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ABSTRACT
Several types of dynamics at stationarity can be described in terms of a Markov jump process among a finite number N of representative
sites. Before dealing with the dynamical aspects, one basic problem consists in expressing the a priori steady-state occupation probabilities
of the sites. In particular, one wishes to go beyond the mere black-box computational tools and find expressions in which the jump rate
constants appear explicitly, therefore allowing for a potential design/control of the network. For strongly connected networks admitting a
unique stationary state with all sites populated, here we express the occupation probabilities in terms of a formula that involves powers
of the transition rate matrix up to order N − 1. We also provide an expression of the derivatives with respect to the jump rate constants,
possibly useful in sensitivity analysis frameworks. Although we refer to dynamics in (bio)chemical networks at thermal equilibrium or under
nonequilibrium steady-state conditions, the results are valid for any Markov jump process under the same assumptions.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0217202

I. INTRODUCTION

In recent years, there has been a renewal of interest for the
theory of Markov jump processes, especially in connection with
stochastic thermodynamics. Several dynamics, in fact, do conform
to such a kind of process, at least as a good approximation. For
instance, we might think of conformational transitions in flexible
molecules (jumps among energy wells), or to the stochastic evolution
of a small reactive system (jumps in the space of the copy numbers
of the molecules), or to the dynamics of tagged molecules/moieties
in a macroscopic reactive mixture (jumps among hosting molecules
when elementary reactions take place),1–4 and so on. These exam-
ples are depicted in Fig. 1. In the nonequilibrium steady-state
scenario, the Markov jump process proved to be the best concep-
tual platform to discover the so-called thermodynamic uncertainty
relations,5,6 to describe hopping processes7 and provide a mini-
malistic description of molecular motors,8,9 and to investigate bio-
chemical mechanisms such as complex catalytic schemes10,11 and the
kinetic proofreading.12,13 Apart from chemistry, the Markov jump
process can be a valuable model also in other contexts in which the
system is truly discrete or a coarse-graining allows for a good level of

description, and if the Markov assumption (“memoryless process”)
is applicable.

A key aspect to be considered, even before exploring the full
dynamical features of such a kind of processes, is the characteriza-
tion of the stationary occupation probabilities of the discrete states
in which the system can be found. Henceforth, such states will be
called “sites.” The a priori steady-state occupation probabilities will
be denoted by pss

α , where α = 1, . . . , N with N being the finite num-
ber of sites. From now on, we assume that the network is “strongly
connected”; hence, the stationary state is unique and pss

α > 0 for all
the sites.14 The pss

α are determined by the topology (connectivities)
of the network and by the set of site-to-site jump rate constants ki→j
between connected sites. In the case of multi-path transition between
sites, such rate constants are meant to be the cumulative ones ki→ j
= ∑μ k

i
μÐ→ j

, where μ labels the single physical transition channels.

Let us briefly indicate some of the reasons why the steady-
state probabilities are relevant. First, the pss

α enter the expression of
some basic kinetic properties. In particular, the key quantity is F(μ)αβ
= pss

α k
α

μÐ→ β
, the average steady-state probability flux over the channel

μ of the α→ β transition; it gives the average number of jumps from
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FIG. 1. Some examples of Markov jump processes in the (bio)chemical context. (a) Jump dynamics of a tagged molecular moiety in a macroscopic reaction mixture. This
panel shows a simplified mechanism of benzoin condensation catalyzed by the cyanide anion. A tagged cyanide moiety undergoes jump dynamics among the states in which
it can be found (free anion and hosted by the various intermediate molecules). (b) Conformational transitions in flexible molecules. This panel shows the case of torsional
dynamics of n-butane in the liquid phase. The sites correspond to the conformations that pertain to the three energy wells. (c) Stochastic evolution of a small reactive system.
A site corresponds to the array of the copy numbers of the species; a jump from site to site occurs when a reaction takes place.

site α to site β via the channel μ per unit of time, and its inverse cor-
responds to the average recurrence time of such jumps.1 These fluxes
are the building blocks to construct other dynamical quantities, such
as the steady-state average probability currents over each oriented
connection, the “mean dynamical activity” of the network,15 and
the average rate of entropy production (if all transition channels
are reversible).16 Even more importantly, the explicit link between
pss

α on one side, and the network’s topology and kinetic parameters
on the other side, would enable a sensitivity analysis to understand
how pss

α could be selectively controlled. This would allow us to estab-
lish useful cause–effect relations, especially when the jump dynamics
takes place in a nonequilibrium steady state and an external tuning
of some of the jump rate constants is feasible. For these reasons, the
exact determination of the pss

α , or at least the discovery of general
thermodynamic bounds on them,17–22 is of crucial importance.

To determine pss
α , let us consider that the system’s evolution is

ruled by the master equation dp(t)/dt = −Rp(t), where p(t) is the
column array whose components are the occupation probabilities at
the generic time t starting from a given initial condition p(0), and R
is the N ×N transition rate matrix whose elements are

Rij = −kj→i(1 − δi,j) + δi,j∑
n≠i

ki→n (1)

with δ being Kronecker’s delta. The property ∑i Rij = 0 for all
j ensures the system’s conservation (absence of irreversible sink

processes). The stationary solution in the limit t →∞ is the
array pss that satisfies

Rpss = 0. (2)

In spite of the simplicity of the formulation, the analytical solu-
tion of the problem in Eq. (2) employing linear algebra methods is
feasible only for small dimensions N. As N increases, in fact, one
has to resort to black-box numerical tools. Typically, pss is, indeed,
obtained as the right-eigenvector of R (fixing the sum of its com-
ponents to 1) associated with the unique null eigenvalue; many
numerical routines are available to diagonalize real-non-symmetric
matrices like R. In this way, however, the explicit relationship
between pss

α and the rate constants is rapidly lost and the level of
understanding degrades. To circumvent this issue, alternative routes
have been devised to translate the mathematical–numerical problem
into more transparent and manageable formulations.

A powerful approach consists is making use of the so-called
matrix-tree theorem (MTT). An early formulation of the MTT
comes from Kirchhoff in the context of electrical circuits,23 but the
modern version framed in graph theory was proposed one cen-
tury later by Tutte24 to solve a combinatorial problem of partitions.
The MTT was later reprised and applied to the statistical physics
of reaction networks25 and to the handling of the master equation
dynamics.16 In recent years, there has been a renewed interest for the
MTT, especially after Gunawardena’s work on the statistics of the
first-order processes underlying the chemical reaction networks.26
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For instance, the MTT has been employed to derive general ther-
modynamic bounds on the steady-state probabilities and on their
ratios,17,20 useful to inspect the response of networks of biochemi-
cal relevance to various types of perturbation. The basic MTT idea
consists in viewing the network of sites as a graph and individuat-
ing all subgraphs, called “spanning trees,” which contribute to the
steady-state probabilities (see Ref. 26 for a comprehensive review).
The crucial problem is that the number of spanning trees to be con-
sidered grows exponentially with N, and, therefore, in practice, the
benefits offered by the MTT are rapidly lost. Thus, although the
MTT is quite powerful to make general inferences and discover use-
ful mutual bounds about static and dynamic properties of systems
whose evolution is akin to Markov jump processes,22,27–35 alternative
approaches to evaluate pss

α are welcome. For instance, Aslyamov and
Esposito22 have recently shown that pss

α can be computed by means
of an expression that contains the inverse of a modified rate matrix;
an expression for sensitivity parameters is then derived.

Here, we present an explicit expression of the steady-state prob-
abilities in terms of powers of the matrix R up to order N − 1. In
particular, the traces of the matrix powers enter as arguments of the
multivariate “complete Bell polynomials,”36 whose essential prop-
erties are summarized in Appendix A. The main result is Eq. (3),
which is proved in Appendix B 2 as a special case of a more gen-
eral theorem regarding the eigenvectors of singular matrices (the
theorem is stated and proved in Appendix B 1). The strength of this
explicit expression for pss

α lies in the simplicity of the matrix-power
operation and on the ease of generating the required terms thanks
to the recursive properties of the Bell polynomials. This places our
result between the explicit graph approach of the MTT and the
brute-force calculus. In addition, Eq. (3) could be a useful start-
ing point for further elaborations. In this regard, we provide the
explicit expression of the partial derivative of pss

α with respect to a
generic rate constant of the network. For illustrative purposes, we
will consider a simple 3-site network in enzyme catalysis with sub-
strate inhibition, where the sites are the possible states in which a
tagged molecule of enzyme can be found.

II. STEADY-STATE PROBABILITIES
A. Expression in terms of complete Bell polynomials

Let us go straight to the result of the elaboration,

pss
α = δα,β +

N−1

∑
i=1

wi (Ri)αβ, any β, (3)

where the factors wi, for 0 ≤ i ≤ N − 1, are given by

wi = (N − 1)!
(N − 1 − i)!

BN−1−i(a1, a2, . . . , aN−1−i)
BN−1(a1, a2, . . . , aN−1) (4)

with Bn(⋅) being the “complete Bell polynomial” of order n (see
below) and

al = −(l − 1)! Tr (Rl) (5)

with “Tr” standing for the trace of the matrix.37 The complete Bell
polynomials36,38 are multivariate polynomials,39 whose definition

and basic properties are given in Appendix A. In particular, they can
be recursively generated [see Eq. (A2)] and the first ones are

B0 = 1,
B1(a1) = a1,

B2(a1, a2) = a2
1 + a2,

B3(a1, a2, a3) = a3
1 + 3a1a2 + a3,

B4(a1, a2, a3, a4) = a4
1 + 6a2

1a2 + 4a1a3 + 3a2
2 + a4,

B5(a1, a2, a3, a4.a5) = a5
1 + 10a3

1a2 + 15a1a2
2 + 10a2

1a3

+10a2a3 + 5a1a4 + a5.

(6)

Concerning the factors wi, we have that w0 = 1, while for i ≥ 1, there
is evidence of sign alternation (−1)iwi > 0. This claim derives from
numerical inspections on randomly generated networks and has to
be taken with caution until a formal proof is provided.40

Equation (3) is proved in Appendix B 2 as a special case of
a more general theorem concerning the eigenvector correspond-
ing to the null eigenvalue for generic real-valued singular matrices.
The theorem is stated and proved in Appendix B 1. To the best of
our knowledge, this is an original result. However, due to the rele-
vance of the topic and to the huge mathematical literature on matrix
theory, we cannot exclude that the result is already known in some-
how equivalent forms. The correctness of Eq. (3) has been verified
numerically for networks randomly generated, either with sites fully
connected or with missing connections, and checking the fulfillment
for any chosen site β (coincident with α, directly connected to α, or
even not connected to α).41

At the computational level, depending on the magnitude and
spread of the rate constants, Eq. (3) might become problematic
as N is larger and larger. Accuracy issues could arise from the
exponential growth/suppression of the single factors (this can be,
however, mitigated by means of a suitable scaling of the rate con-
stants) and from the ever larger number of algebraic operations
that are required to compute the factors wi and (Ri)αβ. However,
if the purpose is the mere numerical evaluation of pss

α , other meth-
ods are more efficient and convenient. The value of Eq. (3) lies,
instead, in the fact that it connects pss

α to the kinetic parameters
in an (almost) explicit way. Although such connection is not really
fully explicit, the matrix-power operation is conceptually simple and
the recursive relation Eq. (A2) is easily implementable to generate
all required Bell polynomials up to order N − 1. Thus, we may say
that Eqs. (3)–(5) fit between the brute-force calculus and the MTT
graphical representation.

B. Derivatives for sensitivity analysis
In the sensitivity analysis framework, one deals with partial

derivatives of a given property with respect to a certain parameter. In
our context, key derivatives are ∂pss

α /∂k
q

μÐ→ q′
, where k

q
μÐ→ q′

is the rate

constant of a transition channel q→ q′ ≠ q between connected sites.
The sign and the absolute magnitude of these derivatives tell us how
pss

α responds to selective perturbations of the rate constants. This
could be relevant for the optimal design and control of a network,
supposing being able to intervene on some of the rate constants.

Let us first consider the derivative with respect to a cumulative
rate constant kq→q′ , which, we recall, is the sum of the rate constants
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for the single transition channels (possibly only one). The following
expression can be obtained from Eq. (3) by means of a few algebraic
steps (the derivation is provided in the supplementary material):

∂pss
α

∂kq→q′
=

N−1

∑
i=1

N−1

∑
m=1

wi wm Gim(α, q, q′)

−
N−1

∑
i=1

N−1−i

∑
m=1

wm+i Gim(α, q, q′)

+
N−1

∑
i=1

wi Hi(α, q, q′), (7)

where

Gim(α, q, q′) = (Ri)αα[(Rm−1)qq − (Rm−1)qq′] (8)

with Gi1(α, q, q′) = (Ri)αα(1 − δq,q′), and

H1(α, q, q′) = δα,q,

Hi≥2(α, q, q′) = (δα,q − δα,q′)(Ri−1)qα

+ [(Ri−1)αq − (Ri−1)αq′] δq,α

+
i−2

∑
m=1
[(Rm)αq − (Rm)αq′](Ri−m−1)qα. (9)

The correctness of the above expression has been verified numer-
ically for randomly generated networks of various dimensions,
checking that the derivatives directly obtained from incremental
ratios were coincident with the values calculated with Eq. (7).

Then, if the transition q→ q′ can take place via various chan-
nels and if we were interested in the derivative with respect to k

q
μÐ→ q′

,

we simply have that ∂pss
α /∂k

q
μÐ→ q′
≡ ∂pss

α /∂kq→q′ because k
q

μÐ→ q′
is

one of the additive contributions to kq→q′ . Thus, the right-hand side
of Eq. (7) also gives such specific sensitivity parameters.

Derivatives of higher order, such as the second order ones
needed to build the Hessian, can be obtained making use of the
recurring derivatives given in Appendix C.

C. Example
As an example, let us consider the simple catalytic scheme with

substrate inhibition3,42 shown in panel (a) of Fig. 2. Let us assume
to be in steady-state conditions maintained by fixing the concentra-
tion of the substrate. Let us adopt the viewpoint of a tagged molecule
of enzyme that can jump among three sites: free enzyme (site 1),
enzyme bound to one molecule of the substrate (site 2), and enzyme
bound to two molecules of the substrate (site 3); the 3-site network
and the jump rate constants are shown in panel (b) of Fig. 2. Let us
express pss

α taking site 1 as site β. The transition rate matrix reads

R =
⎡⎢⎢⎢⎢⎢⎢⎣

k1→2 −k2→1 0
−k1→2 k2→1 + k2→3 −k3→2

0 −k2→3 k3→2

⎤⎥⎥⎥⎥⎥⎥⎦
. (10)

By evaluating also R2 and then applying Eq. (5), we get

a1 = −(k1→2 + k2→1 + k2→3 + k3→2),

FIG. 2. Catalytic scheme with substrate inhibition. (a) The reaction scheme. (b) The
3-site network from the viewpoint of a tagged molecule of enzyme, and relations
between the jump rate constants and the kinetic constants of the reactions given in
panel (a); here, [S] stands for the fixed volumetric concentration of the substrate.

a2 = −(k2
1→2 + k2

2→1 + k2
2→3 + k2

3→2)
− 2(k2→1k2→3 + k3→2k2→3 + k1→2k2→1). (11)

From Eq. (4), we then obtain the factors w1 and w2 taking into
account Eq. (6) for the explicit expression of the Bell polynomials
up to the second order,

w1 = 2a1

a2
1 + a2

, w2 = 2
a2

1 + a2
. (12)

By applying Eq. (3) with (R2)11 = k2
1→2 + k1→2k2→1, (R2)21

= −k1→2 − k1→2k2→1 − k1→2k2→3, and (R2)31 = k1→2k2→3, we finally
get

pss
1 = 1 +w1k1→2 +w2(k2

1→2 + k1→2k2→1),
pss

2 = 1 − pss
1 − pss

3 ,

pss
3 = w2 k1→2k2→3.

(13)

It can be checked that the final results are the same if we take β to be
site 2 or site 3.

We might be interested in assessing the sensitivity of pss
1 (for

the free enzyme) with respect to a selective small perturbation of
the rate constant k2→3 (formation of the ESS species). Although
in this simple case ∂pss

1 /∂k2→3 can be obtained directly by deriv-
ing pss

1 given in Eq. (13), here we make use of the general formula
Eq. (7). By employing Eq. (8), we readily get the factors that enter the
first two summations in Eq. (7): G11 = R11, G12 = R11(R22 − R23), G21
= (R2)11, and G22 = (R2)11(R22 − R23) (only G11 enters the second
summation). Explicitly,

G11 = k1→2,
G12 = k1→2(k2→1 + k2→3 + k3→2),

G21 = k2
1→2 + k1→2k2→1,

G22 = (k2
1→2 + k1→2k2→1)(k2→1 + k2→3 + k3→2).

(14)

The factors H1 and H2 required in the third summation of Eq. (7) are
both zero because α ≠ q, α ≠ q′, and i − 2 is at most 0 [see Eq. (9)].
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Then, taking into account that w1 = a1w2, and using the expression
of a1 given in Eq. (11), with a few algebraic steps, we arrive at

∂pss
1

∂k2→3
= −k1→2w2 + k2

1→2(k2→3 + k3→2)w2
2. (15)

Similarly, we might be interested in expressing the derivative
∂pss

1 /∂k1→2. In this case, α = q = 1 and q′ = 2. The factors enter-
ing the first two summations of Eq. (7) are now G11 = R11, G12
= R11(R11 − R12), G21 = (R2)11, and G22 = (R2)11(R11 − R12), and
the factors required in the third summation are H1 = 1 and H2
= 2R11 − R12. Recalling again that w1 = a1w2, with a few steps, we
get

∂pss
1

∂k1→2
= w2 (a1 + k1→2 + k2→1)

+ w2
2 k1→2 (a1 + k1→2 + k2→1)2. (16)

Obviously, this simple 3-site case would be treatable much
easily solving the system of two linear equations obtained from
Eq. (2) with the enforcement of the normalization condition. Then,
any derivative could be obtained by direct differentiation of pss

α .
However, we should think that such an approach becomes rapidly
unfeasible as N increases, while Eqs. (3) and (7) remain potentially
useful and can be implemented in computer codes with symbolic
calculus.

III. FINAL REMARKS AND CONCLUSIONS
For Markov jump processes on N sites, we have faced the prob-

lem of expressing the steady-state site occupation probabilities pss
α in

terms of closed analytical forms easily implementable in computer
codes. The main result is Eq. (3), which requires the powers of the
transition rate matrix R up to order N − 1. In a sense, our result lies
between the most explicit matrix-tree theorem graph approach and
the brute-force numerical computation.

The algebraic handling of Eq. (3) is rather tedious, but the
procedure is straightforward and could be automatized in the com-
putational practice to get, in principle, the explicit expression of pss

α
for a generic N. Furthermore, the inspection of the mathematical
structure of Eqs. (3)–(5) might unveil interesting features to obtain
approximations of pss

α , to work out bounds on it, or to perform use-
ful operations with/on the steady-state probabilities. For instance,
we have provided the expression of the first-order partial derivatives
∂pss

α /∂k
q

μÐ→ q′
, which quantify the sensitivity with respect to selective

perturbations of the network. We might also use Eqs. (3)–(5) to get
ensemble averages ⟨ f ⟩ = ∑α fαpss

α for some property whose values
fα are site-dependent. If such property does not depend by itself on
the jump rate constants, from Eq. (7) , we immediately get also the
derivatives ∂⟨ f ⟩/∂k

q
μÐ→ q′

.

Let us also recall that pss
α are directly connected to some basic

dynamic quantities built on the basis of the steady-state average
probability fluxes F(μ)αβ = pss

α k
α

μÐ→ β
. Equation (7) can then be used to

express the derivatives

∂F(μ)αβ

∂k
q

μ′Ð→ q′

= F(μ)αβ
∂ ln pss

α

∂k
q

μ′Ð→ q′

+ pss
α δq,αδq′ ,βδμ′ ,μ (17)

and hence to quantify the dynamic sensitivity of the network to selec-
tive perturbations. It is worth noting that interesting relations have
been recently obtained for the fluxes and for their sensitivity para-
meters in the case of specific perturbations. For instance, in Ref. 3,
some inequalities have been obtained for the sensitivity parameters
when q = α, q′ = β, or q = α, q′ ≠ β, or q ≠ α, q′ = α. In Ref. 43, a
scaling law has been derived for F(μ)αβ in chemical networks when
the perturbation regards only the energy of the sites. The explicit
relations here obtained for F(μ)αβ and their derivatives could open the
way to mathematically discover new useful and general relations to
be then interpreted at the microscopic physical level.

Finally, let us bear in mind that although here we are mainly
interested in (bio)chemical applications, the results are applicable to
any Markov jump process with steady state on a strongly connected
network of sites.

SUPPLEMENTARY MATERIAL

The supplementary material contains the derivation of Eqs. (7)
and (C1)–(C4).
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APPENDIX A: COMPLETE BELL POLYNOMIALS

For a comprehensive presentation of the complete Bell poly-
nomials, we address the reader to the original work of Bell36 and to
Ref. 38. Here, we report only the definition and a few useful relations.

The polynomials are generated by

Bn(x1, . . . , xn) = ∂n

∂sn
⎛
⎝e

n
∑
j=1

xj sj/j!⎞
⎠
RRRRRRRRRRRRs=0

(A1)

or, more conveniently, by the following recursive relation:

Bn+1(x1, . . . , xn, xn+1) =
n

∑
i=0
(n

i
)Bn−i(x1, . . . , xn−i) xi+1,

B0 = 1.
(A2)
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They fulfill the binomial-like relation

Bn(x1 + y1, . . . , xn + yn) =
n

∑
i=0
(n

i
)Bn−i(x1, . . . , xn−i) Bi(y1, . . . , yi)

(A3)
and the following partial-derivative formula:

∂Bn(x1, . . . , xn)
∂xi

= (n
i
)Bn−i(x1, . . . , xn−i). (A4)

APPENDIX B: MATHEMATICS
1. A general theorem for singular matrices

In this appendix, we prove a theorem valid for generic real-
valued singular matrices with a unique null eigenvalue.44 The
theorem is then specified for the case of transition rate matrices
R, which, indeed, have a unique null eigenvalue because of the
assumption of strongly connected network.

Theorem. Let M be a N ×N real-valued singular matrix with
a unique null eigenvalue, and let x be the corresponding eigen-
vector (Mx = 0). In what follows, let Bn(⋅) be the “complete Bell
polynomial” of order n, and

al = −(l − 1)! Tr (Ml). (a)

The following statements hold:

(i) If the n∗th component of x is non-null, we can set xn∗ = 1 and
express the other components as

xα = u0 δα,β +
N−1

∑
i=1

ui (Mi)αβ, any β (b)

with the factors ui, for 0 ≤ i ≤ N − 1, given by

ui = zi

z0 δn∗ ,β +∑N−1
s=1 zs (Ms)n∗β

, (c)

where

zi = 1
(N − 1 − i)! BN−1−i(a1, a2, . . . , aN−1−i). (d)

(ii) If the sum of the components of x is non-null, then the xα, with
sum fixed to∑N

α=1 xα = 1, can be expressed as

xα = w0 δα,β +
N−1

∑
i=1

wi (Mi)αβ, any β (e)

with the factors wi, for 0 ≤ i ≤ N − 1, given by

wi = zi

z0 +∑n∑N−1
s=1 zs (Ms)nβ

(f)

and zi already defined in Eq. (d). If, in addition, M is such that
∑i Mij = 0 for all j, then Eq. (f) simplifies to

wi = (N − 1)!
(N − 1 − i)!

BN−1−i(a1, a2, . . . , aN−1−i)
BN−1(a1, a2, . . . , aN−1) (g)

with w0 = 1.

Remark. The theorem also allows for the determination of the
real-valued eigenvector x(λ) for any other real-valued eigenvalue λ of
M. In fact, it suffices to consider the singular matrix M′ =M − λI
(with I being the identity matrix) in place of M.

Proof of the theorem. Let us prove statement (i) for the generic
component xα of x. We first prove the statement for xα ≠ 0 and then
generalize to the case of a component possibly equal to zero.

Let us choose a generic β and introduce the matrix

K(ϵ) =M + ϵΔ, (B1)

where ϵ ≠ 0 is a fixed real-valued parameter and Δ is the matrix with
a single non-null entry specified by the pair α and β,

Δij = δi,β δj,α. (B2)

Let us multiply both members of Eq. (B1) by the eigenvector x taking
into account that Mx = 0. We get K(ϵ)x = ϵΔx, where the column
vector ϵΔx has all components equal to zero except the one at the
position β, which is equal to ϵ xα. This implies that if xα ≠ 0, the
matrix K(ϵ) is invertible for any ϵ ≠ 0 (possibly vanishingly small).
Thus, it is licit to write x = ϵK(ϵ)−1Δx from which

xn = ϵ (K(ϵ)−1)nβ xα. (B3)

By assumption, xn∗ ≠ 0 for a certain n∗. Fixing xn∗ = 1, we thus have

xα = (ϵ(K(ϵ)−1)n∗β)
−1

, xn∗ = 1. (B4)

In order to get rid of ϵ, in what follows we shall take ϵ→ 0 and, in
the end, we will see that Eq. (B4) remains meaningful also in such a
limit.

Thanks to the Cayley–Hamilton theorem,45 the inverse matrix
of a non-singular N ×N matrix A can be expressed in terms of pow-
ers of A. It has been shown46 (see also related contents in Ref. 38 and
in Appendix B of Ref. 47) that the Cayley–Hamilton expression can
be given in terms of complete Bell polynomials,

A−1 = 1
det (A)

N

∑
s=1

As−1 (−1)N−1

(N − s)! BN−s(t1, . . . , tN−s) (B5)

with the determinant expressed as

det (A) = (−1)N

N!
BN(t1, . . . , tN) (B6)

and where tl = −(l − 1)! Tr(Al). In our specific case, from Eq. (B4),
we have

xα = − lim
ϵ→0

BN(t1, . . . , tN)
ϵ

N
∑
s=1

ϕs
N!

(N−s)! BN−s(t1, . . . , tN−s)
, (B7)

where tl and ϕs, both dependent on ϵ, are

tl = −(l − 1)! Tr (Kl), l ≥ 1, (B8)

and

ϕs = (Ks−1)n∗β, s ≥ 1. (B9)
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Let us now elaborate the expressions for tl and ϕs to be inserted in
Eq. (B7). By considering Eq. (B1), the powers of K are given by

K =M + ϵΔ,

K2 =M2 + ϵ(MΔ + ΔM) + ϵ2Δ2,

K3 =M3 + ϵ(M2Δ +MΔM + ΔM2)
+ ϵ2(MΔ2 + ΔMΔ + Δ2M) + ϵ3Δ3,

K4 =M4 + ϵ(M3Δ +M2ΔM +MΔM2 + ΔM3) (B10)

+ ϵ2(M2Δ2 +MΔMΔ +MΔ2M + ΔM2Δ

+ ΔMΔM + Δ2M2)
+ ϵ3(MΔ3 + ΔMΔ2 + Δ2MΔ + Δ3M) + ϵ4Δ4

⋅ ⋅ ⋅
and their traces result to be

Tr (K) = Tr (M) + ϵδα,β,

Tr (K2) = Tr (M2) + 2ϵMαβ + ϵ2δα,β,

Tr (K3) = Tr (M3) + 3ϵ(M2)αβ + (3ϵ2Mαβ + ϵ3)δα,β,

Tr (K4) = Tr (M4) + 4ϵ(M3)αβ + ϵ2[4(M2)αβδα,β + 2M2
αβ] (B11)

+ 4ϵ3Mαβδα,β + ϵ4δα,β

⋅ ⋅ ⋅ .
The use of Eq. (B11) in Eq. (B8) yields tl, which, taking the leading
terms in the small-ϵ limit, is expressed as

tl = al + bl (B12)

with

al = −(l − 1)! Tr (Ml), l ≥ 1, (B13)

and

b1 = −ϵ δα,β,

bl≥2 = −l! ϵ (Ml−1)αβ + 0(ϵ2).
(B14)

Let us now focus on ϕs. By considering Eq. (B10) and taking the
specific matrix element indicated in Eq. (B9), we get that the leading
terms for ϵ→ 0 are

ϕ1 = δn∗ ,β,

ϕs = (Ms−1)n∗β + 0(ϵ), s ≥ 2.
(B15)

For instance, ϕ2 =Mn∗β + ϵδn∗ ,βδα,β, ϕ3 = (M2)n∗β

+ ϵ[δn∗ ,βMαβ + δα,βMn∗β] + ϵ2δα,βδn∗ ,β, and so on.
Let us now go back to Eq. (B7). By exploiting the decomposition

of tl given in Eq. (B12), and making use of the binomial-like relation
Eq. (A3), the quantity at the numerator of Eq. (B7) becomes

BN(t1, . . . , tN) =
N

∑
i=0
(N

i
)BN−i(a1, . . . , aN−i) Bi(b1, . . . , bi).

(B16)

Explicitly,

BN(t1, . . . , tN) =BN(a1, . . . , aN) B0

+ N BN−1(a1, . . . , aN−1) B1(b1)
+ (N

2
)BN−2(a1, . . . , aN−2) B2(b1, b2)

+ (N
3
)BN−3(a1, . . . , aN−3) B3(b1, b2, b3) + ⋅ ⋅ ⋅ .

(B17)

The first term is zero because BN(a1, . . . , aN) = (−1)N N! det (M)
= 0 since det(M) = 0 with M being singular. Then, let us consider
the explicit expressions of the complete Bell polynomials: B0 = 1,
B1(b1) = b1, B2(b1, b2) = b2

1 + b2, B3(b1, b2, b3) = b3
1 + 3b1b2 + b3,

and so on. By using bl given in Eq. (B14), the following expression is
finally obtained keeping only the linear terms in the small-ϵ limit:

BN(t1, . . . , tN) = −ϵ
N

∑
i=1
(N

i
)BN−i(a1, . . . , aN−i) i! (Mi−1)αβ + 0(ϵ2).

(B18)
Let us now focus on the summation at the denominator of

Eq. (B7) and write it directly in the small-ϵ limit,

N

∑
s=1

ϕs
N!

(N − s)! BN−s(t1, . . . , tN−s)

=
N

∑
s=1

N!
(N − s)! BN−s(a1, . . . , aN−s)(Ms−1)n∗β + 0(ϵ), (B19)

where for ϕs we have used the approximations in Eq. (B15), and the
tl at the argument of the Bell polynomials have been directly replaced
by al.

Let us plug Eqs. (B18) and (B19) into Eq. (B7) and take the limit
ϵ→ 0. The factor ϵ at the denominator cancels with ϵ in the expres-
sion at the numerator [see Eq. (B18)]. By expanding the binomials
and simplifying the factorials, we obtain

xα =
N
∑
i=1

1
(N−i)! BN−i(a1, . . . , aN−i) (Mi−1)αβ

N
∑
s=1

1
(N−s)! BN−s(a1, . . . , aN−s) (Ms−1)n∗β

. (B20)

Equation (b) with the factors given in Eq. (c) is finally
obtained by rewriting Eq. (B20) as xα = ∑N

i=1 ui−1(Mi−1)αβ,
where ui−1 = zi−1/{∑N

s=1 zs−1(Ms−1)n∗β} in which zi−1

= BN−i(a1, . . . , aN−i)/(N − i)!, and then shifting back the
summation indexes by one unit.

The above derivation has been carried out under the assump-
tion xα ≠ 0 because, only in this case, the matrix K(ϵ) is invertible
and the mathematical steps are licit. However, we may see that the
final result also holds when xα = 0. Indeed, if xα = 0, the correspond-
ing matrix K is singular, which means that BN(t1, . . . , tN) = 0 in
Eq. (B7), and, hence, the summation over i in Eq. (B18) is equal to
zero. Ultimately, this leads to see that the numerator in Eq. (B20) is
zero, so obtaining the correct result.

Statement (ii) of the theorem follows immediately restarting
from Eq. (B3) and taking the summation over n at both members.
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If the eigenvector’s components have non-null sum, we can fix the
summation to 1 and hence

xα = (ϵ∑
n
(K(ϵ)−1)nβ)

−1

, ∑
α

xα = 1. (B21)

The derivation made for statement (i) remains the same, except for
the fact that the factors ϕs are now defined as ϕs = ∑n (K(ϵ)s−1)nβ.
Equation (B15) is thus replaced by ϕ1 = 1 and ϕs≥2 = ∑n (Ms−1)nβ

+ 0(ϵ). Ultimately, what changes is that the element (Ms−1)n∗β
at the denominator of Eq. (B20) is replaced by the summation
∑n (Ms−1)nβ. This leads to the factors wi (in place of ui) given in
Eq. (f). Finally, in the special case in which ∑n Mnβ = 0 (for any β),
all ϕs≥2 go to zero in the limit ϵ→ 0 and the only ϕs to be taken
into account at the denominator of Eq. (B7) is ϕ1 = 1; eventually,
this leads to wi given in Eq. (g). More directly, from Eq. (f) , we get
wi = zi/z0. As above, Eq. (e) remains valid when xα = 0.

The correctness of Eqs. (b)–(g) has been verified numerically
for matrices M randomly generated under the fulfillment of the
requisites of the statements.

2. The special case of Eq. (3)
In the special case in which M is a transition rate matrix R, we

can adopt Eq. (g) of the theorem. Indeed, pss with ∑α pss
α = 1 is the

eigenvector corresponding to the null eigenvalue, and ∑i Rij = 0 for
all j. This leads directly to Eq. (3). It is worth noting that the theorem
allows us to express also the eigenvectors x(λ) of R corresponding to
the real-valued eigenvalues λ > 0 (if there are any). It suffices to set
M = R − λI and apply Eq. (c) because∑n x(λ)n = 0 for λ > 0.

It is interesting to note that when M is a transition rate matrix
R, Eq. (B21) acquires a physical meaning in connection with the
statistics of the recurrence times of the jump processes. This is
discussed in what follows.

Let us first consider the transition from a site α of interest to
a directly connected site β. Such a transition could take place via
several channels, so let us consider the μth one. The average recur-
rence time of the α

μÐ→β transition can be expressed (see for instance
Appendix A of Ref. 3) as ⟨τ(μ)αβ ⟩ = ∑n (K−1)nβ, where the N ×N
matrix K has elements Ki j = Ri j + k

α
μÐ→ β

δi,βδ j,α. In short, the deriva-

tion consists in solving a modified master equation, in which R is
replaced by the matrix K specific of the α

μÐ→β transition, and assum-
ing, as an initial condition, that such a transition has just occurred.
The solution of the modified master equation yields the occupation
probability of being in site α under the condition that the transition
did not take place yet; the multiplication by k

α
μÐ→ β

then gives the dis-

tribution of the first occurrence (recurrence) time of the jump, and
the above expression for the average ⟨τ(μ)αβ ⟩ is finally obtained with
a few algebraic steps. Note that K, differently from R, is invertible.
It was also shown that ⟨τ(μ)αβ ⟩ = (pss

α k
α

μÐ→ β
)−1. This implies that pss

α

can be obtained from (k
α

μÐ→ β
⟨τ(μ)αβ ⟩)−1, independently of the choice

of site β directly reachable from α, and also of the specific channel μ
taken into account.

Going through the derivation in Ref. 3, one realizes that the
expression of the average recurrence time remains valid also when
considering a virtual jump process, with rate constant ϵ, from α to
any other site β of the network. Site β could coincide with α itself. In
this case, the process α→ α would be a virtual neutral process that
does not affect the time evolution of the site occupation probabilities.
Then, β could be a site truly directly reachable jumping out from α
with a rate constant k

α
μÐ→ β

. In this case, we may think of splitting the

true α
μÐ→β into two channels and assign the rate constant ϵ ≤ k

α
μÐ→ β

to one of them; such a split does not alter the time evolution of the
occupation probabilities. Finally, site β can even be a site not directly
reachable from α if the α→ β connection is missing. In this case, in
the master equation dynamics, we would need to include the α→ β
transition and assign to it the rate constant ϵ, which, ultimately, will
be taken vanishingly small.

The elaboration made in Ref. 3 remains valid also for the
average recurrence time of such virtual jump processes, leading to
establishing that

pss
α = lim

ϵ→0
(ϵ∑

n
(K(ϵ)−1)nβ)

−1

(B22)

with the ϵ-dependent matrix K(ϵ) having elements

Kij(ϵ) = Rij + ϵ δi,βδj,α. (B23)

The limit ϵ→ 0 in Eq. (B22) is taken to comprise all situations
(including the non-physical case in which site β is not directly
reachable from α). We can see that Eq. (B22) corresponds to
Eq. (B21).

APPENDIX C: USEFUL DERIVATIVES

Let us consider a generic pair of connected sites q and q′ ≠ q,
with kq→q′ being the (cumulative) rate constant of the transi-
tion from q to q′. The following expressions are derived in the
supplementary material:

∂Rαβ

∂kq→q′
= (δα,q − δα,q′)δβ,q, (C1)

n ≥ 2 :
∂(Rn)αβ

∂kq→q′
= (δα,q − δα,q′)(Rn−1)qβ

+ [(Rn−1)αq − (Rn−1)αq′] δq,β

+
n−2

∑
m=1
[(Rm)αq − (Rm)αq′](Rn−m−1)qβ, (C2)

n ≥ 1 :
∂ Tr (Rn)
∂kq→q′

= n [(Rn−1)qq − (Rn−1)qq′], (C3)

∂wi

∂kq→q′
= wi

N−1

∑
m=1

wm[(Rm−1)qq − (Rm−1)qq′]

−
N−1−i

∑
m=1

wm+i[(Rm−1)qq − (Rm−1)qq′]. (C4)
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