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Abstract

Let G be a finite group and, for n 2 N, denote by mn(G) the number of maximal
subgroups of G with index n. Let

M(G) = sup
n>2

logmn(G)/logn

and let E1(G) be the expected number of elements of G which have to be drawn at
random, with replacement, before a set of generators is found. Then

dM(G)e- 4 6 E1(G) 6 dM(G)e+ 3.
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1 Introduction

Let G be a nontrivial finite group and let x = (xn)n2N be a sequence
of independent, uniformly distributed G-valued random variables.
We may define a random variable ⌧G (a waiting time) by

⌧G = min{n > 1 | hx1, . . . , xni = G} 2 [1,+1].
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Notice that ⌧G > n if and only if hx1, . . . , xni 6= G, so we have

P(⌧G > n) = 1- PG(n),

denoting by

PG(n) =
|{(g1, . . . , gn) 2 Gn

| hg1, . . . , gni = G}|

|G|n

the probability that n randomly chosen elements of G generate G.
We denote by E1(G) the expectation E(⌧G) of this random variable.
In other word E1(G) is the expected number of elements of G which
have to be drawn at random, with replacement, before a set of gener-
ators is found.

Significant estimations for the value of E1(G) have been obtained
by A. Lubotzky in [5]. More precisely he estimated another related
invariant, defined by I. Pak:

V(G) = min
�
k 2 N

���� PG(k) > 1

e

�
.

As it was noticed by I. Pak (see for example Proposition 1.1 of [5]),
E1(G) and V(G) are related in the following way:

1

e
· E1(G) 6 V(G) 6 e

e- 1
· E1(G). (1.1)

For n 2 N, denote by mn(G) the number of maximal subgroups of G
with index n and let

M(G) = sup
n>2

logmn(G)

logn
.

Actually M(G) is the “polynomial degree” of the rate of growth
of mn(G). This rate has been studied for finite and profinite groups
by Mann, Shalev, Borovik, Jaikin-Zapirain, Liebeck, Pyber and more
recently by Ballester-Bolinches, Esteban-Romero, Jiménez-Seral and
Hangyang Meng (see [2],[3],[9],[10],[1]). It is roughly equal to V(G),
indeed we have (see Proposition 1.2 of [5]):

M(G)- 3.5 6 V(G) 6 M(G) + 2.02. (1.2)
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The estimation for E1(G) given by Lubotzky is obtained combin-
ing (1.1) and (1.2):

(M(G)- 3.5) · e- 1

e
6 E1(G) 6 (M(G) + 2.02) · e. (1.3)

However this estimation leaves open the question whether

|M(G)- E1(G)|

could be arbitrarily large. The main observation of this paper is that
the arguments used in [5] can be improved and the following result
can be obtained.

Theorem 1.1 Let G be a finite group. Then

dM(G)e- 4 6 E1(G) 6 dM(G)e+ 3.

Other numerical invariants may be derived from ⌧G starting from
the higher moments

E(⌧k
G
) =

X

n>1

nkP(⌧G = n).

In particular it is probabilistically important, when the expectation of
a random variable is known, to have control over its second moment.
We will denote by E2(G) the second moment E(⌧2

G
) and by

var(⌧G) = E2(G)- E1(G)
2

the variance of ⌧G.

Theorem 1.2 Let G be a finite group. Then

dM(G)e2 - 8dM(G)e+ 13 6 E2(G) 6 dM(G)e2 + 6dM(G)e+ 14+
⇡2

3
.

Corollary 1.3 var(⌧G) 6 14dM(G)e+ ⇡
2

3
- 2.

In [7] it is proved that E1(G) and E2(G) can be directly determined
using the Möbius function defined on the subgroup lattice of G by
setting µ(G) = 1 and µ(H) = -

P
H<K

µ(K) for any H < G. More
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precisely (see Theorem 1 and Theorem 3 of [7]):

E1(G) = -

X

H<G

µ(H)|G|

|G|- |H|
, E2(G) = -

X

H<G

µ(H)|G|(|G|+ |H|)

(|G|- |H|)2
(1.4)

Combining (1.4) with Theorems 1.1 and 1.2 we deduce:

Proposition 1.4 For every finite group G, we have

dM(G)e- 4 6 -

X

H<G

µ(H)|G|

|G|- |H|
6 dM(G)e+ 3,

dM(G)e2-8dM(G)e+13 6 -

X

H<G

µ(H)|G|(|G|
2
+ |G||H|)

(|G|- |H|)2

6 dM(G)e2 + 6dM(G)e+14+
⇡2

3
.

In 1991 L.G. Kovács and Hyo-Seob Sim proved that if a finite sol-
uble group G has a family of d-generator subgroups whose indices
have no common divisor, then G can be generated by d+ 1 elements
(see Theorem 2 of [4]). A probabilistic version of this theorem has
been given in [8]. With the help of Theorem 1.1 we may obtain an-
other result in this direction.

Theorem 1.5 Let G be a finite soluble group. Assume that for every
prime p dividing |G|, there exists Gp 6 G such that p does not
divide |G : Gp| and E1(Gp) 6 ⇢. Then E1(G) 6 ⇢+ 9.

The definition of E1(G) can be extended to the case of a (topolog-
ically) finitely generated profinite group G. If we denote with µ the
normalized Haar measure on G, so that µ(G) = 1, the probability
that k random elements generate (topologically) G is defined as

PG(k) = µ({(x1, . . . , xk) 2 Gk
|hx1, . . . , xki = G}),

where µ denotes also the product measure on Gk. As it is proved for
example in Section 6 of [7],

E1(G) = sup
N2N

E1(G/N),

where N is the set of the open normal subgroups of G. This implies
that the inequalities in Theorems 1.1 and 1.2 still hold if G is a finitely
generated profinite group. Recall that a profinite group G is said to
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be positively finitely generated, PFG for short, if PG(k) is positive
for some natural number k and that G is said to have polynomial
maximal subgroup growth if mn(G) 6 ↵n� for all n (and for some
constant ↵ and �). The profinite version of Theorem 1.1 can be con-
sidered as a quantitative version of the celebrated result of Mann
and Shalev [10], saying that a profinite group is PFG if and only if it
has polynomial maximal subgroup growth.

2 Proof of Theorem 1.1

For a real number ⌘ > 1, let us define

V⌘(G) = min
�
k 2 N

���� PG(k) > 1

⌘

�
.

The argument used by Lubotzky to bound V(G) = Ve(G), can be
adapted to bound V⌘(G), for an arbitrarily value of ⌘. The proof is
essentially the same, but for reader’s convenience we prefer to give
the details. In the following, when we write log we always take it in
base 2.

It was proved by Pyber (see Theorem 1.3 of [5]) that there exists a
constant b such that for every finite group G and every n > 2, G has
at most nb core-free maximal subgroups of index n. In fact, b = 2
will do.

Lemma 2.1 V⌘(G) > M(G)- b- log ⌘ > M(G)- 2- log ⌘.

Proof — Let Ni be an enumeration of all cores of maximal sub-
groups of G (each core occuring only once). For each Ni choose
a maximal subgroup Mi whose core is Ni. Let Cn(G) be the num-
ber of the maximal subgroups of index n obtained in this way. The
events Mk

i
in Gk are pairwise independent and from the quantitative

version of the Borel-Cantelli lemma, one deduces that

1X

n=2

Cn(G)n-k 6 1

Pk(G)

and in particular,

Cn(G) 6 nk

Pk(G)
.
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Taking k = V⌘(G) we get that

Cn(G) 6 ⌘ ·nV⌘(G).

Now, Pyber’s Theorem implies that

mn(G) 6 Cn(G)nb.

Hence, mn(G) 6 ⌘ ·nV⌘(G)+b. It follows that

M(G) = sup
n>2

logmn(G)

logn
6 V⌘(G) + b+ log ⌘.

This concludes our proof. ut

We recall the following formula (see for example (1.1) of [7]).

Lemma 2.2 E1(G) =
P

n>0
(1- PG(n)).

Lemma 2.3 dM(G)e- 4 6 E1(G).

Proof — By Lemma 2.1, for every positive integer i, we have

V
2i(G) > M(G)- b- log(2i) > M(G)- 2- i.

In particular if k = dM(G)e-3- i, then PG(k) < 2-i. Let m = dM(G)e.
It follows from Lemma 2.2 that

E1(G) >
X

06k6m-4

(1- PG(k)) >
X

06k6m-4

⇣
1- 2k-(m-3)

⌘

= m- 3-
X

16j6m-3

2-j > m- 3-
X

j>1

2-j
= m- 4.

This concludes our proof. ut

Lemma 2.4 E1(G) 6 dM(G)e- 3.

Proof — Let m = dM(G)e and k = m+ t with t a positive integer.
As it is noticed in the proof of Proposition 11.2.2 of [6] we have

1- PG(k) 6
X

n>2

mn(G)

nk
6

X

n>2

nM(G)

nk
6

X

n>2

nm

nk
6

X

n>2

1

nt
.
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It follows that

E1(G) =

X

k>0

(1- PG(k)) 6 m+ 2+
X

k>m+2

(1- PG(k))

6 m+ 2+
X

u>2

0

@
X

n>2

n-u

1

A = m+ 2+

0

@
X

n>2

0

@
X

u>2

n-u

1

A

1

A

= m+ 2+
X

n>2

n

n2(n- 1)
= m+ 2+

0

@
X

n>1

1

n(n+ 1)

1

A = m+ 3.

This concludes our proof. ut

3 Proof of Theorem 1.2

We recall the following formula (see for example Lemma 18 of [7]).

Lemma 3.1 E1(G) + E2(G) = 2
P

n>0
(n+ 1)(1- PG(n)).

Lemma 3.2 E1(G) + E2(G) 6 dM(G)e2 + 7dM(G)e+ 10+ ⇡
2

3
.

Proof — Setting m = dM(G)e and using Lemma 3.1, we deduce

E1(G) + E2(G) = 2
X

k>0

(k+ 1)(1- PG(k))

6 2
X

06k<m+2

(k+ 1) + 2
X

k>m+2

(k+ 1)(1- PG(k))

= (m+ 2)(m+ 3) + 2
X

k>m+2

(k+ 1)(1- PG(k)).

To conclude it suffices to estimate
P

k>m+2
(k+ 1)(1- PG(k)).

X

k>m+2

(k+ 1)(1- PG(k)) 6
X

k>m+2

(k+ 1)

0

@
X

n>2

nm

nk

1

A

=

X

n>2

0

@
X

u>2

u+ 1+m

nu

1

A =

X

n>2

0

@
X

u>2

u- 1

nu

1

A+

X

n>2

0

@
X

u>2

m+ 2

nu

1

A
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=

X

n>2

0

@
X

u>1

1

nu

1

A
2

+

X

n>2

n(m+ 2)

n2(n- 1)

=

X

n>2

✓
1

n- 1

◆2

+m+ 2 = m+ 2+
⇡2

6
.

This concludes our proof. ut

Corollary 3.3 E2(G) 6 dM(G)e2 + 6dM(G)e+ 14+ ⇡
2

3
.

Proof — Combining Lemma 3.2 and Lemma 2.3, we deduce

E2(G) 6 dM(G)e2 + 7dM(G)e+ 10+
⇡2

3
- E1(G)

6 dM(G)e2 + 7dM(G)e+ 10+
⇡2

3
- (dM(G)e- 4)

= dM(G)e2 + 6dM(G)e+ 14+
⇡2

3
.

This concludes our proof. ut

Lemma 3.4 E1(G) + E2(G) > dM(G)e2 - 7dM(G)e+ 10.

Proof — Setting m = dM(G)e and applying Lemmas 2.1 and 3.1,
we obtain

e1(G) + e2(G)

2
>

X

06k6m-4

(k+ 1)(1- PG(k))

>
X

06k6m-4

(k+ 1)
⇣
1- 2k-(m-3)

⌘

=
(m- 2)(m- 3)

2
-

X

16j6m-3

m- 2- j

2j

> (m- 2)(m- 3)

2
+

X

16j6m-3

j

2j
-

X

j>1

m- 2

2j

> (m- 2)(m- 3)

2
- (m- 2).

This concludes our proof. ut
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Corollary 3.5 E2(G) > dM(G)e2 - 8dM(G)e+ 13.

Proof — Combining Lemma 3.4 and Lemma 2.4, we deduce

E2(G) > dM(G)e2 - 7dM(G)e+ 10- E1(G)

> dM(G)e2 - 7dM(G)e+ 10- (dM(G)e- 3)

= dM(G)e2 - 8dM(G)e+ 13.

This concludes our proof. ut

4 Proof of Theorem 1.5

It can be easily seen that for every finite soluble group G and
every n > 2, G has at most n core-free maximal subgroups of index n.
This means that the constant b in the statement of Lemma 2.1 can be
taken equal to 1 in the case of finite soluble groups and consequently
we have:

Lemma 4.1 If G is a finite soluble group, then

dM(G)e- 3 6 E1(G) 6 dM(G)e+ 3.

Lemma 4.2 Let G be a finite soluble group. There exists a prime divisor p
of the order of G and a positive integer a such that

mpa(G) = pa·M(G).

If H is a subgroup of G containing a Sylow p-subgroup of G, then

M(G) 6 M(H) + 3.

Proof — Let m = M(G). Since the maximal subgroups of G have
prime-power indices, there exists a prime divisor p of the order of G
and a positive integer a such that mpa(G) = pa·m. Let H be a sub-
group of G containing a Sylow p-subgroup of G and let µ = M(H). It
follows from (2.4) of [8] that

pa·m = mpa(G) 6
X

b6a

pa+bm
pb(H) 6

X

b6a

pa+bpb·µ 6 p3·a+µ·a,
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hence m 6 3+ µ. ut

Proof of Theorem 1.5 — By Lemma 4.2, there exists a prime divi-
sor p of G, such that

M(G) 6 M(Gp) + 3.

But then we deduce from Lemma 4.1, that

E1(G) 6 dM(G)e+ 3 6 dM(Gp)e+ 6 6 E1(Gp) + 9.

The theorem is proved. ut
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