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Abstract
The use of semiochemical-baited traps for detection, monitoring, and sampling bark beetles and woodboring beetles (BBWB) 
has rapidly increased since the early 2000s. Semiochemical-baited survey traps are used in generic (broad community level) 
and specific (targeted toward a species or group) surveys to detect nonnative and potentially invasive BBWB, monitor estab-
lished populations of invasive or damaging native species, and as a tool to survey natural communities for various purposes. 
Along with expansion in use, much research on ways to improve the efficacy of trapping surveys for the detection of specific 
pests as well as BBWB in general has been conducted. In this review, we provide information on intrinsic and extrinsic fac-
tors and how they influence the efficacy of detecting BBWB in traps. Intrinsic factors, such as trap type and color, and other 
factors are described, as well as important extrinsic factors such as habitat selection, horizontal and vertical placement, and 
disturbance. When developing surveys, consideration of these factors should increase the species richness and/or abundance 
of BBWB captured in traps and increase the probability of detecting nonnative species that may be present. During generic 
surveys, deploying more than one trap type or color, using an array of lures, and trapping at different vertical and horizontal 
positions is beneficial and can increase the number of species captured. Specific surveys generally rely on predetermined 
protocols that provide recommendations on trap type, color, lure, and trap placement.
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Key Message

•	 Semiochemical-baited traps are important tools for 
detecting native and nonnative species.

•	 Generic and specific surveys benefit from incorporating 
research findings on trapping efficacy.

•	 Trap design, color, and killing agent are important intrin-
sic factors.

•	 Site selection, habitat, disturbance, and spatial placement 
are important extrinsic factors.

•	 Recommendations for optimally deploying traps will 
improve survey results.

Introduction

Bark beetles and woodboring beetles (BBWB) are important 
insects in forested ecosystems. They are key contributors to 
ecosystem processes (Müller et al. 2002; Ulyshen 2016), 
influence structure of stands (Feller and McKee 1999; Dodds 
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et al. 2010a) and landscapes (Rodman et al. 2021), provide 
important food sources for invertebrate and vertebrate preda-
tors (Linsley 1959; Fayt et al. 2005), and can affect a wide 
array of ecosystem services (Embrey et al. 2012). Interest in 
BBWB has further increased because several species have 
been transported around the globe and introduced into new 
environments (Haack 2001; Barnouin et al. 2020; Marchioro 
et al. 2022b; Ruzzier et al. 2023), where some have become 
invasive pests, causing severe ecological and economic 
impacts threatening natural and managed forests (Seidl et al. 
2018). Ecological impacts vary from changes to forest struc-
ture (Dodds and Orwig 2011; Haavik et al. 2018) to near or 
wholesale elimination of certain tree species in some forests 
(Klooster et al. 2014). Economic impacts can also be severe 
and wide ranging (Kovacs et al. 2010; Aukema et al. 2011; 
Kondo et al. 2017), especially considering the key value 

of urban and forest trees (Pearce 2001; McPherson et al. 
2017). Thus, various techniques have been initiated to limit 
the movement of BBWB species into new environments, 
including treatment of goods and packing material with heat 
or pesticides prior to movement, product quarantines, and 
port inspections (Magarey et al. 2009; Nahrung et al. 2023). 
Even with these measures, BBWB continue to be intercepted 
in wood packaging used in global transport of container-
ized goods (Haack et al. 2022) resulting in a clear need to 
optimize the use of traps and lures for surveillance and early 
detection of nonnative BBWB.

Semiochemical-based forest insect surveys for BBWB 
have become commonplace across the globe (Suckling 
2015) and represent an important second line of defense 
at ports of entry and surrounding high-risk areas (Fig. 1A) 
where nonnative species may gain footholds in new areas 

Fig. 1   International port and 
surrounding area where traps 
can be deployed to survey for 
arriving or established nonna-
tive bark beetles and woodbor-
ers (A), map depicting the ini-
tial (blue circles) and expanded 
(orange circles) trapping 
response in New York to delimit 
Sirex noctilio populations in the 
region (B), and multiple-funnel 
trap used to sample insect com-
munities after a windstorm and 
salvage logging disturbance (C), 
photo credit—Shawn Fraver
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(Brockerhoff et al. 2006; Rassati et al. 2014; Rabaglia 
et al. 2019; Hoch et al. 2020; Mas et al. 2023; Melin et al. 
2023). In addition, they are important tools for delineat-
ing the spatial extent of damaging BBWB species and 
monitoring population levels once a species becomes 
established in an area (Haack and Poland 2001; Dodds 
and de Groot 2012) (Fig. 1B). Outside of purely program-
matic detection surveys, semiochemical-baited traps are 
also important tools to sample insect communities of both 
native and nonnative species for various ecological and/or 
conservation objectives (Sullivan et al. 2003; Gandhi et al. 
2009; Larsson 2016; Dodds et al. 2019) (Fig. 1C). In fact, 
semiochemical-baited traps provide a cost-effective alter-
native to visual surveys because they can detect species 
that were previously unknown in an area (e.g., Webster 
et al. 2012b; Santos-Silva et al. 2020) or which are cryptic 
and not easily detectable by visual means. Traps do have 
limits, however, as it is generally unknown how well trap 
catches represent actual BBWB communities present in an 
area, and how well relative abundance relates to true abun-
dance or rarity.

Using traps to survey for nonnative BBWB generally 
falls into two broad categories, generic or specific surveys 
(Poland and Rassati 2019). Generic surveillance imple-
ments lures and traps to survey sites deemed high risk to 
detect invasive species early in the invasion. These surveys 
are becoming more common with examples from Australia, 
Canada, Czech Republic, Great Britain, Italy, New Zealand, 
Spain, and the USA (Brockerhoff et al. 2006; Bashford 2012; 
Rassati et al. 2014, 2015b; CFIA 2017; Inward 2019; Raba-
glia et al. 2019; Fiala and Holuša 2023; Mas et al. 2023). 
Broad spectrum lures, such as ethanol, or multi-lure blends 
including several semiochemicals on a trap are usually 
employed (e.g., Fan et al. 2019; Roques et al. 2023) with 
the hope of maximizing species richness over abundance 
in collections. This same approach is often used for biodi-
versity and ecological studies focused on sampling at the 
community level (Sullivan et al. 2003; Gandhi et al. 2009; 
Dodds et al. 2019, 2023). Targeted surveys (i.e., specific 
surveys) that focus on only one species, a few species, or 
members of the same genera at the same time are the second 
type of BBWB surveys. Specific semiochemical lures and/
or specific trapping protocols are used during these surveys 
often to track damaging insect populations (Billings and 
Upton 2010), but also when targeting rare or protected native 
species for conservation purposes (Žunič Kosi et al. 2017). 
The same approach is used when delimiting a population 
after detection, gaining a relative measure of abundance, 
and attempts to influence populations with mass trapping. In 
these surveys, abundance, while often difficult to interpret in 
relation to tree damage, is generally helpful. These specific 
surveys may also provide an opportunity to screen bycatch 
for other species of interest (Peck et al. 1997; Dodds and 

Ross 2002b; Skvarla and Holland 2011; DiGirolomo and 
Dodds 2014; Thurston et al. 2022).

Given the multiple potential uses of semiochemical-baited 
traps, an extensive testing of factors that may influence the 
efficacy of detecting BBWB in traps has been undertaken 
over the last 2 decades. Much of this information has not 
been consolidated. Our objective was to review and summa-
rize the relevant literature on factors affecting BBWB trap-
ping efficacy and provide natural resource professionals with 
guidance on ways to improve generic and specific surveys. 
With only one exception, Sirex noctilio F. (Hymenoptera: 
Siricidae), the focus will remain on bark and ambrosia bee-
tles (Scolytinae), longhorned beetles (Cerambycidae), and 
jewel beetles (Buprestidae). These taxa were chosen due to 
their economic importance worldwide and the prevalence 
of important invasive species within these families. Early 
research that led to the development of semiochemical-
baited trapping, mechanisms underlying trap efficacy, and 
factors related to successful trapping of these families will 
be covered. General guidelines for developing general and 
pest-specific surveys are also provided. We broadly reviewed 
the scientific literature and technical reports focused on 
semiochemical-baited traps and their applications, but with-
out using specific criteria to select articles to include in this 
review.

Steps toward semiochemical‑based trapping 
for BBWB

Early BBWB research observed patterns of saproxylic insect 
succession on host trees or logs, as well as specificity to 
plant tissues (Graham 1925; Savely 1939; Wallace 1953). 
Mechanisms for these patterns were generally focused on 
host condition including moisture and temperature, as well 
as size and decay class of host material. Specific chemi-
cal cues driving these patterns were largely unknown at the 
time, but the possibility of chemical host location cues were 
considered (Person 1931). Later, ethanol, a host volatile 
produced by injured and stressed trees (Kelsey and Joseph 
2003) was observed and identified as a field attractant for 
many BBWB (Moeck 1970, 1971; Schroeder 1988). Conse-
quently, ethanol-baited traps were some of the earliest semi-
ochemical reliant surveys for BBWB (Roling and Kearby 
1975; Montgomery and Wargo 1983). Ethanol is still the key 
lure for ambrosia beetles (Reding et al. 2011; Galko et al. 
2014; Fiala and Holuša 2023) and an important synergist 
to other lures when targeting broader BBWB communities 
(Hanks and Millar 2013; Miller et al. 2015). Terpenes were 
also recognized as important attractants in the field (Jantz 
and Rudinsky 1966; Knopf and Pitman 1972; Bauer and Vité 
1975; Chenier and Philogene 1989). In particular, Bauer 
and Vité (1975) recognized a synergistic effect of ethanol 
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and alpha-pinene on trap catches of Trypodendron lineatum 
(Olivier). Alpha-pinene and ethanol have since been used 
extensively to sample BBWB communities (Schroeder 1988; 
Schroeder and Lindelöw 1989; Miller and Rabaglia 2009).

Host volatiles became useful for broad surveys of BBWB, 
however, pheromones outperform host volatiles when the 
survey objectives are to detect or monitor the spread of a 
specific target species. The first bark beetle pheromones 
were identified from Ips confusus (LeConte) in 1966 (Sil-
verstein et al. 1966). After that discovery, pheromone iden-
tification occurred across several genera of bark beetles. 
Identification of long-range pheromones in Cerambycidae 
began a few decades after bark beetles (e.g., Sakai et al. 
1984; Noldt et al. 1995) and rapidly expanded in the early 
2000s with identification of pheromones of native and non-
native species in North America (Lacey et al. 2004; Silk 
et al. 2007; Millar and Hanks 2017). The cross attractive-
ness of some identified cerambycid pheromones, especially 
within the same subfamily, made them especially useful 
for broader surveys (Hanks and Millar 2013), while spe-
cific pheromones could target individual (or a small num-
ber of) species of high value or concern (Silk et al. 2007; 
Rassati et al. 2021). Unlike sex pheromones of Lepidoptera 
(which are emitted by females, attract males only, and are 
highly species-specific) most pheromones identified in long-
horn beetles are emitted by males, attract both sexes, and 
often several species. For example, 3-hydroxyhexan-2-one, 
2,3-hexanediols, fuscumol, and fuscumol acetate are shared 
by species in different genera and subfamilies (Hanks and 
Millar 2016), making them especially useful for generic sur-
veys. Identifying pheromones from Buprestidae has been 
even more challenging than for Cerambycidae. A pheromone 
identified from Agrilus planipennis Fairmaire represented 
the first time one was described in the family (Bartelt et al. 
2007; Silk et al. 2011), but since then no important progress 
has been made on buprestid chemical ecology. Similarly, S. 
noctilio is the only economically important siricid for which 
lures have been specifically developed. However, none of 
the host volatiles and pheromones (Böröczky et al. 2009; 
Cooperband et al. 2012; Crook et al. 2012) identified for 
S. noctilio was effective as trap lures when tested in South 
Africa (Hurley et al. 2015).

In more recent years, it has become more common to 
combine host volatiles and pheromones on the same trap. 
For example, the combination of Ips bark beetle phero-
mones, including ipsenol and ipsdienol, and host volatiles, 
including ethanol and alpha-pinene, are effective for sam-
pling large communities of BBWB in forests (Miller et al. 
2011; Allison et al. 2013), urban and peri-urban areas (e.g., 
ports) (Rassati et al. 2015a, 2015b; Rabaglia et al. 2019). 
Similarly, traps baited with cerambycid pheromone blends 
have shown promise for capturing a larger array of ceram-
bycid species across the Americas, Europe, and Asia (Hanks 

et al. 2012; Sweeney et al. 2014; Wickham et al. 2014; Fan 
et al. 2019; Santos-Silva et al. 2020; Roques et al. 2023), 
as well as other BBWB when combined with host volatiles 
(Sweeney et al. 2016; Rassati et al. 2019).

Mechanisms underlying trap efficacy

To develop an effective trap design, lure, and deployment 
strategy for detecting BBWB, it pays to “think like a beetle,” 
i.e., to understand their behavior (i.e., foraging, dispersal, 
mating, oviposition, etc.) and the factors affecting them, 
and to exploit them to our advantage. To survive and repro-
duce, most BBWB must find food, mates, and suitable brood 
hosts in a heterogeneous environment within a relatively 
short adult lifespan of a few days or weeks, and they do so 
with the aid of sophisticated sensory systems that detect and 
integrate olfactory and visual stimuli in their environment 
(Allison et al. 2004; Campbell and Borden 2009; Carrasco 
et al. 2015; Dodds et al. 2023). Other stimuli such as audi-
tory (Rudinsky et al. 1973), gustatory/tactile cues (Ginzel 
and Hanks 2003), and even infrared (Evans 1964) can play a 
role in host/mate location and acceptance by BBWB, but it is 
chiefly olfactory and visual cues that have been exploited in 
the development of attractants and traps for BBWB surveys.

Olfaction

As discussed above, olfactory cues used by BBWB include 
volatiles emitted from host- and non-host trees (Metcalf and 
Kogan 1987; Bruce and Pickett 2011; Xu and Turlings 2018) 
and sex- or aggregation pheromones of both conspecifics 
and heterospecifics (Lu et al. 2007; Hanks and Millar 2016), 
the latter of which may serve as kairomones (e.g., Allison 
and Borden 2001). Plant volatiles play an important role 
in insect host location and are important for some BBWB 
(Moeck 1970; Brattli et al. 1998; Pureswaran and Borden 
2005; McCullough et al. 2009; Tluczek et al. 2011; Flaherty 
et al. 2013; Silk et al. 2020). Plants share many of the same 
volatile compounds such as terpenes and sesquiterpenes and 
the relative amounts of these compounds may vary among 
species (Pureswaran et al. 2004), plant tissues (e.g., Zeneli 
et al. 2001), seasons (e.g., Zhang et al. 1999), time of day 
(e.g., Martin et al. 2003), stages of growth (e.g., Johnson 
et al. 2004), levels of moisture stress, and levels of herbivory 
(Dicke and van Loon 2000). It is the particular ratio of these 
common volatiles, rather than unique species-specific vola-
tiles, that allows most insects to discriminate between host 
and non-host plants, or stressed versus healthy trees, by 
integrating signals from antennal olfactory receptors in the 
central nervous system (Bruce et al. 2005). Recognition and 
avoidance of non-host volatiles may be as important as posi-
tive response to host odors to a beetle seeking a suitable host 
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in a forest composed of many different tree and plant species 
(Zhang and Schlyter 2003, 2004; Byers et al. 2004; Camp-
bell and Borden 2009). For example, odors from nonhost 
trees inhibit response of some bark and ambrosia beetles to 
their hosts (Schroeder and Lindelöw 1989; Schroeder 1992).

Experiments in wind tunnels have shown that beetles ori-
ent to pheromone sources using positive optomotor anemo-
taxis (Fadamiro et al. 1998) as previously shown for moths 
(Kennedy et al. 1980; Kuenen and Baker 1982; Baker et al. 
1984; Cardé 1984; Cardé and Willis 2008). When insects 
detect their sex or aggregation pheromone they initiate 
upwind flight and maintain a constant velocity of image 
motion across the eyes (optomotor anemotaxis) which 
results in a constant ground velocity independent of wind 
speed (Murlis et al. 1992). Variation in pheromone concen-
tration in the plume (i.e., pockets of air with and without 
pheromone) caused by turbulence downwind of the source 
is necessary for upwind flight and also induces the zig-zag 
pattern (casting) (Elkinton and Cardé 1984; Murlis et al. 
1992). The attractive radius or active space [defined as the 
distance from the pheromone source at which the odor con-
centration is sufficient to produce a response in the receiving 
organism (Elkinton and Cardé 1984)] of a pheromone-baited 
trap is affected by a number of factors such as pheromone 
release rate, wind speed, and turbulence, which affect dis-
persion of the odor plume and concentration of attractant in 
the odor filaments downwind (Schlyter 1992; Thistle et al. 
2011; Bouwer et al. 2020). Turbulence produced by the trap 
itself can affect pheromone dispersion and trap performance 
(Wyatt et al. 1993; Cooperband and Cardé 2006). Estimates 
of the attractive radius of BBWB pheromone-baited traps, 
from mark-release-recapture or trap spacing-interference 
experiments, have ranged from 10 to 500 m (Schlyter 1992; 
Dodds and Ross 2002a; Maki et al. 2011; Torres-Vila et al. 
2013; Jactel et al. 2019; Parker et al. 2020; Wittman et al. 
2021).

Semiochemical release rate is an important factor that can 
affect BBWB trap catches (e.g., de Groot and Zylstra 1995; 
Ross and Daterman 1998; Borden and Miller 2000; Erbilgin 
et al. 2003; Grommes et al. 2023), yet optimal release rates 
are unknown for most species. Higher release rates, espe-
cially for host volatiles, are believed to generally increase 
insect capture by dispersing higher attractant concentrations 
around and downwind from a trap. High release host vola-
tile lures are often components of generic trapping surveys 
for this reason. Nonetheless, the relationship between trap 
catch and release rate is not always positively linear, as high 
release rates can have a repellant effect on some species. 
For example, in Lepidoptera (e.g., Baker et al. 1981; Baker 
and Roelofs 1981) there is usually an optimal release rate of 
pheromone or host volatiles above or below which attraction 
and trap catches decline. Some BBWB have also demon-
strated this behavior (e.g., Klimetzek et al. 1986; Ross and 

Daterman 1998; Erbilgin et al. 2003; Grommes et al. 2023), 
while others show limited differences among release rates 
(Sun et al. 2004) or a positive response to tested release rates 
but no upper limit detected (Fatzinger 1985; Franklin and 
Grégoire 2001; Gallego et al. 2008). As shown for ambro-
sia beetles, such preferences may correspond to the optimal 
concentration of the targeted host volatile which maximize 
colonization success in attacked trees (Cavaletto et al. 2023).

Vision

Size, shape and color are the key components used by insects 
to visually discriminate between host and non-host plants 
(Prokopy and Owens 1978) and these are important for some 
insects orienting to traps. The spatial distribution of pho-
ton flux provides information on shape, size, distance, and 
motion. Many species of BBWB orient toward objects that 
stand out against or contrast with their background, such as 
a tall tree or a dark silhouette. For example, mountain pine 
beetles, Dendroctonus ponderosae Hopkins, were attracted 
to dark cards placed against a white background; the larger 
the card, the greater the attraction (Shepherd 1966). Black 
multiple-funnel traps and intercept panel traps, designed to 
resemble dark tree trunks, often catch more BBWB than 
transparent or white traps (de Groot and Nott 2001; Kerr 
et al. 2017). However, response to visual stimuli often occurs 
only when combined with suitable olfactory stimuli, such as 
host volatiles and pheromones. For example, catches of the 
southern pine beetle, Dendroctonus frontalis Zimmermann 
(Strom et al. 1999), and black turpentine beetle, Dendroc-
tonus terebrans (Olivier) (Fatzinger 1985), on pheromone-
baited or turpentine-baited traps, respectively, were sig-
nificantly reduced on white traps compared to black traps. 
In Buprestidae, there is evidence that visual stimuli drive 
host selection, although the roles of olfactory cues and their 
interactions are not as well understood (Imrei et al. 2020a; 
Santoiemma et al. 2024). Prokopy and Owens (1978) sug-
gested that monophagous and oligophagous insects were 
more likely to use specific visual stimuli, in concert with 
olfactory and/or contact chemical stimuli, when foraging 
for food, mates or oviposition sites than are polyphagous 
species. Trichromatic color vision is common in insects 
(Prokopy and Owens 1978; Briscoe and Chittka 2001; van 
der Kooi et al. 2021) and preferences for different colors 
have been demonstrated for several BBWB (Campbell and 
Borden 2006; Crook et al. 2009; Francese et al. 2010a; Kerr 
et al. 2017; Skvarla and Dowling 2017; Rassati et al. 2019; 
Cavaletto et al. 2020, 2021; Perkovich et al. 2022; Sukovata 
et al. 2022) likely because they reflect similar hues as food 
or brood hosts.

Considering the above-described mechanisms, it is evi-
dent that a number of factors can potentially affect trap effi-
cacy. These factors can be both directly linked to the trap 
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(e.g., trap design, trap color, lure placement) but also to the 
position of the trap in the environment (e.g., trap height) and 
the characteristics of the environment in which the trap is 
located (e.g., forest type, disturbance history).

Intrinsic factors

Trap design

Several trap types for BBWB surveys have been developed 
over the years, but multiple-funnel and intercept panel traps 
are the most ubiquitous in trapping studies. Multiple-funnel 
traps, also known as multi-funnel or Lindgren funnel traps, 
were first developed by Lindgren (1983) for trapping bark 
and ambrosia beetles. Subsequent studies have demonstrated 
their efficacy for woodboring beetles as well (de Groot and 
Nott 2001; McIntosh et al. 2001; Morewood et al. 2002; 
Dodds et al. 2010b; Miller and Crowe 2011; Rassati et al. 
2012). This trap type consists of a series of black vertically 
aligned funnels (typically twelve total) meant to mimic a tree 
bole, fitted with a collection cup on the bottom, and topped 
by a rain cover (Fig. 2A). BBWB are attracted by the shape 
of the trap and/or the odor plume released from the lures, 
arrive at the trap, hit the funnels, and then fall into the col-
lecting cup because they cannot regain grip on the slanted 
slippery surface of the funnels (Lindgren 1983).

Similar to multiple-funnel traps, intercept panel traps 
were also initially commercially developed for bark beetles 
(Czokajlo et al. 2001) but then also found to be efficient for 
woodboring beetles (McIntosh et al. 2001; Miller and Crowe 
2011). This trap type consists of two corrugated black plastic 
panels or reinforced PVC sheets placed perpendicularly to 
one another, a rain cover on top, and a funnel connected to a 
collection cup at the bottom (Fig. 2B). Additionally, a hole 
is cut in the middle of the PVC sheets to allow for lure place-
ment. BBWB attracted by the shape of the trap and/or the 
odor plume released from the dispenser used to bait it, hit the 
panels, and fall into the funnel connected to the collection 
cup. A benefit of intercept panel traps over multiple-funnel 
traps is they break down into flattened pieces that can be 
more easily stored when not deployed.

Several modified versions of both multiple-funnel and 
intercept panel traps have been developed over the years. 
Examples of variations include number of funnels, ranging 
from 4 to 16 (e.g., Brar et al. 2012; Francese et al. 2013; 
Miller et al. 2018; Miller and Crowe 2022), modifications 
to increase the lower diameter of each funnel (Miller et al. 
2013), funnels and panels of colors different than black 
(Fig. 2C), including transparent ones (Fig. 2D) (de Groot 
and Nott 2001; Rassati et al. 2012; Kerr et al. 2017; Caval-
etto et al. 2021), the addition of glue (Francese et al. 2011) 
or pure and diluted lubricants on trap surface (Fig. 2E) 

(Graham et al. 2010; Allison et al. 2011, 2016; Graham and 
Poland 2012), the addition of liquid to the collection cup 
(Sweeney et al. 2006; Miller and Duerr 2008; Graham and 
Poland 2012; Allison et al. 2014), bottom funnel modifica-
tions to reduce catches of beneficial insects or non-targets 
(Ross and Daterman 1998; Martín et al. 2013; Bracalini 
et al. 2021) and enlargement of funnels connected to the 
collection cup (Morewood et al. 2002; Allison et al. 2014) 
(Fig. 2F). Both multiple-funnel and intercept panel traps are 
durable and can provide five or more years of service, while 
being moderately priced.

Most of the comparisons between standard or modified 
versions of multiple-funnel vs. intercept panel traps led to 
heterogeneous results depending on the target families or 
species. For example, some studies found that intercept 
panel traps are more effective than multiple-funnel traps in 
capturing longhorn beetles (de Groot and Nott 2001, 2003; 
McIntosh et al. 2001; Morewood et al. 2002; Miller and 
Crowe 2011; Marchioro et al. 2022a) while others found the 
opposite trend for species in the same (Rassati et al. 2012; 
Allison et al. 2014) or other (Dodds et al. 2010b) families. 
Others found no differences between the two trap types 
(Haavik et al. 2014). Nonetheless general patterns have been 
identified. A recent meta-analysis highlighted that (i) inter-
cept panel traps are generally superior to multiple-funnel 
traps (except for buprestid beetles), (ii) traps treated with a 
surface treatment to make them slippery perform better than 
untreated traps and (iii) traps equipped with wet collection 
cups perform better than traps equipped with dry collection 
cups (Allison and Redak 2017). Further general patterns also 
arise when considering morphological traits associated with 
flight efficiency, maneuverability and eye size, potentially 
leading to improved predictability of optimal trap design 
according to species (Staton et al. 2023). A mechanistic 
understanding of trap functioning will provide insight into 
why one trap model performs better than another, or why the 
same trap design differs in its performance among taxa and 
habitats (Bouwer et al. 2020; Burner et al. 2020), and may 
lead to improvements in trapping efficacy.

Besides multiple-funnel and intercept panel traps, several 
other trap types for BBWB are currently in use. SLAM (Sea, 
Land and Air Malaise) traps represent another albeit less 
adopted option. Malaise traps are traditionally used to col-
lect flying arthropods, especially Hymenoptera and Diptera 
(Skvarla et al. 2021), but with a few modifications they can 
be employed to sample BBWB (Vance et al. 2003; Skvarla 
and Dowling 2017; Varandi et al. 2018). SLAM retain the 
structure of a terrestrial Malaise trap, but they are usually 
equipped with top and bottom collecting cups and are often 
hung between trees (Fig. 2G). While canopy Malaise traps 
sometimes catch fewer total specimens of BBWB than do 
multiple-funnel or intercept panel traps, they often capture a 
greater number of species, including unique and rare species 
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(Dodds et al. 2010b, 2015). Unfortunately, these traps are 
much more expensive and less durable than the other traps. 
Simple traps (e.g., bottle traps) (Fig. 2H) baited with fer-
menting baits or host volatiles have also been demonstrated 
to be an efficient tool for monitoring longhorn beetles 

(Miller et al. 2018; Ruchin et al. 2021) and ambrosia bee-
tle communities (Steininger et al. 2015; Tarno et al. 2021), 
as well as for citizen science projects to broaden the area 
surveyed for nonnative ambrosia beetles (Steininger et al. 
2015; Ruzzier et al. 2021; Colombari and Battisti 2023). 

Fig. 2   Trap types used to survey bark beetles and woodboring bee-
tles for various purposes. Traps include multiple-funnel (A), intercept 
panel (B), purple multiple-funnel (C), transparent intercept panel (D), 
fluon coated intercept panel (E), green multiple-funnel with enlarged 
funnels and collecting cup (F), SLAM aerial malaise (G), bottle (H), 

glue-coated sticky prism (I), double decker sticky prism (J), fan (K), 
and Multitrap system (L) traps. Photo credits: KJD—A, B, F, G, H; 
JAF—C, I; DR—D; Joshua Bruckner—E; Nathan Siegert—J; Emilio 
Caiti—K; Synergy Semiochemicals—L
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These traps cost very little to make and can be created from 
recyclables (Frost and Dietrich 1929; Reding et al. 2010), 
however, they are generally only used for a single season. 
Theysohn bark beetle traps, commonly employed for moni-
toring Ips typographus L. population density in Europe 
(Bakke 1985; Weslien et al. 1989; Galko et al. 2016), consist 
of a series of horizontal slots across a flat plastic surface. 
These traps are similar in price to intercept panel traps or 
multiple-funnel traps and can also provide years of service 
but are generally recommended only for certain bark bee-
tles. While not broadly implemented, UV light traps capture 
large communities of insects, including BBWB, and provide 
a strong tool to broadly survey insects (Wardhaugh and Paw-
son 2023) or for specific target species (Pawson et al. 2009).

Various traps have been developed over the years driven 
by survey needs to detect or delimit invasive species. Glue-
coated sticky prism traps, for example, (Fig. 2I) have been 
extensively used for monitoring the invasive buprestid beetle 
A. planipennis in the USA and Canada (Petrice et al. 2013; 
Poland et al. 2019). This trap type consists of a three-sided 
prism made of corrugated plastic, usually green or purple 
(Crook et al. 2009), covered with insect glue, where each 
side is 36 cm wide by 60 cm tall (Francese et al. 2008, 
2010b) and can be used either baited or unbaited. A more 
complex but more efficient version of the sticky prism traps 
developed for monitoring A. planipennis in the USA is rep-
resented by the double-decker trap (Poland et al. 2011, 2019; 
McCullough and Poland 2017). This trap type consists of 
a 3 m tall PVC pole used as a support of two glue-coated 
green or purple prism traps built from corrugated plastic 
which are attached at different heights on the pole (Fig. 2J). 
The configuration, while equally efficient to a green prism 
canopy trap, is more effective than a single purple prism trap 
(Tobin et al. 2021). Canopy-placed sticky panel traps are still 
used for A. planipennis survey in Canada, but in the USA 
have now mostly been replaced by multiple-funnel traps. 
Branch-traps, i.e., green sticky plastic cards fastened to sun-
lit branches and baited or not with a 3D-printed decoy, have 
also been employed for monitoring Agrilus spp. (Domingue 
et al. 2013, 2015), as well as a lighter weight light-green 
non-sticky multiple-funnel trap developed for jewel beetles 
(Imrei et al. 2020b) in Europe.

For ambrosia beetles, a recent study showed that a sin-
gle white panel trap that is sticky on both sides is generally 
superior to 8-unit multiple-funnel and intercept panel traps 
(Kendra et al. 2020). Commercially available Japanese bee-
tle traps have also been used successfully to trap ambrosia 
beetles (Burbano et al. 2012), as have artificially stressed 
trees (e.g., Ranger et al. 2010) and trap logs (e.g., Reding 
and Ranger 2020). Trees or logs may also have the benefit 
of providing substrate for ambrosia beetle fungal mutual-
ists, potentially enhancing attraction to the traps through 
the addition of fungal volatiles caused by inoculated fungi 

(Hulcr et al. 2011; Kuhns et al. 2014; Gugliuzzo et al. 2023; 
but see Tobin et al. 2024).

There are also several new traps available that have 
mostly been untested against existing trap types. Foldable 
fan traps (Grégoire et al. 2022) (Fig. 2K) are laser cut from a 
sheet of polypropylene that can be rapidly produced in large 
numbers in a lab or by a commercial company and easily 
transported and deployed in the field with very little effort. 
They offer a cheaper alternative to more expensive traps, 
with the potential for multi-year use. The Multitrap system 
(Synergy Semiochemicals, Canada), consisting of a set of 
modular parts from which a variety of trap configurations 
can be constructed, including standard multi-funnel traps, 
intercept traps, but also a combination of the two (Fig. 2L) 
is also a new trap design that awaits further testing. Camera-
integrated traps have also been developed for BBWB sur-
veillance (Rassati et al. 2016). These traps allow the user 
to focus the on-site checking only on those traps showing 
the presence of target insects, avoiding checking of empty 
traps and reducing the time and costs of the surveillance. 
To date, camera-integrated traps are commercially available 
and used operationally for monitoring specific insect pests 
in traps baited with species-specific sex pheromone, e.g., 
codling moth in apple orchards, but with improvements in 
machine learning and image recognition technology (Preti 
et al. 2021), may eventually be useful for generic BBWB 
surveys as well.

Lure placement on trap

The placement of lures on traps can influence trapping 
results. For example, early wind tunnel tests of multiple-
funnel traps suggested that two lures, one each placed inside 
a trap at the center of the middle and bottom funnels would 
optimize pheromone plumes, thereby increasing catch 
(Lindgren 1983). Similar results were found using other 
trap types (Lindgren 1983). When lures were placed inside 
of modified multiple-funnel traps where lower funnel holes 
had been enlarged, several BBWB responded positively to 
modified traps over standard multiple funnel traps with lures 
outside of traps, while none responded negatively (Miller 
et al. 2013). It was suggested that this pattern was due to 
either the ability of the lures to create a large plume emitting 
from the middle of the trap and expanding outward or to the 
larger funnel holes that may have facilitated higher capture 
rates. There are many unknowns about how pheromones 
on traps interact (i.e., separate point source or single point 
source) and how this may influence BBWB orientation to 
traps. Antagonistic effects of multiple-component, generic 
lures for cerambycids can reduce catches of some beetles 
(e.g., Miller et al. 2017) but generally do not interfere with 
the majority of species (Hanks et al. 2012). However, new 
questions may arise about separating the release devices 
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on different funnels to avoid interference among plumes. 
Resulting plume structure generated by lure placement is 
one way trap catches may be influenced. The other way is by 
blocking of incoming insects, although there is no evidence 
that even large lures on side of traps reduce BBWB catches 
(Dodds et al. 2010b). Similar difficulties may be found with 
intercept panel traps, when multiple lures are placed tightly 
together at the same hole, and these questions may warrant 
future research.

Lubricant treatments on trap surface

Initially, multiple-funnel and intercept panel traps were 
designed for bark beetles, but as their use expanded to 
include larger taxa (cerambycids, buprestids), it was 
observed that some of these insects could land on and 
escape from trap surfaces (McIntosh et al. 2001; de Groot 
and Nott 2003). These initial observations led to treatments 
of traps with substances that make the surface more slip-
pery, thereby increasing the chances of capturing BBWB 
that land on the trap and reducing chances of their escape. 
When multiple-funnel traps were treated with the lubricant 
Rain-X (active ingredient polydimethylsiloxane), they gener-
ally caught more cerambycids as well as three large bupres-
tid species [(Chalcophora virginiensis (Drury), Buprestis 
maculativentris (Say), Dicerca tenebrosa (Kirby)] than did 
untreated traps (de Groot and Nott 2003). The active ingre-
dient, usually used as a lubricant for car windshields tem-
porarily smooths trap surfaces, making them more slippery 
and preventing beetles from being able to stand or perch on 
it. Rain-X soon became a standard treatment for multiple-
funnel and intercept panel traps (Sweeney et al. 2004; Hanks 
et al. 2007; Allison et al. 2011; Francese et al. 2011).

With insight gained from Rain-X treatments, other lubri-
cants were tested. Graham et al. (2010) found that intercept 
panel traps treated with the fluoropolymer, fluon (active 
ingredient polytetrafluoroethylene), originally used to keep 
insects from escaping containers during laboratory behav-
ioral assays, caught ~ 14 times more cerambycids than Rain-
X or untreated traps. Additionally, fluon-treated multiple-
funnel traps caught more longhorned beetles than untreated 
traps, and treatments lasted for at least two seasons (Graham 
and Poland 2012). However, a significant drop-off in catch 
happens 3 years post-application (Dong et al. 2023). Fur-
ther testing of fluon treatments supported its importance 
for increasing trap catches while also not interfering with 
visual cues, such as trap color, on target insects (Lyons et al. 
2012; Francese et al. 2013). In addition, fluon can be poten-
tially diluted in water, decreasing the total amount needed 
and the overall costs. For some cerambycid species, traps 
coated with fluon concentrations of 100%, 50%, and 10% 
captured similar numbers of insects (Allison et al. 2016). 
However, A. planipennis traps treated with a 10% fluon 

concentration captured fewer insects than 50% fluon con-
centration (Francese et al. 2013).

The cost of fluon, difficulties applying it uniformly to trap 
surfaces, and safety concerns for those treating traps (i.e., 
the need for personal protective equipment) has led to other 
alternatives being tested. Aerosol Teflon- (also polytetra-
fluoroethylene) and silicone-based treatments of traps have 
resulted in increased catches of some BBWB over untreated 
traps (Allison et al. 2011), however silicone treatments did 
eventually form a “tacky” film on the trap as the season pro-
gressed. When compared with fluon-treated versions, aero-
sol Teflon-treated multiple-funnel and intercept panel traps 
were equally successful in capturing some BBWB (Allison 
et al. 2014), suggesting an effective alternative to fluon.

Trap cleaning

Trap surfaces can become coated in dust and pollen while 
other debris such as spider webs and plant material can clog 
or reduce trap openings to collection cups potentially reduc-
ing BBWB catches (Wilkening et al. 1981; Lindgren 1983). 
When tested, cleaning traps in the field or replacing field 
deployed traps with clean traps every maintenance period 
provided mixed results (Dodds and DiGirolomo 2020). Tef-
lon-treated traps caught more cerambycids than traps that 
were not treated, but replacing dirty traps with clean traps 
every 2 weeks did not affect overall catch. However, when 
traps were left in the field and cleaned every other week, 
overall mean catch of bark and ambrosia beetles (includ-
ing individuals captured from three species) and one cer-
ambycid species were significantly higher than in traps that 
were not cleaned. This cleaning probably provided a more 
slippery surface reducing the beetles’ ability to land on and 
then take flight from the trap. Regardless of how often traps 
are cleaned during the season, an argument can be made for 
cleaning traps between field seasons, as this process should 
increase the lifespan and efficacy of the traps. Glue-coated 
surfaces are more susceptible to the detrimental effects of 
saturation with dust and debris that can reduce trap efficacy. 
In the USA, A. planipennis guidelines (USDA APHIS PPQ 
2023) for prism traps promote the removal of the debris-
filled glue followed by a subsequent re-coating of the sur-
face with glue in order to maintain the “sticky” glue surface. 
While these references are mostly anecdotal and promote 
preventative maintenance to avoid problems, there has been 
a paucity of research to compare the effects of cleaning traps 
on the traps’ abilities to capture and retain beetles.

Trap killing agent

Early traps for BBWB used a variety of killing agents in non-
glue-coated flight intercept traps, from isopropanol-filled 
bottles or cups (Wilkening et al. 1981) to adding a wetting 
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agent or detergent to a water-filled collection trough or cup 
(Chapman and Kinghorn 1955; Lindgren 1983; Lindgren 
et al. 1983). As multiple-funnel trap use expanded, a “dry” 
trap option that relied on a plastic strip with the insecticide 
dichlorvos (2,2-dichlorovinyl dimethyl phosphate) to kill 
trapped insects became available. However, as target taxa 
broadened, a concern grew that dry traps may be allowing 
escape of larger more agile insects (e.g., cerambycids and 
siricids) before the pesticide could act, and that wet traps 
filled with liquid killing agent would catch more BBWB 
(e.g., Morewood et al. 2002; de Groot and Nott 2003). Sub-
sequent studies confirmed wet cups were superior to dry 
cups for many BBWB species (Sweeney et al. 2006; Miller 
and Duerr 2008). Various collection liquids have been used, 
including saturated salt solution (Graham and Poland 2012; 
Lyons et al. 2012; Webster et al. 2012a; Petrice and Haack 
2015; Wong et al. 2017; Marchioro et al. 2020) or ethyl-
ene glycol (Rassati et al. 2019; Cavaletto et al. 2020, 2021; 
Marchioro et al. 2020). Propylene glycol (generally RV-style 
antifreeze with 25–30% propylene glycol) is a common trap-
ping agent and preservative used in North America (Miller 
and Duerr 2008; Francese et al. 2011; Miller and Crowe 
2011; Dodds et al. 2015; among others) and has the added 
benefit of low toxicity to vertebrates compared to ethylene 
glycol that is deadly. At times, soap or other additives may 
be added to the collection liquid to reduce surface tension 
and/or increase bitterness of the solution, thereby warding 
off vertebrates that might find the solution appealing to drink 
or insects palatable to eat.

Most trapping surveys are conducted with insect mortal-
ity being a goal. However, there are times when capturing 
live insects is important. Hanks et al. (2007) used a modi-
fied intercept panel trap to collect live cerambycid beetles 
for volatile collection and identification of sex-aggregation 
pheromones. Francese et al. (2019) suggested that follow-
ing the addition of an internal, fluon-coated funnel with a 
long stem (6.9 cm) that decreased the diameter of the bot-
tom funnel of a multiple-funnel trap from 5.0 to 3.9 cm, 
the multiple-funnel trap had the potential for use as a live 
trap. This method was utilized by Gould et al. (2018) to col-
lect native non-target cerambycids for host-specificity test-
ing with potential parasitoids of Anoplophora glabripennis 
(Motschulsky).

Trap color

For some BBWB, trap color is an important considera-
tion when establishing surveys. In early behavioral Y-tube 
assays, several bark beetle species displayed an affinity for 
wavelengths in the visible section of the electromagnetic 
spectrum relating to ultraviolet (426 nm), blue (476 nm), 
blue/green (500–525 nm), and red (600–625 nm) (Grob-
erman and Borden 1981). However, when Lindgren et al. 

(1983) incorporated some of these colors (blue, green, red, 
and clear) into their multiple-funnel trap, black traps caught 
more beetles. This pattern was further reinforced in sub-
sequent studies (Dubbel et al. 1985; de Groot and Zylstra 
1995; Strom and Goyer 2001; Campbell and Borden 2005). 
Dubbel et al. (1985) suggested that black traps should be 
used as a standard for the group, and this has been the case 
for the past 40 years. Interestingly, trapping of European 
and Canadian scolytines (Marchioro et al. 2020) using pur-
ple and green multiple-funnel traps revealed several spe-
cies that were attracted to traps of these colors, however, no 
black trap comparison was included in the study. Cavaletto 
et al. (2020) compared several trap colors against black and 
found attraction to the novel colors in the species Hylesinus 
oleiperda (blue and purple) and Scolytus multistriatus (blue 
and gray). However, these beetles may be outliers and sev-
eral other species tested were attracted more to black traps. 
With the exception of yellow and white sticky panel traps 
catching lower numbers of ambrosia beetles, trap color was 
mostly unimportant for general surveys of these communi-
ties (Werle et al. 2016).

Studies to determine optimal traps for cerambycids relied 
primarily on variations of black multiple-funnel and inter-
cept panel traps (de Groot and Nott 2001, 2003; McIntosh 
et al. 2001; Morewood et al. 2002). During these studies, 
traps would occasionally capture larger buprestid genera 
(e.g., Chalcophora, Buprestis, Dicerca), but in general this 
family was much rarer in traps than cerambycids or bark 
beetles. Studies conducted by Oliver et al. (2002) and later 
published in Perkovich et al. (2022) showed that purple traps 
were attractive to Chrysobothris spp., an observation that 
led to the development of colored traps for A. planipennis 
(Francese et al. 2005, 2008). Electroretinogram assays dem-
onstrated the ability of A. planipennis to see color in four 
regions—ultraviolet, blue, green, and red, and when tested in 
the field, green and purple sticky prism traps outperformed 
all other colors tested, and green were more attractive 
than purple (Crook et al. 2009). Colors were later refined 
based on tests comparing variations in the wavelength and 
reflectance of the green as well as the red and blue peaks 
(Francese et al. 2010a, 2010b) and incorporated into com-
mercially available green and purple sticky prism traps and 
later into double decker traps (Poland et al. 2011) and non-
sticky multiple-funnel traps (Francese et al. 2011, 2013). 
Green multiple-funnel traps and prism traps placed in the 
canopy caught more beetles (Francese et al. 2011), and with 
the addition of fluon had higher detection rates in low den-
sity areas, than purple prism traps (Crook et al. 2014; Tobin 
et al. 2021). Additionally, green multiple-funnels, green 
prism traps, and purple and green and purple double-decker 
traps exhibited higher catch and detection rates than single 
purple, canopy prism traps (Tobin et al. 2021). Green traps 
of varying shades (multiple-funnels, intercept panels and 
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other trap types) also catch high numbers of other Agrilus 
species (Domingue et al. 2013; Petrice et al. 2013; Petrice 
and Haack 2015; Rassati et al. 2019; Cavaletto et al. 2020), 
with the exception of the goldspotted oak borer, Agrilus 
auroguttatus Schaeffer (Coleman et al. 2014) and Agrilus 
viridis (L.) (Rhainds et al. 2017) which preferred purple over 
green traps. For Chrysobothris and Dicerca species, which 
do not tend to visit flowers or the tree canopy, the preferred 
trapping color is purple (Petrice and Haack 2015; Cavaletto 
et al. 2020; Perkovich et al. 2022, 2023). Within the Cer-
ambycidae, trends tend to follow a similar pattern, that is 
attraction to yellow, green and blue traps by flower-visiting 
beetles (usually in the subfamily Lepturinae) and to darker 
colors (red, brown, black) for beetles that do not visit flow-
ers, usually in the Cerambycinae and Lamiinae (de Groot 
and Nott 2001; Campbell and Borden 2009; Rassati et al. 
2019; Cavaletto et al. 2021; Marchioro et al. 2020). With the 
incorporation of these colors into traps based on the targets 
sought, there is a greater chance for successful surveys.

Extrinsic factors

Type of habitat

Site and habitat selection is often predicated by survey 
objectives. For nonnative BBWB survey traps, the prox-
imity to high-risk environs is the most important consid-
eration. These include coastal ports of entry, inland ports, 
high density warehouse concentrations, and anywhere large 
concentrations of freight or solid wood packing material 
and pallets may be stored (Brockerhoff et al. 2006; Rassati 
et al. 2015a, 2015b; Meurisse et al. 2019). It also includes 
forests, parks, or arboreta adjacent to these areas (Rassati 
et al. 2015a; Rabaglia et al. 2019; DiGirolomo et al. 2022; 
Mas et al. 2023). The goal of this trap placement is to detect 
any BBWB that may have arrived in products or packing 
material subsequently discarded within or adjacent to ports, 
either as the insects disperse from brood material or early 
in the establishment phase in the adjacent forests. Selection 
of which site to trap should be adjusted based on risk of 
BBWB introduction or known threat of a specific species 
introduction. Previous studies indicated that ports importing 
large amounts of commodities and surrounded by broadleaf-
dominated forest patches should be prioritized over small 
ports or even big ports surrounded by conifer-dominated 
forests when generally surveying for nonnative BBWB (Ras-
sati et al. 2015b).

Besides proximity to high-risk environs, other factors 
can affect site selection when targeting native and nonna-
tive BBWB. Many lessons learned from studies estimat-
ing arthropod species diversity in forests may be applied 
to the design of surveys for detection of nonnative species. 

For example, biodiversity studies using insecticide fogging 
of tree canopies have shown that beetle species composi-
tion can vary significantly among forest habitats (Guilbert 
1997), among different tree species (Davies et al. 1997), 
among trees of the same tree species (Allison et al. 1997), 
and even between north and south aspects of the same tree 
(Richardson et al. 1997). Thus, the selection of survey sites 
and the tree species in or near where traps are placed may 
significantly affect the number and composition of species 
detected. Depending on habitat preference and life history 
traits, stands in poor condition (i.e., overstocked, declining 
trees) are often targeted for some species that typically colo-
nize stressed trees and behave as secondary species. North 
American detection efforts for S. noctilio focused on sur-
veying stands that contained host trees under stress (Dodds 
and de Groot 2012). Alternatively, healthy stands may also 
be implemented as survey sites, especially when the tar-
get insect is a primary tree killer or associated with living 
hosts, such as A. glabripennis, Xyleborus glabratus (Eich-
hoff), and Pityophthorus juglandis Blackman (Formby et al. 
2012; Nehme et al. 2014; Wiggins et al. 2014; Fraedrich 
et al. 2015; Marchioro and Faccoli 2021).

Trap proximity to host trees

Since the foraging behavior of BBWB may be influenced by 
olfactory and visual stimuli from both host- and non-host 
trees (Bruce et al. 2005), it follows that efficacy of survey 
traps may be influenced by the tree species in which they 
are placed, especially for canopy traps. For example, Uly-
shen and Hanula (2007) collected more beetles (but not more 
beetle species) in unbaited flight intercept traps that were 
placed in sycamore trees, Platanus occidentalis L., com-
pared to traps placed in the canopies of Quercus phellos 
L., Liquidambar styriciflua L., or Pinus taeda L., and mean 
catch of the citrus longhorn beetle, Anoplophora chinensis 
(Forster), was greater in traps that were placed in the crowns 
of host trees than in traps hung from wooden poles in open-
ings (Marchioro et al. 2022a).

Host volatile lures that attempt to simulate the blend of 
volatiles emitted from host trees have proven effective for 
surveys of A. planipennis (Crook et al. 2008) and Tetropium 
fuscum (F.) (Sweeney et al. 2004). However, for BBWB spe-
cies for which we currently have no effective long distance 
semiochemical attractants (e.g., most species of Bupresti-
dae) it may be worth considering the tree in which traps 
are placed as the “host volatile lure”. Because the BBWB 
species assemblages attracted to the vicinity of trees should 
vary among tree species, it follows that species richness of 
BBWB in traps should increase when traps are placed in 
a greater diversity of tree species. However, this is largely 
hypothetical and is a topic for further research.
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Presence of disturbances

Dispersal and host selection in BBWB is understudied for 
most species. Some species respond positively to distur-
bance and host presence (Wermelinger et al. 2002; Park and 
Reid 2007), while others have not shown strong responses 
(Sanchez-Martinez and Wagner 2002; Gossner et al. 2019). 
In general, forest disturbances influence wood-inhabiting 
BBWB in two ways. First, BBWB often respond to damaged, 
stressed, downed, or dead trees in an area after a disturbance 
such as tornadoes, straight-line winds, fire, drought, defolia-
tion, pathogens, or silvicultural treatments (Dunbar and Ste-
phens 1975; Muzika et al. 2000; Gandhi et al. 2009; Dodds 
2011; Furniss 2014; Kelsey et al. 2014; Sierota and Grodzki 
2020; Cours et al. 2022; Miller et al. 2023). Stressed trees 
and damaged or downed tree material release host volatiles 
like terpenes and ethanol (Kelsey 2001; Böröczky et al. 
2012) that attract insects dispersing and seeking ephemeral 
reproductive habitat. Sites that have been repeatedly dis-
turbed may have a diversity of downed wood species and 
decay classes, providing habitat for a larger BBWB commu-
nity (Økland et al. 1996). The resulting structurally diverse 
forests also often contain higher species richness of insects 
than more uniform forests (Storch et al. 2023).

The second way disturbances influence BBWB occurs 
after colonization of host material when habitat becomes a 
source of insects that may be captured in detection traps as 
they disperse away from the habitat (Wichmann and Ravn 
2001; Feldhaar and Schauer 2018; Potterf et al. 2019). A 
potential downside of trapping within disturbed habitats and 
one cited at times by surveyors is a concern for reduced cap-
tures because of competition with reproductive habitat that 
likely is a stronger source of attraction than a trap. While 
not studied specifically, this concern does not seem to be 
warranted. More or equal numbers of insects and species 
are commonly captured in disturbed habitats compared to 
controls (Gandhi et al. 2009; Morin et al. 2015; Dodds et al. 
2023; Miller et al. 2023).

Crown cover/understory light

While stand disturbance influences local beetle populations, 
localized crown disturbances resulting in changes to light-
ing conditions may also influence BBWB at smaller spatial 
scales. Less is known about this factor as it directly relates 
to the use of survey traps. However, there is evidence that 
canopy openness and microhabitat light conditions can influ-
ence the broader saproxylic insect community (Bouget and 
Duelli 2004; Lindhe et al. 2005; Koch Widerberg et al. 2012; 
Bouget et al. 2013; Seibold et al. 2016; Lettenmaier et al. 
2022), suggesting more open conditions could yield better 
trapping results. Insects are more active in warmer condi-
tions, increasing chances to capture them in traps (Taylor 

1963), especially in early spring and late fall. Nonetheless, 
increased sunlight is not always associated with increased 
species richness and abundance. For example, ambrosia 
beetle abundance and species richness has been positively 
associated with higher canopy coverage estimates (Holuša 
et al. 2021; Menocal et al. 2022). It is also likely that higher 
temperatures on traps under more direct sunlight results in 
increased semiochemical release rates (Nielsen et al. 2019) 
and potentially a stronger attractive source compared to 
cooler shaded conditions.

Horizontal and vertical placement

The position of a survey trap relative to its surroundings 
can significantly affect the community of BBWB captured. 
Proximity to a forest edge, along either a horizontal- (forest 
opening–edge–interior) or vertical gradient (understory–mid 
canopy–upper canopy) can influence climatic variables 
(temperature, humidity, sunlight, windspeed), plant species 
diversity and composition, and ultimately resource availabil-
ity (food, mates, oviposition sites) for herbivorous insects 
(Murcia 1995; Basset et al. 2003; Lindhe et al. 2005; Vodka 
et al. 2009; Domingue et al. 2011; Lelito et al. 2011; Uly-
shen 2011; Vodka and Cizek 2013; Normann et al. 2016). 
In a meta-analysis, De Carvalho Guimarães et al. (2014) 
reported that species richness of insect herbivores was 65% 
greater along forest edges compared to forest interiors and 
that the effect was strongest for generalist herbivores in the 
Lepidoptera and Orthoptera. Significant variation in abun-
dance, species richness, or species composition of beetles 
(Ulyshen et al. 2004; Wermelinger et al. 2007; Ewers and 
Didham 2008; Normann et al. 2016) and more specifically 
BBWB (Igeta et al. 2004; Francese et al. 2008, 2010b; Dodds 
2011; Allison et al. 2019; Sweeney et al. 2020) has been 
observed among traps placed in openings vs. forest edges vs. 
forest interiors. Similarly, vertical stratification (understory 
vs. mid- or upper canopy) has been observed for beetles 
(Sutton et al. 1983; Kato et al. 1995; Preisser et al. 1998; Su 
and Woods 2001; Hirao et al. 2009; Schroeder et al. 2009; 
Bouget et al. 2011; Normann et al. 2016; Stork et al. 2016; 
Weiss et al. 2016) and BBWB in particular (Vance et al. 
2003; Igeta et al. 2004; Leksono et al. 2006; Ulyshen and 
Hanula 2007; Wermelinger et al. 2007; Francese et al. 2008, 
2010b; Vodka et al. 2009; Reding et al. 2010; Hanula et al. 
2011; Graham et al. 2012; Vodka and Cizek 2013; Dodds 
2014; Hardersen et al. 2014; Maguire et al. 2014; Schmeelk 
et al. 2016; Wong and Hanks 2016; Li et al. 2017; Procházka 
et al. 2018; Flaherty et al. 2019; Foit et al. 2019; Rassati 
et al. 2019; Sheehan et al. 2019; Ulyshen and Sheehan 2019; 
Miller et al. 2020; Sweeney et al. 2020; Meng et al. 2022).

Trends along these gradients vary among and within 
BBWB families (Ulyshen et al. 2004; Wermelinger et al. 
2007; Normann et al. 2016; Allison et al. 2019; Sweeney 
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et al. 2020) and feeding guilds (Sheehan et al. 2019; Uly-
shen and Sheehan 2019). Buprestids were often more 
abundant and/or species rich in the tree canopy than the 
understory (Francese et al. 2008, 2010b; Rassati et al. 
2019; Sheehan et al. 2019; Sweeney et al. 2020) whereas 
in Scolytinae there was the opposite trend (Ulyshen and 
Hanula 2007; Hanula et al. 2011; Dodds 2014; Hardersen 
et al. 2014; Flaherty et al. 2019; Sheehan et al. 2019; Uly-
shen and Sheehan 2019; Meng et al. 2022) or no trend 
(Wermelinger et al. 2007; Maguire et al. 2014; Meng et al. 
2022). Inconsistency in vertical distribution of Scolyti-
nae is partly because the subfamily consists of more than 
one feeding guild. Species richness of ambrosia beetles 
tends to decrease with trap height, due to greater humidity 
and other conditions favoring fungal growth in the under-
story (Ulyshen 2011) whereas the opposite trend has been 
observed for phloem/wood feeders (Procházka et al. 2018; 
Sheehan et al. 2019; Ulyshen and Sheehan 2019). Simi-
lar differences in feeding patterns may partially explain 
why species richness of longhorn beetles is sometimes 
greater (Ulyshen and Hanula 2007; Maguire et al. 2014; 
Flaherty et  al. 2019; Rassati et  al. 2019; Ulyshen and 
Sheehan 2019; Sweeney et al. 2020; Meng et al. 2022), 
similar (Vance et al. 2003; Graham et al. 2012; Hardersen 
et al. 2014; Schmeelk et al. 2016; Wong and Hanks 2016; 
Flaherty et al. 2019; Meng et al. 2022), or lower (Wer-
melinger et al. 2007; Dodds 2014) in the canopy than the 
understory. Species that preferentially breed in large diam-
eter stems, stumps or downed trees are usually more active 
in the understory (Brar et al. 2012; Procházka et al. 2018; 
Flaherty et al. 2019; Miller et al. 2020) whereas species 
that breed in small branches and twigs are more active in 
the canopy (Vance et al. 2003; Ulyshen and Hanula 2007).

Abundance of all three BBWB families tended to be 
greater along forest edges or in openings than inside the 
forest but there were exceptions for individual species of 
scolytines and cerambycids. For example, catch of Acmae-
ops proteus proteus (Kirby) was greatest along the forest 
edge whereas catches of Euderces pini (Fabr.), Neoclytus 
acuminatus (F.), and Anelaphus pumilus (Newman) were 
greatest in the forest interior, and catches of Monochamus 
mutator LeConte and M. scutellatus (Say) were greatest in a 
clearing (Allison et al. 2019). In studies that simultaneously 
tested effects of horizontal and vertical trap position, Scoly-
tinae were more abundant in the canopy than the understory 
in traps placed inside the forest but not along the forest edge 
(Sweeney et al. 2020) and BBWB species composition dif-
fered between mid- and upper canopy traps inside the forest 
but not at the forest edge (Sheehan et al. 2019). Effects of 
trap height on catch of buprestids (Wermelinger et al. 2007) 
and other saproxylic beetles (Vodka and Cizek 2013) were 
less pronounced or absent when traps were placed along 
a forest edge vs. the forest interior, suggesting that degree 

of sun exposure is associated with vertical stratification of 
some species.

The effects of horizontal or vertical trap placement 
is often context dependent, varying among forest types 
(Procházka et al. 2018; Meng et al. 2022), silvicultural treat-
ments (Su and Woods 2001), size and age of forest clear-
ings (Ulyshen et al. 2004; Allison et al. 2019; Sweeney et al. 
2020), seasons (Hardersen et al. 2014), degree of slope (Sut-
ton et al. 1983), dominant tree species (Vance et al. 2003), 
and the semiochemical lure used to bait traps (Flaherty et al. 
2019). Depending on the attraction range of an attractant, 
baited traps may reduce the effects of horizontal and vertical 
placement on catch of certain species (Ulyshen and Sheehan 
2019). In spite of inconsistency in trends of species rich-
ness or abundance of BBWB along horizontal or vertical 
gradients, most studies have shown that species composition 
differs between strata, and that many species are captured 
solely or predominantly in the canopy or understory, edge 
or interior (Vance et al. 2003; Leksono et al. 2006; Wermel-
inger et al. 2007; Vodka et al. 2009; Graham et al. 2012; 
Dodds 2014; Hardersen et al. 2014; Schmeelk et al. 2016; 
Webster et al. 2016; Wong and Hanks 2016; Procházka et al. 
2018; Flaherty et al. 2019; Ulyshen and Sheehan 2019; 
Miller et al. 2020; Sweeney et al. 2020; Meng et al. 2022). 
Therefore, when the objective is to detect as many species 
as possible of BBWB present at a site, traps should ideally 
be deployed in both the canopy and understory, and along 
forest edges as well as inside the forest.

BBWB species composition in mid-canopy traps has 
reflected that in both canopy and understory traps suggest-
ing it may be a good compromise when budgets or logistical 
limitations make it impractical to sample at more than one 
trap height (Weiss et al. 2016; Procházka et al. 2018; Uly-
shen and Sheehan 2019). However, Sheehan et al. (2019) 
suggested that traps deployed at an intermediate height of 
5 m would fail to detect certain species active in the upper 
canopy.

Using knowledge on factors affecting trap 
efficacy to improve surveillance programs

As described above, many factors influence BBWB behav-
ior and response to semiochemical-baited traps. It is often 
difficult to address all factors when deploying traps due to 
budget constraints and logistical realities. However, there 
are several considerations to be mindful of when developing 
surveys that can help improve results. First, there is rarely 
a perfect survey, but a sub-optimal trap deployed in only 
one vertical or horizontal strata is better than no survey at a 
location. Placing traps in almost any location is informative 
but placing traps in more than one vertical or horizontal 
strata (e.g., canopy and understory, forest edge and interior) 
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often increases the number of BBWB species detected and 
is recommended if budgets allow. Second, baiting traps with 
multiple pheromones can increase the number of species 
detected with little or no negative effect on catch of other 
BBWB, an approach that is especially useful for generic 
surveillance. Third, using more than one trap color, e.g., 
green or purple traps, as well as black traps, can increase 
detection efficacy of longhorn beetles and jewel beetles. 
Treating these traps with a lubricant and conducting regular 
maintenance and cleaning can help improve trap efficacy. 
Finally, simply increasing the number of traps per site and 
using multiple trap types usually increases the numbers of 
BBWB species detected. In general, our review has found 
that, for generic surveys, the greater the diversity in trapping 
methods used (e.g., more than one type of lure blend, trap 
height, trap color) the more BBWB species are detected and 
the greater the chances of detecting nonnative species that 
may be present. However, with limited budgets these con-
siderations must be weighed against the number of sites that 
can be surveyed per year. One way in which increased costs 
of diversifying trapping methods may be offset is by using 
a different suite of lure blends, trap colors, etc. in alternat-
ing years, as done by the Canadian Food Inspection Agency 
for nonnative BBWB surveillance (Thurston et al. 2022). 
For surveillance of individual target species during a spe-
cific survey, trap type, lure, color, height, etc. should follow 
established protocols that have proven most efficacious in 
terms of mean catch or detecting the species at sites with low 
population densities. If no protocols exist, using methodol-
ogy developed for closely related insects in the same genus 
or family is an appropriate starting point.

A practical example of how to use these considerations 
and the available knowledge can be illustrated by two case 
studies (Fig. 3). For a generic survey for nonnative BBWB 
(Fig. 3A), efforts should concentrate on coastal or inland 
ports and surrounding forests with traps deployed across 
available sites (Rassati et al. 2015a, b). The number of traps 
strongly depends on the budget, but even a low number of 
traps can lead to important results (Mas et al. 2023). In for-
ested areas adjacent to ports, black intercept panel traps set 
up in the understory should be coupled with green multiple 
funnel traps set up in the canopy to increase likelihood of 
intercepting jewel beetles as well as other BBWB species 
active in the latter forest stratum (Rassati et al. 2019; Mar-
chioro et al. 2020). Ideally, traps should be placed in the 
interior of the forested area and along the edge to account 
for different BBWB foraging preferences of species that may 
be present (Ulyshen et al. 2004; Wermelinger et al. 2007; 
Allison et al. 2019; Sweeney et al. 2020). The same trap 
combination (i.e., black intercept and green multi-funnel 
traps) should be attached to available supports at a height 
of 1.5–2 m in areas of the active port where timber is stored 
before being sent to the destination, or where containers are 

opened for visual inspections (Rassati et al. 2014). Traps 
within the port environs and in adjacent forested areas 
should be baited with a multi-lure blend composed of pher-
omones and kairomones that are known to attract a wide 
array of taxa without affecting catches of jewel beetles (e.g., 
Roques et al. 2023). When budget permits, black intercept 
traps should be coupled with traps of different colors, for 
example yellow or blue, to also attract longhorned beetle 
species that are not attracted by semiochemicals used in the 
survey (e.g., Lepturinae). All traps should be treated with 
fluon or other lubricants (Allison et al. 2011; Graham and 
Poland 2012) and the collector cup should be filled with 
propylene glycol or other liquids rather than left dry with 
an insecticide (Allison and Redak 2017).

As an example of a specific surveillance program, native 
and non-native Monochamus spp. pose a serious risk in 
some areas because they vector the destructive pine wood 
nematode [Bursaphelenchus xylophilus (Steiner & Bührer) 
Nickle] (Mamiya 1988). A surveillance program targeting 
Monochamus spp. should also be concentrated in ports and 
surrounding forested areas (Fig. 3B). Black intercept panel 
traps are optimal for Monochamus spp. and should be baited 
with a blend of pheromones and kairomones that are efficient 
for several species in the genus (Allison et al. 2012; Miller 
et al. 2016; Boone et al. 2019; Foit et al. 2019). There may 
be some benefit of having traps in tree canopies when avail-
able (Foit et al. 2019), but Monochamus spp. have also been 
frequently captured in understory traps (de Groot and Nott 
2004; Dodds 2014; Allison et al. 2019). Traps should be 
treated with a lubricant, such as fluon (Jaworski et al. 2022; 
Dong et al. 2023), and a wet collection cup should be used 
with propylene glycol as the liquid preservative (Allison and 
Redak 2017). Possibly, traps should be set up both on the 
forest edge and in the forest interior as different Monocha-
mus spp. prefer either the former or latter habitat (Allison 
et al. 2019), and any areas of recent disturbance may also 
help improve trapping results (Dodds 2011; Dodds et al. 
2019).

Concluding remarks and future research

Despite the large amount of existing research, our under-
standing of factors affecting the efficacy of BBWB surveys 
is still incomplete. Additional studies are necessary to fur-
ther understand species-specific responses and to elucidate 
whether general patterns can be described. In addition, while 
there has been much research on the effects of trap types, 
lures, colors, etc., on the relative abundance of BBWB cap-
tured in traps, there are very few papers that describe the 
relationship between trap catch and actual population or 
attack density of the target BBWB species (but see Hanula 
et al. 2011). Greater understanding of these relationships 
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will improve our interpretation of trap catches in determin-
ing risk and monitoring spread of invasive BBWB, espe-
cially during specific surveys. Furthermore, a rapid increase 

in cerambycid pheromone chemistry knowledge over the 
last 2 decades has greatly increased our ability to detect 
many of these species in surveys (Hanks and Millar 2016; 

Fig. 3   Example of how to exploit available knowledge on intrinsic 
and extrinsic factors affecting trap efficacy in surveillance programs. 
Here we use as case studies a generic surveillance targeting bark and 
ambrosia beetles, longhorn beetles and jewel beetles (A) and a spe-
cific surveillance targeting longhorn beetles of the genus Monocha-

mus (B) carried out in a port area and its surrounding natural area 
(e.g., a forest). For each of them, information on the best trap type, 
trap color, lure (multi-lure blend vs. specific lure), trap height, and 
horizontal position of the traps are provided. Black or green dots on 
the black and white landscapes represent the traps
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Roques et al. 2023). New information on the role of fungal 
volatiles (Hulcr et al. 2011; Kuhns et al. 2014) for attract-
ing some ambrosia beetles offers opportunities to narrow 
survey efforts for these species. Unfortunately, knowledge 
of buprestid pheromones and attractive semiochemicals is 
much more limited at this time (Silk et al. 2019). Further 
research in this area may lead to improved lures and greater 
detection efficacy of Buprestidae. Lastly, innovative tech-
nologies to reproduce the most attractive visual cues on trap 
panels [e.g., the microstructures present on elytra of jewel 
beetles which are responsible for the light scattering effect 
used to locate mates (Domingue et al. 2014)] can strongly 
improve trap attractiveness, especially toward species for 
which pheromones are not yet known.
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