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S U M M A R Y 

Teleseismic traveltime tomography remains one of the most popular methods for obtain- 
ing images of Earth’s upper mantle. Ho wever , despite extensi ve e vidence for an elasticall y 

anisotropic mantle, the isotropic assumption remains commonplace in such imaging studies. 
This can result in significant model artefacts which in turn may yield misguided inferences 
regarding mantle dynamics. The nature of anisotropy-induced apparent velocity anomalies 
has been well-documented in P -wave imaging and various strategies have been proposed to 

constrain both isotropic and anisotropic heterogeneity from these data. In contrast, few studies 
hav e e xplored the consequences for shear w ave tomo graphy and no practical framework for 
the anisotropic inversion of S -wave dela ys exists. Here, w e propose a new method for con- 
straining arbitrarily oriented hexagonal anisotropy using both traveltime and splitting intensity 

observations from direct S phases. Our approach accounts for polarization and finite-frequency 

effects and allows for isotropic starting models. The imaging method is validated through the 
tomo graphic anal ysis of a realistic synthetic dataset produced from waveform simulations 
through a geodynamic model of subduction. Results illustrate that neglecting anisotropy pro- 
duces distortions in slab geometry and the appearance of sub- and supraslab low-velocity 

zones. Anisotropic inversions remove these artefacts while also constraining geodynamically 

rele v ant fabric properties including dip. 

Key words: Composition and structure of the mantle; Seismic anisotropy; Seismic tomog- 
raphy; Shear body waves. 
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1  I N T RO D U C T I O N  

Constraining the anisotropic structure of Earth’s interior remains 
a challenge in seismology and is crucial for understanding mantle 
dynamics. By coupling micromechanical deformation models with 
petrolo gic observ ations (e.g. Nicolas & Christensen 1987 ; Kaminski 
et al. 2004 ; Boneh et al. 2015 ; Wenk 2016 ), geodynamic simula- 
tions can yield detailed predictions for the anisotropic elastic struc- 
ture of the upper mantle from global (e.g. Beck er 2008 ; Beck er 
et al. 2008 ) to local (e.g. Blackman & Kendall 2002 ; Faccenda 
2014 ) scales. The anisotropic properties record the conv ectiv e his- 
tory of the mantle and the resulting mineral fabrics reflect a number 
of impor tant proper ties including temperature, pressure and devi- 
atoric stress conditions, mineral assemblages, presence of partial 
melt and volatile content (Karato et al. 2008 ; Hansen et al. 2021 ). 
Moreover, elastic anisotropy strongly effects wave propagation by 
causing direction-dependent variations in seismic velocity that are 
comparable to those due to thermal or composition changes (An- 
derson 2007 ). Thus, one can study mantle dynamics by exploiting 
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the anisotropic properties of the seismic wavefield (Simmons et al. 
2006 ; Long & Becker 2010 ; Wang & Becker 2019 ; Becker & Lebe- 
dev 2021 ). 

Anisotropy has long been considered in surface wave tomography 
(Montagner & Nataf 1986 ; Montagner 2007 ) revealing large-scale 
patterns in mantle flow (e.g. Zhou et al. 2006 ; Long & Becker 2010 ; 
Becker et al. 2014 ). Shear wave splitting (SWS) is routinely anal- 
ysed to constrain lateral variations in depth-averaged anisotropic 
structure at the scale of instrument spacing within an array (Savage 
1999 ; Long & Silver 2009 ). Ho wever , it remains commonplace to 
assume an isotropic Earth in body w ave tomo g raphy par ticularly 
with teleseismic data. This assumption is problematic for a number 
of reasons. (i) It is inconsistent with the aforementioned surface 
w ave and SWS observ ations which are often deri ved from seismic 
data collected in the same geographic area, if not from the same 
array, studied for body wave imaging. This makes meaningful com- 
parisons of models and integration of multiple seismic observables 
dif ficult. (ii) Body w ave arri v als are strongl y af fected b y anisotropy 
(K endall 1994 ; Le vin et al. 1996 ; Wu & Lees 1999 ; Blackman & 
ress on behalf of The Royal Astronomical Society. This is an Open Access 
s Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
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endall 2002 ; Sieminski et al. 2007 ) and neglecting this effect on
pparent wave speeds could lead to significant imaging artefacts
s is well-documented for P waves (Sobolev et al. 1999 ; Menke
015 ; Bezada et al. 2016 ; VanderBeek & Faccenda 2021 ; Lo Bue
t al. 2022 ; Rappisi et al. 2022 ). (iii) Consequently, interpretation
f isotropic velocity models could lead to misguided inferences on
antle dynamics. (iv) Finally, body waves are particularly useful

or constraining elastic anisotropy owing to their high-frequency
ontent and diverse directional sampling of the mantle (Beller &
hevrot 2020 ). While surface waves are well-suited for constrain-

ng depth-dependent structure, the long periods required for mantle
maging result in poor lateral resolution. Shear wave splitting stud-
es primarily focus on core-converted S phases (i.e. XK(K)S) be-
ause their polarization is known and the contribution of source-side
nisotropy is removed after passing though the outer core. Ho wever ,
heir near-vertical incidence angles within the upper mantle result
n poor depth resolution. The horizontal and vertical propagation
aths of surface and XK(K)S w aves, respecti vel y, provide poor con-
traints on the dip of anisotropic fabrics (Chevrot & van der Hilst
003 ; Romanowicz & Yuan 2012 ; Mondal & Long 2019 ) which are
ele v ant for e v aluating geodyanmic predictions. Clearl y, extending
he study of anisotropy to a broader range of body wave phases
ould resolve these limitations. 
Sev eral researchers hav e inv estigated strate gies for incorporat-

ng hexagonal anisotropy (e.g. Hearn 1996 ; Eberhart-Phillips &
enderson 2004 ; Munzarov á et al. 2018 ; VanderBeek & Faccenda
021 ; Wang & Zhao 2021 ) and, less commonly, lower-order elastic
ymmetry (Mochizuki 1995 ; Gr ésillaud & Cara 1996 ; Wu & Lees
999 ; Koulakov et al. 2009 ; Liu & Zhao 2016 ) in the inversion
f P -wave traveltimes. Recently, (VanderBeek & Faccenda 2021 )
emonstrated the importance of solving for anisotropy, especially
abric dip, in the construction of teleseismic P -wave models in
ubduction en vironments. Ho wever , the consequences of assuming
sotropy in shear wave traveltime tomography is poorly documented
nd a practical ray-based framework for the anisotropic inversion
f such data does not exist for passive-source mantle imaging. Here
e address these issues using a realistic synthetic seismic dataset
roduced by propagating teleseismic wavefields though an elasti-
ally anisotropic geodynamic model of subduction. After reviewing
rior work on retrieving anisotropy from S waves (Section 2 ), we
eri ve approximate anal ytic expressions for the propagation ve-
ocity and splitting intensity of a shear wave travelling through a
exagonally anisotropic media with arbitrary symmetry axis ori-
ntation (Section 3 ). From these expression, we detail an iterative
inearized inv ersion strate gy for imaging the mean shear veloc-
ty and the strength and 3-D orientation of anisotropy from these
bservables (Section 4 ). Using SPECFEM (Komatitsch & Tromp
999 ; Chen & Tromp 2007 ) generated waveforms, we validate our
e w tomo graphy method (Sections 5 –7 ). Our results illustrate that
raditional isotropic S -wave tomography is prone to strong imaging
rtefacts when anisotropic fabric is present in the imaging target
ut ignored in the structural inversion. By inverting for anisotropic
arameters, our method nearly eliminates these artefacts while also
econstructing geodynamically relevant anisotropic heterogeneity. 

 B  A C KG RO U N D :  A N I S O  T RO P I C  

M A G I N G  W I T H  S H E A R  WAV E S  

o give context to the present work, we briefly summarize previous
fforts at retrieving anisotropic structure from shear waves. The
iterature on seismic anisotropy is dense and so we focus this re vie w
n passive source mantle imaging for which our tomography method
 as de veloped. Howe ver , we ackno wledge the e xtensiv e body of

esearch pertaining to crustal seismic anisotropy (e.g. Crampin &
eacock 2008 ; Crampin & Gao 2009 ). 

Analysis of shear waves for the purpose of constraining man-
le anisotropy is almost e xclusiv ely restricted to the measure-
ent of shear wave splitting parameters. After passing through

n anisotropic medium, a shear wave splits into two ortho gonall y
olarized quasi-shear phases that propagate at different velocities.
he polarization direction (usually that of the fast-polarized wave-

orm) and time separation between the two phases define the split-
ing parameters that provide a measure of the apparent azimuth
nd strength of the anisotropic medium. Since the early work of
ndo et al. ( 1983 ), Vinnik et al. ( 1989 ) and Silver & Chan ( 1988 )
easurement of SWS parameters has emerged as a popular means

f investigating mantle anisotropy, particularly at regional-to-local
cales (Savage 1999 ; Long & Silver 2009 ). The method is especially
obust for constraining anisotropy because the birefringence phe-
omenon is insensitive to isotropic heterogeneity (Chevrot 2006 ).
o wever , the observed splitting parameters reflect the accumulated

ffect of anisotropy as the wave propagates from source to receiver.
or this reason, phases recorded at steep incidence angles, typically
K(K)S or intraslab earthquakes beneath nearby seismic arrays, are
tudied. In this case, splitting measurements represent a depth in-
egrated view and lateral variations in anisotropic structure can be
nvestigated at the scale of the instrument spacing. Ho wever , direct
nterpretation of such integrated measurements can be complicated
y the presence of vertical heterogeneity (e.g. Silver & Savage
994 ; Silver & Long 2011 ; Romanowicz & Yuan 2012 ). In such
ases, backazimuthal (or, more precisely, incoming polarization-
ependent) variations in splitting parameters can be used to identify
ayered anisotropy as well as dipping fabrics. Although, such anal-
sis is generally limited to the identification of discrete two-layer
odels. 
As an alternative to the splitting parameters, Chevrot ( 2000 )

roposed quantifying anisotropy via the splitting intensity which
easures the amplitude of the transverse component waveform

s a function of incoming polarization direction. Splitting inten-
ity measurements follow sinusoidal trends with incoming polar-
zation direction that can be used to identify the strength, az-
muth and dip of anisotropic fabrics. Unlike the splitting pa-
ameters, splitting intensity is commutative (Chevrot 2000 ; Sil-
er & Long 2011 ) meaning its value does not depend on the
rder of anisotropic heterogeneity traversed by the wave. While
he commutativity of splitting intensity implies that it cannot be
sed to diagnose layered anisotropy, this property does make it
menable to linearized inversion methods common in traveltime
omography. 

Ultimately, we wish to constrain a 3-D view of anisotropy. To this
nd, there exists a number of tomographic imaging methods for the
nversion of splitting parameters or intensity. Babu ška et al. ( 1993 )
nd Š ́ılen ý & Plomerov á ( 1996 ) used a grid-search approach to find
he orientation of a presumed elastic tensor that best explained P
a ve dela ys and splitting parameters in selected geographic do-
ains. Later, Ryberg et al. ( 2005 ) used full-waveform simulations
ith direct search methods to invert splitting parameters for the size

nd position of azimuthally anisotropic domains in 2-D. Abt & Fis-
her ( 2008 ) developed an iterative linearized inversion for splitting
arameters using local earthquakes in arbitrarily oriented hexago-
al and orthorhombic anisotropic media. Shear wave splitting was
odelled using a ray based matrix propagation method (R ümpker &
ilver 1998 ; Fischer et al. 2000 ) with a finite difference scheme for
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computing parameter sensitivities. In practice, data limitations re- 
stricted the method to primarily recovering azimuthally anisotropic 
parameters in hexagonally symmetric media (Abt et al. 2009 ). To 
pose a more linear imaging problem, Zhang et al. ( 2007 ) focused 
on imaging only the strength of anisotropy while assuming a fixed 
symmetry axis orientation. 

Inversions based on splitting parameters have a number of disad- 
v antages. The non-commutati vity of the observations exacerbates 
the non-linearity of the imaging problem. Consequently, solutions 
obtained from linearized inversions may strongly depend on the 
starting model. The splitting parameters themselves cannot be di- 
rectly calculated but must be measured from synthetic waveforms. 
While a number of methodologies exist for making these measure- 
ments (Vecsey et al. 2008 ; Long & Silver 2009 ), they can yield 
different results (e.g. Long & van der Hilst 2005 ; W üstefeld & 

Bokelmann 2007 ; Vecsey et al. 2008 ) further complicating the to- 
mo graphic anal ysis. Finall y, frequency-dependent scattering ef fects 
cannot easily be approximated and require more e xpensiv e wav e- 
form simulations. 

Anisotropic inversions based on splitting intensities largely avoid 
these issues. Following the initial conception b y Che vrot ( 2000 ), 
a series of subsequent works laid the foundation for performing 
finite-frequency splitting intensity tomography (Favier & Chevrot 
2003 ; Chevrot & van der Hilst 2003 ; Chevrot et al. 2004 ; Chevrot 
2006 ; Long & Silver 2008 ; Chevrot & Monteiller 2009 ) with focus 
on SKS phases in hexagonally symmetric elastic media. Sieminski 
et al. ( 2007 ) generalized the concept of splitting intensity and trav- 
eltime for shear waves propagating in arbitrary anisotropic media. 
Through computation of adjoint kernels, they demonstrated that 
these observables are generally sensitive to a large number of the 
21 elastic coefficients. Perhaps for this reason, we are not aware of 
any application of the Sieminski et al. ( 2007 ) method to shear wave 
tomography. 

The major limitation of splitting intensity for imaging anisotropic 
structure is the requirement that the delay time between fast- and 
slow-polarized waves remains small relative to the dominant period 
of the waveform. This requirement is not prohibitively restrictive 
for mantle imaging where periods of ∼10 s are generally anal- 
ysed while delays rarely exceed 2 s. Iterative linearized inversion 
schemes are generally parametrized using an anisotropic strength 
parameter(s) and the azimuth and, to a lesser extent, the dip of 
a hexagonal symmetry axis. Although a perturbation to the split- 
ting intensity can be linearly related to the anisotropic perturba- 
tions along the ray path or integral over the finite-frequency kernel, 
the imaging problem is still non-linear in that parameter sensi- 
tivities depend on the current model. Recently, Mondal & Long 
( 2019 ) implemented a model space search approach for estimat- 
ing 3-D azimuthal hexagonal anisotropy structure. Such methods 
are better suited for non-linear minimization but become computa- 
tionall y expensi ve for high-dimensional problems. Application of 
splitting intensity tomography has largely been restricted to obser- 
vations from SK(K)S phases (Monteiller & Chevrot 2011 ; Lin et al. 
2014 ; Mondal & Long 2020 ; Confal et al. 2023 ). While the finite- 
frequency kernels offer some depth sensitivity, the near-vertical 
propagation through the imaging target ultimately limits vertical 
resolution and offers poor constraints on fabric dip (Chevrot & van 
der Hilst 2003 ; Romanowicz & Yuan 2012 ). Additionally, splitting 
intensity tomography requires good back-azimuthal coverage which 
can be difficult to achieve when only SK(K)S phases are considered 
(Chevrot 2000 ). 

Despite the attention given to shear wave splitting analysis and 
the success of such methods in revealing the widespread anisotropic 
nature of the upper mantle (e.g. Savage 1999 ; Long & Silver 2009 ; 
Long & Becker 2010 ; Long 2013 ), tomographic inversion of shear 
w ave arri v als has almost e xclusiv ely been carried out assuming an 
isotropic earth. This is likely due to a number of reasons. For ex- 
ample, it is unclear how to best measure and predict shear wave 
traveltimes when two quasi-shear phases are recorded. Anisotropic 
effects are polarization-dependent and polarizations are not rou- 
tinely measured in tomographic studies. There is likely some re- 
luctance to include more parameters in an already underdetermined 
in verse problem. Ho wever , this is necessary to understand potential 
isotropic–anisotropic structure trade-offs that are rele v ant for model 
interpretation. Additionall y, for man y imaging targets the isotropic 
assumption is difficult to justify as there are often independent ob- 
ser vations suppor ting the presence of anisotropy (e.g. geodynamic 
predictions, mineral physics arguments, tectonic fabrics, shear wave 
splitting observations and surface wave anisotropy). 

Ray-theoretical expressions for shear velocities in anisotropic 
media are well-established (e.g. Chapman & Shearer 1989 ; Chap- 
man & Pratt 1992 ). Ho wever , these assume that both quasi-shear 
phases can be identified and their arri v al times measured. This 
is not generally true due to polarization and frequency-dependent 
propagation ef fects. Consequentl y, there have been relati vel y fe w 

attempts at incorporating anisotropy in teleseismic S -wave tomog- 
raphy. Some examples include Lloyd & van der Lee ( 2008 ) who 
explored the potential bias anisotropy could introduce into isotropic 
S -wav e v elocity models. While the y argue that anisotropy-induced 
artefacts are likely small, they did not consider depth-dependent or 
dipping anisotropy and neglected the effect of shear wave polariza- 
tion on apparent velocities. Wu & Lees ( 1999 ) developed a tensoral 
representation for the velocity at which the first arriving S -wave 
tra vels. How e ver, this theoretical S -arri v al may not exist depending 
on the initial polarization direction and constraining this velocity 
surface requires solving for 12 independent variables. Hammond 
& Toomey ( 2003 ) jointly inverted teleseismic P and S delays with 
SKS splitting observations measured across the East Pacific Rise. 
By measuring S delay times in the slow polarization directions in- 
ferred from SKS splitting parameters, they were able to approximate 
shear velocities using the same functional form as for P waves; this 
implicitly assumes propagation through a single anisotropic layer. 
They constrained the geometry, strength, and orientation of three 
2-D anisotropic domains via grid-search combined with linearized 
inversions for isotropic heterogeneity carried out for each proposed 
anisotropic model. Following a similar measurement strategy, Eilon 
et al. ( 2016 ) inverted delay times of fast- and slow-polarized tele- 
seismic S phases together with splitting times for 3-D variations 
in fast- and slow-shear wave velocity beneath the Woodlark Rift. 
Ho wever , their method requires one to prescribe the orientation 
of hexagonal azimuthal anisotropy prior to inversion. Liu & Zhao 
( 2016 ) proposed a method to invert both P- and S -wave traveltimes 
for azimuthal anisotropic parameters beneath Japan. They assumed 
that the directional dependence of shear velocity follows the same 
sinusoidal trend as for P waves with an added dependence on the 
shear wave polarization. In practice, the polarization of the shear 
waves in their dataset were not estimated and instead all were as- 
sumed to be radially polarized. 

Body wave anisotropy has been considered in adjoint wave- 
for m tomog raphy. Ho wever , imaging is generally restricted to radial 
anisotropy parametrizations which explicitly assume a vertical sym- 
metry axis (e.g. Fichtner et al. 2010 ; Zhu et al. 2017 ; Rodgers et al. 
2022 ). Recently, Zhu et al. ( 2020 ) applied adjoint waveform inver- 
sion for azimuthally anisotropic parameters beneath North America. 
Owing to the relati vel y long periods used ( > 20 s), these models are 
0 O
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argel y constrained b y surface w aves and P -w ave anisotropy w as
ot considered. Incorporating shorter periods at which body waves
re commonly observed remains a challenge due to computational
osts. Ho wever , such data will be important to fully characterize
he anisotropic properties of the Earth. This point was illustrated
y Beller & Chevrot ( 2020 ) who demonstrated with synthetic data
he ability of full-wav eform inv ersions (in which both the phase and
mplitude of waveforms are fit) applied to teleseismic P and S wave-
orms (5–20 s period) to recover 21-component elastic tensors in a
egional-scale model. Of course, with imperfect data coverage there
s the potential for large trade-offs between model parameters and
 v aluating uncertainty for non-linear waveform inversion method-
logies remains a challenge due to e xpensiv e simulation times. For
his reason, simplified anisotropic imaging strategies with reduced
arameter spaces are beneficial as they allow for greater exploration
f the model space (e.g. Bodin & Sambridge 2009 ; Mondal & Long
019 ). 

In summary, anisotropic imaging with shear waves has largely
een restricted to the interpretation and/or inversion of splitting
bserv ations predominantl y from XK(K)S phases. Howe ver, trav-
ltimes also carry information on anisotropic heterogeneity that
hen ignored could manifest as isotropic artefacts in tomographic
odels. Prior attempts to include anisotropy in shear wave imaging

enerally restricted fabric orientations to the horizontal or verti-
al plane. Existing methods based on traveltime observations do
ot appropriately account for polarization effects and the shear
elocity approximations used may not be applicable for propaga-
ion through anisotropically heterogeneous media. Although FWI
s the most promising tool for high-resolution anisotropic imaging,
ts widespread application remains limited by the availability of
omputational resources and suf ficientl y dense high-quality seis-
ic recordings. To address these issues, we develop a teleseismic

hear wave imaging method that leverages both finite-frequency
raveltime and splitting intensity observations to constrain arbitrar-
ly oriented hexagonal anisotropy. Both observables are obtained
ollowing minor modifications to a typical workflow for measur-
ng cross-correlated delay times and accounts for incoming S -wave
olarization. To describe hexagonal anisotropy with an arbitrary
ymmetry axis requires seven parameters (five elastic coefficients
nd two orientation parameters). How ever, w e can accurately predict
 -w ave observ ables with just four v ariables that constrain the mean
hear velocity, anisotropic strength, and symmetry axis orienta-
ion. Our tomographic method is tested using SPECFEM simulated
aveforms propagated through a geodynamic model of subduction.
hus, our synthetic dataset is independent of assumptions in our

maging algorithm. 

 S H E A R  WAV E  O B S E RVA B L E S  I N  

N I S O T RO P I C  M E D I A  

e derive expressions for two scalar observables which we term
he principal delay and principal splitting intensity for a shear wave
ith arbitrary propagation and polarization directions traversing
 heterogeneous anisotropic medium with hexagonal symmetry.
e show that these quantities are linearly related to the general-

zed shear wave delay and splitting intensity defined by Sieminski
t al. ( 2007 ). Both obser vables can be integ rated along the seis-
ic ray path and we provide an approximation to account for
nite-frequency effects. We conclude with a discussion on the
ractical limitations of these observables for anisotropic S -wave
maging. 
.1 Deri v ation of principal traveltime and splitting 
ntensity 

e consider a linearly polarized shear wave entering an anisotropic
edium. Following Silver & Chan ( 1991 ), we model shear wave

plitting by projecting a waveform onto the two quasi-shear wave
olarization directions, qS ′ and qS ′′ , and time shifting these compo-
ents according to their velocities. In a coordinate system defined
uch that ̂  x 1 parallels the incoming S -wave polarization direction and

ˆ  3 parallels the propagation direction (Fig. 1 a), the split waveform
s given by, 

 ( ω) = R 

T � R U 0 ( ω) ̂ x 1 , (1) 

here U 0 ( ω) is the incoming shear waveform in the frequency
omain with angular frequency ω; the superscript ‘T’ denotes the
atrix transpose. The matrix R rotates x 1, 2 -coordinates to the qS ′ -

nd qS ′′ -polarization directions and is defined as, 

 = 

[
cos ( ψ 

′ − ζ ) sin ( ψ 

′ − ζ ) 
− sin ( ψ 

′ − ζ ) cos ( ψ 

′ − ζ ) 

]
, (2) 

here ψ 

′ and ζ are the qS ′ and initial polarization azimuths, respec-
i vel y, measured from the Q-channel in the ray-normal QT-plane
Fig. 1 a). The splitting operator, � , applies the time delays � t ′ and
 t ′′ to the qS ′ - and qS ′′ -aligned waveforms, 

 = 

[
exp ( −iω�t ′ ) 0 

0 exp ( −iω�t ′′ ) 

]
(3) 

wo assumptions are implicit in eq. ( 1 ). (i) It neglects phase shifts
ue to interactions with the free surface which is justified consid-
ring the shallow incidence angles of teleseismic ray paths (Evens
984 ). (ii) Deviations in polarization from the ray-normal QT-plane
re neglected which is justified when considering weakly anisotropic
edia. No assumptions regarding the anisotropic symmetry system

ave yet been made. 
Provided that � t ′ and � t ′′ are small with respect to ω such that

he first-order Taylor e xpansion, e xp ( − i ω� t ′ ) ≈ 1 − i ω� t ′ , is
alid, then eqs ( 1 )–( 3 ) yield the following expression for the split
aveform components, 

 1 ( ω) ≈ (
1 − iω[ �t ′ cos 2 ( β) + �t ′′ sin 2 ( β)] 

)
U 0 ( ω) (4) 

nd 

 2 ( ω ) ≈ 1 

2 
sin (2 β)[ �t ′′ − �t ′ ] iω U 0 ( ω ) , (5) 

here β has been substituted for ψ 

′ − ζ . It is clear from eq. ( 4 ),
hat U 1 is simply U 0 subject to the delay, 

t = �t ′′ + ( �t ′ − �t ′′ ) cos 2 ( β) . (6) 

q. ( 5 ) predicts that the energy scattered to the x 2 -direction is the
caled time-deri v ati ve of U 0 . Following Che vrot ( 2000 ), the scaling
actor is referred to as the splitting intensity, 

s = 

1 

2 
( �t ′′ − �t ′ ) sin (2 β) . (7) 

qs ( 6 ) and 7 define the principal anisotropic delay and principal
plitting intensity referred to at the beginning of this section. Here
principal’ is referring to the fact that these observables are defined
n a coordinate system aligned with the the principal components of
 -wave propagation and displacement. These quantities are linearly
elated to the generalized delay time ( o t ) and splitting intensity ( o s )
resented by Sieminski et al. ( 2007 ) who derived these observables
rom the S h and S v components of an isotropic reference waveform
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Figure 1. Coordinate systems and parameters used to model shear wave anisotropy. (a) The ray-aligned (QTL) and polarization-aligned ( x 1, 2, 3 ) coordinate 
systems. The red arrow depicts the S -wa ve ra y path ( L -axis). The solid pink bar labelled x 1 shows the incoming shear wave polarization direction, ζ , in the 
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ψ 

′ . (b) The S -wave ray path (red arrow) is shown in relation to the orientation of the anisotropic symmetry axis (green bar). The ray and symmetry axis 
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D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad389/7289240 by U

niversita degli studi di Padova- D
ipartim

ento di diritto Pubblico, internazionale e com
unitario user on 2
perturbed by an anisotropic scatterer. From Sieminski et al. ( 2007 ), 
w e ma y define, 

o t = 

1 

2 
( �t ′ + �t ′′ ) cos (2 ζ ) + ( �t ′ − �t ′′ ) cos (2 ψ 

′ ) (8) 

and 

o s = 

1 

2 
( �t ′ + �t ′′ ) sin (2 ζ ) + ( �t ′ − �t ′′ ) sin (2 ψ 

′ ) . (9) 

It is clear that ( � t , � s ) and ( o t , o s ) are related via the transformation, [
�t 
�s 

]
= 

[
cos (2 ζ ) sin (2 ζ ) 
sin (2 ζ ) − cos (2 ζ ) 

][
o t 
o s 

]
. (10) 

While eqs ( 6 ) and ( 7 ) were derived for a single anisotropic inter- 
val, the extension to multiple layers is straight forward. Provided that 
the splitting intensity remains small such that the S -wave remains 
approximatel y linearl y polarized in the direction ζ , the anisotropic 
observables may be integrated along the ray path. For a path com- 
posed of M-segments these are defined, 

t = 

M ∑ 

j= 1 
d L j 

[
u 

′′ 
j + 

(
u 

′ 
j − u 

′′ 
j 

)
cos 2 ( β j ) 

]
(11) 

and 

s = 

1 

2 

M ∑ 

j= 1 
d L j ( u 

′′ 
j − u 

′ 
j ) sin (2 β j ) , (12) 

where d L j is the length and u 

′ 
j and u 

′′ 
j are the slowness values (i.e. 

inverse of velocity) of the qS ′ - and qS ′′ -polarized waves through 
the j th ray path segment. Because the splitting intensity depends 
only on the difference between u ′′ and u ′ , it’s largel y insensiti ve to 
changes in the isotropic shear wave speed. 
We want to relate u ′ and u ′′ to the anisotropic properties of 
the medium. The elastic properties of Earth’s mantle are well- 
approximated by a weakly anisotropic tensor with hexagonal sym- 
metry (e.g. Becker et al. 2006 ). Following Thomsen ( 1986 ), the 
velocity of qS ′′ - and qS ′ -polarized waves in such a media are well- 
described by the following sinusoidal functions, 

u 

′′ = u 

[
1 + f ′′ cos (2 α) 

]−1 
(13) 

and 

u 

′ = u 

(1 + f ′ ) 
(1 + f ′′ ) 

[
1 + f ′ cos (4 α) 

]−1 
, (14) 

where u is the mean slowness; f ′ and f ′′ are the anisotropic fractions 
that define the amplitude of the directional velocity variations of 
the qS ′ - and qS ′′ -polarized waves and can be positive or ne gativ e 
depending on the particular cause of anisotropy in the medium; and 
α is the angle between the seismic ray and the hexagonal symmetry 
axis (Fig. 1 b). Strictly speaking, α should be the phase rather than 
the ray angle with respect to the symmetry axis. Ho wever , these 
are approximatel y equi v alent in anisotropic media characterized b y 
weak ( � 10 per cent) directional velocity variations. The relation- 
ships between u , f ′′ and f ′ to the original Thomsen parameters are 
provided in Appendix A . 

The angle α is related to the dot-product between the ray and 
symmetry axis unit vectors, 

cos ( α) = [ cos ( φ − ψ) cos ( θ ) cos ( γ ) + sin ( θ ) sin ( γ ) ] . (15) 

where φ and θ are the azimuth and ele v ation of the ray path and 
ψ and γ are the azimuth and ele v ation of the hexagonal symmetry 
axis (Fig. 1 b). Recognizing that the qS ′ -polarization, ψ 

′ , parallels 
the projection of the anisotropic symmetry axis into the ray-normal 
0 O

ctober 2023

art/ggad389_f1.eps


Anisotropic Shear Wave Tomography 2645 

Q

β

E  

s  

m  

d  

θ  

(

3

E  

t  

f  

f  

D  

s  

e  

2  

2  

s  

a  

V  

i  

f  

s  

o  

ψ  

v  

s  

fi

t

w  

b  

C  

t  

a  

t

s

T  

m  

z  

r

w  

n
i  

c  

t  

F  

150 km

dlnVs (%)

30°

60°

N(a)

(b)

Figure 2. Isotropic str ucture, array geometr y and distribution of teleseismic 
sources considered in this study. (a) Seismic stations (black triangles) are 
uniformly spaced 75 km apart and plotted over isotropic velocity heterogene- 
ity in the true model at 150 km depth. Inset shows location of teleseismic 
sources (stars) relative to the experiment centre. Sources are located at dis- 
tances of 50 ◦ and 80 ◦ and e venl y distributed in backazimuth. An east–west 
cross-section through the centre of the true isotropic model at 0 ◦N is shown 
in (b). Note that the isotropic structure is symmetric about 0 ◦N. Red square 
and circle identify stations shown in Figs 5 (a),(c) and (b),(d), respecti vel y. 

g

w  

p  

s  

a  

f  

Z  

c  

o  

A  

k  

F  

i  

I  

S -w ave observ ables. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad389/7289240 by U

niversita degli studi di Padova- D
ipartim

ento di diritto Pubblico, internazionale e com
unitario user on 2
T-plane (Fig. 1 b), the angle β may be defined as, 

= arctan 

[ − sin ( φ − ψ) cos ( γ ) 

cos ( φ − ψ) sin ( θ ) cos ( γ ) − cos ( θ ) sin ( γ ) 

]
− ζ. (16) 

qs ( 11 )–( 16 ) provide a framework for predicting traveltimes and
plitting intensities through a heterogeneous and weakly anisotropic
edia with hexagonal symmetry. Calculation of these observables

epends on the spherical parameters describing the ray path (d l , φ,
) and five parameters to describe shear wav e he xagonal anisotropy
 u , f ′′ , f ′ , ψ , γ ). 

.2 Appr o ximating finite-fr equenc y effects 

qs ( 11 ) and ( 12 ) define ra y-theoretical observables. How ever,
eleseismic imaging studies often rely on traveltimes derived
rom cross-correlations of band-limited waveforms resulting in
requency-dependent measurements (Marquering et al. 1999 ;
ahlen et al. 2000 ). It is possible to derive explicit finite-frequency

ensitivity kernels for t and s following previous studies (e.g. Dahlen
t al. 2000 ; Chevrot 2006 ; Calvet et al. 2006 ; Mondal & Long
019 ) or anal yticall y using adjoint methods (e.g. Sieminski et al.
007 ). Ho wever , this is beyond the scope of the present work. In-
tead, to account for finite-frequency effects, we apply the so-called
nisotropic heuristic finite-frequency kernels (HFFKs) discussed in
anderBeek & Faccenda ( 2021 ). These are constructed by assum-

ng the Born sensitivity kernels de veloped b y Dahlen et al. ( 2000 )
or isotropic scatterers can be extended to anisotropic models by
imply making the slowness at the scatterer a function of the ray
rientation, polarization direction, and the five parameters u , f ′ , f ′′ ,
 and γ . In effect, we are neglecting the influence of mode con-
ersions as well as the mid- and near-field contributions to kernel
tructure (Favier et al. 2004 ). Under this assumption, the anisotropic
nite-frequenc y trav eltime is, 

 = ̃

 t + 

M ∑ 

j= 1 
K j 

[
u 

′′ 
j + 

(
u 

′ 
j − u 

′′ 
j 

)
cos 2 ( β j ) − ˜ u j 

]
(17) 

here ̃  t is the traveltime through a reference isotropic model defined
y ̃  u j ; K j is the sensitivity of the Born slowness kernel at the j th node.
onsidering that the splitting intensity is the difference between the

raveltimes of the qS ′ and qS ′′ waveforms scaled by sin (2 β)/2, our
ssumption regarding the treatment of anisotropic scatterers leads
o the finite-frequency splitting intensity equation, 

 = 

1 

2 

M ∑ 

j= 1 
K j 

(
u 

′′ 
j − u 

′ 
j 

)
sin (2 β j ) (18) 

o simplify the computation of K j , we use the following approxi-
ation for the kernel’s cross-sectional shape within the first Fresnel

one proposed by Schmandt & Humphreys ( 2010 ) and neglect the
apidly diminishing sensitivity outside this region, 

K ( x r , x n ) = 

K 0 

π R 

2 
f ( x r ) 

sin 

( 

π
x 2 n 

R 

2 
f ( x r ) 

) 

, (19) 

here x r and x n are coordinates measured in the ray-parallel and ray
ormal directions, respecti vel y, with x r = 0 located at the source; R f 

s the radius of the first Fresnel zone; and K 0 is a dimensionless scalar
hosen such that the integral of the slowness kernel is equi v alent to
he ray-theoretical sensitivity (i.e. the ray length; Hung et al. 2000 ).
or a direct teleseismic phase, a reasonable approximation for R f is
i ven b y, 

R f ( x r ) = 

[
T x r ( L − x r ) 

L  ̃ u ( x r ) 

]1 / 2 

, (20) 

here T is the dominant period and L is the total length of the ray
ath. Fig. 3 of VanderBeek & Faccenda ( 2021 ) shows a compari-
on between the Born sensitivity kernel and the HFFK. Given these
pproximations (eqs 19 and 20), this kernel implementation is ef-
ecti vel y a form of Fresnel volume tomography (Vasco et al. 1995 ;
elt & Chen 2016 ) intended to impose physically based smoothing
riteria on the solution and provide a framework for the inversion
f multifrequency observables at reduced computational expense.
lthough not intended to reproduce the accuracy of the full Born
ernels, VanderBeek & Faccenda ( 2021 ) demonstrated that the HF-
Ks can improv e trav eltime predictions for teleseismic P waves

n both isotropic and anisotropic models compared to ray theory.
n Section 5.2 , we demonstrate the same is true for the principal
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3.3 Limitations 

An important limitation of the proposed shear w ave observ ables is 
that they are only applicable when the integrated splitting intensity 
at any point along the ray path is small relative to the period of the 
w ave. The v alidity of this approximations was investigated in detail 
b y Che vrot et al. ( 2004 ) using spectral element modelling. They 
found that provided T / | �t ′′ − �t ′ | � 2 π/ 

√ 

2 eqs ( 4 )–( 7 ) are valid.
In Appendix B , we describe a number of simple tests performed 
to e v aluate the accuracy of eqs ( 6 ) and ( 7 ) as a function of the
strength of anisotropy and deviations from linear polarization. For 
these tests, vertically travelling synthetic waveforms are modelled 
using a matrix propagation method (eqs 1–3; R ümpker & Silver 
1998 ) applied to layered anisotropic models. Ray-theoretical delay 
times and splitting intensities were computed via the integration 
of eqs ( 6 )–( 7 ) through the layered models and compared to those 
measured on the simulated w aveforms. Specificall y, we explored 
how the accuracy of these expressions varies in response to (i) 
the strength of shear wave splitting (Figs B1 and B2 ), (ii) layered 
anisotropic heterogeneity (Figs B3 and B4 ) and (iii) elliptical shear 
wave polarizations (Figs B5 –B7 ). Consistent with Chevrot et al. 
( 2004 ), these results demonstrate that the prediction errors remain 
small (approximately one order of magnitude less than the mea- 
sured observable) provided that T / | � t ′′ − � t ′ | � 5. Furthermore, the 
equations are applicable even when the incoming shear wave ex- 
hibits elliptical particle motion provided the principal displacement 
 2
direction can be estimated; see Appendix B for details. Note that 
these tests do not consider finite-frequency kernels or wave propa- 
gation in 3-D heterogeneous media. The accuracy of our modelling 
strategy in response to such effects is discussed in Section 5.2 where 
we compare predicted shear w ave observ ables to those measured on 
SPECFEM generated waveforms. 

We do not expect that requiring T / | � t ′′ − � t ′ | � 5 will prohibit the
general application of shear wave observables to teleseismic imag- 
ing. The global analysis of SKS splitting parameters by Walpole 
et al. ( 2014 ) found the a verage dela y time between fast- and slow- 
polarized waveforms is 1.65 ± 0.62 s ( ± standard deviation). Be- 
cause SKS waves reflect the integrated anisotropic structure of the 
upper mantle (Sieminski et al. 2007 ), we may expect similar split- 
ting times for direct S -phases. Thus, the principal anisotropic delay 
and splitting intensity equations are likely applicable to periods � 8 s 
which corresponds to the mid- to lower- end of the period range com- 
monly considered for teleseismic S -wave tomog raphy. Fur ther more, 
if the upper mantle is dominated b y horizontall y aligned symmetry 
axes, as predicted by plate-driven flow, then shear wave splitting 
should be weaker for direct S -phases because their propagation di- 
rections would align more closely with the fabric orientations (i.e. 
smaller angle α). Consequently, the difference between qS ′ and 
qS ′′ velocities would be reduced. The more laterally propagating 
S -phase is also likely to sample a greater diversity of anisotropic 
fabrics relative to the SKS phase which will generally result in a 
reduced splitting effect (R ümpker & Silver 1998 ). 
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 A N I S O T RO P I C  I N V E R S I O N  M E T H O D  

n Section 3 , we related shear wave traveltimes and splitting inten-
ities to anisotropic variables describing a hexagonally symmetric
lastic medium. Here we describe an iterative inversion strategy to
ecover the 3-D distribution of these anisotropic parameters from
he shear wave observables. We use an iterative Gauss–Newton
pproach to solve for the perturbations to a starting model that min-
mize a least-squares objective function of the form (e.g. Tarantola
 Valette 1982 ; Aster et al. 2005 ), 

= r ( m , � m ) T C 

−1 
d r ( m , � m ) + μ2 � m 

T C 

−1 
m � m + λ2 ( L � m ) T ( L � m ) (21) 

here r is a (N × 1) vector of data residuals which is a non-linear
unction of the starting model, m , and the (M × 1) cumulative model
erturbation vector, � m ; C d is the (N × N) data covariance matrix
hich we assume to be diagonal and composed of the squared data
ncertainties; C m is the (M × M) model covariance matrix; L is
n (M × M) matrix that defines the finite difference 3-D Laplacian
perator that constrains � m to be spatially smooth; lastly μ and
are Lagrangian multipliers that limit the size and roughness of

he model perturbation vector. The last two terms in eq. ( 21 ) are
equired to regularize the otherwise under-determined and ill-posed
nverse problem. 

Rather than solve for perturbations to the four spherical
nisotropy terms ( f ′ , f ′′ , ψ and γ ) or the anisotropy vector (e.g.
he vrot 2006 ; Che vrot & Monteiller 2009 ; Wang & Zhao 2021 ),
e parametrize the in version follo wing VanderBeek & Faccenda
 2021 ) using the mean slowness ( u ) and the three anisotropic vari-
bles, 

A = | f ′′ | cos 2 ( γ ) cos (2 ψ) (22) 

B = | f ′′ | cos 2 ( γ ) sin (2 ψ) (23) 

 = 

√ 

| f ′′ | sin ( γ ) (24) 

he perturbation vector then consists of four sets of parameters,
 m = [ � u ; � A ; � B ; � C ], that are discretized in space. To limit

he number of free parameters, we take advantage of the strong
inear correlation between f ′ and f ′′ (e.g. Becker et al. 2006 ). From
he results of our micromechanical fabric modelling (Section 5 ), we
se the ratio f ′′ / f ′ = −4.75. Expressions for u ′′ , u ′ and β as functions
f A , B and C are provided in Appendix A . In this parametrization,
he sign of f ′′ is lost and must be defined based on prior knowledge
f the imaging target. A positive anisotropic fraction corresponds to
aterials with a seismically fast symmetry axis (e.g. olivine A-Type

abrics) while a ne gativ e sign implies a seismically slow symmetry
xis (e.g. aligned fractures). 

Although solving for these ABC parameters still poses a non-
inear inverse problem, we have found that this parametrization
rovides stable solutions for isotropic starting models. This is be-
ause the traveltime or splitting intensity partial deri v ati ves that
irect the inversion are generally non-zero valued with respect to
 and B even where the model is isotropic. This allows for the
imultaneous determination of � u and an azimuthally anisotropic
odel defined by � A and � B . This initial solution provides an

dequate starting point for subsequent iterations that update the
abric dip via adjustments to � C (VanderBeek & Faccenda 2021 ).
n comparison, differentiating the shear wave observables with re-
pect to the spherical anisotropy parameters yields null sensitivity to
 and γ where the model is isotropic. Consequently, the inversion

an fail to converge to the correct solution if the symmetry axis
rientations in the starting model are not suf ficientl y close to the
rue orientations (Munzarov á et al. 2018 ). Alternati vel y, one could
arametrize anisotropy using the components of the symmetry axis
ector (e.g. Chevrot 2006 ; Chevrot & Monteiller 2009 ; Wang &
hao 2021 ). Ho wever , this too results in null first-order sensitivity

o anisotropy for isotropic starting models and multistage inversion
chemes, accurate anisotropic starting models, or more computa-
ionall y expensi ve solvers that exploit second-order deri v ati ves are
equired to retrieve robust solutions. 

To minimize eq. ( 21 ), we use the LSQR algorithm (Paige &
aunders 1982 ) to iterati vel y solve the following system of equa-

ions linearized about the current model, 

 

 

 

 

 

 

 

 

C 

−1 / 2 
d J 

μu C 

−1 / 2 
u 

μa C 

−1 / 2 
a 

μa D f 

λu L u 

λa L a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

δm l = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 

−1 / 2 
d r l 

−μu C 

−1 / 2 
u � m l−1 

0 
−μa D f � m l−1 

0 
0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (25) 

here δm l = [ δu l ; δA l ; δB l ; δC l ] are the incremental parameter
hanges to be determined at the l th-iteration and � m l − 1 are the
umulative model perturbations from the previous l − 1 iterations.
he (N × M) matrix J is the data Jacobian. Explicit formula for the
lements of J are provided in Appendix A . The model covariance
nd Laplacian matrices in eq. ( 21 ) have been separated into the
ows that constrain the norm and smoothness of the mean slowness
 C u , L u ) and anisotropic parameters ( C a , L a ) and are weighted by
he isotropic ( μu , λu ) and anisotropic ( μa , λa ) Lagrangian multipli-
rs. The right-hand side vector is defined such that the cumulative
lowness perturbations are minimized on each iteration while the
ncremental perturbations are minimized for the anisotropic param-
ters (i.e. zero-valued right-hand side) at each iteration. This is by
esign. Because the data are non-linear functions of A , B and C ,
he anisotropic perturbations may not converge when the solution is
estricted to making small linearized steps from the starting values.
his is not an issue for the mean slowness as the data are linear in
 for a fixed ray geometry. To prevent the solution from favouring
nisotropic over isotropic perturbations as the iterations progress,
e minimize the cumulative perturbations to f ′′ through the intro-
uction of the sparse (M × M) matrix D f obtained by differentiating
 f ′′ l−1 with respect to � A l − 1 , � B l − 1 and � C l − 1 ; see Appendix C

or details. Because the anisotropic imaging problem is non-linear,
he partial deri v ati v es and re gularization coefficients in eq. ( 25 ) are
e-e v aluated at each iteration based on the updated model and a new
ncremental perturbation vector is determined. Iterations proceed
ntil the reduction in residual variance with respect to the precedent
olution is no longer significant at the 95 per cent confidence level
s determined by an F-test. For the anisotropic inversions performed
n this study, convergence is reached within four iterations. 

In addition to solving for the four anisotropic parameters de-
cribed above, J is further augmented to include event static terms
or traveltimes and splitting intensity. These ef fecti vel y demean the
bservation residuals associated with a given event and are intended
o remove the influence of structure outside the imaging volume
here ray paths converge resulting in poor data coverage (Aki et al.
977 ; L év ˆ eque & Masson 1999 ; Masson & Romanowicz 2017 ).
ote that such event demeaning applied to teleseismic traveltimes

s equally applicable to splitting intensity. Because event statics
re overdetermined, no regularization is applied. The inversion of
emeaned data provides information only on relative changes in
eismic velocity (Aki et al. 1977 ; L év ˆ eque & Masson 1999 ; Mas-
on & Romanowicz 2017 ). The consequences of this for resolving
nisotropic structure is detailed by VanderBeek & Faccenda ( 2021 ).
n general, provided the model is suf ficientl y well-sampled and is
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anisotropicall y hetero geneous, then anisotropic fabrics are accu- 
rately recovered. Potential biases resulting from demeaning can be 
investigated through specific resolution tests. 

5  S Y N T H E T I C  T O M O G R A P H Y  

E X P E R I M E N T :  TA RG E T  M O D E L  A N D  

S E I S M I C  DATA  

To test our anisotropic shear wave tomography method, we use 
the synthetic waveform data sets created by VanderBeek & Fac- 
cenda ( 2021 ) and briefly summarize their key features below. The 
teleseismic wavefield is modelled using the spectral element code 
SPECFEM 3D (K omatitsch & T romp 1999 ; Chen & T romp 2007 ) 
with the AxiSEM grid-injection technique (Nissen-Meyer et al. 
2014 ; Monteiller et al. 2013 , 2015 , 2021 ). Outside the subduction 
zone model, 3-D wave propagation through a spherically symmetric 
Earth is solved using the AxiSEM software (Nissen-Meyer et al. 
2014 ) with isotropic elastic properties defined by the IASP91 ref- 
erence model (Kennett & Engdahl 1991 ). The displacements and 
tractions of the incoming teleseismic wavefield are stored on the 
boundaries of the 3-D subduction zone mesh and wave propagation 
is continued via the SPECFEM 3D solver; see Monteiller et al. 
( 2013 , 2015 , 2021 ) for further details. Three-component seismo- 
grams are recorded by an array of 770 receivers equally spaced 
75 km apart (Fig. 2 a) yielding a station density comparable to the 
USArray. In total 16 double-couple sources are modelled; 8 at a 
range of 50 ◦ and another 8 at 80 ◦ equally distributed in backaz- 
imuth (Fig. 2 a). The dominant period of the waveforms is 15 s and 
all S waves have an initial polarization angle of ζ = 60 ◦. Impor- 
tantly, the shear wave observables derived from this data set are 
completely independent of our tomography method. 

The anisotropic elastic model used in computing the waveforms 
is the result of a geodynamic simulation of a slab (1000-km-long 
half-width) subducting freely in response to its ne gativ e buoyanc y. 
Fully anisotropic elastic tensors are predicted via micromechan- 
ical modelling of polymineralic aggregates advected through the 
simulated mantle flow field (see Kaminski et al. 2004 ; Faccenda 
& Capitanio 2013 ; Faccenda 2014 ); resolution of anisotropic elas- 
tic model is 10 km. Parameters controlling the fabric development 
were calibrated based on high-strain laboratory experiments (Boneh 
et al. 2015 ). The tensors are subsequently simplified by extract- 
ing the dominant hexagonally symmetric component following the 
method of Browaeys & Chevrot ( 2004 ). In summary, each elastic 
tensor is rotated into the appropriate symmetr y Car tesian coordi- 
nate system (SCCS) identified from the eigenvectors of the 3 ×3 
Voigt stiffness tensor. Next, the hexagonal approximation of the 
tensor is obtained from a series of orthogonal projections. Finally, 
the resulting hexagonal tensor is rotated back to the geodynamic 
model coordinates b y re versing the rotation into the SCCS. This 
simplification was made to maintain focus on the accuracy of the 
imaging methodolo gy specificall y designed to approximate hexag- 
onal anisotropy. A second waveform data set was created using only 
the isotropic component of the elastic tensors. 

The isotropic component of the synthetic subduction zone is 
shown in Fig. 2 and contains only one significant anomaly–the seis- 
mically fast slab. The anisotropic component of the synthetic model 
is shown in Fig. 3 and contains five significant imaging targets 
that provide insight into the structure and dynamics of the sub- 
duction zone. (i) Throughout the upper 300 km, toroidal mantle 
flow generates a circular pattern in the symmetry axis orientations 
around the slab edges (Fig. 3 a). (ii) At greater depths beneath the 
incoming plate there is a region of trench-parallel anisotropy re- 
flecting pressure-driven flow from slab roll-back (Fig. 3 b). (iii) 
Surrounding the subducting lithosphere, flow entrainment pro- 
duces anisotropic symmetry axes that follow the trajectory of 
the descending plate (Figs 3 c and d). (iv) The subducting litho- 
sphere also contains frozen-in anisotropic fabrics characterized by 
∼4 per cent S -wave speed variations oriented east–west. (v) Mantle 
circulation within the wedge generates a corner-flow type pattern 
in anisotropy near the mid-plate that evolves towards the edges 
(Figs 3 c and d). 

5.1 Measurement of principal shear w av e observables 

Our tomographic method requires that S -wa ve tra veltimes are mea- 
sured in the direction of polarization which is not a coordinate 
system routinely considered in the analysis of body wave delays. 
If an appropriate reference waveform is known a priori , then the 
generalized shear w ave observ ables may be measured using the 
cross-correlations defined by Sieminski et al. ( 2007 ) and trans- 
formed into the principal observables following eq. ( 10 ). However, 
such a reference is generally not known and we outline a mea- 
surement strategy that relies only on the observ ed wav eforms to 
generate data suitable for our imaging method. We assume seis- 
mo grams are initiall y processed to remove instrument responses, 
filtered (here we use a second-order band-pass filter with corners at 
15 and 40 s), and rotated into ray-aligned QTL-coordinates (Fig. 1 a). 
For a given event, we then measure the principal traveltimes in four 
steps: 

(i) Relativ e trav eltime delays on the transv erse channel are mea- 
sured with respect to a reference radial Earth velocity model using 
the multichannel cross-correlation method of VanDecar & Crosson 
( 1990 ). 

(ii) The aligned waveforms from Step 1 are stacked to provide an 
estimate of the incoming shear wave. The arrival time of the stacked 
waveform is picked and combined with the relative delays to yield 
traveltime measurements (e.g. Lou et al. 2013 ). 

(iii) The principal polarization direction is measured via eigen- 
decomposition of the trace covariance matrix (e.g. Flinn 1965 ) 
computed using the stacked three-component waveform from Step 
2. In computing the trace covariance, a full period of the wave- 
form is used (15 s in this study). The polarization angle, ζ , is 
estimated as the azimuth of the eigenvector with the largest mag- 
nitude eigenvalue. This angle is stored for each event and used 
in the forward modelling of principal traveltimes and splitting 
intensities. 

(iv) Seismograms are rotated about the L-axis into the principal 
polarization direction and the principal delay times are measured 
via cross-correlation of the waveforms on the x 1 -channel (Fig. 1 a). 
According to eq. ( 4 ), these waveforms should be well-correlated as 
they reflect time shifted versions of the initial shear w ave. A ne w 

pick on the stacked x 1 -component waveform is made to yield the 
traveltimes. 

These steps are illustrated in Fig. 4 . 
Once the waveforms are aligned on the x 1 -channel, the principal 

splitting intensity is readily computed following Chevrot ( 2000 ), 

s i j = 

ḋ i j · w i j 

‖ ̇d i j ‖ 2 
, (26) 

where ḋ i j is the time-deri v ati ve of the x 1 -component and w ij is the 
x 2 -component of the waveform observed at the i th-station for the 
0 O

ctober 2023



Anisotropic Shear Wave Tomography 2649 

T
Q
L

S1
S2
P

-10 0 10 20 -10 0 10 20

-10 0 10 20

-10 0 10 20

-10 0 10 20 -10 0 10 20

2

1

0

-1

-2

2

1

0

-1

-2

(a) (b) (c)

(d) (e) (f)

no
rm
al
is
ed

am
pl
itu
de

t - t1D (s) t - t1D - Δt(T) (s) t - t1D - Δt(T) (s)

t - t1D - Δt(T) (s) t - t1D - Δt(T) (s) t - t1D - Δt(S1) (s)

no
rm
al
is
ed

am
pl
itu
de
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predictions (t1D). The source is located 80 ◦ from the centre of the array at a backazimuth of 90 ◦; thin coloured lines are the seismograms recorded at each 
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 th event. We compute s ij in a 15 s (one period) window beginning
t the S -wave onset. Note that the sign change in our eq. ( 26 ) with
espect to eq. (7) of Chevrot ( 2000 ) is due to our definition of a
ositive delay as corresponding to a later arri v al; the scaling factor
f 2 has also been removed such that the principal splitting intensity
aries between ±0.5( � t ′′ − � t ′ ) in accordance with our eq. ( 7 ). 

Examples of split shear waves produced from our SPECFEM
aveform simulations are shown in Figs 5 (a) and (b) for stations
n the incoming plate and above the mantle wedge. As predicted by
qs ( 4 ) and ( 5 ), the x 1 -component waveform is a time-shifted version
f the equi v alent isotropic trace and the x 2 -component is consistent
ith the time-deri v ati ve of the x 1 -signal. Examples of single-station

plitting intensity measurements (computed via eq. 29) as a function
f polarization-azimuth are plotted for these stations in Figs 5 (c)
nd (d). On the incoming plate where the anisotropic signal is dom-
nated by a shallow layer of horizontal east–west oriented fabrics
Fig. 5 c), the splitting intensity follows a clear sin (2 ζ ) trend. Be-
eath the wedge where 3-D anisotropic heterogeneity is stronger
oth laterally and vertically, the splitting intensity signal is more
omplex and generally weaker (Fig. 5 d) as the diversity of fabrics
ends to destructi vel y interfere. 

.2 Error estimates in measured and predicted shear w av e 
bserv ab les 

o appropriately assess the fit of the tomographic models recovered
rom the synthetic data sets, we must know the error in our mea-
ured shear observables and the accuracy to which we can predict
hem using the methods in Section 3 . We first e v aluate the error
nherent to our synthetic data set introduced by our measurement
rocedure. To estimate these errors, w e measure dela y times and
plitting intensities as outlined in Section 5.1 of shear waves propa-
ated through the 1-D velocity model IASP91 (Kennett & Engdahl
991 ) using the same source–receiver geometry as for the subduc-
ion zone model. In this case, all measured delay times and splitting
ntensities should be zero. Ho wever , we measure a RMS delay of
00 ms for shear waves observed on the transverse channel and
88 ms for those measured in the estimated principal polarization
irection. The RMS splitting intensity measured is 157 ms suggest-
ng that only a minor amount of apparent splitting may be generated
ue to interactions with velocity interfaces or our measurement
rocedure. 

We attribute the increased RMS delay of the polarization-aligned
easurements to waveform distortions caused by mode conver-

ions. These errors are comparable to the time step used in the
PECFEM simulations (100 ms) but larger than the accuracy
f TauP calculations for direct body wave traveltimes ( ∼50 ms;
rotwell et al. 1999 ). Relati ve phase arri v al times measured from
PECFEM seismo grams may dif fer slightl y arising from dif fer-
nces in the discretization of the IASP91 model. Additionally, delays
re measured using the array-based multichannel cross-correlation
ethod of VanDecar & Crosson ( 1990 ) rather than cross-correlating
ith a reference waveform computed for every station. While minor,

hanges in the waveform across the array can yield an inconsistent
et of delays for station pairs from which the best-fitting relative
elay times are determined. 

Next we assess the accuracy of our forward modelling procedure
nd the HFFK approximation by comparing data predicted through
 20 O
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the true anisotropic tomography model to the shear wave observ- 
ables measured from SPECFEM generated waveforms. The RMS 

error between the measured and predicted ray-theoretical travel- 
times is 527 ms. This error is reduced to 330 ms when traveltimes 
are computed using our HFFK approximation. The HFFKs offer 
a less drastic improvement in the prediction of splitting intensities 
yielding an RMS error of 278 ms compared to 291 ms for ray-theory. 
While appreciable, these errors are far below the signal in the shear- 
w ave observ ables considering the RMS delay time with respect to 
IASP91 (Kennett & Engdahl 1991 ) is 1,211 ms and the RMS split- 
ting intensity is 600 ms. Additionally, these errors are small with 
respect to the accuracy of modern teleseismic shear wave velocity 
models which generally yield S delay time residuals with an RMS 

> 400 ms. Estimated standard errors for splitting intensity measure- 
ments from high-quality SKS recordings are ∼250 ms (Monteiller 
& Chevrot 2010 ). 

In regards to the origin of the errors in our forward modelling 
approach, they are not the result of anomalously strong anisotropy 
as all measured splitting intensities are < 2.5 s and thus satisfy the 
criteria T / ‖ � t ′′ − � t ′ | � 5. Rather, they arise from inaccuracies in 
our simplified approximation to the far-field Born kernels (Sec- 
tion 3.2). Chevrot et al. ( 2004 ) demonstrated that the true far-field 
kernels predict splitting intensities to within 5 per cent of values 
measured from full-waveform synthetics. They also found that ge- 
ometrical ray-theory increasingly overpredicts the anisotropic ef- 
fect of anomalies with spatial scales < 0.75 × the Fresnel width 
( ∼200 km for thistudy). Fur ther more, when significant anisotropy 
e xists within 2-wav elengths of the station, ne glecting mid- and near- 
field contributions of the Green’s tensor can introduce errors up to 
20 per cent (Favier et al. 2004 ). This is indeed the case for the 
synthetic subduction zone model in which 5 per cent shear wave 
anisotropy extends to 40 km depth and the seismic wavelength 
is ∼60 km. Considering that the accuracy of our kernel imple- 
mentation falls somewhere between geometrical ray theory and the 
far-field Born kernels, our error estimates of ∼300 ms are not sur- 
prising. The general consequence of such inaccuracies is poorer spa- 
tial resolution and an underestimation of anisotropic magnitudes. 
To verify that such errors do not introduce significant artefacts, 
we performed an anisotropic inversion of self-consistent data—
synthetic delay times and splitting intensities predicted using our 
forward modelling approximation rather than from full-waveform 

simulations. In this way, the predicted observables are exact. The 
results (Figs S1–S2) are nearly identical to those obtained from 

SPECFEM generated observables (presented in Section 7 ) high- 
lighting that data coverage is the primary factor limiting model 
recovery. 

We continue with our kernel approximation but do not attempt to 
fit the observations beyond the their accuracy. Despite our simpli- 
fications, the results in Section 7 demonstrate that geodynamically 
significant anisotropic features of the subduction zone model are 
constrained. A more accurate treatment of observable sensitivity 
will only serve to improve our imaging strategy. 
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 S E L E C T I O N  O F  I N V E R S I O N  

A R A M E T E R S  

olving eq. ( 25 ) requires a number of user-defined inputs. Specifi-
ally, the starting model, spatial discretization of inversion param-
ters, and uncertainties in the data and model parameters must be
efined. Optimal Lagrangian multipliers that balance data fit against
he model norm and roughness must also be identified. Here we de-
ail the selection of these parameters for our synthetic inversions. 

.1 Starting model and parameter discretization 

he calculation of shear wave observables is performed using a
egular grid with uniform 10 km spacing between nodes. Each
ode is defined by the five anisotropic variables u , f ′ , f ′′ , ψ and γ .
his vector-valued field defines the forward model m . The model is
entred at 0 ◦N, 0 ◦E and spans 2000 km in the x -direction, 3000 km in
he y -direction and 700 km in depth. To account for Earth’s curvature
n our Cartesian model geometry, an Earth-flattening transform is
pplied to the seismic velocities and model depths (M üller 1971 ).
or all inversions, the starting model is isotropic and defined by the
-D far-field velocity profile taken from the geodynamic simulation
hich closely resembles IASP91 (Kennett & Engdahl 1991 ) but
ithout a crustal layer. We use the TauP toolkit (Crotwell et al.
999 ) to predict ray paths using the initial 1-D velocity profile.
n this study, the use of 1-D rays is justified given the relatively
ong period of the waveforms and the magnitude and dimensions
f both isotropic and anisotropic heterogeneity. Finite-frequency
raveltimes through 3-D velocity models are computed following
q. ( 17 ) where ̃  t is the TauP predicted traveltime through the starting
odel slowness profile ̃  u . Frequency-dependent splitting intensities

re computed from eq. ( 18 ). 
We solve for perturbations to the mean slowness ( � u ) and the

hree anisotropic parameters ( � A , � B and � C ) on a regular grid
ith uniform 50 km spacing. Together, these parameters make up

he perturbational model � m . To restrict the number of free param-
ters, we limit perturbations to A , B and C to the upper 500 km where
nisotropy is strongest in our geodynamic model. This choice has a
inor effect on the recovered model and acts primarily to limit verti-

al smearing of anisotropic structure (e.g. VanderBeek & Faccenda
021 ). Event static terms for the traveltime and splitting intensity
bservations are included in the inversion. These act to demean
he observations and, in real-world application, ef fecti vel y remove
ny signal coming from structure outside the imaging volume (e.g.
ki et al. 1977 ; L év ˆ eque & Masson 1999 ; Masson & Romanowicz
017 ). 

.2 Re gularization parameter s 

e assume a diagonal data covariance matrix, C d , where all ele-
ents are 0.3 2 s 2 based on our traveltime and splitting intensity

rror estimates discussed in Section 5.2 . Defining the matrix C m 

hat controls the solution damping assumes one has knowledge of
he parameter covariances. This is rarely the case and these matrices
re generally assumed to be diagonal with coefficients correspond-
ng to an estimate of individual squared parameter uncertainties.
o wever , these too are poorly defined and trade-off directly with

he Lagrangian multipliers ( λu , a ) and parameter discretization (finer
iscretizations will generally require weaker damping to accommo-
ate a proportionally larger perturbational vector norm). Rather than
 priori define C m , we use a Lev enberg–Mar quardt style damping
uch that the diagonal of C 

−1 
m 

is given by the mean of the squared
arameter sensitivities (i.e. squared row norm of J ; Mor é 1978 ). The
ean-squared sensitivity is evaluated separately over each parame-

er set ( � u , � A , � B and � C ) which renders the inverse problem
cale-invariant. This is beneficial when, as in our case, the param-
ters have different expected magnitudes. The diagonal elements
f C 

−1 / 2 
u are also weighted by u /u k where u is the mean slowness

n the model. This prevents biasing the solution towards models
ith stronger fractional velocity perturbations at greater depths

i.e. higher -velocity/lower -slowness re gions; Toome y et al. 1994 ).
he diagonal elements C 

−1 / 2 
m 

are also used to weight the rows of
 m and D f . In this way, all regularization equations have compara-
le influence on the objective function prior to the selection of the
ser-defined λu , a and μu , a weights. 

Appropriate Lagrangian multipliers were selected via the con-
tr uction of L-cur ves (e.g. Aster et al. 2005 ) in which the
ata variance ( r T C 

−1 
d r /N ) is plotted against the model variance

 � m 

T C 

−1 
m 

� m /M). Solutions near the corner of the L-curve are
onsidered ideal as a further increase in model complexity (i.e. in-
reased model variance) does not substantially improve the data
rediction while simpler models rapidly increase the residual norm.
o identify an appropriate ratio of λu -to- μu , we follow the same
trategy outlined by VanderBeek & Faccenda ( 2021 ). First, we con-
tructed several L-curves from isotropic inversions using fixed ratios
f λu / μu and systematically varied μu . From this analysis, we found

u / μu = 10 provides reasonably smooth solutions without compro-
ising data fit. Within the set of isotropic inversions corresponding

o λu / μu = 10, we found μu = 2 corresponds to the corner of the
-curve (Fig. 6 ). Not wanting to favour isotropic over anisotropic
erturbations, we equally damp both parameter sets by setting μa =
 0 O
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μu (the magnitudes of these weights are directly comparable due to 
the way in which C 

−1 / 2 
m 

was defined) and adopt the same smoothing- 
to-damping ratios of λa / μa = λu / μu = 10. After performing a series 
of anisotropic inversions across different μu values, we found that 
μu = μa = 2 provides optimal solutions (Fig. 6 ). 

7  T O M O G R A P H I C  R E S U LT S  

In the following sections, we present a series of tomographic models 
constructed under different imaging assumptions. First, we consider 
purely isotropic inversions to evaluate the nature of anisotropy- 
induced artefacts. Next, we present azimuthally anisotropic solu- 
tions followed by inversions that include dipping fabrics. 

7.1 Isotropic solutions 

We begin by evaluating the ideal recovery of isotropic anomalies by 
inv erting trav eltimes deriv ed from wav eforms propagated through 
the isotropic subduction zone model. We refer to this model as the 
Iso-U solution (Figs 7 a, b and 8 a–c) it illustrates the resolution of 
the slab anomaly subject to our forward-modelling approximations, 
imperfect data coverage, and inversion regularization but without 
complications from anisotropy. The geometry of the descending 
plate is accurately recovered albeit with a reduced magnitude and 
spatial smoothing expected given the imaging constraints. Due to 
the relative nature of the traveltime residuals, some low-velocity 
artefacts appear around the fast-slab anomal y. Howe ver, the magni- 
tude of these artefacts is generally weak ( < 1 per cent) and spatially 
distributed throughout the mantle surrounding the descending plate. 

A number of isotropic imaging artefacts emerge when anisotropic 
heterogeneity is present in the target model but neglected in the 
imaging. The tomographic model recovered from inverting S -wave 
traveltimes measured on the transverse component of waveforms 
propagated through the anisotropic subduction zone (Aniso-U solu- 
tion) is shown in Figs 7 (c), (d) and 8 (d)–(f). There is a localization 
and increase in magnitude of low-velocity ar tefacts, par ticularly 
around the slab edges (Figs 7 c and d). In cross-section (Figs 8 d–f), 
sub- and supraslab low-velocity anomalies are present and exhibit 
along strike changes in geometry and intensity. We also find a gen- 
eral increase in the magnitude of the slab high-velocity anomaly 
and the geometry of the descending plate is poorly recovered along 
the central portion of the subduction zone (Fig. 8 e). 

The increase in anomaly magnitudes in the Aniso-U relative to 
the Iso-U solution reflects the mapping of anisotropic heterogeneity 
into isotropic perturbations. In particular, the steeply dipping fabrics 
within and around the descending plate act to increase the appar- 
ent velocity of the mantle in this region. This relative increase in 
velocity is further exaggerated by the presence of more horizontal 
symmetry axes in the subslab region which reduce the propaga- 
tion velocity of shear wa ves tra velling at high incidence angles. 
The dependence of the S -wave velocity on both the ray propaga- 
tion direction and the incoming polarization direction results in an 
asymmetric distribution of artefacts about 0 ◦N despite the symme- 
try present in the geodynamic model and uniform back-azimuthal 
distribution of events. 

7.2 Anisotropic solutions 

It is clear from Section 7 .1 that neglecting anisotropy in teleseismic 
shear wave imaging can lead to significant artefacts in the recovered 
tomographic model. Now we evaluate the ability of our anisotropic 
imaging method to discern isotropic from anisotropic heterogeneity 
and yield more accurate images of the upper mantle. First, we 
consider an azimuthally anisotropic solution (Aniso-UAB) in which 
the symmetry axes are confined to the horizontal plane by only 
solving for perturbations to u , A and B . We find that the magnitude 
of low-velocity artefacts present in the Aniso-U solution are reduced 
in the Aniso-UAB model (Figs 7 e, f and 8 g–i). Ho wever , significant 
velocity reductions are still imaged in the subslab region in the 
southern half of the synthetic study area. We also find that the 
geometry of the slab is better reconstructed along the central portion 
of the subduction zone when azimuthal anisotropy is included in the 
inversion. 

Recovery of the true isotropic structure continues to improve 
when symmetry axis dip is included in the inversions via the C 

parameter. This Aniso-UABC solution is shown in Figs 7 (g), (h) and 
8 (j)–(l) and is very similar to the Iso-U solution which represents 
the best-case recovery of isotropic heterogeneity. The magnitude of 
spurious low-velocity zones are further decreased and the magnitude 
of the slab anomaly is more uniform in the Aniso-UABC model. 
These improvements in isotropic recovery are clearly illustrated in 
Fig. S3 in which differences in velocity anomalies between the Iso- 
U and the Aniso-U, Aniso-UAB, and Aniso-UABC solutions are 
plotted. 

In addition to improving the recovery of isotropic heterogeneity, 
the Aniso-UAB and Aniso-UABC solutions accurately image many 
of the anisotropic features present in the target model. Both the 
azimuthally anisotropic model (Figs 9 a and b) and the inversion 
including dip (Figs 9 c and d) image well the toroidal flow pattern 
present throughout the mantle wedge but the Aniso-UABC solu- 
tion better recovers this structure at depths below ∼300 km. In the 
Aniso-UAB model, anisotropic fabrics are poorly recovered where 
the true symmetry axes are steeply dipping (Figs 10 a–c). In contrast, 
the Aniso-UABC model accurately images such regions. In partic- 
ular, the increased anisotropic strength and steeply dipping fabrics 
associated with the descending plate are clear in the Aniso-UABC 

solution (Figs 10 d–f). Along strike changes in anisotropic hetero- 
geneity within the mantle wedge (Figs 3 c and d) are also evident 
in the Aniso-UABC solution (Figs 10 d–f). Through the centre of 
the subduction zone, the transition from a thick region of entrained 
mantle flow to more horizontal fabrics in the shallow mantle wedge 
is recovered. The thick block of steeply dipping fabrics near 0 ◦N 

thins towards the ends of the subducting plate becoming more local- 
ized to the slab. Both solutions poorly image anisotropic structure 
within and beneath the incoming plate. While the shallow trench- 
normal fabrics are visible in the tomographic models (Fig. 9 ), the 
magnitude is underestimated and no deeper trench-parallel fabrics 
are present. This is not surprising considering that the anisotropic 
traveltime and splitting intensity signals will tend towards zero for 
teleseismic paths traversing two overlying anisotropic regions with 
ortho gonal fabrics. Finall y, we note that the Aniso-UAB and Aniso- 
UABC solutions were constrained by both relative traveltimes and 
splitting intensities. We also performed inversions using only trav- 
eltimes and found that these data were sufficient to constrain the 
anisotropic parameters. In practice, splitting intensity data may be 
important for distinguishing between isotropic and anisotropic het- 
erogeneity when sampling of the medium is more biased since 
these data are generally insensitive to changes in isotropic velocity 
(Chevrot 2006 ). 

To illustrate the influence of our finite-frequency kernel approx- 
imation, we present a ray-theoretical solution of the Aniso-UABC 

inversion in Figs S4 and S5. As expected, ray theor y fur ther under- 
estimates the magnitude of anomalies. This is particularl y e vident in 
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Figure 7. Comparison of recovered isotropic heterogeneity. The isotropic inversion of relativ e trav eltimes generated by the isotropic subduction zone model 
(Iso-U) is shown in (a, b). The remaining panels (c–h) show the inversion of relative traveltimes generated by the anisotropic subduction zone model. (c, d) 
The Aniso-U solution solved only for isotropic ( u ) parameters. (e, f) The Aniso-UAB solution solved for u and the azimuthally anisotropic A , B parameters. 
(g, h) The Aniso-UABC solution included fabric dip (i.e. simultaneous inversion for u , A , B and C parameters). Solutions are plotted at 150 km (top row) and 
350 km (bottom row) depth. The target fast slab anomaly is the same for all inversions and is outlined in black. 
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he anisotropy field (Fig. S5). Ho wever , the geometry of the recov-
red anomalies is similar between the models. Improving resolution
equires leveraging multifrequency observables. 

 D I S C U S S I O N  

.1 Comparison of tomographic models 

ur synthetic tomographic inversions demonstrate that account-
ng for anisotropy in teleseismic S -wave imaging is crucial for
ccurately recovering isotropic heterogeneity and adequately fit-
ing delay times and splitting intensity observations. This is clearly
llustrated in Fig. 11 where the normalized data residual is plot-
ed against the normalized difference between the isotropic per-
urbations recovered in the Iso-U solution with those recovered in
he Aniso-U, Aniso-UAB and Aniso-UABC solutions. As a more
omplete description of anisotropy is included in the tomography,
he data fit and isotropic perturbations con verge to wards the Iso-U
odel. While the Aniso-UAB and Aniso-UABC solutions similarly
t the data and yield similar isotropic perturbations, including fabric
ip further reduces the magnitude of subslab low-velocity artefacts
Figs 8 and S3). Better fitting solutions are expected as the number
f free parameters in the in version increases. Ho wever , improved
ata variance reduction in the Aniso-U AB and Aniso-U ABC so-
utions cannot only be attributed to increased model complexity.
s shown in Fig. 6 , the norm of fractional perturbations to seis-
ic velocity, due to both changes in mean slowness and anisotropy,

re comparable across all solutions. Thus, the better fitting Aniso-
 AB and Aniso-U ABC models do not simply reflect a larger model
erturbation vector norm. 

As is common in damped tomographic inversions, the magni-
ude of both isotropic and anisotropic heterogeneity is generally
nderestimated. All models reconstruct the slab anomaly to within
0–75 per cent of its full amplitude. Both the Aniso-UAB and
niso-UABC solutions underestimate f ′′ on average by 0.5 per cent

Figs 12 a and b). This under-recovery may be influenced by a num-
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ber of factors in addition to regularization effects. (i) The lim- 
ited sampling of incidence angles by the teleseismic waves does 
not fully capture the extent of directional velocity variations lead- 
ing to weaker anisotropic magnitude estimates that can trade-off 
with mean velocity. (ii) The vertically integrated effect of depth- 
dependent anisotropic fabrics generally produces a weaker appar- 
ent anisotropic signal (e.g. Appendix B; R ümpker & Silver 1998 ) 
that when combined with the poor depth resolution of teleseis- 
mic data results in a weaker estimate of the anisotropic magnitude. 
(iii) Inaccuracies in our kernel approximation may limit anisotropic 
magnitude recovery (Chevrot et al. 2004 ; Favier et al. 2004 ). 

We find that upper mantle anisotropy fabric orientations are more 
accurately imaged when symmetry axis dip is included in the inver- 
sion (Figs 12 c–f). The Aniso-UABC model constrains symmetry 
axis orientations with a weighted mean error in ψ and γ of 15 ◦ and 
12 ◦, respecti vel y. In comparison, the weighted mean error is 17 ◦ for 
ψ and 20 ◦ for γ in the Aniso-UAB model. The means are weighted 
by 

√ 

f ′′ k g 
′′ 
k where f ′′ k and g ′′ k are the recovered and true anisotropic 

magnitudes at the k th parameter. This weighting is used because 
angular differences become irrelevant as the anisotropic magnitude 
approaches zero. These errors are generally less than the differences 
between mantle azimuthal anisotropy constrained by SWS and sur- 
face waves and that predicted from mantle convection models (e.g. 
Conrad et al. 2007 ; Becker et al. 2014 ; Zhou et al. 2018 ). There- 
fore, body wave-constrained anisotropic fabrics may provide useful 
constraints for geodynamic models of mantle convection. 
It is instructive to compare our anisotropic S -wave tomography 
to the anisotropic P -wave tomography of (VanderBeek & Faccenda 
2021 ) who used the same synthetic data set and inversion methodol- 
ogy. Two major differences are apparent. (i) Shear waves appear less 
sensitive to fabric dip compared to P waves. This was also noted 
by Beller & Chevrot ( 2020 ) and is evident from the modest im- 
provement in data fit moving from our Aniso-UAB to Aniso-UABC 

solutions (Fig. 11 ). Slab recovery and reduction in low-velocity arte- 
facts are also reduced in azimuthally anisotropic inversions. This is 
in contrast to the P -w ave tomo graphy in which solving for fabric 
dip was key to adequately fitting the delay times and removing erro- 
neous low-velocity zones. (ii) Shear waves better constrain shallow 

anisotropic heterogeneity. At steep incidence angles, the anisotropic 
signal in P wa ve dela ys is reduced. The opposite is generally true 
for S waves provided that the symmetry axes are not at large an- 
gles to the plane of S -wave polarization. Both this study and that of 
VanderBeek & Faccenda ( 2021 ) consider a relati vel y narrow range 
of teleseismic source distances (50 ◦ and 80 ◦) which limits the sam- 
pling of incidence angles. This adversely affects both the recovery 
of anisotropic fabrics—which requires good directional coverage—
and the spatial resolution of the tomographic model by allowing for 
greater trade-off among parameters. Directional sampling can be 
improved simply through a joint analysis of teleseismic P and S 
w ave observ ables as they sample orthogonal planes of the same 
anisotropic fabric. Further improvements in anisotropic model con- 
struction can come from the inclusion of steeply propagating XKS 
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hases as well as more horizontal travelling local and regional seis-
ic phases. 

.2 Implications for the interpretation of seismic images 

ur results have significant implications for the interpretation of
omographic models. Although upper mantle low-velocity anoma-
ies are ubiquitous in P and S tomographic images, anisotropy is
arely considered in velocity model construction. When anisotropy
s considered in imaging, it is often subject to simplifying assump-
ions regarding the orientation of the symmetry axes. Bezada et al.
 2016 ) and VanderBeek & Faccenda ( 2021 ) clearly demonstrated
hat low-velocity artefacts emerge in isotropic P -wave tomography
ue to realistic anisotropic fabrics produced by subduction zone
ow fields. Importantly, these studies show that anisotropy-induced
rtefacts persist even when azimuthal anisotropic inversions are per-
ormed and cannot easily be corrected for using SKS splitting obser-
ations (O’Driscoll et al. 2011 ; Bezada et al. 2016 ; Mohanty et al.
016 ; Confal et al. 2020 ). Our results confirm that such artefacts
an also be expected in isotropic shear wav e v elocity models. For
he particular imaging geometry considered here, dipping fabrics
ssociated with the descending plate act to increase the propaga-
ion speeds of both teleseismic P and S waves while subhorizontal
abrics beneath the incoming plate and within the mantle wedge
ave the opposite effect. This results in a similar distribution of
rtefacts in isotropic tomography of these different seismic phases.
he subslab low-velocity zone in our Aniso-U solution tends to be
tronger at greater depths where the model is less well-constrained
ue to limited ray crossing. The appearance of consistent anoma-
ies between independent data sets could mislead researchers as to
 20 O
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fined by || dln V − dln V r || 2 / || dln V r || 2 , where dln V is the recovered fractional 
velocity perturbations and dln V r is a reference fractional velocity pertur- 
bation model chosen here to be the Iso-U solution. As a more complete 
description of anisotropy is included in the inversion, the data variance and 
isotropic heterogeneity approach the Iso-U solution. 
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the robustness and physical origin of such features. It is important 
to note that the exact nature of anisotropy-induced artefacts will 
depend on the array geometry and the distribution of sources and 
their polarization. The uniform station spacing and backazimuthal 
coverage considered in the present study likely acts to minimize 
artefacts relative to a more biased data distribution. As quantitative 
comparisons and integration of tomographic images becomes more 
routine (e.g. Shephard et al. 2017 ; Hosseini et al. 2018 ; Golos et al. 
2020 ; Marignier et al. 2020 ), it will be important to understand how 

anisotropy could generate discrepancies among models. 
Recent studies on the geodynamic significance of subslab low- 

velocity zones (SSLVZs) in subduction environments (e.g. Fan & 

Zhao 2021 ) is one example where neglecting anisotropy may have 
significant implications for isotropic model interpretation. In the 
Andean (Portner et al. 2017 ; Rodr ́ıguez et al. 2021 ) and Casca- 
dia (Hawley et al. 2016 ; Bodmer et al. 2018 ) subduction zones, 
such low-velocity features have been v ariousl y attributed to en- 
trainment of hotspot material, decompression melting, and return 
flow along the base of the subducting plate. Buoyancy forces in- 
ferred from these local velocity reductions are hypothesized to in- 
fluence megathrust behaviour (Bodmer et al. 2018 ; Fan & Zhao 
2021 ) and the topo graphic e volution of the forearc (Bodmer et al. 
2020 ). An alternative explanation may be that such features are 
simply a consequence of assuming an isotropic earth in a truly 
anisotropic setting. This explanation is supported by the pre v a- 
lence of anisotropy-induced low-velocity artefacts present in our 
synthetic tests as well as those of Bezada et al. ( 2016 ) and Van- 
derBeek & Faccenda ( 2021 ). Ho wever , we note that the SSLVZs 
in Figs 8 (d)–(f) and in the P -wave study of VanderBeek & Fac- 
cenda ( 2021 ) occur � 300 km depth while those found in real 
data sets generally occur � 300 km. This may reflect differences 
in array geometries, source distributions, the frequency content of 
w aveforms anal ysed, subjecti ve choices in the regularization of the 
20 O
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omographic inversions and, of course, the true nature of hetero-
eneity sampled. Ultimately, improving our understanding of sub-
uction zone structure, and the nature of SSLVZs in particular, will
equire the application of both isotropic and anisotropic imaging
echniques. 

 C O N C LU S I O N S  

sing synthetic seismic data generated from a geodynamic model of
ubduction, w e ha v e demonstrated that ne glecting elastic anisotropy
n teleseismic shear wave imaging can introduce significant imaging
rtef acts. Specifically, anisotropic f abrics produced by the subduc-
ion zone flow field can yield substantial sub- and supraslab low
elocity anomalies when an isotropic Earth is assumed. Such fea-
ures could result in misguided interpretations regarding the physi-
al properties and dynamics of the mantle. To reduce such artefacts,
 e ha ve described and applied an anisotropic imaging method to

esolve arbitrarily oriented hexagonal anisotropy from observations
f relative shear wave traveltimes and splitting intensities. Not only
oes the new imaging methodology improve the recovery of true
sotropic heterogeneity, it is able to accurately capture 3-D varia-
ions in the strength and orientation of anisotropic fabrics. Such
onstraints provide insights into mantle deformation processes and
re valuable for constraining geodynamic models. 
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frequenc y trav eltimes—I. Theory, Geophys. J. Int., 141 (1), 157–174. 

Eberhart-Phillips , D. & Mark Henderson, C., 2004. Including anisotropy 
in 3-D velocity inversion and application to Marlborough, New Zealand, 
Geophys. J. Int., 156 (2), 237–254. 

Eilon , Z. , Abers, G.A. & Gaherty, J.B., 2016. A joint inversion for shear 
velocity and anisotropy: the Woodlark Rift, Papua New Guinea, Geophys. 
J. Int., 206 (2), 807–824. 

Evans , R. , 1984. Effects of the free surface on shear wave trains, Geophys. 
J. Int., 76 (1), 165–172. 

Faccenda , M. & Capitanio, F.A., 2013. Seismic anisotropy around subduc- 
tion zones: insights from three-dimensional modeling of upper mantle de- 
formation and SKS splitting calculations, Geochem. Geophys. Geosyst., 
14 (1), 243–262. 

Faccenda , M. , 2014. Mid mantle seismic anisotropy around subduction 
zones, Phys. Earth planet. Inter., 227, 1–19. 

F an , J . & Zhao, D ., 2021. Subslab heterogeneity and giant megathr ust ear th-
quakes, Nat. Geosci., 14 (5), 349–353. 

Favier , N. & Chevrot, S., 2003. Sensitivity kernels for shear wave splitting 
in transverse isotropic media, Geophys. J. Int., 153 (1), 213–228. 

Favier , N . , Che vrot, S. & Komatitsch, D., 2004. Near-field influence on shear 
wave splitting and traveltime sensitivity kernels, Geophys. J. Int., 156 (3), 
467–482. 

Fichtner , A. , Kennett, B.L., Igel, H. & Bunge, H.P., 2010. Full waveform 

tomo graphy for radiall y anisotropic structure: ne w insights into present 
and past states of the Australasian upper mantle, Earth planet. Sci. Lett., 
290 (3–4), 270–280. 

Fischer , K.M. , Parmentier, E.M., Stine, A.R. & Wolf, E.R., 2000. Modeling 
anisotropy and plate-driven flow in the Tonga subduction zone back arc, 
J. geophys. Res., 105 (B7), 16 181–16 191. 

Flinn , E.A. , 1965. Signal analysis using rectilinearity and direction of parti- 
cle motion, Proc. IEEE, 53 (12), 1874–1876. 

Golos , E.M. , Fang, H. & van der Hilst, R.D., 2020. Variations in seismic wave 
speed and VP/VS ratio in the North American lithosphere, J. geophys. 
Res., 125 (12), e2020JB020574, doi:10.1029/2020JB020574. 

Gr ésillaud , A. & Cara, M., 1996. Anisotropy and P-wave tomography: a new 

approach for inverting teleseismic data from a dense array of stations, 
Geophys. J. Int., 126 (1), 77–91. 

Hammond , W.C. & Toomey, D.R., 2003. Seismic velocity anisotropy and 
heterogeneity beneath the Mantle Electromagnetic and Tomography Ex- 
periment (MELT) region of the East Pacific Rise from analysis of P and 
S body waves, J. geophys. Res., 108 (B4), doi:10.1029/2002JB001789. 
0 O
ctober 2023

http://dx.doi.org/10.1029/2007GL032928
http://dx.doi.org/10.1016/j.epsl.2007.11.038
http://dx.doi.org/10.1016/j.epsl.2014.06.014
http://dx.doi.org/10.1002/9781119528609.ch10
http://dx.doi.org/10.1093/gji/ggaa069
http://dx.doi.org/10.1002/2016GC006507
http://dx.doi.org/10.1029/2001GC000248
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1029/2018GL078700
http://dx.doi.org/10.1016/j.epsl.2019.115965
http://dx.doi.org/10.1002/2015GC005964
http://dx.doi.org/10.1111/j.1365-246X.2004.02415.x
http://dx.doi.org/10.1016/j.pepi.2006.01.004
http://dx.doi.org/10.1111/j.1365-246X.1989.tb05251.x
http://dx.doi.org/10.1111/j.1365-246X.1992.tb00075.x
http://dx.doi.org/10.1111/j.1365-246X.2006.03218.x
http://dx.doi.org/10.1029/2000JB900199
http://dx.doi.org/10.1046/j.1365-246X.2003.01865.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02432.x
http://dx.doi.org/10.1111/j.1365-246X.2006.02982.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04370.x
http://dx.doi.org/10.1029/2019JB018559
http://dx.doi.org/10.1093/gji/ggad329
http://dx.doi.org/10.5194/gmd-11-2541-2018
http://dx.doi.org/10.1016/j.wavemoti.2008.01.003
http://dx.doi.org/10.1007/s10950-008-9121-3
http://dx.doi.org/10.1785/gssrl.70.2.154
http://dx.doi.org/10.1046/j.1365-246X.2000.00070.x
http://dx.doi.org/10.1111/j.1365-246X.2003.02044.x
http://dx.doi.org/10.1093/gji/ggw177
http://dx.doi.org/10.1111/j.1365-246X.1984.tb05032.x
http://dx.doi.org/10.1002/ggge.20055
http://dx.doi.org/10.1016/j.pepi.2013.11.015
http://dx.doi.org/10.1038/s41561-021-00728-x
http://dx.doi.org/10.1046/j.1365-246X.2003.01894.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02178.x
http://dx.doi.org/10.1016/j.epsl.2009.12.003
http://dx.doi.org/10.1029/1999JB900441
http://dx.doi.org/10.1109/PROC.1965.4462
http://dx.doi.org/10.1029/2020JB020574
http://dx.doi.org/10.1111/j.1365-246X.1996.tb05268.x


Anisotropic Shear Wave Tomography 2659 

H  

 

H  

 

H  

H  

 

 

H  

 

K  

 

 

K  

 

K  

K  

K  

 

K  

 

L  

L  

 

L  

 

L  

 

L  

 

L  

 

 

L  

 

L  

L  

 

L  

L  

L  

 

M  

 

M  

 

M  

 

 

M  

 

M  

M  

 

 

M  

 

M  

 

 

M  

M  

 

M  

 

M  

 

M  

 

M  

 

 

M  

 

 

M  

M  

M  

 

 

N  

 

 

N  

 

O  

 

 

P  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad389/7289240 by U

niversita degli studi di Padova- D
ipartim

ento di diritto Pubblico, internazionale e com
unitario user on 2
ansen , L.N. , Faccenda, M. & Warren, J.M., 2021. A re vie w of mechanisms
generating seismic anisotropy in the upper mantle, Phys. Earth planet.
Inter., 313, doi:10.1016/j.pepi.2021.106662. 

awley , W.B. , Allen, R.M. & Richards, M.A., 2016. Tomography reveals
buoyant asthenosphere accumulating beneath the Juan de Fuca plate,
Science, 353 (6306), 1406–1408. 

earn , T.M. , 1996. Anisotropic Pn tomography in the western United States,
J. geophys. Res., 101 (B4), 8403–8414. 

osseini , K. , Matthews, K.J., Sigloch, K., Shephard, G.E., Domeier, M. &
Tsekhmistrenko, M., 2018. SubMachine: web-based tools for exploring
seismic tomography and other models of Earth’s deep interior, Geochem.
Geophys. Geosyst., 19 (5), 1464–1483. 

ung , S.H. , Dahlen, F.A. & Nolet, G., 2000. Fr échet kernels for
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Š ́ılen ý , J. & Plomerov á, J., 1996. Inversion of shear-wave splitting parame- 
ters to retrieve three-dimensional orientation of anisotropy in continental 
lithosphere, Phys. Earth planet. Inter., 95 (3–4), 277–292. 

Silver , P.G. & Chan, W .W ., 1988. Implications for continental structure and 
evolution from seismic anisotropy, Nature, 335 (6185), 34–39. 

Silver , P.G. & Chan, W .W ., 1991. Shear wave splitting and subcontinental 
mantle deformation, J. geophys. Res., 96 (B10), 16429–16454. 

Silver , P.G. & Savage, M.K., 1994. The interpretation of shear-wave splitting 
parameters in the presence of two anisotropic lay ers, Geoph ys. J. Int., 
119 (3), 949–963. 

Silver , P.G. & Long, M.D., 2011. The non-commutivity of shear wave split- 
ting operators at low frequencies and implications for anisotropy tomog- 
raphy, Geophys. J. Int., 184 (3), 1415–1427. 

Simmons , N.A. , Forte, A.M. & Grand, S.P., 2006. Constraining mantle flow 

with seismic and geodynamic data: a joint approach, Earth planet. Sci. 
Lett., 246 (1–2), 109–124. 

Sobolev , S.V. , Gr ésillaud, A. & Cara, M., 1999. How robust is isotropic delay 
time tomography for anisotropic mantle?, Geophys. Res. Lett., 26 (4), 509–
512. 

Tarantola , A. & Valette, B., 1982. Generalized nonlinear inverse prob- 
lems solved using the least squares criterion, Rev. Geophys., 20 (2), 
219–232. 

Thomsen , L. , 1986. Weak elastic anisotropy, Geophysics, 51 (10), 1954–
1966. 

Toomey , D.R. , Solomon, S.C. & Purdy, G.M., 1994. Tomographic imaging 
of the shallow crustal structure of the East Pacific Rise at 9 ◦ 30’ N, J. 
geophys. Res., 99 (B12), 24135–24157. 

VanDecar , J.C. & Crosson, R.S., 1990. Determination of teleseismic rela- 
tive phase arrival times using multi-channel cross-correlation and least 
squares, Bull. seism. Soc. Am., 80 (1), 150–169. 

VanderBeek , B.P. & Faccenda, M., 2021. Imaging upper mantle anisotropy 
with teleseismic P-wave delays: insights from tomographic reconstruc- 
tions of subduction simulations, Geophys. J. Int., 225 (3), 2097–2119. 
Vasco , D.W. , Peterson, J.E. Jr & Majer, E.L., 1995. Beyond ray tomography: 
Wavepaths and Fresnel volumes, Geophysics, 60 (6), 1790–1804. 
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A P P E N D I X  A :  A N I S O T RO P Y  

PA R A M E T R I Z AT I O N S  

A1 Relationship to Thomsen parameters 

Thomsen ( 1986 ) gives approximate phase velocities for Sv and Sh 
waves in a vertical transversely isotropic (VTI) media. The expres- 
sions are valid for hexagonal symmetry with arbitrary symmetry 
axis orientations and we may write eq. (16) of Thomsen ( 1986 ) 
using the more general notation, 

v ′ = βT 

[
1 + 

α2 
T 

β2 
T 

( εT − δT ) sin 2 ( θph ) cos 2 ( θph ) 

]
, (A1) 

and 

v ′′ = βT 

[
1 + γT sin 2 ( θph ) 

]
, (A2) 

where v ′ corresponds to the phase velocity of the shear wave polar- 
ized in the plane containing the symmetry axis and v ′′ is the phase 
velocity of the ortho gonall y polarized shear wave; θ ph is the angle 
betw een the wa v efront normal and the he xagonal symmetry axis 
(i.e. the phase angle). The Thomsen parameters ( αT , βT , εT , γ T and 
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Table A1. Relationships between the ABC , vectoral and spherical 
parametrizations of anisotropic strength and orientation. In equations in- 
volving A , B , and C terms we use G for 

√ 

A 

2 + B 

2 . Under the ABC 

parametrization, the symmetry axes n and −n are equi v alent. For this reason, 
the expressions for n 1 ( A , B , C ) and n 2 ( A , B , C ) contain the ‘ ±1, 2 ’ symbol 
which take the sign of n 1, 2 . The appropriate signs can al wa ys be recovered 
from the ABC parametrization by first converting to spherical parameter 
and then vectoral parameter. The sign of f ′′ is lost in the ABC and vectoral 
parametrization hence the ‘ ±’ symbol in the expressions for f ′′ . 

ABC f ′′ , ψ , γ n 1 , n 2 , n 3 

A | f ′′ | cos 2 ( γ )cos (2 ψ) n 2 1 − n 2 2 
B | f ′′ | cos 2 ( γ )sin (2 ψ) 2 n 1 n 2 
C 

√ | f ′′ | sin ( γ ) n 3 
Vectoral f ′′ , ψ , γ A , B , C 

n 1 
√ | f ′′ | cos ( γ ) cos ( ψ) ±1 

√ 

( G + A ) / 2 
n 2 

√ | f ′′ | cos ( γ ) sin ( ψ) ±2 
√ 

( G − A ) / 2 
n 3 

√ | f ′′ | sin ( γ ) C 

Spherical n 1 , n 2 , n 3 A , B , C 

f ′′ ± (
n 2 1 + n 2 2 + n 2 3 

) ±( G + C 

2 ) 
ψ arctan 2 [ n 2 /n 1 ] 0 . 5 arctan 2 [ B/A ] 

γ arctan 2 

[
n 3 / 

√ 

n 2 1 + n 2 2 

]
arctan 2 

[ 
C/ 

√ 

G 
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T ) are related to the coefficients of a hexagonally symmetric elastic
ensor, 

T = 

√ 

C 33 

ρ
, (A3) 

T = 

√ 

C 44 

ρ
, (A4) 

T = 

C 11 − C 33 

2 C 33 
, (A5) 

T = 

C 66 − C 44 

2 C 44 
, (A6) 

nd 

= 

( C 13 + C 44 ) 2 − ( C 33 − C 44 ) 2 

2 C 33 ( C 33 − C 44 ) 
. (A7) 

xpanding the cos 2 ( θ ph ) and sin 2 ( θ ph ) terms in eqs ( A1 ) and ( A2 )
s functions of cos (2 θ ph ) and cos (4 θ ph ) yields, 

 

′ = v ′ 
[
1 + f ′ cos (4 θph ) 

]
, (A8) 

nd 

 

′′ = v 
[
1 + f ′′ cos (2 θph ) 

]
, (A9) 

here the mean velocities ( v ′ , v ) and anisotropic fractions ( f ′ , f ′′ )
re the following combinations of the Thomsen parameters, 

 

′ = βT 

[
1 + 

α2 
T 

β2 
T 

( εT − δT ) 

8 

]
, (A10) 

 = βT 

[ 
1 + 

γT 

2 

] 
, (A11) 

f ′ = − α2 
T ( εT − δT ) 

8 β2 
T + α2 

T ( εT − δT ) 
, (A12) 

nd 

f ′′ = − γT 

(2 + γT ) 
. (A13) 

iven that v ( θ ph = 0) = v ′ ( θ ph = 0), we can substitute v ′ = v(1 +
f ′′ ) / (1 + f ′ ) into eq. ( A9 ) removing the dependence on v ′ , 

 

′ = v 
(1 + f ′′ ) 
(1 + f ′ ) 

[
1 + f ′ cos (4 θph ) 

]
. (A14) 

n this w ay, onl y three parameters ( v , f ′ and f ′′ ) are required to
haracterize shear wave anisotropy instead of the five Thomsen
arameters. 

2 Parametrization using A, B and C terms 

efore presenting the qS-wave velocity equations and their deri v a-
ives using the ABC parametrization, it’s useful to define the re-
ationships that convert between ABC , vectoral ( n 1 , n 2 , n 3 ) and
pherical ( f ′′ , ψ , γ ) representations of the anisotropic strength and
ymmetry axis; see Table A1 . These will be used in the following
eri v ations when convenient to simplify the equations. 

To deriv e e xplicit e xpressions for the slowness partial deri v ati ves
ith respect to the u , A , B and C parameters (eqs A23 and A24 ),
e first define the quasi-shear wav e v elocities as a function of these
ariables. Expanding cos (2 α) and cos (4 α) terms in eqs ( 13 ) and
 14 ) into functions of cos ( α) and noting that cos ( α) is equi v alent
o the dot product between the ray ( ̂ r ) and symmetry axis ( ̂ n =
 / 
√ | f ′′ | ) unit vectors yields 

 

′′ = v 
[
1 + 2 f ′′ ( ̂ r · ˆ n ) 2 − f ′′ 

]
(A15) 
nd 

 

′ = v 
(1 + f ′′ ) 
(1 + f ′ ) 

[
1 + 8 f ′ ( ̂ r · ˆ n ) 4 − 8 f ′ ( ̂ r · ˆ n ) 2 + f ′ 

]
, (A16) 

o keep the velocity equations compact and make the deri v ation
f the partial deri v ati ves more tractable, we will introduce several
nter mediate ter ms. Given the relationships in Table A1 and sub-
tituting X = 2 | f ′′ | ( ̂ r · ˆ n ) 2 , eqs ( A15 ) and ( A16 ) may be written
s, 

 

′′ = v 
[
1 ± (

X − G − C 

2 
)]

(A17) 

nd 

 

′ = v 
1 ± (

G + C 

2 
)

1 ± h 

( G + C 

2 ) 

[
1 ± h 

(
2 

X 

2 

G + C 

2 
− 4 X + G + C 

2 

)]
, 

(A18) 

here h = f ′ / f ′′ is selected based on prior knowledge of the imaging
arget and assumed constant. The sign of the anisotropic fraction, f ′′ ,
as been factored out resulting in the ± sign which must be chosen
 priori given the expected origin of anisotropy (e.g. olivine or
racture alignment). Finally, w e ha ve introduced the G term defined
s, 

G = 

(
A 

2 + B 

2 
)1 / 2 

. (A19) 

sing the definitions in Table A1 , the dot product in X = 2 | f ′′ | ( ̂ r ·
ˆ  ) 2 can be expanded and written as a function of A , B and C , 

X = A 

(
r 2 1 − r 2 2 

) + 2 Br 1 r 2 + G 

(
r 2 1 + r 2 2 

) + 2 
√ 

2 CY r 3 + 2 C 

2 r 2 3 , 

(A20)

here 

 = ±1 ( G + A ) 1 / 2 r 1 ±2 ( G − A ) 1 / 2 r 2 . (A21) 

y design, the ABC -parametrization cannot distinguish between n
nd −n resulting in the sign ambiguity represented by ±1, 2 which
akes the sign of the n 1, 2 components of the symmetry axis vector.
o wever , these sign ambiguities will be resolved when deriving

he partial deri v ati ves—the onl y calculations for which eqs ( A17 )–
 A21 ) are used. 
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A3 Anisotropic slowness partial deri v ati ves 

The elements of the Jacobian, J , in eq. ( 25 ) are computed by dif- 
ferentiating the residual vector r with respect to the current model. 
The model m used to predict the observations and the perturba- 
tion model � m defining the resolution of the solution need not be 
defined on the same grid in which case the Jacobian elements are 
gi ven b y the linear mapping, 

J ik = 

M ∑ 

j= 1 
w jk 

∂r i 
∂m j 

(A22) 

where w jk is the linear interpolation w eight betw een the j th-model 
and k th-perturbational node (e.g. Toomey et al. 1994 ). From eqs ( 17 ) 
and ( 18 ), the partial deri v ati ves, ∂ r i / ∂ m j , for the traveltime and
splitting intensity are, 

∂t i 
∂m j 

= K j 

[
∂u ′′ j 
∂m j 

+ 

(
∂u ′ j 
∂m j 

− ∂u ′′ j 
∂m j 

)
cos 2 ( β j ) − ∂β j 

∂m j 

(
u ′ j − u ′′ j 

)
sin (2 β j ) 

]

(A23) 

and 

∂s i 
∂m j 

= 

K j 

2 

[(
∂u ′′ j 
∂m j 

− ∂u ′ j 
∂m j 

)
sin (2 β j ) + 2 

∂β j 

∂m j 
( u ′′ j − u ′ j ) cos (2 β j ) 

]
. (A24) 

Note that replacing K j with the ray segment length � L j yields the 
ray-theoretical partials. 

The slowness partial deri v ati ves in eqs ( A23 ) and ( A24 ) are con- 
structed via the chain rule, 

∂u 

′′ 

∂m 

= 

∂u 

′′ 

∂v ′′ 
∂v ′′ 

∂m 

= −∂v ′′ 

∂m 

( v ′′ ) −2 (A25) 

and 

∂u 

′ 

∂m 

= 

∂u 

′ 

∂v ′ 
∂v ′ 

∂m 

= − ∂v ′ 

∂m 

( v ′ ) −2 . (A26) 

From eqs ( A26 )–( A25 ) and ( A17 )–( A18 ), the u ′′ and u ′ partial 
deri v ati ves are, 

∂u 

′′ 

∂u 

= 

u 

′′ 

u 

, (A27) 

∂u 

′′ 

∂ A, B 

= ∓ ( u 

′′ ) 2 

u 

(
∂ X 

∂ A, B 

− ∂G 

∂ A, B 

)
, (A28) 

∂u 

′′ 

∂C 

= ∓ ( u 

′′ ) 2 

u 

(
∂ X 

∂C 

− 2 C 

)
, (A29) 

∂u 

′ 

∂u 

= 

u 

′ 

u 

, (A30) 

∂u ′ 

∂ A, B 
= ∓u ′ 

{
h 

u ′ 

u 

(1 + f ′′ ) 
(1 + f ′ ) 

(
[8 cos 2 ( α) − 4] 

∂ X 

∂ A, B 
+ [1 − 8 cos 4 ( α)] 

∂G 

∂ A, B 

)

+ 

(
1 

(1 + f ′′ ) 
− h 

(1 + f ′ ) 

)
∂G 

∂ A, B 

}
(A31) 

and 

∂u ′ 

∂C 

= ∓2 u ′ 
{

h 
u ′ 

u 

(1 + f ′′ ) 
(1 + f ′ ) 

(
[4 cos 2 ( α) − 2] 

∂ X 

∂C 

+ [1 − 8 cos 4 ( α)] C 

)

+ 

(
1 

(1 + f ′′ ) 
− h 

(1 + f ′ ) 

)
C 

}
(A32) 

In the above expressions, substitutions from Table A1 for terms 
involving X , G , A , B and C were made where convenient. The 
partial deri v ati ves for the intermediate v ariable G (eq. A19 ) are, 

∂G 

∂ A 

= 

A √ 

A 

2 + B 

2 
= cos (2 ψ) , (A33) 

and 

∂G 

∂ B 

= 

B √ 

A 

2 + B 

2 
= sin (2 ψ) . (A34) 
For the Y variable (eq. A21 ) the partial derivatives are, 

∂Y 

∂ A 

= ±1 
( ∂ G/∂ A + 1 ) 

2 
√ 

G + A 

r 1 ±2 
( ∂ G/∂ A − 1 ) 

2 
√ 

G + A 

r 2 = 

[ r 1 cos ( ψ) − r 2 sin ( ψ)] √ 

2 | f ′′ | cos ( γ ) 

(A35) 

and 
∂Y 

∂ B 
= ±1 

( ∂ G/∂ B ) 

2 
√ 

G + A 

r 1 ±2 
( ∂ G/∂ B ) 

2 
√ 

G + A 

r 2 = 

[ r 1 sin ( ψ) + r 2 cos ( ψ)] √ 

2 | f ′′ | cos ( γ ) 
(A36) 

Differentiating the X term (eq. A20 ) is tri vial gi v en the e xpressions 
in eqs ( A33 )–( A36 ) and after replacing the ray unit vector ( ̂ r ) with 
its spherical representation ( φ, θ ) and some algebraic manipulation 
yields, 

∂ X 

∂ A 

= [ cos (2 ψ) + cos (2 φ)] cos 2 ( θ ) + cos ( ψ + φ) tan ( γ ) sin (2 θ ) , 

(A37

∂ X 

∂ B 

= [ sin (2 ψ) + sin (2 φ)] cos 2 ( θ ) + sin ( ψ + φ) tan ( γ ) sin (2 θ ) , 

(A38) 

and 

∂ X 

∂C 

= 4 C sin 2 ( θ ) + 2 
√ 

| f ′′ | cos ( ψ − φ) cos ( γ ) sin (2 θ ) . (A39) 

The appearance of the tan ( γ ) term in eqs ( A37 ) and ( A38 ) causes 
the partials to become undefined when the symmetry axis is vertical 
( γ = ±90 ◦). We avoid this issue simpl y b y forcing | γ | ≤ 85 ◦ when 
e v aluating these expressions. 

The last ingredient required to compute the traveltime and split- 
ting intensity sensitivities (eqs A23 –A24 ) are the partial deri v ati ves 
of the angle β. A rotation from the reference coordinate system to the 
ray-aligned coordinate system (Fig. 1 ) gives the QTL-components 
of the symmetry axis vector as, 

g = 

⎡ 

⎣ 

n 1 sin ( θ ) cos ( φ) + n 2 sin ( θ ) sin ( φ) − n 3 cos ( θ ) 
−n 1 sin ( φ) + n 2 cos ( φ) 

n 1 cos ( θ ) cos ( φ) + n 2 cos ( θ ) sin ( φ) − n 3 sin ( θ ) . 

⎤ 

⎦ (A40) 

The angle β is then, 

β = arctan 

[
g 2 
g 1 

]
− ζ, (A41) 

and from the chain rule the partial deri v ati ves can be written as, 

∂β

∂m 

= 

1 

( g 2 1 + g 2 2 ) 

[
g 1 

∂g 2 
∂n 2 

∂n 2 

∂m 

− g 2 
∂g 1 
∂n 1 

∂n 1 

∂m 

]
, (A42) 

where the ∂ n i / ∂ m terms can be determined from the relationships 
in Table A1 . Evaluating eq. ( A42 ) for m = A , B and C gives, 

∂β

∂ A 

= 

−[ sin ( θ ) sin (2 ψ) − cos ( θ ) tan ( γ ) sin ( ψ + φ)] 

2 | f ′′ | sin 2 ( α) 
, (A43) 

∂β

∂ B 

= 

[ sin ( θ ) cos (2 ψ) − cos ( θ ) tan ( γ ) cos ( ψ + φ)] 

2 | f ′′ | sin 2 ( α) 
, (A44) 

and 

∂β

∂C 

= 

cos ( θ ) cos ( γ ) sin ( ψ − φ) √ | f ′′ | sin 2 ( α) 
. (A45) 

Upon inspection of eqs ( A43 )–( A45 ) it’s clear that these expression 
become undefined as (1) the angle γ approaches 90 ◦, (2) the an- 
gle α approaches 0 ◦, and/or (3) f ′′ approaches zero. As pre viousl y 
mentioned, the first issue is avoided simply by restricting γ to the 
interval ±85 ◦ when evaluating the partial derivatives. To resolve 
the last two issues we note that the partial deri v ati ves of β are always 
multiplied by ±( u ′′ − u ′ ) in eqs ( A23 ) and ( A24 ). Fur ther more, we
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an assume that hf ′′ < < 1 allowing us to approximate the difference
etween u ′ and u ′′ as, 

 u 

′′ − u 

′ ) ≈ 2 f ′′ u i sin 2 ( α)[1 − 4 h cos 2 ( α)] 

[1 + f ′′ cos (2 α)][1 + f ′′ ] 
. (A46) 

pon multiplication of eqs ( A43 )–( A45 ) with this approximation
or ( u ′ − u ′′ ), the problematic division by terms involving f ′′ and
in ( α) is resolved. 

Eqs ( A27 )–( A32 ), ( A37 )–( A39 ) and ( A43 )–( A46 ) provide the
ecessar y ing redients to e v aluate the partials deri v ati ves in
qs ( A23 )–( A24 ) required for the construction of J (eq. A22 ). 

P P E N D I X  B :  E VA LU  A  T I O N  O F  

S S U M P T I O N S  I N  D E R I VAT I O N  O F  

H E A R  WAV E  O B S E RVA B L E S  

o assess when the assumptions of weak splitting and linear po-
arization ma y fail, w e compare anisotropic shear wave observ-
bles measured from waveforms modelled using eq. (1)–(3) to
redictions from eqs (6)–(7). The matrix propagation method (i.e.
qs 1–3) of R ümpker and Silver ( 1998 ) is used to rotate and de-
ay a Ricker wavelet as it propagates vertically through a horizon-
ally layered anisotropic medium. The effects of 3-D heterogeneity
nd frequency-dependent sensitivity are neglected in this geometric
reatment of splitting. Each anisotropic layer is defined by a splitting
mplitude, | � t ′′ − � t ′ | , and a fast-polarization azimuth, ψ 

′ . The
nisotropic delay time is measured via cross-correlation with the
nitial Ricker wavelet on the x 1 -component and the splitting inten-
ity is measured by projecting the derivative of the x 1 -component
nto the x 2 -component of the split waveform (Fig. 1 ; eq. 29). In
his simple modelling framework and a given vertical distribution
f ψ 

′ , the results depend only on the ratio between the dominant
eriod, T , and the vertically integrated splitting amplitude. Thus,
he results presented are normalized by T . 

We first consider a homogeneous medium characterized by weak
 | � t ′′ − � t ′ | = T /10), intermediate ( | � t ′′ − � t ′ | = T /5), and strong
plitting amplitude ( | � t ′′ − � t ′ | = T /2.5) with ψ 

′ = 0 ◦. The mea-
ured and predicted delay times and splitting intensities are shown
n Fig. B1 . As expected, the error in the observables grows with
ncreasing magnitude of splitting intensity. Ho wever , provided that
 T /( � t ′′ − � t ′ ) | � 5, the prediction errors are an order of magnitude
maller than the measured delay time or splitting intensity (Fig. B2 ).
e also observe at high splitting amplitudes, the sinusoidal trend in

he delay times becomes more complex though its phase and ampli-
ude remain consistent with the prediction of eq. ( 6 ). In comparison,
he sinusoidal trend in the splitting intensity agrees well with eq. ( 7 )
ut the amplitude is overpredicted. This is due to the decreasing
verlap between x 1 - and x 2 -component waveforms with increasing
plitting intensity. 

In a heterogeneous medium, the particle motion and principal po-
arization direction of the shear wave will be continually modified
s it interacts with different anisotropic layers. To explore this effect
e considered two layered anisotropic models each containing 10

ntervals. In the first model (Figs B3 a and b), the splitting amplitude
f each layer is the same and scaled such that the integrated | � t ′′ 

� t ′ | is T /5. The fast polarization azimuth v aries linearl y from
 

◦ at the base to 60 ◦ at the surface. In comparison to the homoge-
eous case with comparable splitting amplitude (Figs B1 c and d),
he amplitude of the sinusoidal trends in delay time and splitting
ntensity are reduced as each layer tends to destructi vel y interfere
nd the phase of the trends corresponds to the average ψ 

′ within
he model (30 ◦). The weaker anisotropic signal results in compa-
able but slightly reduced prediction errors for the stratified model
Figs B4 a,b) compared to the homogeneous case (Figs B2 c and d). 

In the second model (Figs B3 c and d), random splitting ampli-
udes and polarization azimuths are assigned to the layers. The less
oherent anisotropic structure will generally result in more destruc-
ive interference and a weaker integrated splitting effect. Therefore,
e scaled the splitting amplitude of all layers such that the maxi-
um integrated splitting intensity is 5 T . In comparison to the ho-
ogeneous case (Figs B1 c and d), we see a moderate increase in

he prediction errors but the absolute error remains generally one
rder of magnitude less than the measured values (Figs B4 c and
). The increased errors reflect the fact that for an N -layer model
he splitting amplitude of a given interval is generally greater than
 T / N to counteract the destructive interference and result in the de-
ired integrated splitting intensity . Consequently , the polarization of
he S -waveform is more strongly perturbed and deviates from our
ssumption of linearity and constant ζ . Nonetheless, eqs ( 6 )–( 7 )
ppear to be applicable for strongly varying anisotropic structure
long a ray path. 

The two previous examples considered a linearly polarized wave
ntering an anisotropic model. A particularly relevant case for re-
ional teleseismic tomography is when the incoming wav e e xhibits
ignificant deviations from linear polarization due to splitting by
nisotropic structure outside the local imaging volume. To simulate
his situation, we split the initial Ricker wavelet following eq. ( 1 ) us-
ng | � t ′′ − � t ′ | = T /5 and a fast-polarization azimuth rotated 22.5 ◦

nd 45 ◦ from the initial linear polarization direction (henceforth
eferred to as waveform-22 and wav eform-45, respectiv ely). As a
esult of the initial splitting, waveform-22 (Figs B5 a and b) exhibits
lear elliptical particle motion with a principal polarization direc-
ion rotated ∼16 ◦ from the initial linear polarization direction. The
aveform-45 (Figs B5 c and d) has nearly circular particle motion
ith the principal polarization direction remaining at 0 ◦. 
Despite both waveforms not conforming to the assumption of

inear polarization, our approximations still provide an accurate
escription of the principal delay and splitting intensity (Figs B6
nd B7 ). Ho wever , there is a mean offset between predicted and mea-
ured splitting intensity. In the case of regional teleseismic imaging,
his offset can be accounted for by demeaning the splitting intensity
easurements for each event as is common practice for delay time
easurements. There is one other important caveat; to correctly

redict the phase of the sinusoidal trends shown in the measure-
ents, the correct incoming principal polarization direction must

e known (Figs B5 b and d). For a regional teleseismic study, this
an be obtained via a principal component analysis of the wave-
orm generated by stacking the S -phases observed across an array
or a given event—the approach used in our synthetic tomography
Section 5.1 ). 

In summary, w e ha v e inv estigated the accurac y of eqs ( 6 )–( 7 ) in
esponse to increasing splitting strength of homogenous and lay-
red medium and to elliptical particle motion. These tests confirm
hat provided the integrated splitting intensity remains less than

5 T , the error in our expressions is generally an order of mag-
itude smaller than the measured anisotropic obser vable. Fur ther-
ore, provided the principal polarization direction of the incoming
ave is known, the splitting intensity and delay time of waveforms

xhibiting strongly elliptical particle motions can be reliably esti-
ated. These tests did not consider the effects of more complicated
ave phenomenon such as scattering and mode conversions from
-D heterogeneity. The potential error from such processes is dis-
ussed in Section 5.2 where we compare measured principal shear
 0 O
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Figure B1. Predicted (black crosses) and measured (red points) principal anisotropic delay (top row) and splitting intensity (bottom row) as a function of the 
incoming S -wave polarization azimuth, ζ , for a homogeneous medium. Results are shown for three models characterized by (a, b) weak, (c, d) intermediate 
and (e, f) strong anisotropy with a fast-polarization direction corresponding to ζ = 0. The strength of anisotropy is defined by the delay time between the fast- 
and slow-polarized quasi-shear phases ( | � t ′′ − � t ′ | ) relative to the dominant waveform period ( T ). Note that plotted delay times and and splitting intensities 
are normalized by T . 

w ave observ ables from SPECFEM simulated w aveforms to those 
predicted by our approximations. 

A P P E N D I X  C :  M I N I M I Z AT I O N  O F  

A N I S O T RO P I C  M A G N I T U D E  

Here we describe the construction the (P x M) matrix D f in eq. ( 25 ) 
that minimizes the perturbation to the anisotropic magnitude. For 
the perturbational model vector � m = [ � u ; � A ; � B ; � C ] where 
each parameter set is defined on a grid of P-nodes discretized in 
space for a total of M = 4P unknowns, the anisotropic magnitude 
perturbation at the p th node location is, 

� f ′′ p = 

√ 

� m 

2 
p + P + � m 

2 
p + 2 P + � m 

2 
p + 3 P . (C1) 

Taking the total deri v ati ve of � f ′′ p gives the coefficients of the p th- 
row of the matrix D f , 

d p ,p + P = 

� m p + P √ 

� m 

2 
p + P + � m 

2 
p + 2 P 

= cos (2 �ψ p ) , (C2) 

d p ,p + 2 P = 

� m p + 2 P √ 

� m 

2 
p + P + � m 

2 
p + 2 P 

= sin (2 �ψ p ) , (C3) 

and 

d p ,p + 3 P = 2 � m p + 3 P ; (C4) 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad389/7289240 by U

niversita degli studi di Padova- D
ipartim

ento di diritto P
all other elements are zero-valued. At each iteration D f is computed 
for the current value of � m . 
ubblico, internazionale e com
unitario user o
n 20 O

ctober 2023

art/ggad389_fb1.eps


Anisotropic Shear Wave Tomography 2665 

0 12.5 25 37.5 50
0

0.375

0.75

1.125

1.5

0 25 50 75 100
0

3.75

7.5

11.25

15

0 50 100 150 200
0

37.5

75

112.5

150

|δ
s|
/T
(x
10
-3
)

|s|/T (x10-3) |s|/T (x10-3) |s|/T (x10-3)

0 12.5 25 37.5 50
0

0.375

0.75

1.125

1.5

0 25 50 75 100
0

3.75

7.5

11.25

15

0 50 100 150 200
0

37.5

75

112.5

150

|δ
t|/
T
(x
10
-3
)

|s|/T (x10-3) |s|/T (x10-3) |s|/T (x10-3)

(a) (c) (e)

(b) (d) (f)

Weak
T/|Δt'' - Δt'| = 10

Intermediate
T/|Δt'' - Δt'| = 5

Strong
T/|Δt'' - Δt'| = 2.5

Figure B2. Absolute errors between the predicted and measured (top row) delay times and (bottom row) splitting intensities shown in Fig. B1 . Errors are 
plotted as a function of the predicted splitting intensity magnitude (eq. 7 ). 
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Figure B3. Predicted (black crosses) and measured (red points) principal anisotropic delay (top row) and splitting intensity (bottom row) as a function of the 
incoming S -wave polarization azimuth, ζ , for a stratified medium composed of 10 layers. In (a, b) results are shown for a model with a linear gradient in the 
fast-polarization azimuth varying from ζ = 0 ◦ at the base to ζ = 60 ◦ at the surface. The anisotropic strength is the same for each layer and defined such that 
the integrated delay between the fast- and slow-polarized quasi-shear phases, | � t ′′ − � t ′ | , is T /5, where T is the waveform period. The model corresponding 
to panels (c, d) contains layers with a randomly assigned fast-polarization direction and anisotropic strength. In contrast to the linear gradient model, the 
anisotropic strength of all layers is scaled such that the maximum integrated splitting intensity is T /10. Note that delay times and and splitting intensities are 
normalized by T . 
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Figure B4. Absolute errors between the predicted and measured (top row) delay times and (bottom row) splitting intensities shown in Fig. A3 . Errors are 
plotted as a function of the predicted splitting intensity magnitude (eq. 7 ). 
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Figure B5. Wav eforms e xhibiting an (a) intermediate and (b) high de g ree of ellipticity. Black cur ve corresponds to the initial linearly polarized Ricker wavelet; 
red curve shows the split wavefor m obser ved in the principal polarization direction and the blue waveform is the displacement in the orthogonal direction. 
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of the split waveform determined via eigendecomposition of the trace covariance matrix. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article/doi/10.1093/gji/ggad389/7289240 by U

niversita degli studi di Padova- D
ipartim

ento di diritto Pubblico, internazionale e com
unitario user on 20 O

ctober 2023

art/ggad389_fb5.eps


Anisotropic Shear Wave Tomography 2669 

-90 -45 0 45 90
-5

0

5

10

15

-90 -45 0 45 90
-5

0

5

10

15

s/
T
(x
10
-2
)

ζ (deg.) ζ (deg.)

-90 -45 0 45 90

-5

-2.5

0

2.5

5

-90 -45 0 45 90

-5

-2.5

0

2.5

5

Δ
t/T
(x
10
-2
)

ζ (deg.) ζ (deg.)

(a) (c)

(b) (d)

Intermediate Ellipticity
T/|Δt'' - Δt'| = 5

Strong Ellipticity
T/|Δt'' - Δt'| = 5

Figure B6. Predicted (black crosses) and measured (red points) principal anisotropic delay (top row) and splitting intensity (bottom row) as a function of 
the incoming S -wave principal polarization azimuth, ζ , for the elliptically polarized waveforms shown in Fig. A5 . The anisotropic model is the same as that 
described in Figs B1 (c) and (d). Note that delay times and and splitting intensities are normalized by the waveform period, T . 
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Figure B7. Absolute errors between the predicted and measured (top row) delay times and (bottom row) splitting intensities shown in Fig. B6 . Errors in 
splitting intensity are computed after removing the mean offset between the measured and predicted curves (Figs B6 c and d). Errors are plotted as a function 
of the predicted splitting intensity (eq. 7 ). 
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