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Non-Abelian Bloch oscillations in higher-order
topological insulators
M. Di Liberto 1✉, N. Goldman1 & G. Palumbo1

Bloch oscillations (BOs) are a fundamental phenomenon by which a wave packet undergoes a

periodic motion in a lattice when subjected to a force. Observed in a wide range of synthetic

systems, BOs are intrinsically related to geometric and topological properties of the under-

lying band structure. This has established BOs as a prominent tool for the detection of Berry-

phase effects, including those described by non-Abelian gauge fields. In this work, we unveil a

unique topological effect that manifests in the BOs of higher-order topological insulators

through the interplay of non-Abelian Berry curvature and quantized Wilson loops. It is

characterized by an oscillating Hall drift synchronized with a topologically-protected inter-

band beating and a multiplied Bloch period. We elucidate that the origin of this synchroni-

zation mechanism relies on the periodic quantum dynamics of Wannier centers. Our work

paves the way to the experimental detection of non-Abelian topological properties through

the measurement of Berry phases and center-of-mass displacements.
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The quest for topological quantization laws has been a
central theme in the exploration of topological quantum
matter1,2, which originated from the discovery of the

quantum Hall effect3. In the last decade, the development of
topological materials has led to the observation of fascinating
quantized effects, including the half-integer quantum Hall effect4

and the quantization of Faraday and Kerr rotations5 in topolo-
gical insulators6,7, as well as half-integer thermal Hall con-
ductance in spin liquids8 and quantum Hall states9. In parallel,
the engineering of synthetic topological systems has allowed for
the realization of quantized pumps10,11, and revealed quantized
Hall drifts12–14, circular dichroism15, and linking numbers16.

In this context, Bloch oscillations (BOs)17–22 have emerged as a
powerful tool for the detection of geometric and topological
properties in synthetic lattice systems23–26, hence providing
access to quantized observables. Indeed, transporting a wave-
packet across the Brillouin zone (BZ) can be used to explore
various geometric features of Bloch bands, including the local
Berry curvature23 and the Wilson loop of non-Abelian connec-
tions25. This strategy has been exploited to extract the Berry
phase27,28, the Berry curvature29,30, the Chern number12–14, and
quantized Wilson loops31 in ultracold matter and photonics.

The Wilson loop measurement of ref. 31 highlighted a funda-
mental relation between two intriguing properties of multi-band
systems: the quantization of Wilson loops, a topological property
related to the Wilczek-Zee connection32, and the existence of
“multiple Bloch oscillations”, which are characterized by a mul-
tiplied Bloch period31,33–39. The effect investigated in ref. 31 was
eventually identified as an instance of “topological Bloch oscil-
lations”, whose general framework was proposed in ref. 40 based
on the space groups of crystals and its implications on the
quantization of geometric quantities (Zak phases differences).
The Bloch period multiplier appears as a topological invariant,
protected by crystalline symmetries, thus making multiple BOs
genuinely topological. Furthermore, when a Wannier repre-
sentation of the bands is possible, Zak phases correspond to the
positions of charges within the unit cell, namely the Wannier
centers. As a consequence, a Zak-Wannier duality allows to
connect BOs to the relative phases acquired by charges within a
classical point-charge picture. More recently, BOs displaying
topologically protected sub-oscillations have also been found in
periodically driven systems in the context of quantum walks41.

In this work, we identify a distinct topological effect that
manifests in the BOs of higher-order topological insulators
(HOTIs). These newly discovered systems belong to the family of
topological crystalline insulators42–46, i.e., gapped quantum sys-
tems characterized by crystal symmetries; they are characterized
by quantized multipole moments in the bulk and unusual topo-
logically protected states (e.g., corner or hinge modes) on their
boundaries; see refs. 47–60. Considering the prototypical
Benalcazar-Bernevig-Hughes (BBH) model47,48, we unveil a
phenomenon by which multiple BOs take the form of an oscil-
lating Hall drift, accompanied with a synchronized inter-band
beating, for special directions of the applied force, as summarized
in Fig. 1a. Although the Hall motion is attributed to the finite
non-Abelian Berry curvature of the degenerate band structure,
the inter-band beating captured by the Wilson loop is shown to
be topologically protected by winding numbers. The synchroni-
zation of real-space motion and inter-band dynamics is eluci-
dated through a quantum Rabi oscillation of Wannier centers.
Finally, we observe that detached helical edge states are present
on specific boundaries, compatible with the special symmetry
axes associated with the topological BOs. A topological transition
signaled by the sign change of the identified winding numbers
and by the corresponding appearence/disapperance of these states
is identified.

Overall, our results demonstrate the rich interplay of non-
Abelian gauge structures and winding numbers in the topological
BOs of HOTI’s, but also establish BOs as a powerful probe for
non-Abelian topological properties in quantum matter.

Results
Model and symmetries. We consider the BBH model, as intro-
duced in refs. 47,48. It consists of a square lattice with alternating
hopping amplitudes J1 and J2 in the two spatial directions and a π
flux per plaquette, as depicted in Fig. 1b. We have introduced the
flux by Peierls phases on the vertical links but other conventions
can be used without affecting the results of this work. The model
is represented by a chiral-symmetric Hamiltonian of the form

ĤðkÞ ¼
X4
i¼1

diðkÞΓi; ð1Þ

where the 4 × 4 Dirac matrices are written in the chiral basis Γi=
−σ2 ⊗ σi for i= 1, …, 3 and Γ4 ¼ σ1 � I . This model has twofold

degenerate energy bands E(k)= ±ϵ(k) with ϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðkÞj j2

q
. The

eigenfunctions of the lowest two bands read u1k
�� �

¼ 1ffiffi
2

p
ϵ
d1 � id2;ð

�d3 � id4; 0; iϵÞ
T and u2k

�� �
¼ 1ffiffi

2
p

ϵ
d3 � id4; d1þð id2; iϵ; 0Þ

T .

The full expressions of the di(k)’s for the isotropic BBH model
is d1ðkÞ ¼ ðJ1 � J2Þ sinðky=2Þ, d2ðkÞ ¼ �ðJ1 þ J2Þ cosðky=2Þ,
d3ðkÞ ¼ ðJ1 � J2Þ sinðkx=2Þ and d4ðkÞ ¼ �ðJ1 þ J2Þ cosðkx=2Þ
and the corresponding energy dispersion is displayed in Fig. 1c.
Here, we take the periodicity d= 2a= 1, where a is the lattice
spacing. The ordering of the unit cell sites chosen to represent the
model in Eq. (1) is indicated in Fig. 1b. Notice that the chosen
basis takes into account the geometric shape of the unit cell. As a
consequence, the Hamiltonian is not Bloch invariant, namely H
(k+G) ≠H(k), with G a reciprocal lattice vector.

The presence of time-reversal symmetry T̂ , with T̂
2 ¼ 1 and

chiral symmetry Ŝ, represented by Γ0 ¼ σ3 � I , sets the model
into the BDI class1. Moreover, several crystalline symmetries are
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Fig. 1 Schematics of the non-Abelian topological BOs. a The center-of-
mass position rh i of a gaussian wavepacket experiences a sign-changing
Hall drift under the applied force F, while displaying a synchronized beating
within two occupied bands. This synchronized effect, represented by the
metronome, is topologically protected by the winding number w. b BBH
model: a square lattice with π flux and staggered hopping amplitudes J1 and
J2. Vertical bonds with arrows correspond to a Peierls phase π in the
hopping amplitudes. c Band structure of the model. Each band is twofold
degenerate. d Brillouin zones and paths C and �C exhibiting topological BOs.
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also present: two non-commuting mirror symmetries with respect
to the x and y axis, namely M̂x ¼ σ1 � σ3 and M̂y ¼ σ1 � σ1,

respectively; and a π/2 rotation symmetry C4 ¼
0 I

�iσ2 0

� �
.

The two mirror symmetries guarantee that inversion (C2) is also a
symmetry of the model, with Ĉ2 ¼ M̂xM̂y . Moreover, the presence
of mirror and rotation symmetries allows us to define a pair of mirror
symmetries with respect to the diagonal axes of the lattice, M̂xy ¼
M̂yĈ4 and M̂x�y ¼ �M̂xĈ4. This is one of the central ingredients
allowing for topologically protected BOs, as we will show below.

Owing to the two non-commuting mirror symmetries M̂x and
M̂y , the BBH model is a quadrupole insulator that has a quantized
quadrupole moment in the bulk, vanishing bulk polarization and
corner charges47. The non-commutation of the mirror symme-
tries also provides a non-vanishing non-Abelian Berry curvature
ΩxyðkÞ ¼ ∂kxAy � ∂kyAx � i½Ax;Ay� of the twofold degenerate

lowest (or highest) bands61,62, where A is the non-Abelian Berry
connection32. However, the total Chern number of the degenerate
bands remains zero due to time-reversal. It is then possible to
define Wannier functions jναx;ky i and jναy;kxi, with α= 1, 2

numbering the bands below the energy gap, which are eigenstates
of the position operators P̂x̂P̂ and P̂ŷP̂ projected onto the lowest
two bands, respectively47,48. The non-commutation of the mirror
symmetries (and therefore of the projected position operators)
forces the use of hybrid Wannier functions, namely Wannier
states that can only be maximally localized in one direction63,64.
Furthermore, it provides a necessary condition to have gapped
Wannier bands, namely Wannier centers that are displaced from
each other at every momentum kx or ky. In ref. 47,48, the Wannier
gap has been exploited to define a winding of the Wannier states
(nested Wilson loop) as a condition to have a quantized
quadrupole moment in the bulk, which can be revealed from
the Wannier-Stark spectrum65.

Winding numbers. We now prove that a nontrivial topological
structure captured by novel winding numbers characterizes the
BBH model along the diagonal paths of the BZ, C and �C, which
are shown in Fig. 1d. In order to emphasize the generality of these
results, we hereby consider a generic Dirac-like model [Eq. (1)]
without specifying the components of the d(k) vector. We assume
that all previously discussed symmetries are satisfied with the
additional constraint that each di function only depends on one
component of the momentum k, namely we assume that d1=
d1(ky), d2 = d2(ky), d3= d3(kx), d4= d4(kx). Such constraint is
satisfied by the BBH model. Mirror symmetries impose that d1
and d3 are odd functions whereas d2 and d4 are even. We then
find that along C (i.e., for k= kx= ky), the diagonal mirror
symmetry represented by the operator M̂xy requires d3(k)= d1(k)
and d4(k)= d2(k), while along �C (i.e., for k= kx=−ky), the
symmetry operator M̂x�y requires d3(k)=−d1(k) and d4(k)=
d2(k). We then conclude that only two components of d are
independent and we therefore define the vector
~dðkÞ � ðd1ðkÞ; d2ðkÞÞ. After writing the Hamiltonian in its chiral

representation ĤðkÞ ¼ 0 QðkÞ
QðkÞy 0

� �
, where QðkÞ ¼ d4ðkÞIþ

idiðkÞσ i, we obtain the following result

wCð�CÞ �
i
2π

Z
C
dk � Tr QðkÞ�1σ3ð1Þ ∂kQðkÞ

h i

¼ � 1
π

Z 2π

0
dk εij

~di∂k~dj

j~dj2
¼ signðJ21 � J22Þ;

ð2Þ

where ε12=−ε21= 1, and where we used the ~d vector of the BBH
model in the last step.

We therefore conclude that the quantities wC and w�C count
how many times the vector ~d winds over the closed paths C and �C,
respectively. The quantized windings wC and w�C are here
protected by the crystalline symmetries M̂x , M̂y , and Ĉ4, as
shown in Supplementary Note 1. These symmetries also imply
that the two topological invariants are not independent. We point
out that similar winding numbers have been introduced in chiral-
symmetric one-dimensional topological superconductors66.

Finally, the sign change of the winding numbers at the gap
closing point J1= J2 signals a phase transition. We will show
below that the transition corresponds to the appearance of
detached helical edge states. Let us now focus on the BOs of the
BBH model and the role played by the quantized winding
numbers discussed above.

Topological BOs: band-population dynamics. We consider a
wavepacket obtained as a superposition of the lowest two bands
and centered at k, which we write as ukðtÞj i ¼ η1ðtÞ u1k

�� �
þ

η2ðtÞ u2k
�� �

with η ¼ ðη1; η2Þ
T . Owing to the degeneracy of the

states u1;2k
�� �

, other parametrizations can be chosen. As shown in
Supplementary Note 2, this gauge ambiguity can be removed by
weakly breaking time-reversal symmetry, thus splitting the two
states in energy. Under an applied homogeneous and constant
force F, which makes the crystal momentum change linearly in
time, _k ¼ F, the bands occupation evolves according to67

_η ¼ �iϵkηþ iF � Aη; ð3Þ

where the matrix elements of the Berry connection are defined as
Aαβ
i ¼ ihuαkj∂ki ju

β
ki. Here, the force is assumed to be weak enough so

that transitions to upper bands are neglected.
We can formally solve Eq. (3) as ηðtÞ ¼ expð�i

R t
0 dt ϵkÞW ηð0Þ.

The Wilson line operator W is defined as

W ¼ T expði
R t
0 dt F � AÞ ¼ P expði

R kf
ki
A � dkÞ, where we have

denoted as ki and kf the initial and final momenta of the BO,
respectively. For a closed path C0 with kf= ki+G, where G is a
reciprocal lattice vector, the bands population dynamics is
determined by the Wilson loop matrix WC0 ¼ P expði

R
C0
A � dkÞ.

Importantly, the winding numbers wCð�CÞ that we have
previously introduced appear in the Wilson loops defined along
the diagonal paths C and �C, as WCð�CÞ ¼ expðið2π=4ÞwCð�CÞσ1ð3ÞÞ,
with wCð�CÞ ¼ ±1. From this, we obtain that BOs require four
loops in momentum space in order to map the wavefunction back
to itself, namely ½WCð�CÞ�

4 ¼ I . Notice that the degeneracy of the
bands brings a trivial dynamical phase that does not influence the
internal band-population dynamics.

According to the classification of topological BOs discussed in
ref. 40, rotational symmetries Ĉn can quantize BOs with a force
applied orthogonal to the rotational symmetry axis. This is
(partially) the case here, with Ĉ4 providing period-four BOs.
However, Ĉ4 symmetry alone is not sufficient to quantize the
BOs. Additional symmetries, namely M̂x and M̂y , are required in
order to have a protected winding number along the paths C and
�C, see Supplementary Note 1. In the general framework presented
in ref. 40, a “Wannier-Zak” relation is demonstrated when mirror
symmetries commute. As a consequence, the Zak phase winding
that appears in the Wilson loop has a one-to-one correspondence
with the position of the Wannier centers. This is well described by
independently evolving point charges within a classical picture. In
our case, such a direct correspondence is not possible owing to
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the non-vanishing Berry curvature and we will see below that the
physical consequences of this feature appear on the real-space
motion of the wavepacket.

Topological BOs: real-space dynamics. Let us now consider the
real-space motion of the wavepacket’s center-of mass, which
satisfies the following semiclassical equations67

_x ¼ ∂kxϵk � Fyη
yΩxyη;

_y ¼ ∂kyϵk þ Fxη
yΩxyη:

ð4Þ

Here, Ωxy denotes the SU(2) Berry curvature, whose components are
shown in Fig. 2a for the BBH model; they satisfy the
following conditions: Ω11

xy ¼ �Ω22
xy , Re Ω12

xy ¼ Re Ω21
xy and

Im Ω12
xy ¼ �Im Ω21

xy . One anticipates from the accumulation of

Berry curvature near the M point of the BZ that the paths C and �C
may display nontrivial features also in the real-space dynamics and
not only in the band population beating discussed above. As we shall

explain in detail below, the wavepacket experiences a transverse Hall
drift that changes sign after each BO, thus bringing the center-of
mass position back to its initial point after two BOs. This behavior is
synchronized and tightly connected with the band-population
dynamics captured by the Wilson loop.

The twofold degeneracy of the bands allows us to parametrize
the evolving state ukðtÞj i on the Bloch sphere as η1ðtÞ ¼ cos θðtÞ
and η2ðtÞ ¼ sin θðtÞeiϕðtÞ. We can therefore rewrite the anomalous
velocity as

ηyΩxyη ¼ðjη1j
2 � jη2j

2ÞΩ11
xy þ sin 2θ cosϕ Re Ω12

xy

� sin 2θ sin ϕ Im Ω12
xy :

ð5Þ

On the C path, the angle ϕ is a constant of motion, namely _ϕ ¼ 0.
This means that the Bloch vector is confined to a meridian of the
Bloch sphere. Moreover, since Re Ω12

xy ¼ 0 on C, only the first and
the last term of Eq. (5) are relevant. After one BO, the two bands
populations exchange, symmetrically with respect to the M point,
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0 and ϕ(0)= 0. Here J2= 0.3J1 and jFj ¼ 0:2
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semiclassical evolution. e Orthogonal displacement Δr⊥ after one BO along the paths C and �C.
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as displayed in Fig. 2b [i.e., WC / σ1]. Let us consider the case
with ϕ= 0 and θ(0)= 0, where only the first term in Eq. (5)
matters. The Berry curvature has a node and the band population
starts with η1(0)= 1. Near the M point and before crossing it, the
occupation of band 1 is larger than the occupation of band 2. The
Berry curvature Ω11

xy is positive and the Hall displacement in the x
direction is therefore negative (see the minus sign in the first of
Eq. (4)). Once the path has crossed the M point, the occupations
are flipped but so is also the sign of the Berry curvature, thus the
Hall displacement continues with the same sign until the
wavepacket reaches the Γ point. As the bands occupations have
exchanged, a second BO will experience an opposite Hall drift
and bring back the wavepacket to its initial position, as shown in
Fig. 2c, d. From this, we obtain that the real-space motion is a
witness of the non-Abelian band dynamics. For θ(0) ≠ 0, the off-
diagonal component of the Berry curvature also contributes, and
it fully suppresses the Hall displacement when θ(0)= π/4 since
the anomalous Hall velocity vanishes identically: the two bands
are equally populated, no band exchange takes place and
therefore the positive and negative deflections compensate
each other.

On the �C path, the Berry curvature has only off-diagonal
components and the Hall dynamics is determined by the relative
phase ϕ, whereas θ is a constant of motion. In this case, the
populations of the two bands do not exchange over time but the
relative phase does by an angle π. The transverse displacement as
a function of θ(0) and ϕ(0) for the two paths is shown in Fig. 2e.

We have thus found that the center-of mass of the wavepacket
displays a period-two BO instead of a period-four one. This
difference with respect to the Wilson loop analysis occurs because
after two BOs, the wavefunction has picked up an overall phase
2 × (π/2), which does not appear in observables Ô

� �
, such as for

the center-of mass position.

Atomic limit: single-plaquette dynamics. In order to elucidate
the role of Wannier functions in the BOs analyzed here and the
synchronization between real-space and band-population
dynamics, we consider the instructive atomic limit with J2= 0,
where we can study the time dynamics of a single plaquette. The

lowest energy eigenstates read u1j i ¼ ð1=2; 1=2; 0; 1=
ffiffiffi
2

p
ÞT and

u2j i ¼ ð1=2;�1=2; 1=
ffiffiffi
2

p
; 0ÞT .

We construct the position operator r̂ ¼
P

iðri � r0Þ rij i rih j by
setting the spatial origin at the plaquette center. We obtain the
matrices x̂=a ¼ diagð1=2;�1=2;�1=2; 1=2Þ and ŷ=a ¼
diagð1=2;�1=2; 1=2;�1=2Þ. Let us now call P̂ the projector
operator on the states u1j i and u2j i, from which we can construct
the projected position operators P̂x̂P̂ � x̂P ¼

P
α;β¼1;2

uαj i uαjx̂juβ
� �

uβ
� �� and P̂ŷP̂ � ŷP ¼

P
α;β¼1;2 u

αj i uαjŷjuβ
� �

uβ
� ��.

It follows that ½x̂P; ŷP�≠ 0, whereas fx̂P; ŷPg ¼ 0. The

eigenfunctions of the projected position operators are the
Wannier functions jνx;yi and the corresponding eigenvalues are
the Wannier centers48,61,68, which read here νx= νy= ±a/4.

In the presence of an external tilt (or electric field), the
perturbative Hamiltonian governing the dynamics for small
values of the force F reads

ĤF ¼F � r̂P ¼ Fx x̂P þ Fy ŷP

¼ a
4
ðFx þ FyÞσ1 þ

a
4
ðFx � FyÞσ3:

ð6Þ

The projected Hamiltonian reveals how the external force induces
a quantum dynamics between the eigenstates of non-commuting
position operators, in the form of a Rabi oscillation. This result is
in sharp contrast with the classical point-charge picture
introduced in ref. 40, which is valid for commuting position
operators. We can now diagonalize ĤF and we find the spectrum

E ¼ ±Fa=2
ffiffiffi
2

p
, with F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
. The Rabi period can be

easily obtained as TR ¼ 2π=ðFa=
ffiffiffi
2

p
Þ. This solution is general and

it does not depend on the direction of the force. Besides, we can
always rotate the coordinate system in order to have one axis
parallel to the force and one axis orthogonal to it, r∥ and r⊥, and

reduce the Hamiltonian to ĤF ¼ Fk r̂kP . Then, the corresponding
time dynamics can be represented by the eigenstates of r̂?P ,
namely the Wannier functions obtained by diagonalizing r̂?P . As a
consequence, we observe a transverse dynamics compared with
the direction of the applied force F, as shown in Fig. 3a, b.

However, the Wannier centers dynamics is not directly
connected to the BOs and its period does not have to be the
same as the Rabi period of the Wannier centers. For example, let
us consider a BO with Fy= 0. The periodicity of the BO occurs at
the discrete times TB= 2πn/dFx, for n 2 Zþ where d= 2a. There
is no solution that satisfies TB= TR. However, if we take Fx=±Fy
we find that n= 2 provides TB= TR. Therefore, a force oriented
along the diagonal axes allows to synchronize the Wannier
centers dynamics with the BOs, whereas the other directions yield
out-of-sync oscillations that does not bring the wavepacket back
to its initial position at integer multiples of the fundamental Bloch
period.

Away from the atomic limit, we can still use Wannier functions
as a complete basis to express the wavepacket. A direct calculation
(see Fig. 3c) shows that along the paths C and �C, the Wannier
centers remain gapped and their spectrum flat, namely they are
equispaced along the entire path. We interpret this fact as a
witness that the Wannier centers can be thought as oscillators
with the same oscillation frequency (i.e., displacement), as in the
atomic limit represented by Eq. (6), thus keeping the same
oscillatory motion while changing the momentum kC or k�C . In
conclusion, Wannier centers perform a quantum periodic
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the force is aligned along the diagonal Fx= Fy.
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dynamics where their transverse motion with respect to the
applied force is periodic and synchronized with the BO period.

Edge states. The quantized winding numbers wC and w�C , which
we have previously identified along the paths C and �C, indicate
that a topological transition takes place when J1= J2. Here, we
show that an open system with edges along the diagonals x ± y
displays detached helical edge states. From Fig. 4a, we notice that
near the atomic limit J2 → 0, the bulk has gapped states at
energies Eb � ±

ffiffiffi
2

p
J1. The edge displays disconnected single sites

at energy Es ~ 0 and trimers, with energies Et1 ~ 0 and
Et2 ¼ ±

ffiffiffi
2

p
J1. Thus, a pair of zero energy (Es and Et1) modes

exists at the edge.
Near the gap closing point, J2= (1+m)J1 with ∣m∣ ≪ 1, we

construct an effective continuum theory69 for two (pseudo)-spins
satisfying

2mþ 1
2
∂2x0

� �
σ2ψ";#ðx0Þ ¼ ±∂x0ψ";#ðx0Þ: ð7Þ

These equations provide two independent zero-energy solutions

ψðx0Þ ¼
χ�
0

� �
e�2x0 e2mx0 � e�2mx0

� 	
;

ψðx0Þ ¼
0

χþ

 !
e�2x0 e2mx0 � e�2mx0

� 	
;

ð8Þ

where σ2χη= ηχη and η= ±1, which are localized at x0 ¼ 0 and
exist only for m > 0, namely when J1 < J2 (see Methods section).
To compute the dispersion relation of the edge modes, it is
convenient to consider a cylindrical geometry. In this case, we
find that the edge modes become helical, see Fig. 4b. An example
of such states is shown in Fig. 4c.

Discussion
In this work, we have shown a new type of multiple BOs that is
connected to the quantum beating of Wannier centers and we
have identified HOTIs as a model where this effect can be
observed. By studying the BBH model, we have shown that the
Wilson loop imposes period-four oscillations and the center-
of-mass motion displays an anomalous Hall displacement over
one period of oscillation. We have connected these features to
the crystalline symmetries of the model and we have identified
quantized winding numbers that protect the topological BOs.

Moreover, we have shown that detached helical edge states
emerge in an open system with the required symmetries.

Our results can be observed with cold atoms70,71, where flux
engineering can be achieved through time-dependent
protocols72,73 and where the staggered hopping amplitudes
requires a bipartite lattice27,74. Interferometric and tomographic
methods can be exploited to measure the Wilson loop
winding25,31,75 and real-space cloud imaging makes possible to
measure the center-of-mass displacement76. A fundamental
question concerns the preparation of the initial state, owing to the
degenerate nature of the bands. As shown in Supplementary
Note 2 the bands can be split by slightly breaking time-reversal
symmetry. In this case, it is possible to prepare a non-degenerate
Bose-Einstein condensate (BEC) at the Γ point. When projected
onto the eigenstates of the BBH model, this state is peaked at
specific values of θ and ϕ. One can then obtain the desired
superposition of the two zero-momentum modes (the BEC and
the gapped mode) by a coherent coupling through an external
driving. The subsequent BOs require that the applied force has a
magnitude that is larger than the band separation to effectively
recover the band degeneracy during the BOs.

In the context of photonics, our results can be investigated by
using optical waveguides77, where it has been recently possible to
realize synthetic π flux78,79. In this platform, the input laser
profile can be inprinted in order to map the degenerate manifold
of states at the Γ point that are parametrized by the angles θ and
ϕ. It is then possible to reconstruct the Wilson loop dynamics by
measuring the output field phase profile, whereas the Hall dis-
placement is obtained from the spatial profile of the field
intensity.

As a perspective of our work, it would be interesting to
generalize our results to other two- and three-dimensional
topological crystalline insulators and consider corrections to
the semiclassical equations, e.g., involving the quantum metric
once an inhomogeneous electric field or a harmonic trap
potential are introduced80,81. Finally, given the role played by
the initial state in the observation of the anomalous Hall dis-
placement, BOs can be thought as a tool to witness the phe-
nomenology of symmetry-broken condensates where the
ground state degeneracy has been removed by interactions (Di
Liberto et al., in prepration).

Methods
Berry connection and curvature. For the BBH model introduced in the main text,
the corresponding matrix elements of the non-Abelian Berry connection, defined

ŷ ′

x̂ ′

ŷ ′

x̂ ′

−� 0 �
ky ′

−2

0

2

E
/J

1

a b

c

Fig. 4 Open lattice and edge states. a Open lattice in the atomic limit respecting mirror Mx,y and C4 symmetries. Highlighted in blue the edge sites
displaying zero modes and in red the unit cell for the stripe geometry. b Energy spectrum obtained by imposing periodic boundary conditions along ŷ0 and
J1= 0.8J2. Each edge hosts a pair of detached helical edge modes. c Positive energy edge state for ky0 ¼ kC ¼ π=2.
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as Aαβ
i ¼ i uαk j∂ki ju

β
k

D E
, read

A11
x ¼�A22

x ¼ � J21 � J22
4ϵ2k

;

A12
x ¼ðA21

x Þ� ¼ e�i
kxþky

2
ðeiky J1 þ J2ÞðJ1 � eikx J2Þ

4ϵ2k
;

A11
y ¼�A22

y ¼ J21 � J22
4ϵ2k

A12
y ¼ðA21

y Þ� ¼ e�i
kxþky

2
ðeiky J1 � J2ÞðJ1 þ eikx J2Þ

4ϵ2k
:

ð9Þ

The SU(2) Berry curvature, defined as ΩxyðkÞ ¼ ∂kx Ay � ∂kyAx � i½Ax ;Ay �, reads

Ω11
xy ¼ �Ω22

xy ¼ J1J2ðJ21 � J22Þ
sin kx þ sin ky

4ϵ4k
;

Ω12
xy ¼ðΩ21

xyÞ
� ¼ �iðJ21 � J22Þe�i

kxþky
2

eiky J21 � eikx J22
4ϵ4k

:

ð10Þ

Real-space wavepacket dynamics. To validate the semiclassical real-space
dynamics, we have numerically simulated the evolution of a real-space wavepacket
using a finite size Lx × Ly lattice. We start by constructing a Gaussian wavepacket
centered at k0= Γ= (0, 0) of the form

ψr;μðt ¼ 0Þ
��� E

¼
X
k

e�k2=2σ2 eik�ðrμ�r0Þ uk;μð0Þ
��� E

; ð11Þ

where μ indicates the sublattice degree of freedom in the unit cell and rμ is its
spatial position. In the simulations we take a grid of kpts × kpts points in k space
within an interval k ∈ [−3σ, 3σ] × [−3σ, 3σ]. We evolve the state with the real-
space Hamiltonian Ĥ and calculate the observable rnumðtÞ ¼ ψðtÞĵrjψðtÞh i, with
r̂ �

P
rðr� r0Þ rj i rh j.

We also study the exact evolution of the Bloch wave vector, by considering
the velocity operator v̂ðkÞ ¼ ∂ĤðkÞ=∂k ¼

P
i∂kdiðkÞΓi. At each time t the

velocity reads vðkðtÞÞ ¼ ψðkðtÞÞjv̂jψðkðtÞÞh i, where ψðkðtÞÞj i ¼
T exp½�i

R t
0 dt ĤðkðtÞÞ� uΓð0Þj i and k(t)= k(0)+ Ft. This method corresponds to

solving the Schrödinger equation in k space. We find the displacement by
integration rexactðtÞ ¼

R t
0 dt vðtÞ þ r0.

Edge states. Here we derive the effective theory at the edge by considering per-
iodic boundary conditions along the y0 direction (see Fig. 5) for J1 ≈ J2. In this
stripe geometry, we have to double the unit cell to correctly represent the lattice
periodicity, which reads d0 ¼ 2

ffiffiffi
2

p
a. In chiral form, the Hamiltonian reads

HsðkÞ ¼
0 QsðkÞ

QsðkÞ
y 0

 !
; ð12Þ

where

QsðkÞ ¼

�J1 �J1 �J2 �J2e
�ikx

J1 �J1 J2e
�iky �J2e

�iðkxþkyÞ

�J2e
iðkxþkyÞ �J2e

iky �J1 �J1
J2e

ikx �J2 J1 �J1

0
BBB@

1
CCCA: ð13Þ

Here, we are taking units d0 ¼ 1 and we are also using the convention that the
lattice points within the unit cell are all sitting in the center of the unit cell. The
Hamiltonian Hs(k) is therefore in Bloch form.

In order to build an effective theory near zero energy69, let us take J2= (1+m)J1,
with ∣m∣ ≪ 1. We can then split the Hamiltonian into ĤsðkÞ ¼ Ĥsðk ¼ 0Þ þ V̂ sðkÞ,

where V̂ sðkÞ is expanded to lowest order in k. The zeroth order term Ĥsðk ¼ 0Þ can
be diagonalized and we find four eigenvectors vi0

�� �
with energy E ¼ ±

ffiffiffi
2

p
mJ1, which

we use as a basis for the effective theory, and four high-energy states vie
�� � that we

neglect. We can then construct the projection operator P̂s ¼
P

i v
i
0

�� �
vi0
� �� to obtain at

lowest order

Ĥ
eff
s ðkx0 Þ ¼ P̂s½Ĥsðk ¼ 0Þ þ V̂ sðkx0 ; ky0 ¼ 0Þ�P̂s

¼
H"ðkx0 Þ 0

0 H#ðkx0 Þ

 !
;

ð14Þ

where we have rearranged the order of the components to have the Hamiltonian in
block-diagonal form and we have defined

H";#ðkx0 Þ ¼ � 2mffiffiffi
2

p þ 1þm

2
ffiffiffi
2

p k2x0

� �
σ3 	

1þmffiffiffi
2

p kx0σ2; ð15Þ

in units where J1= 1.
We can now substitute kx0 ! �i∂x0 and use m≪ 1 to obtain the coupled

equations

2mþ 1
2
∂2x0

� �
σ2ψðx0Þ ¼ ±∂x0ψðx0Þ: ð16Þ

We use standard procedures to solve these equations, namely we take ψðx0Þ as
an eigenstate of σ2, i.e., we decompose it as ψðx0Þ ¼ φðx0Þχη , where σ2χη= ηχη with

η= ±1. After taking the ansatz φðx0Þ / e�tx0 , we find that the following algebraic
equations must be satisfied

t2 ± 2ηt þ 4m ¼ 0; ð17Þ
for H"ðkx0 Þ and H#ðkx0 Þ, respectively. Let us focus on the solution for H"ðkx0 Þ,
namely the one with plus sign. We find t" ¼ �η±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m

p

 �η± ð1� 2mÞ. For

η=−1, we can construct a solution φðx0Þ ¼ c1e
�tþ" x

0
þ c2e

�t�" x
0
that is

exponentially localized for m > 0 and that vanishes at x0 ¼ 0, namely c1=−c2. The
solution constructed for η= 1 does not satisfy these requirements for any value of
m. A similar reasoning can be repeated for H#ðkx0 Þ, where we have to take the
solution with η= 1 in this case and the solution only exists for m > 0. We end up
with the two zero-energy solutions

ψ"ðx0Þ ¼
χ�
0

� �
e�2x0 e2mx0 � e�2mx0


 �
;

ψ#ðx0Þ ¼
0

χþ

 !
e�2x0 e2mx0 � e�2mx0


 �
;

ð18Þ

that are localized at the edge x0 ¼ 0 and that exist for m > 0, namely for J2 > J1.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code that supports the plots within this paper are available from the corresponding
author upon reasonable request.
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Fig. 5 Edge states. a Stripe geometry with periodic boundary conditions along ŷ0 . b Unit cell choice used to develop the continuum theory.
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