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Abstract 22 

The metastatistical extreme value approach proved promising in the frequency analysis of 23 

daily precipitation from ordinary events, outperforming traditional methods based on sampled 24 

extremes. However, sub-daily applications are currently restrained as it is not known if ordinary 25 

events can be consistently examined over durations, and it is not clear to what extent their entire 26 

distributions represent extremes. We propose here a unified definition of ordinary events across 27 

durations, and suggest the simplified metastatistical extreme value formulation for dealing with 28 

extremes emerging from the tail, rather than the entire distributions, of ordinary events. This 29 

unified framework provides robust estimates of extreme quantiles (<10% error on the 100-year 30 

from a 26-year long record), and allows scaling representations in which ordinary and extreme 31 

events share the scaling exponent. Future applications could improve our knowledge of sub-daily 32 

extreme precipitation and help investigating the impact of local factors and climatic forcing on 33 

their frequency. 34 

 35 

Plain Language Summary 36 

We propose here a unified methodology to quantify the intensity of extreme rainfall of 37 

short duration, such as events expected to occur on average once every 100 years. As opposed to 38 

alternative methods in literature, we rely on the simultaneous analysis of all every-day rainfall 39 

events, which, being much larger in number than extremes, were shown to provide improved 40 

estimates for daily rainfall. We show that, under our approach, the hypothesis of every-day and 41 

extreme events being similar enough holds also for short-duration rainfall. Application of our 42 

method to 26 years of data from an individual station reproduces analyses based on more than 43 

150 years of observations from multiple nearby stations, with less than 10% error on the 44 

estimation of rain intensities expected to occur on average once every 100 years, which are not 45 

directly quantifiable from the 26 years of observations. The proposed methodology could help 46 

improving our knowledge of short-duration rainfall extremes, with implications for water 47 

resources and risk management, and could help investigating the impact of climate change on 48 

extreme rainfall events. 49 

 50 
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1 Introduction 51 

The Metastatistical Extreme Value (MEV) framework was recently proposed for the 52 

frequency analyses of extremes under pre-asymptotic conditions. The method relies on the 53 

hypothesis that the extremes of the variable of interest emerge from the yearly distributions of 54 

underlying ordinary events, which are sampled a finite number of times every year (Marani and 55 

Ignaccolo, 2015). Once the cumulative distributions of the ordinary events 𝐹(𝑥, 𝜽𝑗), where 𝜽𝑗  56 

are the distribution parameters, are known for every year 𝑗 = 1…𝑀, the extreme values 57 

cumulative distribution can be written as:  𝜁(𝑥) =
1

𝑀
∑ 𝐹𝑖(𝑥, 𝜽𝑗)

𝑛𝑗𝑀
𝑗=1 , where 𝑛𝑗  is the number of 58 

ordinary events observed in the j-th year (Zorzetto et al., 2016). The framework can include any 59 

class of distributions for 𝐹, and allows to consider multiple types of ordinary events (e.g., non-60 

tropical and tropical cyclones) to derive compound extreme value distributions (Marra et al., 61 

2019; Miniussi et al., 2020). Making use of the full available data record, MEV also largely 62 

decreases the parameter estimation uncertainty and the stochastic uncertainty related to the 63 

sampling of extremes. 64 

It can be shown that when the inter-annual variability of the ordinary events can be 65 

neglected (i.e., 𝜽𝑗 ≈ 𝜽𝑘 , ∀𝑗, 𝑘) and the focus is on extreme quantiles (i.e., 𝐹 → 1), the inter-66 

annual variability of the number of yearly events also becomes negligible. In these conditions, a 67 

simplified MEV formulation (SMEV), closely resembling ordinary statistics, can be written: 68 

𝜁(𝑥) ≈ 𝐹(𝑥, 𝜽)𝑛, where 𝑛 is here the average number of ordinary events per year (Marra et al., 69 

2019). SMEV was originally proposed as an instantaneous limit (𝑀 → 0) of MEV for the 70 

analysis of nonstationary processes. However, when tested for extreme value analyses on 71 

observational records, SMEV was found to perform similarly, even if less accurately than MEV, 72 

and to be preferable when the small number of ordinary events per year prevents to accurately 73 

estimate parameters for individual years (𝑛 ≲ 20) (Schellander et al., 2019; Miniussi and 74 

Marani, 2020). Owing to the largely increased data sample used to estimate the distribution 75 

parameters (all years are used together), SMEV permits to focus on the tail of the ordinary events 76 

distribution by left-censoring the data (Marra et al., 2019). It should be noted that this is not 77 

equivalent to threshold exceedance methods as, in such cases, the information below threshold is 78 

discarded and results hold only asymptotically for thresholds tending to the upper limit of the 79 
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distribution support (Davison and Smith, 1990), while SMEV describes tails which include large 80 

portions of the data and whose definition accounts for the whole data sample. 81 

So far, MEV methods have been mostly used for the analysis of extreme daily 82 

precipitation relying on Weibull distributions to describe the ordinary events (e.g., Marani and 83 

Ignaccolo, 2015; Zorzetto et al., 2016; Miniussi and Marani, 2020). Results showed a number of 84 

advantages over traditional methods based on the sampled extremes: (i) rare quantiles, 85 

corresponding to return periods longer than the available data record, are estimated with 86 

significantly reduced errors; (ii) short records are sufficient to obtain robust estimates; (iii) the 87 

method is less sensitive to measurement errors typically affecting extremes (Zorzetto et al., 2016; 88 

Marra et al., 2018; Schellander et al., 2019; Miniussi and Marani, 2020; Zorzetto and Marani, 89 

2020). Extending the applicability of MEV to sub-daily durations by means of a unified 90 

methodology that allows to examine ordinary events across durations could pose the bases for 91 

more general frameworks relying on the scaling properties of ordinary events. This could 92 

improve our understanding of extreme precipitation at the global scale and provide more 93 

accurate information for hydraulic infrastructure design and risk management.  94 

Two knowledge gaps currently restrain the application of MEV to sub-daily durations. 95 

First, the only method so far proposed to define sub-daily ordinary events is based on the 96 

temporal autocorrelation of the individual time series and do not permit to consider multiple 97 

durations together (Marra et al., 2018). Second, the results reported above only pertain to 98 

extremes emerging from the entire yearly distributions of ordinary events. This assumption is in 99 

contrast with results showing that sub-daily precipitation is better described by more general 100 

distributions, whose tails only can be approximated by stretched-exponential (e.g., Weibull) or 101 

power-type distributions (e.g., Papalexiou et al., 2018; Papalexiou, 2018). Here, we address these 102 

gaps by (a) proposing a consistent definition of ordinary events which allows scaling 103 

representations across durations, and (b) suggesting SMEV as a viable option for dealing with 104 

extremes emerging from the tail of the ordinary events distribution, as opposed to their entire 105 

distributions. We evaluate the robustness of the proposed MEV and SMEV approaches on a 106 

study case in the southeastern Mediterranean coast for which 26 years of 10-min data are 107 

available. We rely on regional estimates of rare quantiles from 9 stations (>150 years of record in 108 

total) as a reference. 109 
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2 Methods 110 

We propose to define ordinary events based on storms, i.e. consecutive wet events 111 

separated by dry hiatuses whose length is to be determined based on the climatology of the region. 112 

Ordinary events can then be computed as the maxima intensities observed within each storm using 113 

moving windows of the desired duration. In this way, ordinary events are directly related to 114 

meteorological features, and their number remains consistent across durations. 115 

Series of 10-min precipitation data are collected for 9 quality-checked automatic stations 116 

(164-year record in total) in the south-eastern Mediterranean coast. Distance between the stations 117 

ranges between 1.5 and 70 km (27 ± 16 km) and individual records span 10 to 26 years (18.2 ±118 

6.1 years). Homogeneity of the region was ensured using the method based on the coefficient of 119 

L-variation recommended by Hosking and Wallis (1997) (𝐻 < 0.25 for all durations), so that the 120 

stations could be collectively used in a regional framework to estimate extremely low yearly 121 

exceedance probabilities. Reference quantiles are computed from the 9 stations using the regional 122 

L-moments method by Hosking and Wallis (1997) and the generalized extreme value (GEV) 123 

distribution (Fig. 1) by normalizing the annual maxima over their mean values. 124 

 125 
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 126 

Figure 1. Regional analysis and scaling of the annual maxima. (a) L-Moments ratio diagram for all the 127 

stations and durations, the theoretical moments for generalized extreme value (GEV), generalized Pareto 128 

(GP) and generalized logistic (GLO) distributions are shown. (b) Regional GEV distributions (dashed 129 

lines) estimated using the regional L-moments framework by Hosking and Wallis (1997); shaded areas 130 

show the 90% confidence interval obtained via bootstrap with replacement among the regional annual 131 

maxima (AMS); circles show the AMS observed at Zykhron Yaaqov station (frequency is estimated using 132 

the Weibull plotting positions), while dots show the AMS from all the 9 stations rescaled to the Zykhron 133 

Yaaqov mean. (c) Raw moments of the AMS. Colored lines show the regressions obtained using the full 134 

temporal domain (10 min – 6 hours; orange, shaded area represent the 90% confidence interval from 103 135 

bootstrap samples with replacement among the years) and the 1 h – 6 h interval (green); (d) Scaling 136 

exponent of the AMS obtained using the full temporal domain (10 min – 6 hours; orange) and the 1 h – 6 137 

h interval (green). 138 

 139 

Following previous studies in similar climates, we require at least six-dry-hour hiatuses 140 

(i.e., lower than the minimum rain amount reported in the data, 0.1 mm, over all 10-min intervals 141 
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for 6 consecutive hours) to separate storms (Restrepo-Posada and Eagleson, 1982; Tarolli et al., 142 

2012), but general applications should use a definintion based on the local climatology. Storms 143 

lasting less than 30 min (three time intervals, in our case) are removed. We focus on durations 144 

between 10-min and 6-hour (10-min, 20-min, 30-min, 1-hour, 3-hour, 6-hour), a choice driven by 145 

the temporal resolution of the data (10-min) and the dry hiatus used to separate storms (6-hour).  146 

MEV and SMEV are here applied at-site focusing on the longest recording station (Zikhron 147 

Yaaqov, 26-year). Complying with previous MEV applications, ordinary events are described 148 

using Weibull distributions in the form 𝐹(𝑥; 𝜆, 𝜅) = 1 − 𝑒−(
𝑥

𝜆
)
𝜅

, where 𝜆 and 𝜅 are the scale and 149 

shape parameters, respectively (Zorzetto et al., 2016). Such a model was shown as appropriate for 150 

the here-examined region (Marra et al., 2019). Three MEV parameters are obtained for every year: 151 

𝜆𝑗 and 𝜅𝑗 are estimated from all the yearly ordinary events by using the method of the L-moments 152 

(Hosking, 1990), and 𝑛𝑗  as the number of ordinary events in the j-th year. Extreme quantiles are 153 

then computed by numerically inverting the MEV cumulative distribution function (Zorzetto et 154 

al., 2016; Marra et al., 2018).  155 

Neglecting inter-annual variability, SMEV only requires three parameters: 𝜆 and 𝜅 are 156 

estimated left-censoring the low portion of the ordinary events and using a least-squares regression 157 

in Weibull-transformed coordinates on the remaining data points (Marani and Ignaccolo, 2015), 158 

while 𝑛 is the mean number of ordinary events per year (𝑛 =
∑𝑛𝑗

𝑀
). It is worth noting that, when 159 

based on Weibull, the SMEV distribution becomes an exponentiated Weibull distribution 160 

(Nadarajah et al., 2013). Following previous results for the region, the ordinary events tail is here 161 

defined as the largest 25% of the ordinary events (Marra et al., 2019). It should be however noted 162 

that the definition of the tails is case-dependent and should be selected using sensitivity analyses 163 

(as in Marra et al., 2019); for example, definition of the tail as the largest 45%-20% of the ordinary 164 

events was found appropriate for the study region. Extreme quantiles are computed inverting the 165 

SMEV cumulative distribution function. In addition, in order to better evaluate the robustness of 166 

SMEV to represent the distribution of out-of-sample extremes, a second set of parameters and 167 

quantiles is derived by also censoring all the annual maxima, so to obtain results fully independent 168 

from the observed annual maxima. For all methods, confidence intervals in parameters and 169 

quantiles are computed via bootstrap with replacement (103 repetitions) among the years in the 170 

record (Overeem et al., 2008). 171 
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3 Results and discussion 172 

 Application of MEV and SMEV to the here defined sub-daily ordinary events provides 173 

robust estimates of extreme quantiles (Fig. 2), with the estimated MEV (blue solid line and 90% 174 

confidence interval) and SMEV (red) distributions being generally consistent with the regional 175 

reference, and only MEV slightly underestimating quantiles for 1- and 3-hour durations (the 176 

reference lies outside of the 90% confidence interval). Thanks to the focus on the ordinary events 177 

tail, SMEV provides more accurate estimates (<10% error on the 100-year quantiles for all 178 

durations, <12.5% for 500-year) than MEV (<20%) but, due to the smaller data sample used to 179 

estimate the parameters, is characterized by larger uncertainty. Quantiles obtained independently 180 

from the observed annual maxima (red dashed lines) lie within the confidence interval of SMEV, 181 

and never exceed 20% error, even for 500-year return levels. Similarly, the observed annual 182 

maxima (black dots, plotted using the Weibull plotting positions) lie within the area in which we 183 

expect to see 90% of the annual maxima if they were actually sampled from SMEV (shaded in 184 

grey, obtained from 103 random sampling from SMEV). These observations support the 185 

robustness of the SMEV approach. 186 

 187 
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 188 

Figure 2. Quantiles estimated using MEV (blue solid line), SMEV (red solid line) for 10-min to 6-hour 189 

durations (a-f); blue and red shaded areas show the corresponding 90% confidence intervals (103 190 

bootstrap samples with replacement among the years). Black dots show the observed annual maxima 191 

(AMS) and dashed black line the regional GEV estimate obtained from 9 stations in the region 192 

(reference). Shaded in grey are the areas in which 90% of the annual maxima are expected to lie if they 193 

were sampled from SMEV. Red dashed lines represent quantiles obtained using SMEV and censoring the 194 

annual maxima. 195 

 196 

 The scaling of MEV and SMEV parameters with duration is presented in Fig. 3, noting 197 

that blue shaded area represents the 90% inter-annual variability of MEV parameters, and red 198 

and grey areas represent the 90% confidence intervals (bootstrap among the years) of SMEV and 199 
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non-zero-tail parameters, respectively. It is interesting to see a decrease of the shape parameter 200 

with increasing duration (Fig. 3b). This translates into heavier tails of the distribution of ordinary 201 

events at longer durations and, due to the consistent definition of ordinary events, of the resulting 202 

extreme value distribution. Despite seemingly contradicting previous results in which the tail of 203 

non-zero time intervals was examined (e.g., Papalexiou et al., 2018, shown here in grey), this is 204 

explained by the dramatic change in the number of non-zero time intervals per year (Fig. 3c). 205 

Using a consistent definition of the ordinary events in which their number is the same across 206 

durations, MEV and SMEV scale parameters scale with duration with the same scaling exponent 207 

of the annual maxima above 1-hour (Fig. 3a and Fig. 1). Notably, this is the temporal domain in 208 

which the simple scaling behavior of annual maxima is generally considered more robust 209 

(Burlando and Rosso, 1996; Ceresetti et al., 2010). This property suggests that extremes are 210 

indeed samples from the tail of the ordinary events, and opens MEV methods to applications in 211 

which multiple durations are used simultaneously (e.g., Burlando and Rosso, 1996; Langousis 212 

and Veneziano, 2007; Innocenti et al., 2017; Emmanouil et al., 2020). Overall, the use of 213 

consistent ordinary events across durations permits to examine the scaling behavior in all rain 214 

events, including different (if any) scaling behaviors between extreme and ordinary events. 215 

 216 

 217 

Figure 3. Scaling of MEV and SMEV parameters with duration; blue shaded area represents the 90% 218 

inter-annual variability of MEV parameters, and red and grey areas represent the 90% confidence 219 

intervals (bootstrap among the years) of SMEV and 10% non-zero tail (as in Papalexiou et al., 2018) 220 

parameters, respectively. (a) Scaling of the scale parameters with duration for MEV (blue), SMEV (red) 221 

and 10% non-zero tail (grey). Simple scaling relations from annual maxima are superimposed (10 min–6 222 

h in orange, 1 h—6 h in in green, see Fig. 1); within the uncertainties, MEV and SMEV scale parameters 223 

share the scaling exponent with annual maxima, especially the 1 h—6 h (green); (b) Scaling of the shape 224 
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parameters with duration. The shape parameter of the non-zero tail increases with duration as reported by 225 

other studies (e.g., Papalexiou et al., 2018), while an opposite behavior is reported for the MEV and 226 

SMEV; for the case of SMEV, the decrease is larger than the parameter estimation uncertainty; (c) 227 

Scaling of the number of ordinary events per year with duration. The proposed definition makes their 228 

number independent on duration (~40 events per year in this case). The marked decrease of the number of 229 

non-zero time intervals (grey) explains the different behaviors observed for the shape parameters between 230 

non-zero tail and MEV methods. 231 

 232 

We conclude showing further evidence for the emergence of extreme sub-daily 233 

precipitation from the tail of ordinary events. In the examined case (Fig. 4a, which confirms what 234 

observed in Fig. 2), the whole tail of ordinary events (colored dots), including annual maxima 235 

(thick black dots), are likely samples from a unique Weibull distribution whose parameters are 236 

here estimated explicitly censoring the observed annual maxima values (dashed lines, shaded 237 

areas represent 90% sampling uncertainty under the local climatology; note that 10% of the 238 

points are expected to lie outside of this area). Additionally, the robustness of SMEV in 239 

extracting information from ordinary events emerges in that the parameters estimated censoring 240 

the annual maxima (red dashed lines in Fig. 4b) are indistinguishable (i.e. within the red-shaded 241 

confidence interval) from the ones describing the whole tail (red solid line). Despite relying on 242 

an average of more than 40 ordinary events per year, the here analyzed data did not allow to 243 

separate the inter-annual variability of MEV parameters (shaded blue area in Fig. 4b) from the 244 

yearly parameter estimation uncertainty (blue dashed lines). 245 

 246 
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 247 

Figure 4. Robustness of MEV and SMEV assumptions. (a) Weibull plot (on the x-axis, p is the 248 

exceedance probability, i.e., 1 − 𝐹, in our notation) showing the ordinary events for the examined 249 

durations (dots, the 25% tail used in SMEV is colored according to the duration and annual maxima are in 250 

thick black), Weibull distributions (dashed lines) whose parameters are estimated fitting the 25% tail and 251 

explicitly censoring the observed annual maxima values (thick black dots), and sampling uncertainty from 252 

the Weibull distribution (90% interval from 2 ⋅ 103 random samples); (b) Weibull parameters estimated 253 

using MEV and SMEV. Inter-annual variability of MEV parameters (blue shaded area) almost perfectly 254 

overlaps with parameter estimation uncertainty (blue dashed lines; 103 random samples from a Weibull 255 

distribution described by the mean MEV parameters). SMEV parameters computed censoring the annual 256 

maxima (red dashed lines) are within the 90% confidence interval of the SMEV parameters (103 bootstrap 257 

repetitions with replacement among the years). 258 

 259 

4 Closing statement 260 

 We proposed a consistent definition of ordinary events based on independent storms to 261 

use the Metastatistical Extreme Value (MEV) framework across durations, and suggested the 262 
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simplified MEV formulation (SMEV) as an option to deal with extremes emerging from the tail 263 

of the ordinary events rather than their entire distribution. This definition of ordinary events 264 

allowed to effectively use MEV methods for sub-daily extreme precipitation frequency analyses, 265 

and permitted a scaling representation in which ordinary events scale with the same exponent of 266 

the observed annual maxima. Owing to its focus on the tail of the ordinary events distribution, 267 

SMEV provided estimates of 100-year quantiles with less than 10% error (12.5% for the 500-268 

year event) from only 26 years of data (up to ~20% for MEV). These results support the use of 269 

MEV methods for sub-daily (and sub-hourly) precipitation frequency analyses, and open to the 270 

use of analytical frameworks exploiting these methods across durations. Applications of the 271 

approach could improve our knowledge of extreme sub-daily precipitation at the global scale 272 

with important implications for hydraulic design and risk management. Additionally, the analysis 273 

of SMEV parameters could help investigating local properties of extreme precipitation that are 274 

generally masked by the stochastic uncertainties characterizing the sampling of extremes, such as 275 

their response to local and climate forcing. 276 
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