30,53,15] and were explicitly referred to as open logical relations
in [59]. However, to the best of the authors’ knowledge, all the aforementioned
works use open logical relations for specific purposes, and do not investigate
their applicability as a general methodology.

On the Versatility of Logical Relations 25

Special cases of our Containment Theorem can be found in many papers,
typically as auxiliary results. As already mentioned, an example is the one of
higher-order polynomials, whose first-order terms are proved to compute proper
polynomials in many ways [40,5], none of them in the style of logical relations.
The Containment Theorem itself can be derived by a previous result by La-
font [41] (see also Theorem 4.10.7 in [24]). Contrary to such a result, however,
our proof of the Containment Theorem is entirely syntactical and consists of a
straightforward application of open logical relations.

Algorithms for automatic differentiation have recently been extended to higher-
order programming languages [50,46,51,42,45], and have been investigated from
a semantical perspective in [16,1] relying on insights from linear logic and deno-
tational semantics. In particular, the work of Huot et al. [37] provides a deno-
tational proof of correctness of the program transformation of [50] that we have
studied in Section 5.

Continuity and robustness analysis of imperative first-order programs by way
of program logics is the topic of study of a series of papers by Chaudhuri and
co-authors [19,18,20]. None of them, however, deal with higher-order programs.

8 Conclusion and Future Work

We have showed how a mild variation on the concept of a logical relation can be
fruitfully used for proving both predicative and relational properties of higher-
order programming languages, when such properties have a first-order, rather
than a ground “flavor”. As such, the added value of this contribution is not much
in the technique itself, but in showing how it is extremely useful in heterogeneous
contexts, this way witnessing the versatility of logical relations.

The three case studies, and in particular the correctness of automatic dif-
ferentiation and refinement type-based continuity analysis, are given as proof-
of-concepts, but this does not mean they do not deserve to be studied more in
depth. An example of an interesting direction for future work is the extension
of our correctness proof from Section 5 to backward propagation differentiation
algorithms. Another one consists in adapting the refinement type system of Sec-
tion 6.1 to deal with differentiability. That would of course require a substantial
change in the typing rule for conditionals, which should take care of checking not
only continuity, but also differentiability at the critical points. It would also be
interesting to implement the refinement type system using standard SMT-based
approaches. Finally, the authors plan to investigate extensions of open logical
relations to non-normalizing calculi, as well as to non-simply typed calculi (such
as calculi with polymorphic or recursive types).

References

1. Abadi, M., Plotkin, G.D.: A simple differentiable programming language. PACMPL
4(POPL), 38:1–38:28 (2020)

26 G. Barthe et al.

2. Ahmed, A.J.: Step-indexed syntactic logical relations for recursive and quantified
types. In: Proc. of ESOP 2006. pp. 69–83 (2006)

3. Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foun-
dational proof-carrying code. ACM Trans. Program. Lang. Syst. 23(5), 657–683
(2001)

4. Appel, A.W., Mellies, P.A., Richards, C.D., Vouillon, J.: A very modal model of
a modern, major, general type system. In: ACM SIGPLAN Notices. vol. 42, pp.
109–122. ACM (2007)

5. Baillot, P., Dal Lago, U.: Higher-order interpretations and program complexity. In:
Proc. of CSL 2012. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)

6. Barendregt, H.P.: The lambda calculus: its syntax and semantics. North-Holland
(1984)

7. Barthe, G., Crubillé, R., Dal Lago, U., Gavazzo, F.: On the versatility of open
logical relations: Continuity, automatic differentiation, and a containment theorem
(long version) (2019), available at https://arxiv.org/abs/2002.08489

8. Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L.: Automatic dif-
ferentiation of algorithms. Journal of Computational and Applied Mathematics
124(1), 171 – 190 (2000), numerical Analysis 2000. Vol. IV: Optimization and
Nonlinear Equations

9. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differen-
tiation in machine learning: a survey. Journal of Machine Learning Research 18,
153:1–153:43 (2017)

10. Benton, N., Hofmann, M., Nigam, V.: Abstract effects and proof-relevant logical
relations. In: Proc. of POPL 2014. pp. 619–632 (2014)

11. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Handle with care: rela-
tional interpretation of algebraic effects and handlers. PACMPL 2(POPL), 8:1–
8:30 (2018)

12. Birkedal, L., Jaber, G., Sieczkowski, F., Thamsborg, J.: A kripke logical relation
for effect-based program transformations. Inf. Comput. 249, 160–189 (2016)

13. Birkedal, L., Sieczkowski, F., Thamsborg, J.: A concurrent logical relation. In:
Proc. of CSL 2012. pp. 107–121 (2012)

14. Bizjak, A., Birkedal, L.: Step-indexed logical relations for probability. In: Proc. of
FoSSaCS 2015. pp. 279–294 (2015)

15. Bowman, W.J., Ahmed, A.: Noninterference for free. In: Proc. of ICFP 2015. pp.
101–113 (2015)

16. Brunel, A., Mazza, D., Pagani, M.: Backpropagation in the simply typed lambda-
calculus with linear negation. PACMPL 4(POPL), 64:1–64:27 (2020)

17. Brunel, A., Terui, K.: Church => scott = ptime: an application of resource sensitive
realizability. In: Proc. of DICE 2010. pp. 31–46 (2010)

18. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity analysis of programs. In:
Proc. of POPL 2010. pp. 57–70 (2010)

19. Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continuity and robustness of pro-
grams. Commun. ACM 55(8), 107–115 (2012)

20. Chaudhuri, S., Gulwani, S., Lublinerman, R., NavidPour, S.: Proving programs
robust. In: Proc. of SIGSOFT/FSE 2011. pp. 102–112 (2011)

21. Clifford: Preliminary Sketch of Biquaternions. Proceedings of the London Mathe-
matical Society s1-4(1), 381–395 (11 1871)

22. Cook, S.A., Kapron, B.M.: Characterizations of the basic feasible functionals of
finite type (extended abstract). In: 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1
November 1989. pp. 154–159 (1989)

https://arxiv.org/abs/2002.08489

On the Versatility of Logical Relations 27

23. Crary, K., Harper, R.: Syntactic logical relations for polymorphic and recursive
types. Electr. Notes Theor. Comput. Sci. 172, 259–299 (2007)

24. Crole, R.L.: Categories for Types. Cambridge mathematical textbooks, Cambridge
University Press (1993)

25. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program. 22(4-5), 477–528 (2012)

26. Edalat, A.: The domain of differentiable functions. Electr. Notes Theor. Comput.
Sci. 40, 144 (2000)

27. Edalat, A., Lieutier, A.: Domain theory and differential calculus (functions of one
variable). In: Proc. of LICS 2002. pp. 277–286 (2002)

28. Elliott, C.: The simple essence of automatic differentiation. PACMPL 2(ICFP),
70:1–70:29 (2018)

29. Escardó, M.H., Ho, W.K.: Operational domain theory and topology of sequential
programming languages. Inf. Comput. 207(3), 411–437 (2009)

30. Fiore, M.P.: Semantic analysis of normalisation by evaluation for typed lambda
calculus. In: Proc. of PPDP 2002. pp. 26–37 (2002)

31. Freeman, T., Pfenning, F.: Refinement types for ml. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion. pp. 268–277. PLDI ’91 (1991)

32. Gianantonio, P.D., Edalat, A.: A language for differentiable functions. In: Proc. of
FOSSACS 2013. pp. 337–352 (2013)

33. Girard, J.Y.: Une extension de l’interpretation de gödel a l’analyse, et son applica-
tion a l’elimination des coupures dans l’analyse et la theorie des types. In: Studies
in Logic and the Foundations of Mathematics, vol. 63, pp. 63–92. Elsevier (1971)

34. Goubault-Larrecq, J., Lasota, S., Nowak, D.: Logical relations for monadic types.
In: International Workshop on Computer Science Logic. pp. 553–568. Springer
(2002)

35. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, second edn. (2008)

36. Hofmann, M.: Logical relations and nondeterminism. In: Software, Services, and
Systems - Essays Dedicated to Martin Wirsing on the Occasion of His Retirement
from the Chair of Programming and Software Engineering. pp. 62–74 (2015)

37. Huot, M., Staton, S., Vákár, M.: Correctness of automatic differentiation via dif-
feologies and categorical gluing (2020), to appear in Proc. of ESOP 2020 (long
version available at http://arxiv.org/abs/2001.02209

38. Jaber, G.: Syteci: automating contextual equivalence for higher-order programs
with references. PACMPL 4(POPL), 59:1–59:28 (2020)

39. Jung, A., Tiuryn, J.: A new characterization of lambda definability. In: Proc. of
TLCA 1993. pp. 245–257 (1993)

40. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J.
Comput. 25(1), 117–132 (1996)

41. Lafont, Y.: Logiques, catégories & machines: implantation de langages de pro-
grammation guidée par la logique catégorique. Institut national de recherche en
informatique et en automatique (1988)

42. Manzyuk, O., Pearlmutter, B.A., Radul, A.A., Rush, D.R., Siskind, J.M.: Pertur-
bation confusion in forward automatic differentiation of higher-order functions. J.
Funct. Program. 29, e12 (2019)

43. Mitchell, J.C.: Foundations for programming languages. Foundation of computing
series, MIT Press (1996)

http://arxiv.org/abs/2001.02209

28 G. Barthe et al.

44. Owens, S., Myreen, M.O., Kumar, R., Tan, Y.K.: Functional big-step semantics.
In: Proc. of ESOP 2016. pp. 589–615 (2016)

45. Pearlmutter, B.A., Siskind, J.M.: Lazy multivariate higher-order forward-mode
AD. In: Proc. of POPL 2007. pp. 155–160 (2007)

46. Pearlmutter, B.A., Siskind, J.M.: Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Trans. Program. Lang. Syst. 30(2),
7:1–7:36 (2008)

47. Pitts, A.M., Stark, I.D.B.: Observable properties of higher order functions that
dynamically create local names, or what’s new? In: Proc. of MFCS 1993. pp. 122–
141 (1993)

48. Plotkin, G.: Lambda-definability and logical relations. Edinburgh University (1973)
49. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: Foundations of

research. chap. Learning Representations by Back-propagating Errors, pp. 696–699.
MIT Press (1988)

50. Shaikhha, A., Fitzgibbon, A., Vytiniotis, D., Peyton Jones, S.: Efficient differen-
tiable programming in a functional array-processing language. PACMPL 3(ICFP),
97:1–97:30 (2019)

51. Siskind, J.M., Pearlmutter, B.A.: Nesting forward-mode AD in a functional frame-
work. Higher-Order and Symbolic Computation 21(4), 361–376 (2008)

52. Spivak, M.: Calculus On Manifolds: A Modern Approach To Classical Theorems
Of Advanced Calculus. Avalon Publishing (1971)

53. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Proc. of LICS 2016. pp. 525–534 (2016)

54. Tait, W.W.: Intensional interpretations of functionals of finite type i. Journal of
Symbolic Logic 32(2), 198–212 (1967)

55. Tait, W.W.: A realizability interpretation of the theory of species. In: Logic Col-
loquium. pp. 240–251. Springer, Berlin, Heidelberg (1975)

56. Turon, A.J., Thamsborg, J., Ahmed, A., Birkedal, L., Dreyer, D.: Logical relations
for fine-grained concurrency. In: Proc. of POPL 2013. pp. 343–356 (2013)

57. Vuillemin, J.: Exact real computer arithmetic with continued fractions. IEEE
Trans. Comput. 39(8), 1087–1105 (1990)

58. Weihrauch, K.: Computable Analysis: An Introduction. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer Berlin Heidelberg (2000)

59. Zhao, J., Zhang, Q., Zdancewic, S.: Relational parametricity for a polymorphic
linear lambda calculus. In: Proc. of APLAS 2010. pp. 344–359 (2010)

	On the Versatility of Open Logical Relations

