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“In the beginning there was nothing, which exploded.”
—Terry Pratchett (1948 - 2015)
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Abstract

The fact that nature exhibits a parity-violating behavior has been mostly accepted since parity is maximally
broken in the electroweak sector of the standard model of particle physics. Hence, a question naturally
arises: is that possible that besides weak interactions also electromagnetism encode parity-breaking signa-
tures? The purpose of this thesis is to describe how cosmology can provide the natural setting for testing
this kind of hypothesis about fundamental physics. In particular, we will show how parity-violating exten-
sions of Maxwell electromagnetism can induce a rotation of the linear polarization plane of photons dur-
ing propagation, causing the so-called cosmic birefringence. This effect impacts on the cosmic microwave
background observations producing a mixing of E and B polarization modes which is otherwise null in the
standard scenario. In the literature, several models of cosmic birefringence have been proposed, and most
of them involve a Chern-Simons coupling of an axion-like field with the photons, yielding the possibility to
exploit such a phenomenon to investigate this kind of exotic cosmic species beyond the standard cosmolog-
ical paradigm. The structure of this thesis is organized as follows. In Chap. I, we provide all the necessary
mathematical tools for understanding the physics of CMB polarization. In Chap. II we discuss the theoret-
ical formalism underlying the theory of cosmological birefringence, and how it is possible ot use it to probe
axion-like field as candidates for some components of theUniverse’s dark sector. InChap. III, we showhow
anisotropic cosmic birefringence is able to induce some promising non-Gaussian signatures andwe estimate
their signal-to-noise ratio for a future CMB experiment. Chap. IV is dedicated to the conclusion.
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1
Introduction

In the last decades, the investigation of parity-violating signatures in cosmology has become one of themost
ambitious goals (see e.g. Refs. [1–3]). Many efforts have been done in order to constrain parity-breaking
effects coming, e.g., from non-standard inflationary models, not only at the level of the cosmic microwave
background (CMB) angular power spectra (see e.g. Refs. [4–12]), but also by looking at higher-order cor-
relation functions, such as bispectra and trispectra (see e.g. Refs. [13–27]). Furthermore, besides CMB
observables, recently the research on parity-breaking signals in large scale structures (see e.g. Refs. [28–36])
and from astrophysical gravitational waves (see e.g. Refs. [37–44]) has known an increasing interest. How-
ever, one of themost intriguing source of cosmological parity violation seems to come from cosmic birefrin-
gence, which is nothing but the rotation of the linear polarization plane ofCMBphotons of a angle α, when
free-streaming as a consequence of an electromagneticChern-Simons couplingwith a pseudoscalar field. In-
deed, this extension of the Maxwell theory induces a rotation of the observed Stokes parameters describing
the linear CMB polarization (see e.g. Refs. [45, 46]). An observational consequence of such a rotation is,
e.g., the switching-on of a parity-breaking angular cross-correlation between the E and B modes of CMB
polarization. In fact, cosmic birefringence can be seen as a probe for the existence of such a pseudoscalar
field, which could be a candidate for early and late dark energy (see e.g. Refs. [47–54]) or darkmatter (see e.g.
Refs. [55–61]), in the form of an axion-like field (see e.g. Refs. [62–73]). The tantalizing idea of succeeding
in unveiling the nature of the dark sector of the Universe by investigating cosmological parity-violation has
also brought with it the necessity to break the degeneracies between different theoretical models able to in-
duce the birefringence effect, and according to this purpose, ven a tomographic approach has been recently
proposed (see e.g. Refs. [74–78]). Moreover, a precise treatment of cosmic birefringence should consider
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the possibility that the pseudoscalar field in general may not be homogeneous, implying the presence of a
non-zero anisotropic component in the birefringence angle (see e.g. Refs. [79–88]): such anisotropies in
the birefringence angle can provide by themselves a further and complementary observational tests of mod-
els for birefringence. An increasing number of observational constraints on both isotropic and anisotropic
cosmological birefringence are present in literature, as results of several CMB experiments: WMAP (see
Refs. [89–92]), POLARBEAR (see Refs. [93, 94]), ACTPol (see Ref. [95]), SPTpol (see Ref. [96]), BI-
CEP/Keck (see Refs. [97, 98]), and the Planck satellite (see Refs. [99–105]). In particular, the authors of
[106], exploiting the latestPlanck data release, have found an hint of detection of the isotropic birefringence
angle α = (0.30± 0.11)◦ [106]. However, a more detailed analysis is required in order to be sure that such
a rotation has effectively a cosmological origin, and it is not instead caused by galactic dust or miscalibration
angles [107–116]. Nevertheless, let us just mention that if the new physics hypothesis for the existence of
a non-zero EB cross-correlation would be confirmed, most probably this could only be explained by cos-
mic birefringence, since any observed EB correlation sourced by primordial chiral gravitational waves does
not work due to the overproduction of the Bmodes with respect to the current constraints on the tensor-
to-scalar ratio [117]. Therefore, as one could infer from the previous lines, there is a number of strong
motivations for studying the phenomenon of cosmic birefringence. However, in order to fully understand
how the mechanism of birefringence works, to which Chap. 2 is devoted, we have firstly to review the stan-
dard theory of CMB polarization. Hence, the structure of this chapter is organized as follows. In Sec. 1.1
we review the basics of the Maxwell’s description of photons’ polarization. In Sec. 1.2 we review some ele-
ments of general relativity. In Sec. 1.3 we provide all the mathematical formalism needed to understand the
anisotropies of CMB polarization.

1.1 Elements of Classical Electromagnetism

In this section, we are going to give an overview of the Maxwell’s theory of electromagnetism, since the
formalism exposed here is necessary to understand the nature of the birefringence effect, which is the main
topic of this thesis. The content of this section is a partial review of the standard notions that can be found
in many famous textbooks, such as Refs. [118–123]).

1.1.1 Covariant Formulation of Electrodynamics

It is well known that the behavior of electric and magnetic fields and their interactions with charges and
currents can be described by a theory which unifies electric andmagnetic phenomena into a single coherent

2



theory: the Maxwell’s theory of electromagnetism. The modern description of the classical1 electromag-
netic phenomena is based on the Einstein’s theory of special relativity (see Ref. [124]). When applying
special relativity2 to electromagnetism, it is possible to show thatMaxwell’s fundamental equations describ-
ing classical electromagnetism, maintain the same form and retain their validity when we switch from one
inertial reference frame to another using the mathematical transformations of special relativity, known as
Lorentz transformations. Indeed, special relativity provides the mathematical framework to describe elec-
tromagnetism accurately for all observers, regardless of their relative motion and has been confirmed by
numerous experimental tests. The key contribution of the SR formulation of Maxwell’s electromagnetism
is encapsulated in his Lagrangian density,

LEM ≡ − 1
4
F μνFμν, (1.1)

where Fμν is the covariant electromagnetic field tensor, which is defined as

Fμν ≡ ∂μAν − ∂νAμ, (1.2)

Aμ and∂μ being the covariant electromagnetic field (or covariant 4-potential) and the covariant 4-gradient,
respectively. These two quantities in special relativity have the following expressions

Aμ ≡
(

−1
c
ϕ, A1, A2, A3

)

(1.3)

∂μ ≡
(

1
c
∂

∂t
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

, (1.4)

where c is the speed of light in vacuum, ϕ(t, x) is the Coulomb potential and A1, A2, A3 are the com-
ponents of the vector potential A(t, x), whereas t is the time coordinate, and x ≡ (x1, x2, x3) denotes
the vector of the spatial ones. For sake of completeness, we also give the definition of the contravariant
electromagnetic field tensorwhich appears in Eq. (1.1) as

F μν ≡ η μσFσν, (1.5)
1With the attribute “classical” here we mean “non-quantum”.
2Of course, here we are not going to review special relativity (SR), but we just recall the basic notions and definitions to set

the conventions used in this thesis right on the start.

3



where ημν is the covariant metric tensorwhich in special relativity is simply theMinkowski tensor:

ημν ≡











−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











= η μν. (1.6)

The physical meaning of the metric tensor cannot be underestimated since it defines the spacetime’s ge-
ometry. Moreover, as can be seen by looking at Eq. (1.5), it can be used to transform covariant tensors to
contravariant ones, and vice versa. In fact, the mathematical operation on the right-hand side of Eq. (1.5) is
called Lorentz contraction, and for practical reasons we can think of it as a matrix multiplication between
the two tensors, where the summation between repeated indices has to be understood, according to the
Einstein’s summation convention, i.e.

η μσFσν ≡
3
∑

σ=0

η μσFσν = η μ0F0ν+η μ1F1ν+η μ2F2ν+η μ3F3ν = η μ0F0ν+
3
∑

i=1

η μiFiν = η μ0F0ν+η μiFiν. (1.7)

Indeed, it is customary to use Greek indices when running from 0 to 4, and Latin ones when running just
over the spatial indices, i.e. from 1 to 3. Before to proceed, let us just clarify that, starting from now, we are
going to work in the so called “God-given” units, so that some the following fundamental constants of the
Universe (see e.g. Ref. [125])

speed of light in vacuum c ≃ 2.998× 108 m/s, (1.8)

reduced Planck mass ℏ ≃ 1.055× 10−34 J · s, (1.9)

boltzmann constant kB ≃ 1.381× 10−23 J/K, (1.10)

vacuum dielectric permittivity ε0 ≃ 8.854× 10−12 F/m, (1.11)

vacuummagnetic permeability μ0 ≃ 1.257× 10−6N/A 2, (1.12)

are taken as dimensionless and set equal to 1. This is done in order to make our equations more compact
and removing the need for unit conversions.

1.1.2 Maxwell’s Equations

TheMaxwell Lagrangian density defined in Eq. (1.1) completely describes the classical electromagnetic field
theory, and this becomes evident if we compute the associated equation of motion (EOM). In fact, let us
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recall that, according to classical field theory, the dynamics of a generic field Aμ, defined in the spacetime
continuum, is described by the following 4-dimensional integral of the Lagrangian density, which is called
action:

S ≡
∫

d4xL
[

Aμ(x λ), ∂μAν(x λ)
]

, (1.13)

where x λ = (t, x, y, z)T is the contravariant 4-position, and d4x is the spacetime volume element, which
in the Minkowski’s case simply reads

d4x = dt dx1 dx2 dx3 = dt d3x, (1.14)

since it is defined in order to be invariant under Lorentz transformations. Now, theHamilton’s principle
states that the “true” field configuration is such that the action is stationary, namely the EOMof the fieldAμ

is obtained by imposing that the functional derivative of the action Swith respect to the field itself equals
zero, i.e.

δS
δAμ(x λ)

≡
∫

d 4x̃

{

∂L
∂ [Aσ(x̃ λ)]

δAσ(x̃ λ)

δAμ(x λ)
+

∂L
∂
[

∂ρAσ(x̃ λ)
]

δ
[

∂ϱAσ(x̃ σ)
]

δAμ(x σ)

}

= 0, (1.15)

wherewe have renamed some dummy variables and indices. Eq. (1.15) is just the definition of the functional
derivative of an action, and then it can be used for any kind of covariant tensor field of whatever Lorentz-
invariant theory. The functional derivative of the field simply reads

δAσ(x̃ λ)

δAμ(x λ)
≡ δ μσ δ

(4) (x̃ λ − x λ) , (1.16)

where δ(4) is a 4-dimensional Dirac delta, and δ μσ is a 4-dimensional Kronecker delta, δ μσ ≡ η μνηνσ. Bymeans
of Eq. (1.16), we can rewrite Eq. (1.15) forL = LEM as

0 =

∫

d 4x̃

{

∂LEM

∂
[

∂ϱAσ(x̃ λ)
]∂ϱ

}

δ μσ δ
(4) (x̃ λ − x λ) , (1.17)

where we have used that theMaxwell’s Lagrangian density just depends on the derivatives of the electromag-
netic field, and that the functional derivatives commute with the ordinary ones. We now integrate by parts,
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so that Eq. (1.17) further simplifies once we recall the properties of the Dirac delta:

0 = −
∫

d 4x̃ δ μσ δ
(4) (x̃ λ − x λ) ∂ϱ

{

∂LEM

∂
[

∂ϱAσ(x̃ λ)
]

}

=
1
4
δ μσ ∂ϱ

∂

∂
(

∂ϱAσ
)

[

η αγη βκ (∂αAβ − ∂βAα
) (

∂γAκ − ∂κAγ
)]

=
1
4
δ μσ ∂ϱ η αγη βκ

[

(

δ ϱαδ
σ
β − δ ϱβδ

σ
α
) (

∂γAκ − ∂κAγ
)

+
(

∂αAβ − ∂βAα
)(

δ ϱγδ
σ
κ − δ ϱκδ

σ
γ
)

]

= ∂ϱ (∂
ϱA μ − ∂ μA ϱ)

(1.18)

where we have explicitly substituted Eq. (1.1). Therefore, Eq. (1.18), after a renomination of the indices,
simply reduces to

∂μF μν = 0. (1.19)

Eq. (1.19), as well as of the Maxwell’s Lagrangian density, is invariant under U(1) gauge transformations,
which means that the theory remains unchanged if the 4-gradient of a scalar function h (x λ) is added to the
electromagnetic field,

Aμ(x λ) 7→ Aμ(x λ) + ∂μ h (x λ), (1.20)

since, as it can be verified by direct substitution,

Fμν 7→
(

∂μAν − ∂νAμ
)

+
(

∂μ∂ν − ∂ν∂μ
)

h = Fμν. (1.21)

Eq. (1.19) is the EOM for the electromagnetic field written in an explicit covariant way, but if we recall the
definition of Aμ we can easily recover the standardMaxwell equations. Indeed, for ν = 0 we have

0 = ∂μF μ0 = ∂iF i0 = η 00η ij∂i
(

∂jA0 − ∂0Aj
)

= ∇2ϕ(t, x) +
∂

∂t
∇ · A(t, x), (1.22)

where, after recognizing the definition of the electric field, we can easily understand that what we have
found is nothing but theGauss’ law in absence of sources:

E(t, x) ≡ −∇ϕ(t, x)− ∂A(t, x)
∂t

=⇒ ∇ · E(t, x) = 0. (1.23)
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Similarly, the ν = k component of Eq. (1.19) reads3

0 = ∂μF μk

= ∂0F 0k + ∂iF ik =

{

− ∂

∂t

[

∂

∂t
A(t, x) +∇ϕ(t, x)

]

+∇
2A(t, x)−∇ [∇ · A(t, x)]

}

,
(1.24)

which, by means of a vector identity,

∇× [∇× A(t, x)] = ∇ [∇ · A(t, x)]−∇
2A(t, x), (1.25)

and of the definition of themagnetic field, just leads to theAmpère’s circuital’s law in absence of sources:

B(t, x) ≡ ∇× A(t, x) =⇒ ∇× B(t, x) =
∂E(t, x)

∂t
. (1.26)

Up to now,we have found twoof the original fourMaxwell’s equations: the remaining ones can be obtained
by exploiting another field equation that cannot be derived by means of the Hamilton’s principle, but just
exploiting geometrical properties,

∂μF̃ μν = 0, (1.27)

where F̃ is the dual Maxwell tensor,
F̃ μν ≡ 1

2
ε μνϱσ
√−η

Fϱσ, (1.28)

with η = −1 being the determinant of ημν, and ε
μνϱσ being the Levi-Civita antisymmetric symbol,

ε μνϱσ ≡



















+1 for even permutations of (1,2,3,4),

−1 for odd permutations of (1,2,3,4),

0 if two or more indices are equal.

(1.29)

The validity of Eq. (1.27) can be easily proved by exploiting the symmetry properties of the tensor indices:

∂μF̃ μν = ε μνϱσ∂μ∂ϱAσ = 0, (1.30)

3The vector Laplacian∇2A is a vector quantity whose components are∇2A ≡ (∇2A1, ∇2A2, ∇2A3).
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since the Levi-Civita tensor is antisymmetric under the exchange of the indices labeling the two derivatives,
that instead commute. Therefore, the ν = 0 component of Eq. (1.27) simply leads to the Gauss’ law for
magnetism,

0 = ∂μF̃ μ0 = −ε 0ijk∂i∂kAk = −∇ · [∇× A(t, x)] =⇒ ∇ · B(t, x) = 0, (1.31)

from which we can understand why it is possible to define the magnetic field as the curl of a vector field
without loss of generality, since the divergence of a curl identically vanishes. Similarly the ν = k component
of Eq. (1.27),

0 = ∂μF̃ μk = ε 0ijk [∂0
(

∂iAj − ∂jAi
)

− ∂i∂jA0
]

= − ∂

∂t
[∇× A(t, x)] +∇×

[

∂A(t, x)
∂t

+∇ϕ(t, x)
]

,
(1.32)

yields the Faraday-Neumann-Lenz law,

∇× E(t, x) = −∂B(t, x)
∂t

, (1.33)

and also here we can appreciate why it is possible to define the electric field as the sum of the gradient of a
scalar field plus a vector one, since the curl of gradient identically vanishes. Now that we have derived all
the four Maxwell’s equations, we are in the position to understand why when talking about electric and
magnetic fields, we also use the expression electromagnetic waves. Indeed, if we take the curl of Eq. (1.33),
and we substitute Eq. (1.26) in the result, we get

∇× [∇× E(t, x)] = − ∂

∂t
[∇× B(t, x)] =⇒ ∇ [∇ · E(t, x)]−∇

2E(t, x) = −∂ 2E(t, x)
∂t 2

, (1.34)

where we have exploited the vector identity of Eq. (1.25). Finally, thanks to Eq. (1.23), the equation above
reduces to awave equation,

∇
2E(t, x)− ∂ 2E(t, x)

∂t 2
= 0, (1.35)
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implying that the electric field (as well as the magnetic one4) can be treated as a wave propagating at the
speed of light in the vacuum. As well known, in order to solve Eq. (1.35), the electric and magnetic fields
must depends on space and time in the following way:

E(t, x) = E0 fE (p̂E · x− t) , B(t, x) = B0 fB (p̂B · x− t) , (1.36)

as can be verified by direct substitution. Here p̂E and p̂B are in principle distinct directions of propagation,
fE and fB two distinct functions, E0 andB0 are the amplitudes of the wave describing the electric field and of
the one describing the magnetic field, respectively. By means of the Maxwell’s equations, we can constrain
all these degrees of freedom. In fact, we know that the divergence of the electric andmagnetic fields vanishes
because of Eq. (1.23) and Eq. (1.31), so that

∇ · E(t, x) = 0 =⇒ p̂E · E0 = 0 =⇒ p̂E ⊥ E0, (1.37)

∇ · B(t, x) = 0 =⇒ p̂B · B0 = 0 =⇒ p̂B ⊥ B0, (1.38)

whereas from Eq. (1.33) and Eq. (1.26) we can infer that

∇× E(t, x) = − ∂

∂t
B(t, x) =⇒ p̂E × E0 =

(

ḟB/ḟE
)

B0, (1.39)

∇× B(t, x) =
∂

∂t
E(t, x) =⇒ p̂B × B0 = −

(

ḟE/ḟB
)

E0, (1.40)

where the dot ˙ ≡ ∂/∂t denotes differentiation with respect to time. Therefore, we have learned that both
the electric and the magnetic fields oscillate perpendicularly to the direction of their propagation. Since, by
definition the dot product of two vectors orthogonal each to the other is zero, we can write

0 = p̂E · (p̂E × E0) =
(

ḟB/ḟE
)

(p̂E · B0) =⇒ B0 ⊥ p̂E, (1.41)

and therefore the magnetic field is perpendicular to both the directions of propagation. On the other hand,
we have

p̂B × (p̂E × E0) =
(

ḟB/ḟE
)

(p̂B × B0) = −E0, (1.42)

4It is trivial to see that it is possible to obtain exactly the same equation also forB by taking the curl of Eq. (1.26) and plugging
the result with the other Maxwell’s equations.
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so that, by means of the rule for the double cross product5, we then obtain

E0 = −p̂B × (p̂E × E0)

= (p̂E · p̂B)E0 − (p̂B · E0) p̂E

= (p̂E · p̂B)E0 +
(

ḟB/ḟE
)

[p̂B · (p̂B × B0)] p̂E

= (p̂E · p̂B)E0 =⇒ p̂E = p̂B ≡ p̂.

(1.43)

Thus, we have proven that electric andmagnetic field propagate in the same direction, which is the propaga-
tion’s direction of the electromagnetic wave itself. Without loss of generality we can also take fE = fB, and
still we have a solution of theMaxwell’s equations. Hence, thanks to this information we can use Eq. (1.39)
to find

B(t, x) = p̂× E(t, x), (1.44)

which is the standard expression for the magnetic field, written in such a way to make evident its orthogo-
nality with respect to the electric field.

1.1.3 Stokes Parameters

Aswe have shown in Sec. 1.1.2, an electromagnetic wave consists of an oscillating electric field coupled with
an oscillating magnetic one, which are always perpendicular to each other; by convention, we call polariza-
tion of electromagnetic waves the direction of the electric field. According to Eq. (1.36), we can write an
electromagnetic field propagating along the p̂ = x̂3 axis as

E(t, x) =







E1(t, x)
E2(t, x)

0






=







E0, 1 cos (x3 − t)
E0, 2 cos (x3 − t+ β)

0






, (1.45)

where β is the relative phase between the two directions of oscillations. If we take the square modulus of
Eq. (1.45), we obtain

(

E1

E0, 1

)2

+

(

E2

E0, 2

)2

= cos2(x3 − t) + [cos(x3 − t) cos(β)− sin(x3 − t) sin(β)]2

= 2 cos2(x3 − t) cos2(β) + sin(β) [1− 2 cos(x3 − t) cos(β) sin(x3 − t)]
(1.46)

5i.e. a× (b× c) = (a · c) b− (a · b) c.
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where we have used the following trigonometric identities:

sin(α± β) = sin(α) cos(β)± cos(α) sin(β), (1.47)

cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β). (1.48)

We can easily recast Eq. (1.46) to take a more suitable form,

(

E1

E0, 1

)2

+

(

E2

E0, 2

)2

− 2E1E2

E0, 1E0, 2
cos(β) = sin2(β), (1.49)

which, again, by defining

E0, 1 ≡ C cos(θ) E0, 2 ≡ C sin(θ), (1.50)

allows us to rewrite Eq. (1.49) as

E 2
1

cos2(θ)
+

E 2
2

sin2(θ)
− 4E1E2 cos(2θ)

sin2(2θ)
sin(2α)
cos(2α)

+ C2 cos2(β) = C2, (1.51)

where we have defined the angle α as

tan(2α) ≡ tan(2θ) cos(β). (1.52)

Finally, we now define other two parameters, namely

a2 ≡ C2

2

[

1+
√

1− sin2(2θ) sin2(β)
]

, b2 ≡ C2

2

[

1−
√

1− sin2(2θ) sin2(β)
]

, (1.53)

so that Eq. (1.51) takes the form of an ellipse rotated by an angle α in the E1 − E2 plane:

[E1 cos(α) + E2 sin(α)]2

a2
+

[E1 sin(α)− E2 cos(α)]2

b2
= 1, (1.54)

which is known as the polarization ellipse (see Fig. 1.1). Let use notice that when β = 0 we have b = 0,
i.e. the ellipse degenerates in a straight line, tilted by an angle α with respect to the Ex−axis: in this case
the electromagnetic wave is said to be purely linearly polarized. On the other hand, when β = ±π/2 and
θ = π/4we have b = a, whichmeans that the ellipse degenerates in a circle: in this case the electromagnetic
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wave is said to be purely circularly polarized. In order to deal with the interplay of all the quantities used

E1

E2

a

b α

Figure 1.1: Example of polarization ellipse in the a > b case; when α = nπ/2 (with n ∈ Z), the dashed
axes coincide with the E1 , E2 ones, and the ellipse takes an horizontal or vertical orientation.

insofar, it is customary to define the so called Stokes parameters:

I ≡ a2 + b2, (1.55)

Q± iU ≡
(

a2 − b2
)

e±2iα, (1.56)

V ≡ 2ab. (1.57)

Let us notice, that already from Eqs. (1.55)-(1.57), we can infer a fundamental property of the Stokes pa-
rameters, i.e. their behaviour under a spatial rotation of the polarization plane. In fact, it is clear that I and
V are left unchanged by a rotation, whereas the linear combination Q ± iU behaves as a spin-2 field. This
means that under a rotation R of an angle α, we have

I R(α)−−→ I, (Q± iU )
R(α)−−→ (Q± iU ) e±2iα, V R(α)−−→ V. (1.58)

12



The Stokes parameter I is then a scalar, and it is nothing but the squared amplitude of the electric field

I = a2 + b2 = C2 = E2
0, 1 + E0, 2 = |E(t, x)|2 , (1.59)

whereas the Stokes parameter V describes the circular polarization, because when the linear combination
Q ± iU is vanishing (which occurs when a = b), the ellipse reduces to a circle and we have a pure circular
polarization parameterized by

V = 2ab = C2 sin(2θ) sin(β) = C2 = I, (1.60)

Analogously, when V = 0 (which occurs when a or b equal zero), only I and Q ± iU survives, where the
latter completely describes linear polarization. For instance, if b = 0 we get

Q± iU = a2e±2iα = C2 cos(2θ) = I. (1.61)

By the way, when using the definition given in Eq. (1.45) we have implicitly considered a monochromatic
wave, eventuallymade up ofmanywaves but all coherent, sincewe have assumedE0, 1 ,E0, 2 and β as constant
in time. On the other hand, if we consider the more general case of a superposition of incoherent waves,
then we have to account for the fact that the phases of individual wave components are no more correlated,
meaning they have random phase relationships. In order to address this lack of generality in Eqs. (1.55)-
(1.57), we now write down the following redefinition of the Stokes parameters:

I (t, x, p̂ = x̂3) ≡ 〈E 2
1 (̃t, x)〉t + 〈E 2

2 (̃t, x)〉t, (1.62)

[Q± iU ] (t, x, p̂ = x̂3) ≡ 〈E 2
1 (̃t, x)〉t − 〈E 2

2 (̃t, x)〉t ± 2i〈E1(̃t, x)E2(̃t, x) cos[ β(̃t) ]〉t, (1.63)

V (̃t, x, p̂ = x̂3) ≡ 2〈E1(̃t, x)E2(̃t, x) sin[ β(̃t) ]〉t, (1.64)

where 〈. . .〉t ≡
∫ t
0 ( . . . ) d̃t/t indicates a time average on a time variable t̃, such that the time t over which

the integration is performed is long enough to capture the relevant information about the electromagnetic
wave, while filtering out rapid fluctuations. Indeed, in the monochromatic case when the amplitudes and
the phase are time-independent, one need only to drop the angular brackets in the expressions above to
get the applicable Stokes parameters, since, as can be verified by direct substitution, one should recover
Eqs. (1.55)-(1.57). Moreover, the parameters describing the polarization are just three (θ, β and C), which

13



means that, as one could have inferred by looking e.g. at Eqs. (1.61), the four Stokes parameters are not
independent but obey the following constraint:

Q 2 + U 2 + V 2 ≤ I 2. (1.65)

1.1.4 Electric Field of aMoving Electron

Up to now, we have been able just to describe electric and magnetic fields just in vacuum, i.e. without
considering the presence of anything else but the electromagnetic field itself. However, adding a source
term to theMaxwell’s equations is essential to account for the presence of electric charges and currents in the
surrounding space, so thatMaxwell’s equations become a complete descriptionof howelectric andmagnetic
fields interact with charges and currents, allowing us to analyze and predict electromagnetic phenomena
in the presence of matter. This extension can be done by adding by hand a source term to the Maxwell’s
Lagrangian density,

L = − 1
4
F μνFμν + J μAμ, (1.66)

where J μ ≡ ( ρ, J1, J2, J3)T is the contravariant 4-current, whose entries are the charge volumetric
density ρ(t, x), and the current surface density J(t, x) ≡ ρ(t, x)v(t) of a charge distribution moving at
speed v(t), respectively. By applying again the Hamilton’s principle, it is finally possible to derive the two
Maxwell’s equation in presence of sources, i.e.

∂μF μν + μ0 J
ν = 0 =⇒







∇ · E(t, x) = ρ(t, x),

∇× B(t, x) = J(t, x) +
∂E(t, x)

∂t
.

(1.67)

As shown in Eq. (1.21), the Maxwell’s equations are invariant under the gauge transformation defined in
Eq. (1.20), and this means that the electromagnetic theory is invariant also under the following transforma-
tion,

∂μA μ(x λ) 7→ ∂μA μ(x λ) + ∂μ ∂
μh (xλ) (1.68)

which implies that we have the freedom of choosing the value of ∂μA μ as we like. Therefore, we now adopt
the Lorenz gauge and we simply set

∂μA μ = 0 =⇒ ∇ · A(t, x) = −∂ϕ(t x)
∂t

, (1.69)

14



so that, by recalling the definition of the electric and magnetic fields in terms of Aμ, Eqs. (1.67) yields

∇ 2ϕ(t, x)− ∂ 2

∂t 2
ϕ(t, x) = − ρ(t, x), (1.70)

∇
2A(t, x)− ∂ 2

∂t 2
A(t, x) = − J(t, x), (1.71)

where we have exploited Eq. (1.25). Therefore, we have found that both the scalar ϕ and the vector potential
A satisfy a wave equation. Thanks to this fact, we can easily write down the formal solutions of Eqs. (1.70)-
(1.71) as

ϕ(t, x) =
∫

d3x̃
ρ(t− |x− x̃|, x̃)

4π|x− x̃| , A(t, x) =
∫

d3x̃
J(t− |x− x̃|, x̃)

4π|x− x̃| , (1.72)

that identically solves the differential equation above. In fact, for instance, if we take the gradient of ϕ,

∇ϕ(t, x) =
∫

d3x̃
4π

[

1
|x− x̃|∇ρ(t− |x− x̃|, x̃) + ρ(t− |x− x̃|, x̃)∇

(

1
|x− x̃|

)]

= −
∫

d3x̃
4π|x− x̃|

{

[

∂

∂t
ρ(t− |x− x̃|, x̃)

]

∇ (|x− x̃|) + ρ(t− |x− x̃|, x̃) x̂−
˜̂x

|x− x̃|

}

= −
∫

d3x̃
4π

x− x̃
|x− x̃|3

[

1+ |x− x̃| ∂
∂t

]

ρ(t− |x− x̃|, x̃),

(1.73)

and we then take the divergence of such a result, we can find a suitable expression for∇ 2ϕ. In order, to do
this, let us exploit a vector identity,

∇ · (λV) = V ·∇λ+ λ∇ · V, (1.74)

which holds true for any scalar function λ and vector functionV, so that we get

∇ 2ϕ(t, x) = −
∫

d3x̃
4π

[

∇ ·

(

x− x̃
|x− x̃|3

)][

1+ |x− x̃| ∂
∂t

]

ρ(t− |x− x̃|, x̃)

−
∫

d3x̃
4π

x− x̃
|x− x̃|3 ·∇

[

1+ |x− x̃| ∂
∂t

]

ρ(t− |x− x̃|, x̃)

= − ρ(t, x) +
∂ 2

∂t 2
ϕ(t, x),

(1.75)
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where we have used the following vector identity,

∇ ·

(

x− x̃
|x− x̃|3

)

= −∇ ·∇

(

1
|x− x̃|

)

= −∇ 2
(

1
|x− x̃|

)

= 4πδ (3) (x− x̃) . (1.76)

Let us notice that Eq. (1.75) is exactly Eq. (1.70), and in the very same fashion it can be shown that the
expression we provided for A in Eq. (1.71) identically solves Eq. (1.71). Yes, indeed we have found some
formal solutions for the electromagnetic potentials, but nowwewant to compute them for the specific case
of a moving electron of charge e ≃ 1.602× 10−19 C, whose trajectory is given as a function of time by s(t),
at speed v(t) = ds(t)/dt, so that its charge density reads

ρ(t, x) = e δ (3) [x− s(t)] (1.77)

Therefore, Eq. (1.72) yields

ϕ(t, x) = e
∫

d3x̃
δ (3) [x̃− s(t− |x− x̃|)]

4π|x− x̃| , (1.78)

A(t, x) = e
∫

d3x̃
δ (3) [x̃− s(t− |x− x̃|)]

4π|x− x̃| v(t− |x− x̃|). (1.79)

After defining a new time variable t̃, we can rewrite the two potentials as

ϕ(t, x) = e
∫

d̃t
∫

d3x̃
δ (3) [x̃− s( t̃ )]
4π|x− x̃| δ( t̃− t+ |x− x̃| ), (1.80)

A(t, x) = e
∫

d̃t
∫

d3x̃
δ (3) [x̃− s( t̃ )]
4π|x− x̃| v( t̃ )δ( t̃− t+ |x− x̃| ), (1.81)

and, by integrating over x̃, these expression further reduce to

ϕ(t, x) = e
∫

d̃t
δ[ t̃− t+ |x− s( t̃ )| ]

4π|x− s( t̃ )| , A(t, x) = e
∫

d̃t v( t̃ )
δ[ t̃− t+ |x− s( t̃ )| ]

4π|x− s( t̃ )| . (1.82)

To evaluate the time integral, we can use the well known formula which allows for relating the Dirac delta
of a function F (x) to the Dirac deltas of the function’s roots F (xi) = 0,

δ [F (x)] =
∑

i

[

d F (x)
d x

∣

∣

∣

x= xi

]−1

δ(x− xi), (1.83)
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so that, in our case, we have

δ[ t̃− t+ |x− s( t̃ )|] =
{

∂

∂ t̃
[ t̃− t+ |x− s( t̃ )| ]

∣

∣

∣

t̃= t−|x−s(t)|

}−1

δ[ t̃− t+ |x− s(t)| ]

=
δ[ t̃− t+ |x− s(t)| ]
1− [x̂− ŝ( t̃ )] · v( t̃ ) .

(1.84)

Therefore, if substitute this result in the equations above, we find the Liénard–Wiechert potentials,

ϕ(t, x) =
∫

d̃t
4π

e δ[ t̃− t+ |x− s(t)| ]
|x− s( t̃ )| − [x− s( t̃ )] · v( t̃ ) ,

A(t, x) =
∫

d̃t
4π

e v( t̃ ) δ[ t̃− t+ |x− s(t)| ]
|x− s( t̃ )| − [x− s( t̃ )] · v( t̃ ) .

(1.85)

We are now in the position to evaluate the electric field of a point electron in arbitrary motion, since the
only thing we have to do is to substitute the Liénard–Wiechert potentials in the electric field’s definition,

E(t, x) = −∇ϕ(t, x)− ∂A(t, x)
∂t

. (1.86)

By defining t⋆ ≡ t− |x− s(t)|, the gradient of the scalar potential can be expressed as

∇ϕ(t, x) = − e
4π

∇ [ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) ]
{ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) }2

. (1.87)

The first contribution comes from the following gradient

∇ [ |x− s(t⋆)| ] = ∇ (t− t⋆) = −∇t⋆, (1.88)

whereas the second one can be worked out by exploiting the following vector identity,

∇ {[x− s(t⋆)] · v(t⋆)} = v(t⋆) +
{

[x− s(t⋆)] · a(t⋆)− v 2(t⋆)
}

∇t⋆ (1.89)
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where we have recognized a(t) ≡ dv(t)/dt as the electron’s acceleration, and we have used the following
vector identities:

∇ (U · V) = (U ·∇)V+ (V ·∇)U+ U× (∇× V) + V× (∇× U) (1.90)

U× (V×W) = V (U ·W)−W · (V · V) , (1.91)

that hold true for any set of vector functions U, V andW. To complete the calculation we need to know
∇t⋆:

∇t⋆ = {[x̂− ŝ(t⋆)] ·∇} [x− s(t⋆)] + [x̂− ŝ(t⋆)]× {∇× [x− s(t⋆)]}
= [x̂− ŝ(t⋆)]− {[x̂− ŝ(t⋆)] · v(t⋆)}∇t⋆,

(1.92)

so that, by inverting such a result, we finally find

∇ϕ(t, x) =
e
4π

v(t⋆)
{ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) }2

− e
4π

1− v 2(t⋆) + [x− s(t⋆)] · a(t⋆)
{ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) }3

[x− s(t⋆)] ,
(1.93)

and, in the very same fashion, it is easy to show that

∂A(t, x)
∂t

=
e
4π

|x− s(t⋆)| a(t⋆)− v(t⋆)
{ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) }2

+
e
4π

|x− s(t⋆)| {1− v 2(t⋆) + [x− s(t⋆)] · a(t⋆)} v(t⋆)
{ |x− s(t⋆)| − [x− s(t⋆)] · v(t⋆) }3

(1.94)

Therefore, by recalling Eq. (1.86), the electric field sourced by a moving electron reads

E(t, x) = e
∫

d̃t
4π

[1− v 2(̃t)] [x− s(̃t)− v(̃t)]
{ |x− s(̃t)| − [x− s(̃t)] · v(̃t) } 3 δ[ t̃− t+ |x− s(t)| ]

+ e
∫

d̃t
4π

[x− s(̃t)]× {[x− s(̃t)− v(̃t)]× a(̃t)}
{ |x− s(̃t)| − [x− s(̃t)] · v(̃t) } 3 δ[ t̃− t+ |x− s(t)| ].

(1.95)
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1.2 From Flat to Curved Spacetime

Up to now, we have reviewed how classical electromagnetism is described in the context of a flat spacetime,
i.e. when the metric tensor ημν is just the Minkowski’s one. This is correct when assuming that special
relativity is a theory general enough to describe the Universe. However, SR is limited to inertial frames and
does not account for accelerated motion or gravity. For instance, it cannot explain how gravity affects the
trajectory of objects or how massive bodies like planets, stars, and galaxies interact with each other. Since
in this thesis we are going to discuss cosmological phenomena, it is clear that we have to move to general
relativity (GR), which is a more comprehensive theory that includes special relativity as a special case (see
Ref. [126]). The content of this section is a partial review of the standard notions that can be found inmany
famous textbooks, such as Refs. [127–130]).

1.2.1 Classical Field Theory in General Relativity

Although we are not going to completely review GR, let us just mention that it is a theory of gravity and
spacetime, describing howmass and energy curve the fabric of spacetime and how objects move in response
to this curvature. This is the reason for that GR provides a unified framework for understanding both
inertial and accelerated motion, as well as the effects of gravity on the behavior of celestial bodies. In this
thesis, we are moving from SR to GR just now, simply because even if the conceptual foundations of these
two frameworks are so different, the formalism describing a field theory (such as electromagnetism) in SR
spacetime is extremely similar to that adopted in GR. In fact, the Einstein’s principle of (special) relativity
is replaced by a principle of general invariance, which states that all laws of physics must be invariant under
general coordinate transformations. However, it is clear that such a GR principle demands that the laws
have a symmetry that goes beyond the simple invariance under Lorentz transformations. In fact, Lorentz
transformations are “just” a set of equations that describe how coordinates and physical quantities change
when transitioning between two inertial reference frames in special relativity, whereas general coordinate
transformations aremathematical tools used inGR to express the same physical laws in different coordinate
systems, taking into account the curved nature of spacetime due to mass and energy. Indeed, the key-point
of general relativity is that gravitation is a manifestation of geometry, and this fact is well described by the
Einstein’s field equations,

Rμν −
1
2
gμνR+ gμνΛ =

Tμν

m2
Pl
, (1.96)
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where mPl ≃ 2.4353 × 1027 eV is the reduced Planck mass, Λ is the cosmological constant, gμν is the
metric tensor6,R ≡ gμνR μν is theRicci scalar, whereas

Rμν ≡ ∂λ Γ λ
μν − ∂ν Γ λ

μλ + Γ α
αβ Γ

β
μν − Γ α

μβ Γ
β
αν (1.97)

is theRicci tensor, with Γ λ
αβ being theChristoffel symbols:

Γ λ
αβ ≡ 1

2
g λκ
(

∂α gκβ + ∂β gακ − ∂κ gαβ
)

. (1.98)

When themetric tensor is just theMinkowski one, i.e. gμν = ημν, it is straightforward to see that theChristof-
fel symbols vanish, and so also all the left-hand side of Eq. (1.96), implying that also the right-hand sidemust
vanish to satisfy the equation. Indeed, Tμν is nothing but the energy-momentum tensor, i.e. a quantity en-
coding all the information about masses and energy, and that plays here the role of a source term in the
field equation. Therefore, in absence of sources, a solution of Eq. (1.96) is exactly the Minkowski tensor,
which defines a flat spacetime geometry and we recover SR, whereas in more general situations the solu-
tion of the Einstein’s field equations is a metric tensor defining a curved spacetime geometry. Hence, we
have understood that the presence of a source curves the spacetime geometry, but another crucial point of
GR is that the metric tensor gμν is also the mathematical object describing what we call gravitational field,
which according to GR, is not described by a separate force or field like in classical physics. Instead, it is
represented by the curvature of spacetime itself. Indeed, massive objects, such as stars, planets, and galaxies,
curve the spacetime around them, and this curvature affects the motion of other objects in their vicinity.
As well expressed by Eq. (1.96), the metric tensor is a mathematical tool that quantifies this curvature. As
already said, when a mass or energy is present, it causes spacetime to curve around it. The metric tensor
defines the curvature of spacetime at every point and tells us how distances and time intervals are affected
in the presence of gravitational fields. The motion of objects, including light rays, follows the curved paths
determined by this curvature. Now a question naturally arises: how can we generalize the formulas describ-
ing electromagnetism we derived in Sec. 1.1 to the case of a curved spacetime? Intriguing enough we have
just to recast our expression in order to satisfy the GR principle for that laws of physics must be expressed
in a generally covariant form. However, we have already provided a covariant formulation of electromag-
netism in Sec. 1.1.1, so that we have simply to replace the covariance under Lorentz transformation with
that one under general coordinate transformations. This can be achieved by taking our theory valid in SR

6In the context of GR, it is customary to define the metric tensor as gμν, in order to differentiate it from the Minkowski one
ημν, which is able to describe geometry only in SR. In fact, gμν could in general be non-diagonal and can vary in space and time,
so that usually gμν 6= g μν.
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and making the following replacements:

ημν 7→ gμν, d4x 7→ d4x
√

−g, ∂μ 7→ ∇μ, (1.99)

where g is the determinant of the metric tensor and

∇σM
μ1μ2...μk

ν1ν2...νl ≡ ∂σM
μ1μ2...μk

ν1ν2...νl + Γ μ1
σλM

λμ2...μk
ν1ν2...νl + Γ μ2

σλM
μ1λ...μk

ν1ν2...νl + . . .

− Γ λ
σν1 M

μ1μ2...μk
λν2...νl − Γ λ

σν2 M
μ1μ2...μk

ν1λ...νl − . . . ,
(1.100)

is the covariant derivative of a given tensor, which is defined in order to vanish when applied to the metric
tensor and reduce to an ordinary 4-gradientwhen applied to a scalar field. Thanks to the recipe of Eq. (1.99),
we can now see how the Maxwell’s equations change in a GR context. The Maxwell’s field tensor is not
affected by the presence of the covariance derivatives, as it can be seen by substituting the definition of
Eq. (1.100),

Fμν = ∇μAμ −∇νAμ =
(

∂μAν − ∂νAμ
)

+
(

Γ λ
νμ − Γ λ

μν

)

Aλ = ∂μAν − ∂νAμ (1.101)

where theChristoffel symbols cancel out because they are symmetric in their lower indices, as canbededuced
by inspecting Eq. (1.98). As a consequence, the property of gauge-invariance we pointed out in Eq. (1.21)
holds true also in curved spacetime. Moreover, the equation of motion involving the Maxwell dual tensor
in Eq. (1.27),

∇μF̃ μν = 0, (1.102)

is also preserved7,

1
2
∇με

μνϱσ Fϱσ√−g
=

1
2
ε μνϱσ
√−g

(

∇μ Fϱσ +∇ϱ Fσμ +∇σ Fμϱ
)

=
1
2
ε μνϱσ
√−g

([

∇μ,∇ϱ
]

Aσ +
[

∇ϱ,∇σ
]

Aμ +
[

∇σ,∇μ
]

Aϱ
)

= − 1
2
ε μνϱσ
√−g

(

R ν
σμϱ + R ν

μϱσ + R ν
ϱσμ

)

Aν = 0,

(1.103)

7Let us recall that the Levi-Civita symbol is not a tensor but a number, and hence its covariant derivative, as well its ordinary
one, simply vanishes.
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whereRμνϱσ is theRiemann tensor,

R μ
νϱσ ≡ ∂ϱΓ μ

σν − ∂σΓ μ
ϱν + Γ μ

ϱλΓ
λ
σν − Γ μ

σλΓ
λ
ϱν =⇒ R μ

νμσ = Rνσ, (1.104)

which obeys the first Bianchi identity,

Rμνϱσ + Rμϱσν + Rμσνϱ = 0, (1.105)

withRμνϱσ = gλμR λ
νϱσ, and it is related to the commutator of covariant derivatives applied on a tensor:

[

∇ϱ,∇σ
]

M μ1...μk
ν1...νl =

[

∇ϱ∇σ −∇σ∇ϱ
]

M μ1...μk
ν1...νl

= R μ1
λϱσM

λμ2...μk
ν1...νl + R μ2

λϱσM
μ1λ...μk
ν1...νl − R λ

ν1ϱσM
μ1...μk
λν2...νl − R λ

ν2ϱσM
μ1...μk
ν1λ...νl − . . . .

(1.106)

Let us notice that in proving the validity of Eq. (1.103) we have used that the covariant derivative of√−g
gives no contribution, since

∇ϱ
√

−g = − 1
2√−g

∇ϱ g = − 1
2√−g

∇ϱ exp [ g μν ln ( g μν)]

=
1
2
√

−g∇ϱ
[

g μν ln
(

g μν
)]

=
1
2
√

−g g μν g λν∇ϱ gμλ

=
1
2
√

−g g μν∇ϱ gμν = 0,

(1.107)

where we have used the relation between determinant of a matrixM and its trace, i.e.

|M| = exp {Tr [ln (M)]} . (1.108)

Analogously, we are now going to show that also the otherMaxwell’s equations remain unchangedmoving
from SR to GR. Indeed, by applying the rules collected in Eq. (1.99) to the Hamilton’s principle, we find
that Eq. (1.15) for the Maxwell’s Lagrangian density becomes

0 = −
∫

d 4x̃
√

−g(x̃ λ) δ μσ δ
(4) (x̃ λ − x λ)∇ϱ

{

∂LEM

∂
[

∇ϱAσ(x̃ λ)
]

}

= g ϱαg μβ∇ϱ
(√

−g Fαβ
)

. (1.109)
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However, as shown in Eq. (1.101) the Maxwell’s field tensor is the same both in flat and curved spacetime,
so that Eq. (1.109) simply reduces to

∇μF μν = 0, (1.110)

as expected. Similarly, also Eq. (1.96), which is the equation of motion for the gravitational field gμν, can
be derived with a Lagrangian approach. Indeed, the field theory describing Einstein’s relativistic gravity is
defined by the Einstein-Hilbert action:

SEH ≡ m2
Pl
2

∫

d4x
√

−g (R− 2Λ) , (1.111)

and if we take the functional derivative of SEH with respect to g μν, we get8

δSEH
δg μν

=
m2

Pl
2

∫

d4x̃
{[

(R− 2Λ)
∂
√−g
∂g ϱσ

+
√

−gRαβ
∂g αβ

∂g ϱσ
+
√

−g g αβ
∂Rαβ

∂g ϱσ

]

δg ϱσ(x̃ λ)

δg μν(x λ)

}

=
m2

Pl
2

∫

d4x̃
√

−g
[

Rϱσ −
1
2
gϱσR+ gϱσΛ + g αβ

∂Rαβ

∂g ϱσ

]

δ(4)(x̃ λ − x λ)δ ϱμδ
σ
ν,

(1.112)

where we have used that, since

∂δ αβ
∂g ϱσ

= 0 =⇒ g αλ
∂gλβ
∂gϱσ

= −gβλ
∂g λα

∂g ϱσ
=⇒ g αβ

∂gαβ
∂g ϱσ

= −gαβ
∂g αβ

∂g ϱσ
, (1.113)

we can partially inherit the result of Eq. (1.107), so that we get

∂
√−g
∂g ϱσ

=
1
2
√

−g g αβ
∂gαβ
∂g ϱσ

= − 1
2
√

−g gαβ
∂g αβ

∂g ϱσ
. (1.114)

Moreover, we can easily work out the functional derivative of the Ricci tensor as

∂Rαβ

∂g ϱσ
= ∂μ

∂Γ μ
αβ

∂g ϱσ
− ∂β

∂Γμαμ
∂g ϱσ

+ Γ ν
αβ
∂Γ μ

μν

∂g ϱσ
+ Γ μ

μν
∂Γ ν

αβ

∂g ϱσ
− Γ ν

μβ
∂Γ μ

αν

∂g ρσ
− Γ μ

αν
∂Γ ν

μβ

∂g ϱσ

= ∇μ

(

∂Γ μ
αβ

∂g ϱσ

)

−∇β

(

∂Γ μ
αμ

∂g ϱσ

)

,

(1.115)

8Of course, there is no term depending on∇ϱ g μν = 0.
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where we have used that the functional derivative between two Christoffel symbols is a well defined tensor
in GR. Hence, by substituting Eq. (1.115) in Eq. (1.112)

δSEH
δg μν

=
m2

Pl
2
√

−g

{

(

Rμν −
1
2
gμνR+ gμνΛ

)

+ g αβ
[

∇λ

(

∂Γ λ
αβ

∂g μν

)

−∇β

(

∂Γ λ
αλ

∂g μν

)

]}

=
m2

Pl
2
√

−g

{

(

Rμν −
1
2
gμνR+ gμνΛ

)

+∇λ

[

g αβ
(

∂Γ λ
αβ

∂g μν

)

− g αλ
(

∂Γ β
αβ

∂g μν

)]}

.

(1.116)

Thanks to Eq. (1.113), the functional derivative of the Christoffel symbols can be expressed as

∂Γ λ
αβ

∂g μν
=

1
2

{

g λκ
[

∂α

(

∂gκβ
∂g μν

)

+ ∂β

(

∂gκα
∂g μν

)

− ∂κ

(

∂gαβ
∂g μν

)]

− g λϱg κσ
∂gϱσ
∂g μν

(

∂α gκβ + ∂β gκα − ∂κ gαβ
)

}

,

(1.117)

which simply reduces to

∂Γ λ
αβ

∂g μν
=

1
2
g λκ
[

∂α

(

∂gκβ
∂g μν

)

+ ∂β

(

∂gκα
∂g μν

)

− ∂κ

(

∂gαβ
∂g μν

)

− 2Γ σ
αβ
∂gκσ
∂g μν

]

=
1
2

[

∇α

(

g λκ
∂gκβ
∂g μν

)

+∇β

(

g λκ
∂gκα
∂g μν

)

−∇κ

(

g λκ
∂gαβ
∂g μν

)]

=
1
2
[

g λκ∇κ
(

gαν gβμ
)

− δ λν∇α gβμ − δ λν∇β gαμ
]

,

= 0,

(1.118)

and similarly
∂Γ β

αβ

∂g μν
=

1
2
(

∇μ gαν −∇α gμν −∇ν gαμ
)

= 0, (1.119)

so that by setting Eq. (1.116) equal to zero we finally obtain

Rμν −
1
2
gμνR+ gμνΛ = 0 (1.120)

which is Eq. (1.96) in absence of sources. Indeed to have a non-vanishing energy-momentum tensor we
should include an extra contribution in the Einstein-Hilbert action, representing the source term due to
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the presence of other fields in the Universe with respect to the gravitational one:

SGR = SEH + Sfields. (1.121)

Therefore, by repeating all the procedure with this addition, we find the following equation of motion

m2
Pl
2
√

−g
(

Rμν −
1
2
gμνR+ gμνΛ

)

+
δSfields
δg μν

= 0, (1.122)

which means that the energy-momentum tensor can be defined as

Tμν ≡ − 2√−g
δSfields
δg μν

. (1.123)

Let us notice that the law of energy-momentum conservation in curved spacetime is guaranteed by the sec-
ond Bianchi identity:

∇μ

(

R μν − 1
2
g μνR

)

= 0 =⇒ ∇μT μν = 0. (1.124)

In fact, the energy-momentum tensor T μν is defined as the flux of four-momentum p μ across a surface of
constant x ν. According to this definition, it is possible e.g. to identify T 0

0 = −ϱ, with ϱ being the energy
density, whereas T i

j as the pressureP when i = j, since such elements represents the i-component of the
force being exerted (per unit area) in the j-direction.

1.2.2 The Geodesic Equation

There is another fundamental equation in GR together with Eq. (1.96), which is that characterizing the
motion of a particle in curved spacetime, e.g. a photon. Now, a ray of light can be thought as a path along
which photons travel, and according to the Fermat’s principle, the path taken by a ray between two given
points A and B is the path that can be traveled in the least time. This generalizes in general relativity by
assuming that the length of the path connecting two spacetime points A and B,

ds ≡
√

gμν dx μdx ν =⇒ sAB =
∫ B

A

√

gμν dx μdx ν, (1.125)
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is stationary under infinitesimal variation of x μ 7→ x μ + δx μ, i.e.

δsAB = δ
∫ B

A
ds = δ

∫ B

A

√

gμν dx μdx ν, (1.126)

with δx μ
A = δx μ

B = 0. To describe the path of the particle as it moves along a curve in spacetime we use s
itself, i.e. x μ = x μ(s), so that we have

δ
∫ B

A

√

gμν dx μdx ν =

∫ B

A

1
√

gαβ dx αdx β

[

gμν dx μδx ν +
1
2
dx μdx νδx λ∂λ gμν

]

=

∫ B

A
ds
[

gμν
dx μ

ds
dδx ν

ds
+

1
2
dx μ

ds
dx ν

ds
δx λ∂λ gμν

]

= −
∫ B

A
ds
[

d
ds

(

gμλ
dx μ

ds

)

− 1
2
dx μ

ds
dx ν

ds
∂λ gμν

]

δx λ

= −
∫ B

A
ds
[

gμλ
d 2x μ

ds 2
+

dx μ

ds
dx ν

ds
∂ν gμλ −

1
2
dx μ

ds
dx ν

ds
∂λ gμν

]

δx λ

= −
∫ B

A
ds
[

gμλ
d 2x μ

ds 2
+

1
2
dx μ

ds
dx ν

ds
(

∂ν gμλ + ∂μ gνλ − ∂λ gμν
)

]

δx λ.

(1.127)

Since δx λ is arbitrary, after imposing the condition δ
∫

ds = 0 we finally get the geodesic equation,

d 2x μ

ds 2
+ Γ μ

αβ
dx α

ds
dx β

ds
= 0. (1.128)

By direct inspection of Eq. (1.128), we can see that if on a given point the spacetime is locally flat, then locally
in that point gμν = ημν, making the Christoffel symbols vanishing, so that the geodesic equation is simply a
straight line,

d2x ′μ

ds 2
= 0. (1.129)

The coordinates x ′μ that locally make the Christoffel symbols zero are called local inertial coordinates (at
that point), because the geodesic equation in these coordinates implies motion at constant velocity, like the
inertial motion of a free particle in flat spacetime. Strictly speaking, geometrically the local inertial coor-
dinates correspond to replacing the curved space by a small flat patch tangent to the former at that point.
Moreover, it is possible to introduce also new coordinates, calledFermi coordinates, such that theChristof-
fel symbols are zero at every point on a given geodesic curve. Such coordinates are built by defining coordi-
nate axes at the initial point where the Christoffel symbols were zero. The x ′0-axis is assumed to lie along
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the geodesic, whereas the other three spacetime axes lie in the spatial slice within spacetime of constant x ′0

for the given initial value of x ′0. Then, the unit vectors associated with the coordinate axes are then carried
forward along the geodesic by a procedure called parallel transport, which allows for transporting the vec-
tors along the curved path while keeping their orientation unchanged with respect to the local geometry,
compensating for the curvature of spacetime, so that it is possible to define the coordinate axes at any later
point on the geodesic. The set of four unit vectors needed to define the directions of the local coordinate
axes are called a tetrad. Since these local coordinate axes are constructed by parallel transport, it is obvious
that whenever we parallel-transport some vector along the geodesic, its components cannot change, and this
immediately implies that all the Christoffel symbols involved in parallel transport along the geodesic must
be zero on the geodesic. Therefore, physically speaking, the Fermi coordinates along a geodesic represent a
freely falling reference frame, whose spatial orientation is defined by parallel transport. One of the reason for
that we have spent some lines talking about tetrads is that the Stokes parameters we introduced in Sec. 1.1.3
are well defined in Minkowski spacetime, but in general relativity, these definitions should be generalized,
and this can be done by using the tetrad formalism. As said, a tetrad is a set of four orthogonal unit basis
vectors e μ(a), with a = 0, 3, and at each point we can attach a tetrad which transforms between the coordi-
nate frame and the local inertial frame (LIF) at that point: for a vector field A μ(x), its components in the
local inertial frame are then given as

Aa|LIF = e μ(a)Aμ. (1.130)

The Latin indices are lowered and raised by the Minkowski metric η ab, the Greek indices instead by the
coordinate metric g μν. The tetrad has the following properties:

gμν e
μ
(a) e

ν
(b) = ηab, η abe μ(a) e

ν
(b) = g μν. (1.131)

Wewill see in the Sec. 2.1.2 how it is possible to exploit this formalism in order to obtain suitable expressions
for the Stokes parameters in curved spacetime. By the way, let us notice that we have derived the geodesic
equation by implicitly considering a test particle, i.e. a body which does not itself influence the geome-
try through which it moves, and we have found Eq. (1.128) by parametrizing the particle’s path with the
spacetime interval itself s. Of course, it is clear that the geodesic equation is left invariant by the following
transformation:

s 7→ λ = As+ B, (1.132)

for some constants A and B. Any parameter related to the spacetime interval in this way is said to be an
affine parameter, and is just as good as the spacetime interval for parametrizing a geodesic. In particular, it
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is often convenient to choose the normalization of the affine parameter λ such that

gμν
dx μ

dλ
dx ν

dλ
≡ p2 − E2 = −m2, (1.133)

where p 2 = δ ijpipj is the square modulus of the physical three-momentum of the test particle, E is its
energy, andm is itsmass. In fact, by reordering the terms in Eq. (1.133) we recover the dispersion relation:

E( p ) =
√

m 2 + p 2. (1.134)

This can be done because the coefficients A and B in Eq. (1.132) are not necessarily dimensionless, but at
the contrary their normalization can be fixed by the choice we are freely making in Eq. (1.133). Now, let us
try to understand how we can determine actual physical quantities we are able to measure in cosmological
surveys, in terms of the more abstract GR tensor. For instance, let us try to determine the energy of a test
particle. This can be done by considering a particle which remains fixed in one and the same point in space
at two different times, so that we can set dx i/dλ = 0 and find

E =
√

−g00
dx 0

dλ
, (1.135)

since the particle is not moving and hence it has no three-momentum. Indeed, Eq. (1.135) provides a rela-
tion which determines the actual energy of a test particle for a parameterized change of the coordinate x 0

Similarly, we now determine the physical three-momentum by considering this time a moving particle, so
that Eq. (1.133) reads

g00
(

dx 0

dλ

)2

+ 2g0i
dx 0

dλ
dx i

dλ
+ gij

dx i

dλ
dx j

dλ
+m 2 = 0, (1.136)

which is solved with respect to dx 0/dλ by two roots:

√

−g00
dx 0

dλ

∣

∣

∣

±
=

g0i√−g00
dx i

dλ
±
√

m 2

(

gij −
g0i g0j
g00

)

dx i

dλ
dx j

dλ
, (1.137)

corresponding to the particle’s propagation in the two directions between a point with spatial coordinates
x i and a point with spatial coordinates x i+dx i, as shown in Fig. 1.2. In fact, if x 0 is themoment of arrival of
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x 0 + dx 0
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+

Figure 1.2: A particle directed from some point in space with coordinates x i + dx i to a point having coor-
dinated x i infinitely near to it and then back over the same path.

the particle at the point with coordinates x i, the times when it left the point with coordinates x i + dx i and
when itwill comeback to the same point are, respectively, dx 0+dx 0

∣

∣

∣

−
and dx 0+dx 0

∣

∣

∣

+
, so that, by recalling

Eq. (1.135), we can infer that the total energy of the photon due to the motion between its departure and
its return to the original point will be given by the following semi-difference

E =

√−g00
2

(

dx 0

dλ

∣

∣

∣

+
− dx 0

dλ

∣

∣

∣

−

)

=

√

m 2 +

(

gij −
g0i g0j
g00

)

dx i

dλ
dx j

dλ
, (1.138)

so that, by recalling Eq. (1.134), we finally get

p 2 =

(

gij −
g0i g0j
g00

)

dx i

dλ
dx j

dλ
. (1.139)

Armedwith the result of Eq. (1.135) and Eq. (1.139), in the next sections, we will be able to characterize the
dynamics of the particles populating the Universe.
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1.3 The CosmicMicrowave Background Radiation

In the previous sections we have reviewed some fundamental notions of electromagnetism and general rela-
tivity. This has been done because the main goal of this thesis is to show how it is possible to probe parity-
violating extensions of a fundamental theory, such as electrodynamics, by means of cosmological observ-
ables. Hence, it is now the moment to review what kind of cosmic phenomenon allows us for doing that.
In fact, as well known, cosmology can be seen as the study of the composition and the evolution of the Uni-
verse as a whole. The Hot Big Bang model explains extraordinarily well the evolution of our Universe from
its early stages to its current state today. As we are going to see, such a cosmological model is set within a
theoretical framework based on GR, while from the observational side one of its supporting pillars is the
detection of the cosmic microwave background radiation (see Ref. [131]). This is an extremely almost
isotropic radiation emitted when the Universe, while cooling down, reached a temperature low enough to
allow the formation of neutral atoms. After that, photons decoupled from matter and free-streamed to us.
Therefore, CMB can be seen as a sort of primordial witness of an early stage of the Universe. Since CMB is
the main source of cosmological electromagnetic waves, it is clear that it also provides a natural laboratory
for testing deviations from the standard theory of electrodynamics taking place in unique regimes. Now,
the purpose of this section is to review the formalism describing the physics of CMB. The content of this
section is a partial review of the standard notions that can be found in many famous textbooks, such as
Refs. [132–142].

1.3.1 The ΛCDMModel

Einstein’s theory of general relativity explains how the geometry of spacetime is related to the energy con-
tent of the Universe, and this is expressed by means of Eq. (1.96). In general, it is not so simple to solve a
priori the Einstein equation, and the strategy usually adopted is to simplify the problem by making strong
physical assumptions on gμν and Tμν. For instance, this is done in standard cosmology, in order to describe
the Universe on large scales. Experimental observations tell us that the Universe is expanding. Indeed, in
1929, EdwinHubble (seeRef. [143]) discovered that the farther a galaxy is the faster it recedes fromus. This
phenomenon is mathematically expressed by theHubble’s law9,

v = H0 d, (1.140)
9Despite its name, the Belgian astronomer Georges Lemaître was the first to publish research deriving what is now known as

Hubble’s law.

30



where v us the recessional velocity, d is the distance and H0 = (67.4± 0.5) km/s/MPc is a constant (see
Ref. [144]), named after Hubble10. The expansion of the Universe is not the only assumption we canmake
about themetric of theUniverse at large scales. Indeed, a very high symmetry for theUniverse, called the cos-
mological principle, is assumed. Such a principle is minimally stated as follows: “the Universe is isotropic
and homogeneous”, i.e. there is no preferred direction or preferred position. The cosmological principle
seems to be compatible with observations at very large scales, according to Ref. [145]. We now briefly sum-
marize the procedure for building a metric tensor which satisfies the cosmological principle: one has to
consider a generic spacetime, and suppose that it is possible to define a reference frame in which spacetime
can be sliced in hyper-surfaces of constant time. On each of those slices, the time will have a different, fixed
value. Two generic hyper-surfaces will be then separated by a constant time distance δt, since they are all
parallel on the time axis. If we take a spatial point x = (x, y, z) on one of those hyper-surfaces and then
associate it to the constant time t of the hyper-surface, we define the so called synchronous frame. The syn-
chronous frame is nothing but the reference frame in which the metric of the Universe shows the property
we are looking for. First of all, we consider a geodesicwhere only the time varies, and such a geodesicmust be
orthogonal to all the hyper-surfaces. Then, those geodesics will have the same shape in every point of space,
and the space-time interval between two hyper-surfaces will be the same for all the geodesics, and equal to δt.
Observers on the same hyper-surface will measure the same time, which we call cosmic time. The cosmic
time will be uniquely defined for every observer, given a precise hyper-surface. Since the spacetime must be
equal to the time distance, then it follows that g00 must be necessarily equal to−1, and it can be proved that
in this reference frame g0j = 0. Then, it can be shown that the metric which satisfies these assumptions is
the Friedmann-Lemaître-Robertson-Walker (FLRW) one, which, in spherical coordinates, reads

gμν dx μdx ν = −dt 2 + a 2(t)
[

dx 2

1− Kr 2
+ r 2

(

dϑ 2 + sin 2 ϑ dφ 2)
]

, (1.141)

where t is the cosmic time, r is the radial coordinate, ϑ and φ denote the angular ones, K is the curvature
of space (see Fig. 1.3), and a is the scale factor, since it tells us how the distance between two points in the
expanding Universe scales with time. For this reason, a(t) is related to the Hubble parameter, which is
defined as

H ≡ 1
a(t)

d a(t)
dt

, (1.142)

and takes the value of H0 for t = t0, i.e. at the present time, when a(t0) is conventionally set equal to
1. As a consequence, the spatial coordinates are called comoving coordinates. Having fixed the form of
gμν, a consistent expression of the energy-momentum tensor, which satisfies the cosmological principle, is

10However, let us remark that such an expression holds only for galaxies that are not so away from us.

31



Figure 1.3: The three possible geometries of our Universe in a two-dimensional analogy (picture borrowed
from the NASA official website). From up to down: K = 1 denotes a positively curved (closed) Universe,
K = −1 denotes a negatively curved (open) one, whereasK = 0 denotes a spatially flat one.

achieved by thinking the Universe as a perfect isotropic fluid, whose energy-momentum tensor is given as

T μ
ν(t) =











−ϱ(t) 0 0 0
0 P(t) 0 0
0 0 P(t) 0
0 0 0 P(t)











, (1.143)

where, as wementioned in Sec. 1.2.1, ϱ is the energy density, andP is the pressure of such a fluid. Eq. (1.143)
has a reasonable form: thanks to the assumption of isotropy, there is no preferred direction, so that the
pressure is equal in all spatial directions. Moreover, such a tensor is diagonal because it represents a fluidwith
no shear stress or viscosity, and so without internal forces causing tangential stresses. Indeed, the diagonal
elements correspond to the energy density and the principal pressures along the coordinate axes, reflecting
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the fluid’s isotropic nature without internal friction or shearing effects. According to Eq. (1.124), let us
compute the ν = 0 component of the conservation law for the energy-momentum tensor,

∇μT μ
0 = ∂μT μ

0 + Γ μ
μσT σ

0 − Γ σ
μ0T μ

σ = 0, (1.144)

where we have used Eq. (1.100). Now, we can easily work out the Christoffel symbols for themetric defined
in Eq. (1.141) by recalling their definition presented in Eq. (1.98), so that we get

Γ 0
00 = 0 Γ 0

11 =
a 2H

1− Kr 2
Γ 0
22 = a 2Hr 2 Γ 0

33 = a 2Hr 2 sin 2 ϑ (1.145)

Γ 1
01 = H Γ 1

11 =
Kr

1− Kr 2
Γ 1
22 = −r

(

1− kr 2
)

Γ 1
33 = −r

(

1− Kr 2 sin 2 ϑ
)

(1.146)

Γ 2
02 = H Γ 2

12 =
1
r

Γ 2
22 = 0 Γ 2

33 = − sin ϑ cos ϑ (1.147)

Γ 3
03 = H Γ 3

13 =
1
r

Γ 3
23 =

1
tan ϑ

Γ 3
33 = 0, (1.148)

whereas all the other ones are vanishing or can deduced by means of the symmetry in the lower indices. By
substituting Eq. (1.143) and Eqs. (1.145)-(1.148) in Eq. (1.144), we obtain

dϱ(t)
dt

+ 3H(t) [ϱ(t) + P(t)] = 0, (1.149)

which is known as the continuity equation. Analogously, we can use the definition of the Ricci tensor we
wrote in Eq. (1.97), to compute its component for the FLRWmetric, finding

R00 = − 3
a(t)

d 2a(t)
dt 2

, (1.150)

R11 =
a 2(t)

1− Kr 2

[

1
a(t)

d 2a(t)
dt 2

+ 2H 2(t) +
2K
a 2(t)

]

, (1.151)

R22 = a 2(t)r 2
[

1
a(t)

d 2a(t)
dt 2

+ 2H 2(t) +
2K
a 2(t)

]

, (1.152)

R33 = a 2(t)r 2
[

1
a(t)

d 2a(t)
dt 2

+ 2H 2(t) +
2K
a 2(t)

]

sin 2 ϑ. (1.153)
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In fact, by direct inspection of Eq. (1.96), it is clear that the Ricci tensor is non-vanishing only for μ = ν
since both gμν and Tμν are diagonal. Therefore, the Ricci scalar reads

R = g μνRμν = 6
[

1
a(t)

d 2a(t)
dt 2

+H 2(t) +
K

a 2(t)

]

, (1.154)

so that the μ = ν = 0 component of the Einstein equation yields the first Friedmann equation,

H 2(t) =
ϱ(t)
3m 2

Pl
− K

a 2(t)
+

Λ
3

(1.155)

we can see that herem 2
PlΛ plays the role of an energy density associated with empty space (since it survives

even when ϱ = 0), and this is why the cosmological constant is also called vacuum energy. Moreover, if
we differentiate with respect to the cosmic time Eq. (1.155), and we substitute the first Friedmann equation
and the continuity one within the result, we find the second Friedmann equation,

1
a(t)

d 2a(t)
dt 2

= − 1
6m 2

Pl
[ϱ(t) + 3P(t)] +

Λ
3
, (1.156)

which describes the acceleration of the cosmic scale factor as a function of various components contributing
to the energy content of the universe. Therefore, Eq. (1.149) and the two Friedmann equations, together
describe the dynamics of an homogeneous and isotropic Universe. By the way, to solve the continuity equa-
tion, a further condition is needed: it is provided by an equation of state (EOS), i.e. a mathematical rela-
tionship between density and pressure, P = P(ϱ). The explicit dependence of P on ϱ usually takes the
following form:

P = w(ϱ)ϱ, (1.157)

where w(ϱ) is a parameter which depends on what type of content we consider for the Universe. In particu-
lar, let us now focus on the simplified situation in which w is just a number not depending on ϱ. Then, we
can separate the variables ρ and a, and after integrating each side separately, we find a relation ϱ = ϱ(a).

∫ today

past

dϱ
ϱ

= −3(1+ w)
∫ today

past

da
a

=⇒ ϱ(a) =
ϱ0

a3(1+w) , (1.158)
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wherewe have recalled that today a = a0 = 1 andwe have defined ϱ0 ≡ ϱ(a0). There exist threewell known
examples in literature:

• non-relativistic particles (ormatter). They are characterized by w = 0, and so by ϱ ∝ a−3 since the
typical velocities and energies of non-relativistic particles aremuch smaller than the speed of light. As
a result, the kinetic energy contributions to pressure are minimal, and the particles’ motion does not
exert significant pressure on the system;

• ultra-relativistic particles (or radiation), characterizedbyw = 1/3 (wewill see the reason inSec. 1.3.2)
and so by ϱ ∝ a−4;

• cosmological constant, characterized by w = −1, since it leads to a constant in time energy density.

The reason we are underlining this classification is that it is roughly possibly to include all the relevant par-
ticles populating the Universe in these categories: neutrinos and photons, being approximately and exactly
massless, respectively, are ultra-relativistic particles, so that they contribute to radiation, whereas baryons
and leptons (such as protons and electrons) contribute to matter (although it is not always true that these
particles behave as non-relativistic bodies). Therefore, the energy density entering in the two Friedmann
equation has to be understood as the sum of the contributions coming from the different cosmic species
populating the Universe:

ϱ(t) =
ϱr,0
a 4(t)

+
ϱm,0

a 3(t)
, (1.159)

ϱr,0, ϱm,0 being the energy density evaluated today of radiation and matter, respectively. Now, if we divide
the first Friedmann equation byH 2

0 , we obtain a more suitable expression,

H(t)
H0

=

√

Ωr,0

a 4(t)
+

Ωm,0

a 3(t)
+

ΩK,0

a 2(t)
+ΩΛ, (1.160)

where we have defined the following density parameters:

Ωr,0 ≡
ϱr,0

3H 2
0m 2

Pl
, Ωm,0 ≡

ϱm,0

3H 2
0m 2

Pl
ΩK,0 ≡ − K

H 2
0

ΩΛ ≡ Λ
3H 2

0
. (1.161)

The reason for that we have put the Friedmann equation in the form of Eq. (1.160) is twofold: first of all,
we can notice that today the sum of all the Ω’s must equal 1, which means that they are not independent,
but they have to satisfy a closure relation; secondly, since in the past the scale factor was smaller than today
because of the expansion of the Universe, it is clear that different cosmic species were dominant in different
epochs. In particular, in its early life, the Universe experienced a radiation-dominate epoch, which was
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followed by amatter-dominated one, and then by a curvature-dominate one, and finally today the dominant
contribution is given by the cosmological constant. According to the most recent results coming from the
Planck satellite (see Ref. [144])

Ωm,0 = 0.3081± 0.0065, ΩK,0 = 0.0007± 0.0019, ΩΛ = 0.6911± 0.0062, (1.162)

whereas Ωr,0 ∼ 10−4. These results seem to suggest that our Universe is consistent with a spatially flat one,
and for this reason from now we will set K = 0, since this assumption will simplify a lot our calculations.
Moreover, it seems that today almost all the energy content of theUniverse is given bymatter and cosmolog-
ical constant, but let us now stress that such matter is mainly not made by particles of the standard model.
In fact, observations are telling us that baryons and leptons in theUniverse are not enough to yield the 30%
ofmatter in the Universe, but instead the large majority of this must bemade by a unknown kind ofmatter.
Apart from cosmology, many astrophysical observations from different sources at different distance scales
point out the existence of this mysterious dark component, such as the dynamics of galaxies in clusters and
the rotation curves of spiral galaxies (see Refs. [146, 147], respectively). If this sort of dark matter has the
same equation of state, then it could be made by an unknown type of non-relativistic particles, and this
hypothesis is called cold dark matter (CDM), and several candidates have been taken into account to un-
veil its nature (see e.g. Ref. [148]). However, the main part of the current energy budget of the Universe
is provided by Λ, whose equation of state defines a fluid of negative pressure, and let us notice that if the
cosmological constant is the dominant term in Eq. (1.156), we can directly see that theUniverse experiences
a phase of accelerated expansion, since d2a/dt 2 ≥ 0. Of course, this could happen even if Λ = 0 but
with an extra mysterious fluid having equation of statew ≤ 1/3. Since in the last decades observations have
shown the Universe is effectively in a state of accelerated expansion (see e.g. Ref. [149]), this means that
there must exist a dark energy able to drive this acceleration, and at the moment the main candidate is Λ,
even if, as said, the same result can be achieved by some cosmic species with the adequate equation of state.
Hence, the currentUniverse ismainlymade up by dark energy (that our paradigm for themoment identifies
with the cosmological constant itself ) and cold dark matter, and for this reason the standard cosmological
model is said to be the ΛCDMmodel. As wewill see in the course of this thesis, the phenomenon of cosmic
birefringence provides an indirect tool for testing candidates for dark matter and dark energy.

1.3.2 Cosmological Perturbation Theory

The assumption of an homogeneous and isotropic Universe makes us able to solve the Einstein field equa-
tion for such an Universe, but it is reliable only on very large scales. For instance, its shortcomings become
evident when one starts to investigate how galaxies and their clusters form. Indeed they seem to be huge de-
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viations from the cosmological principle. In cosmology, small deviations from the cosmological principle
are addressed, by considering perturbations in the FLRWmetric,

gμν(τ) = a 2(τ)ημν, (1.163)

where we have rewritten in Cartesian coordinates themetric shown in Eq. (1.141) forK = 0 in terms of the
Minkowski one, after moving from the cosmic time t to the conformal time τ,

dτ ≡ dt
a(t)

, (1.164)

whose physical meaning is that, if we integrate Eq. (1.164) from τA to τB, the difference (τB− τA) is nothing
but the comoving distance traveled by a photon in a time interval equal to (tB − tA). Indeed, in the general
theoryof relativity, the choice of a coordinate system is not limited in anyway; the triplet of space coordinates
(x 1, x 2, x 3) can be any quantities defining the position of bodies in space, and the time coordinate x 0 can
be defined by an arbitrarily running clock. Indeed, we have taken advantage of this fact bymoving from the
(t, r, θ,φ) coordinates used instead in Eq. (1.141) to the (τ, x, y, z) ones used in Eq. (1.163). As said before,
Eq. (1.163) mathematically describes a Universe which satisfies the cosmological principle. In other words,
the four-dimensional surface over which gμν is defined can be seen as a background spacetime, that does not
include deviations from homogeneity and isotropy, since gμν is diagonal and does not depend on the spatial
coordinates. Therefore, the “real” spacetime is something different described by the “real” metric gμν, such
that

gμν(τ, x) ≡ gμν(τ) + δgμν(τ, x). (1.165)

Anyway, this means that δgμν, i.e. the “difference” between the two metrics, reveals to be ill-defined, since
gμν and gμν are tensors defined on different four-dimensional spaces, and consequently (τ, x) are a set of
spacetime coordinates defined through different ways. In order to take care of such a problem, we need a
rule, called gauge, which identifies points of the first spacetime with those of the second one. The gauge is
arbitrary and allows us to still use τ (or t) plus x defined in the background, also for the points in the physical
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one, i.e. even when working with the perturbed metric (see e.g. Refs. [150, 151]).

g00(τ, x) = −a 2(τ)

[

1+
∞
∑

n=1

2
n!
Ψ (n)(τ, x)

]

, (1.166)

g0i(τ, x) = +a 2(τ)

[

1+
∞
∑

n=1

1
n!
ω̂ (n)
i (τ, x)

]

, (1.167)

gij(τ, x) = +a 2(τ)

{[

1+
∞
∑

n=1

2
n!
Φ (n)(τ, x)

]

δij +
∞
∑

n=1

1
n!
γ̂ (n)
ij (τ, x)

}

, (1.168)

where we have denoted by (n) the perturbative order. The key concept of the perturbative approach is that,
by denoting withM any GR tensor representing whatever cosmological quantity, we impose

∣

∣

∣

[

δM μ1...μk
ν1...νl (τ, x)

] (n+1)
∣

∣

∣≪
∣

∣

∣

[

δM μ1...μk
ν1...νl (τ, x)

] (n)
∣

∣

∣≪
∣

∣M μ1...μk
ν1...νl (τ)

∣

∣ ∀ n ∈ N0 (1.169)

and also that for any combination of tensorsA, B, C, the product of two perturbations has the same pertur-
bative order of the sum of their own perturbative orders, i.e.

∣

∣

∣

∣

[

δA μ1...μk
ν1...νl (τ, x)

] (n) [

δB α1...αk
β1...βl

(τ, x)
] (m)

∣

∣

∣

∣

=

∣

∣

∣

∣

[

δC μ1...μkα1...αk
ν1...νlβ1...βl

(τ, x)
] (n+m)

∣

∣

∣

∣

∀ n,m ∈ N0 (1.170)

It is standard to split the perturbations into their scalar, vector and tensor parts according to their transforma-
tion properties with respect to the three-dimensional space withmetric δij, where, thanks to theHelmholtz
decomposition, scalar parts are related to a scalar potential, vector parts to transverse (i.e. divergence-free)
vectors and tensor parts to transverse trace-free tensors. Thus, in our case

ω̂ (n)
i (τ, x) = ∂iω (n)(τ, x) + ω (n)

i (τ, x) (1.171)

γ̂ (n)
ij (τ, x) =

[

∂i ∂j −
δij
3
∇ 2
]

γ (n)(τ, x) + ∂i γ (n)
j (τ, x) + ∂j γ (n)

i (τ, x) + γ (n)
ij (τ, x), (1.172)

where ωi and γi are divergenceless vectors, γ
(n)
ij is a symmetric divergenceless and trace-free tensor, and the

operator acting on γ (n) is a trace-free operator, i.e.

δ ij∂iω (n)
j (τ, x) = 0 δ ij∂i γ (n)

j (τ, x) = 0 (1.173)

δ ij∂i γ (n)
jk (τ, x) = 0 δ ijγ (n)

ij (τ, x) = 0 δ ij
[

∂i ∂j −
δij
3
∇ 2
]

γ (n)(τ, x) = 0. (1.174)
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Such a splitting has been introduced because, at least at first order, these different modes decouple from
each other in the perturbed evolution equations so that they can be studied separately. At the contrary, this
property does not hold anymore beyond the linear regime, where e.g. second-order perturbations are cou-
pled by first-order perturbations. For our purposes, it will be convenient to work in a specific gauge which
will allow us to simplify the main computations. By the way, let us just say that different gauges might lead
to different interpretations of the same physical phenomenon, and it can be challenging to ensure that the
chosen gauge accurately represents the underlying physics without introducing unnecessary complications,
such as the usage of explicitly gauge-invariant quantities. In fact, we have seen that the metric tensor (as
well as any other symmetric tensor of the same rank) has 10 independent elements, and this is why we can
decompose such a tensor in 4 scalar functions (Ψ, ω, Φ, and γ), plus 2 divergenceless three-vectors (ωi, γi),
for a total of 2 × 2 = 4 independent components11, plus a divergenceless trace-free spatial tensor of rank,
having 2 independent components12. Therefore, we know that this decomposition is the most general one,
as the functions we have introduced represent 4 + 4 + 2 independent components corresponding to the
10 components of themost general metric gμν. However, since the Einstein equation is manifestly covariant
under general coordinate transformations, we are also allowed to choose our 4 spacetime coordinates (τ, x)
in anywaywewantwithout changing any physical quantities, so that only 6 of these fields represent physical
degrees of freedom. Hence, from this moment we are going to adopt the Poisson gauge13,

gμν ≡ a 2







−
[

1+
∑∞

n=1
2
n!Ψ

(n)] ∑∞
n=1

1
n!ω

(n)
j

∑∞
n=1

1
n!ω

(n)
i

[

1+
∑∞

n=1
2
n!Φ

(n)] δij +
∑∞

n=1
1
n!γ

(n)
ij






, (1.175)

or equivalently we have set ω, γ and γi equal to zero. In the very same fashionwe adopted for themetric, sim-
ilar considerations follow for the components of the energy-momentum tensor. Indeed, one can introduce
small deviations from the perfect isotropic fluid, such that

Tμν(τ, x) = T μν(τ) +
∞
∑

n=1

δ T (n)
μν (τ, x). (1.176)

11The 3 original independent elements of each three-vector reduce to just 2, because of the divergenceless condition.
12The 6 original independent elements of the spatial symmetric tensor reduce to just 5 because of the trace-free condition, and

they further reduce to just 2 because the divergenceless conditions provides a vector equation imposing 3 extra constraints.
13To be rigorous, the metric in Eq. (1.175) is written in the longitudinal gauge, which, when it involves only scalar perturba-

tions of themetric, is also calledNewtonian conformal gauge, but instead, when including also vector and tensor perturbations,
it is called Poisson gauge (see e.g. Ref. [152]).
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Perturbed Einstein Equations

Armed with Eqs. 1.175-(1.176), we are now able to compute the perturbed Einstein equation by means of
the definition given in Eq. (1.96),

T μ
ν(τ, x)
m 2

Pl
= R μ

ν(τ, x)−
1
2
[R(τ, x)− 2Λ] δ μν. (1.177)

However, doing this would involve evaluating the Ricci tensor and the Ricci scalar, and consequently the
Christoffel symbols, for the metric defined in Eq. (1.175). Although this is conceptually straightforward,
sincewe have has just to substitute the perturbedmetric in Eq. (1.98), it could lead to a very long calculation.
In order to avoid this, we take advantage of the xPand package (see Ref. [153]) for Mathematica, which is
able to that for us. Therefore, we write down here the time-time, time-space and space-space components,
respectively, of the perturbed Einstein equation obtained in the just mentioned way. At zero-th order, we
then recover the first Friedmann equation written in terms of the conformal time assuming a spatially flat
Universe,

T 0
0(τ) =

m 2
Pl

a 2(τ)
[

Λ a 2(τ)− 3H 2(τ)
]

, (1.178)

T 0
i(τ) = 0, (1.179)

T i
j(τ) =

m 2
Pl

a 2(τ)

[

Λ a 2(τ)−H 2(τ)− 2
dH(τ)
dτ

]

δ ij, (1.180)
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whereH ≡ (da/dτ) /a is the conformal Hubble parameter. Analogously at first order we have

a 2(τ)
m 2

Pl
δ T 0

0
(1)
(τ, x) = 6H(τ)

[

H(τ)Ψ (1) − ∂

∂τ
Φ (1)(τ, x)

]

+ 2∇ 2Φ (1)(τ, x), (1.181)

a 2(τ)
m 2

Pl
δ T 0

i
(1)
(τ, x) =

1
2
∇ 2ω (1)

i (τ, x) + 2∂i
[

∂

∂τ
Φ (1)(τ, x)−H(τ)Ψ (1)(τ, x)

]

, (1.182)

a 2(τ)
m 2

Pl
δ T i

j
(1)
(τ, x) =

1
2

[

∂ 2

∂τ 2 + 2H(τ)
∂

∂τ
−∇ 2

]

γ i
j
(1)
(τ, x)

+
2

H(τ)

[

H(τ) +
∂

∂τ

]

[

H 2(τ)Ψ (1)(τ, x)
]

δ ij

+
(

δ ij∇ 2 − δ ik∂k ∂j
)

[

Ψ (1)(τ, x) + Φ (1)(τ, x)
]

−
[

H(τ) +
1
2
∂

∂τ

]

[

δ ik∂kωj(τ, x) + δ ik∂jωk
(1)(τ, x)

+ 2δ ij
∂

∂τ
Φ(1)(τ, x)

]

,

(1.183)

and we do not write here the very long expressions valid at second order in perturbation theory, which can
be found e.g. in Ref. [154], whereas going at third order is beyond the purpose of this thesis.

Perturbed Energy-Momentum Tensor

Now, in order to further proceed, we have understand how we can link the components of the perturbed
energy-momentum tensor arising in Eqs. (1.181)-(1.183) to the kinetic properties of cosmic species. How-
ever, theUniverse is extremely vast and the number of particleswithin it is enormous, so that it is impractical
to track the exact behavior of each individual particle. Instead, wewill use statisticalmethods to describe the
collective behavior of particles: this can be done bymeans of the distribution function. It is nothing but a
scalar function f (τ, x, p)which represents the probability density of finding a particle at a specific position
x at the conformal time τwith a specific three-momentum p in amulti-particle system. By simply following
our definition, it is then clear that we can make the following identification:

∫

d3p
(2π)3

f (τ, x, p) = density of particles located at x at time τ ≡ n(τ, x). (1.184)
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The normalization (2π)3 is due to the fact that, according to the Heisenberg’s principle, no quantum
particle can be exactly localized at the point (x, p) in the position-momentum space, but at most in a small
volume of size equal to the Planck constant 2πℏ about that point, representing the fundamental cell. How-
ever, since we are working in God-given units, ℏ is set equal to 1. As shown in Eq. (1.134), we can denote by
E( p ) the energy of a particle with three-momentum p, so that, by slightlymodifying Eq. (1.184), we obtain
the energy density,

ϱ(τ, x) ≡
∫

d3p
(2π)3

E( p ) f (τ, x, p). (1.185)

By further proceeding in this way, we can make another identification,

∫

d3p
(2π)3

p ipj
E( p )

f (τ, x, p) = the flux of p i due to motion in the j-direction. (1.186)

or, in other words, i-component of the force being exerted per unit area in the j-direction14 Hence, by re-
calling the discussion made in Sec. 1.2.1, Eq. (1.186) represents nothing but the spatial components of the
energy-momentum tensor, T i

j, as well as, by definition, Eq. (1.185) represents the T 0
0 one (times a minus

sign). Therefore, by collecting all together, we see that, with a bit of imagination, it is possible to define the
energy-momentum tensor in terms of the distribution function by exploiting Eq. (1.133) as

T μ
ν(τ, x) ≡

√

g00(τ, x)
g(τ, x)

det
∣

∣

∣

∣

gij(τ, x)−
g0i (τ, x)g0j(τ, x)

g00(τ, x)

∣

∣

∣

∣

∫

d3p
(2π)3

dx μ

dλ
dxν
dλ

f (τ, x, p)
E( p ) , (1.187)

as it can be verified by direct substitution. Let us notice that in a FLRW spacetime, according to Eq. (1.143),
the homogeneous pressure of a perfect fluid can be evaluated as

P(τ) =
1
3
δ j

iT
i
j(τ) = δ ji gjk(τ)

∫

d3p
(2π)3

dx i

dλ
dx k

dλ
f (τ, p)
3E( p )

=

∫

d3p
(2π)3

p 2

3E( p ) f (τ, p), (1.188)

where, as we did for the other cosmological quantities, we have split the distribution function in a homoge-
neous background contribution plus a perturbation,

f (τ, x, p) = f (τ, p) +
∞
∑

n=1

f (n)(τ, x, p). (1.189)

14Amissing c 2 factor due to the fact we are working in God-given units is necessary to achieve the standard dimensionality.
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Therefore, Eq. (1.188) for an ultra-relativistic particle with E ≃ p simply reduces to

P(τ) =
1
3

∫

d3p
(2π)3

E( p ) f (τ, p) = 1
3
ϱ(τ), (1.190)

which is exactly what we have previously stated in Sec. 1.3.1. Armed with Eq. (1.187) we can now compute
the left-hand sides of the perturbed Einstein equation. For instance, at first order in perturbation theory, we
have

√

√

√

√

g (1)00 (τ, x)
g (1)(τ, x)

det

∣

∣

∣

∣

∣

g (1)ij (τ, x)−
g (1)0i (τ, x)g

(1)
0j (τ, x)

g (1)00 (τ, x)

∣

∣

∣

∣

∣

= 1, (1.191)

so that we obtain

δ T μ
ν
(1)(τ, x) =

∫

d3p
(2π)3

dx μ

dλ
dxν
dλ

δf (1)(τ, x, p)
E( p ) . (1.192)

It is then clear that the deviations from isotropy and homogeneity is encoded in the perturbative term of the
distribution function: this is why in Sec. 1.3.1 we previously considered the energy density and pressure as
just functions of time, since the background distribution function is just f (τ, p) without any dependence
on x and p̂. However, for our purposes is not nownecessary to explicitly evaluate Eq. (1.192), butwe just say
that since its components appear at the left-hand side of Eqs. (1.181)-(1.183), in order to completely track
the evolution of cosmological perturbation we also need to know that one for the distribution function,
and this is exactly what we are going to focus on in the next sections. By the way, it is clear that since the
time-time component of the energy-momentum tensor is by definition associated with the energy density,
we can without loss of generality define the perturbative counterpart of the energy density as

ϱ(τ, x) = ϱ(τ) +
∑

n=1

δϱ (n)(τ, x) =⇒ δ T 0
0
(n)
(τ, x) = −ϱ(τ)

[

1+
∞
∑

n=1

δ (n)(τ, x)

]

, (1.193)

with δ (n) ≡ δϱ (n)/ϱ being the so called density contrast.

1.3.3 Boltzmann’s Description of Cosmic Species

As shown in Sec. 1.3.2, the source terms for the perturbed Einstein equations are given by the components
of the energy-momentum tensor that are in turn related to the distribution function of the cosmic species
populating theUniverse. Therefore, the distribution function at the left-hand side appearing in theEinstein
equationswe have just derived in Sec. 1.3.2must be seen as the sumof distribution functions of each cosmic
species, which according to the Standard Model (SM) of particle physics can be divided in bosons and
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fermions. In particular, bosons are quantum particles with an integer spin number that are described by
symmetric wave functions, whereas fermions have an half-integer spin number and they are described by
antisymmetric wave functions. This implies that the statistics of a systen of bosons is different from that
of a fermions’ one: bosons obey a Bose-Einstein statistics and fermions a Fermi-Dirac one, so that the full
distribution function of the Universe can be written as

f (τ, x, p) =
∑

particles

fs(τ, x, p) =
∑

bosons

fBE(τ, x, p) +
∑

fermions

fFD(τ, x, p). (1.194)

In particular, it can be shown that if we consider a system containing a number of identical particles of the
cosmic species s with energy Es in thermodynamic equilibrium at temperature T, then such distribution
function read15

fBE(τ, x, p) = g s
{

exp
[ Es( p )
Ts(τ, x, p)

]

− 1
}−1

,

fFD(τ, x, p) = g s
{

exp
[ Es( p )
Ts(τ, x, p)

]

+ 1
}−1

,

(1.195)

where gs is the particles’ degeneracy of the specific species, i.e. the number of possible spin states (e.g. it
equals 2 for photons, that are bosons, and electrons, that are fermions). If we adopt the usual perturbative
decomposition also for the temperature of the cosmic species s,

Ts(τ, x, p) = Ts(τ) +
∞
∑

n=1

δT (n)
s (τ, x, p), (1.196)

we see that we can Taylor-expand Eq. (1.195), so that we find

fs(τ, x, p) = f (τ, p)− Es( p )
∂fs(τ, p)
∂Es( p )

δT (1)
s (τ, x, p)
Ts(τ)

+
∞
∑

n=2

δ f (n)
s (τ, x, p), (1.197)

which makes evident that the perturbed distribution function for cosmological particles can be physically
interpreted as its relative temperature fluctuations. In order to study the evolution of the distribution func-
tion, we need some kind of differential equation for fs(τ, x, p). What we are looking for is provided by the

15The careful reader expert in statistical mechanics should notice that we are setting the chemical potential equal to zero. This
can be done by exploiting the fact, as shown e.g. in Ref. [155], such a contribution is subdominant.
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Figure 1.4: A collision of a particle 1 with initial three-momentum q1 and energy E1(q1) with a particle 2
with initial three-momentum q2 and energy E2(q2). Here, the effect of the collision is just that ofmodifying
the three-momentum of the particles (i.e. it is not an annihilation or a creation process), so that, after the
collision, the particles have three-momentap1 andp2, and their energies areE1( p1 ) andE2( p2 ), respectively.

Boltzmann equation,
d
dλs

fs(τ, x, p) = C[ fs(τ, x, p)], (1.198)

which associates in a very general way the variation of the distribution function of the species swith respect
to an affine parameter λs with a collision term C, a functional of the distribution function itself describing
the interactions among the particles constituting the systemunder investigation. We can rewrite Eq. (1.198)
as

∂

∂τ
fs(τ, x, p) =

√

−g00(τ, x)
E( p )

{

C[ fs(τ, x, p)]−
dx i

dλs
∂i fs(τ, x, p)−

dp i

dλs
∂

∂p i fs(τ, x, p)
}

(1.199)

where we have substituted Eq. (1.135).

Collision Term of the Boltzmann Equation

As justmentioned,C is a scalar functionwhich sources themodificationof thedistribution functionof some
particles of the species s as a consequence of some scattering processes or particles decays. Therefore, we can
write themore general collision term as the sum of the terms coming from any kind of process involving the
particles of the species s,

C[ fs(τ, x, p)] =
∑

processes

Cprocess [ fs(τ, x, p)] . (1.200)

In order to understand what is the form of the terms at the right-hand side of Eq. (1.200), let us consider a
very standard process where a particle of a species s = 1 collides with another particle of a species 2, as shown
inFig. 1.4. In a completely generalway,we can reasonably define the collision term for such a (1, 2) 7→ (1, 2)
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process as

C(1, 2) 7→ (1, 2)[ f1(τ, x, p1)] ≡
∫

d 3p 2

(2π)3

∫

d 3q1
(2π)3

∫

d 3q2
(2π)3

∫

d E2( p2 )
∫

d E1(q1)
∫

d E2(q2)
{

f1 (τ, x, q1) f2 (τ, x, q2)W [E1(q1), E2(q2); q1, q2|E1( p1 ), E2( p2 ); p1, p2]

− f1 (τ, x, p1) f2 (τ, x, p2)W [E1( p1 ), E2( p2 ); p1, p2|E1(q1), E2(q2); q1, q2]
}

,

(1.201)

whereW is a scalar function encoding the information about the probability that such a collision process
could occur. Let us notice that the dependence of the distribution functions on τ and x is the same for any of
the distribution functions appearing in Eq. (1.201), because we can reasonably assume that the difference in
spacetime coordinates of the colliding particles before and after the collisionmay be neglected. The presence
of the distribution functions f1 and f2 is of course due to the fact that the probability that such a process
could occur must be proportional to the probability to have particles of the species 1 and 2 interacting in
the point with coordinates x at the conformal time τ. The integration over the initial three-momenta and
energies, as well over the particle 2’s final ones, is performed in order to average along our “ignorance” about
the initial states of the system and the final one of the particle 2. The difference between the braces is instead
due to the fact that the net change of number of particles of the species 1 with three-momentum p1 is given
by the gain of particles due to the collision process minus the loss of particles due to the reverse process.
Now, it is clear that, for any kind of process, functionWmust be of the form

W [E1(q1), E2(q2); q1, q2|E1( p1 ), E2( p2 ); p1, p2] =
= (2π)4|M(1, 2) 7→ (1, 2) (q1, q2|p1, p2) |2

δ [E1( p1 ) + E2( p2 )− E1(q1)− E2(q2)] δ (3) (p1 + p2 − q1 − q2)

δ
[

E 2
1 ( p1 )−m 2

1 − p 2
1
]

Θ [E1( p1 )] δ
[

E 2
2 ( p2 )−m 2

2 − p 2
2
]

Θ [E2( p2 )]
δ
[

E 2
1 (q1)−m 2

1 − q 2
1
]

Θ [E1(q1)] δ
[

E 2
2 (q2)−m 2

2 − q 2
2
]

Θ [E2(q2)] ,

(1.202)

i.e. it has to be equal to another function (2π)4|M2
(1, 2) 7→ (1, 2)|with the samephysicalmeaningmultiplied by

several Dirac deltas enforcing the dispersion relations of Eq. (1.134) for all the cosmic species, as well as the
conservation of the system’s energy and three-momentum. The reason we are defining a squared quantity
instead of just M is to ensure the positiveness, given its probabilistic nature. Moreover, such a function
has to be multiplied by some Heaviside functions guaranteeing that the particles’ energy is positive. Now,
if we substitute Eq. (1.201), we see that we can easily evaluate the integrals over the particles’ energies. For
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instance, we have
∫

d E2( p2 ) δ
[

E 2
2 ( p2 )−m 2

2 − p 2
2
]

Θ [E2( p2 )] =

=

∫ +∞

0
d E2(p2)







δ
[

E2( p2 )−
√

m 2
2 + p 2

2

]

2
√

p 2
2 +m 2

2
−

δ
[

E2( p2 ) +
√

m 2
2 + p 2

2

]

2
√

p 2
2 +m 2

2







=
1

2E2( p2 )
,

(1.203)

where we have used Eq. (1.83). Therefore, we find

C(1, 2) 7→ (1, 2)[ f1(τ, x, p1)] ≡
∫

d 3p 2

(2π)32E2( p2 )

∫

d 3q1
(2π)32E1(q1)

∫

d 3q2
(2π)32E2(q2)

[

f1 (τ, x, q1) f2 (τ, x, q2)|M(1, 2) 7→ (1, 2) (q1, q2|p1, p2) |2

− f1 (τ, x, p1) f2 (τ, x, p2)|M(1, 2) 7→ (1, 2) (p1, p2|q1, q2) |2
]

(2π)4δ (3) (p1 + p2 − q1 − q2) δ [E1( p1 ) + E2( p2 )− E1(q1)− E2(q2)] .

(1.204)

Now, let us take a moment to understand what the quantity |M|2 is: as said, this function encodes the
information about the probability that the particles’ collision can occur. Hence, it must be related to the
fundamental interactions between the particles themselves, that are quantum objects whose collision could
take place at very high energy (and so relativistic) regimes. The theoretical framework combining quantum
mechanics with special relativity, allowing us to understand the behaviour of particles at both small scales
and high energies isquantumfield theory (QFT),which treats particles as excitations of underlying fields16,
and interactions as mediated by the exchange of virtual particles. This formalism is crucial for accurately
modeling and predicting the behavior of particles in the subatomic world, making it a fundamental theory
in modern physics. According to QFT, the quantity |M|2 is the Feynman amplitude of the process, and it
is directly related to the process’ differential cross-section as (see e.g. Ref. [156])

dσ
dΩ1

(q1, q2, p1, p2)
∣

∣

∣

(1, 2) 7→ (1, 2)
≡

≡ |p1|2
∣

∣M(1, 2) 7→ (1, 2)(q1, q2|p1, p2)
∣

∣

2

32π2vrelE1(q1)E2(q2)E1( p1 )E2( p2 )

{

∂ [E1( p1 ) + E2( p2 )]
∂|p1|

}−1

,

(1.205)
16For instance, photons are excitations of the electromagnetic field.
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where the conservation of energy and three-momentum has to be understood. To clarify our notation, let
us just mention that here dΩ1 ≡ d2p̂1 = d cos ϑp1dφp1 denotes the infinitesimal solid angle of the scattered
particle 1 and vrel is the relative velocity between the particle 1 and the particle 2 before the collision. In
fact, the cross-section of a process represents the probability per unit area for particles to undergo a specific
interaction or scattering when they interact through the fields described by the theory. It plays the role of a
fundamental quantity used to calculate the likelihood of particle interactions in high-energy particle physics
experiments. However, let us just mention that Eq. (1.205) is valid only if after the process we have the same
two particles we had before it: the generalization to the (1, 2) 7→ (3, 4, 5, . . . ) case is straightforward
and it can be found e.g. in Refs. [120, 156]. Now, under the reasonable assumption that the amplitude for
forward and reverse reactions is the same, we can rewrite Eq. (1.204) as

C(1, 2) 7→ (1, 2)[ f1(τ, x, p1)] ≡

≡
∫

d 3p 2

(2π)32E2( p2 )

∫

d 3q1
(2π)32E1(q1)

∫

d 3q2
(2π)32E2(q2)

(2π)4|M(1, 2) 7→ (1, 2) (q1, q2|p1, p2) |2δ [E1( p1 ) + E2( p2 )− E1(q1)− E2(q2)]
[

f1 (τ, x, q1) f2 (τ, x, q2)− f1 (τ, x, p1) f2 (τ, x, p2)
]

δ (3) (p1 + p2 − q1 − q2) .

(1.206)

Our heuristic derivation of the collision term for the Boltzmann equation is correct, but it has lead to a result
which is good enough for our purposes but it is not the most general one. First of all, we have assumed that
a process of the type (1, 2) 7→ (1, 2) but, as mentioned before, other more complicated situations can
occur, as well as decay process of the type 1 7→ (2, 3, . . . ), and also we have neglected the effects due to
the so called Bose enhancement and Pauli blocking, which should modify a bit Eq. (1.206) to take into
account the fact that it is easier to produce a boson rather than a fermion. This is due to thePauli exclusion
principle, stating that no two fermions can occupy the same quantum state simultaneously, so that there
are more states available to bosons than fermions. However, as discussed e.g. in Ref. [142], we can safely
neglect such corrective terms for our purposes.

General Perturbed Boltzmann Equation

Armed with Eq. (1.206) we are now able to approach the resolution of Eq. (1.199), but a brute force ap-
proachwouldbe extremely challenging, and sowe are going to take advantageof theperturbative approached
used insofar. Indeed, we are going to derive the Boltzmann equation at zero-th and first order in perturba-
tion theory for the particles of a species s, and obviously to do that we are going to stop the perturbative
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expansion of all the cosmological quantities before the second order

∂

∂τ
[

f (τ, p) + δ f (1)
s (τ, x, p)

]

+
a(τ)
Es( p )

dx i

dλs
∂i δf (1)

s (τ, x, p) =

=
a(τ)
Es( p )

C[ fs(τ, x, p)]−
dp
dτ

∂

∂p
[

fs(τ, p) + δ f (1)
s (τ, x, p)

]

+ . . . ,

(1.207)

with the dots ( · · · ) denoting terms beyond the linear order. Let us notice that in Eq. (1.207) we have
decomposed p i = pp̂ i and used that dp̂i/dλs, as well as the collision term, are vanishing at zero-th order
in perturbation theory, because there is nothing that could deviate the path of a particle in a homogeneous
and isotropic space nor produce collisions. In order to further proceed, we have to understand what is the
perturbative order of dp/dτ. This can be done by taking the derivative of the energy with respect to the
conformal time in the Poisson gauge, so that, by using Eq. (1.135), we get

dEs( p )
dτ

= H(τ)Es( p ) + Es( p )
∂

∂τ
Ψ (1)(τ, x) +

a2(τ)
Es( p )

[

1+ 2Ψ (1)(τ, x)
] d 2x 0

dλ 2
s

+ . . . , (1.208)

However, by looking at Eq. (1.128), we see that the time component of the geodesic equation yields

d 2x 0

dλ 2
s

= −Γ 0
00
dx 0

dλs
dx 0

dλs
− 2Γ 0

0i
dx 0

dλs
dx i

dλs
− Γ 0

ij
dx i

dλs
dx j

dλs
, (1.209)

where we can evaluate the perturbed Christoffel symbols in the Poisson gauge by means of xPand,

Γ 0
00(τ, x) = H(τ) +

∂

∂τ
Ψ (1)(τ, x) + . . . (1.210)

Γ 0
0i(τ, x) = H(τ) ω (1)

i (τ, x) + ∂iΨ (1)(τ, x) + . . . (1.211)

Γ 0
ij (τ, x) =

{

H(τ)
[

1+ 2Φ (1)(τ, x)− 2Ψ (1)(τ, x)
]

+
∂

∂τ
Φ (1)(τ, x)

}

δij (1.212)

+
1
2

[

∂iω (1)
j (τ, x) + ∂jω (1)

i (τ, x)
]

+

[

H(τ) +
1
2
∂

∂τ

]

γ (1)
ij (τ, x) + . . . .

Now, by recalling the definition of three-momentum derived in Eq. (1.139), we can easily see that for the
perturbed FLRWmetric we have

p 2 =
[

a 2(τ)δij + δg (1)ij (τ, x)
] dx i

dλ
dx j

dλ
+ . . . , (1.213)
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because any contribution coming from g0i g0j/g00 is beyond the linear order, so that Eq. (1.209) reduces to

d 2x 0

dλ 2
s

= −E 2
s ( p )
a 2(τ)

[

H(τ)− 2H(τ)Ψ (1)(τ, x) +
∂

∂τ
Ψ (1)(τ, x)

]

− 2Es( p )
a 2(τ)

[

H(τ) ω (1)
i (τ, x) + ∂iΨ (1)(τ, x)

]

pi −H(τ)δij
dx i

dλs
dx j

dλs

− p ip j

a 2(τ)

{

1
2

[

∂iω (1)
j (τ, x) + ∂jω (1)

i (τ, x)
]

+

[

H(τ) +
1
2
∂

∂τ

]

γ (1)
ij (τ, x)

}

− p 2

a2(τ)

{

H(τ)
[

2Φ (1)(τ, x)− 2Ψ (1)(τ, x)
]

+
∂

∂τ
Φ (1)(τ, x)

}

+ . . . .

(1.214)

Therefore, if we substitute such a result within Eq. (1.208), we obtain

dEs( p )
dτ

= − p 2

Es( p )

[

H(τ) +
∂

∂τ
Φ (1)(τ, x)

]

− 2p i
[

H(τ) ω (1)
i (τ, x) + ∂iΨ (1)(τ, x)

]

− 1
2

p ip j

Es( p )

[

∂iω (1)
j (τ, x) + ∂jω (1)

i (τ, x) +
∂

∂τ
γ (1)
ij (τ, x)

]

+ . . .

(1.215)

Bymeans of the dispersion relation given inEq. (1.134), we can easily evaluate the derivative of pwith respect
to the conformal time as

dp
dτ

=
dEs( p )
dτ

dp
dE( p ) =

dEs( p )
dτ

d
dEs( p )

(

√

E 2
s ( p )−m2

s

)

=
Es( p )
p

dEs( p )
dτ

, (1.216)

which is what we originally wanted. Finally, we can use the last results in such a way that Eq. (1.207) leads
to the zero-th,

[

∂

∂τ
−H(τ)p

∂

∂p

]

fs (τ, p) = 0, (1.217)
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and the first order perturbed Boltzmann equation for the species s, respectively,

[

∂

∂τ
+

p i

Es( p )
∂i −H(τ)p

∂

∂p

]

δ f (1)
s (τ, x, p)− a(τ)

Es( p )
C[ fs(τ, x, p)] =

=

{

p 2

Es( p )
∂

∂τ
Φ (1)(τ, x) + 2p i

[

H(τ) ω (1)
i (τ, x) + ∂iΨ (1)(τ, x)

]

+
p ip j

2Es( p )

[

∂iω (1)
j (τ, x) + ∂jω (1)

i (τ, x) +
∂

∂τ
γ (1)
ij (τ, x)

]

}

∂

∂p
fs(τ, p).

(1.218)

1.3.4 Compton Scattering

We now have all the necessary ingredients for fully understanding the origin of the cosmic microwave back-
ground radiation. As shown in Eq. (1.198), the evolution of the distribution function of a cosmic species,
which is fundamental for solving the perturbed Einstein equations, is sourced by all the collision processes
involving such a species, as we wrote in Eq. (1.200). In particular, we are now going to focus on photons,
since their dynamics encodes fundamental information about the electromagnetic theory. For this reason,
cosmological photons provide a “natural laboratory” for testing the Maxwell’s theory and any eventual de-
viations from it. Now, among all the possible processes where cosmological photons play a role, the most
significant one is theCompton Scattering, i.e. the collision between a photon γwith three-momentum q γ

and an electron e− with three-momentum qe,

γ(q γ) + e−(qe) ⇆ γ(pγ) + e−(pe). (1.219)

However, before to enter in the mathematical details, it is better to understand why such a process is so
important in cosmology. Indeed, the key point is that at some point, the Universe has expanded to such an
extent that it makes it less and less likely that photons and electrons will collide, so that the process defined
in Eq. (1.219) becomes more and more inefficient. Because of that, cosmological photons start to decouple
from free electrons, reaching us today. Analogously, these electrons were able to take part in the hydrogen
atoms’ recombination (p+ + e− ⇆ H + γ). However, because of the expansion of the Universe, the
overall temperature cooled down, so that cosmological photons were not able to break Hydrogen atoms
anymore. In fact, the efficient way to form hydrogen is to form it in a excited state, but when it relaxes
to the ground state, the photons emitted have not enough energy to ionize other hydrogen atoms. For
example, an electron captured in then = 2 state generates a 3.4 eVphoton. Subsequently,when the electron
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falls in the ground state, the hydrogen releases another 10.2 eV photon. Neither of the two photons has
sufficient energy for ionizing another hydrogen atom in the ground state. Therefore, almost at the same
time of recombination the decoupling of photons from electron takes place. This happens because very few
free electrons remain after hydrogen formation and therefore photons are free to propagate undisturbed
and seen by us as the CMB.Moreover, well after decoupling, ultraviolet light emitted by stars and gas is able
to ionize again hydrogen atoms, causing the so-called reionization, which is another fundamental source
of cosmological photons, as we will see. Therefore, Compton scattering is the main character in the history
of cosmic photons, and for this reason, we have now to understand its impact on their Boltzmann equation.
In the laboratory reference frame, where an incoming photons collides with an electron at rest (i.e. qe = 0),
this process canbe represented as shown inFig. 1.5. The differential cross-sectionof theCompton scattering

e−

arccos
(

q̂ γ · p̂γ
)

q γγ

e−

γ

pe

p γ

Figure 1.5: Representation of the Compton Scattering in a reference frame where the electron is initially
at rest.

is provided by theKlein-Nishina formula, which has been derived for the first time in Ref. [157] as

dσ
dΩ

(q γ, qe, p γ, pe)
∣

∣

∣

(γ, e−) 7→ (γ, e− )
=

3σT
32π

(

pγ
qγ

)2{qγ
pγ

+
pγ
qγ

+ 4
[

ελq(q̂ γ) · ελp(p̂ γ)
] 2 − 2

}

, (1.220)

where

σT ≡ 8π
3

(

e2

4πme

)2

≃ 4.329× 10−5 1/MeV2, (1.221)

is the Thomson’s cross section, with me = 0.511MeV being the electron’s mass, and ε(p̂) denotes the
polarization vector associated with a photons with three-momentum p, i.e., as we discussed in Sec. 1.1.3,
the electric field’s direction, so that by denoting with Ein and Esc the electric fields of the incoming photon
and the scattered one, respectively, we have

q̂ γ · ελq(q̂ γ) = q̂ γ · Ein(t, x) = 0, p̂ γ · ελp(p̂ γ) = p̂ γ · Esc(t, x) = 0, (1.222)
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and the labels λq, λp denote the two possible polarization states of the incoming photon and the scattered
one17 , respectively. By inverting Eq. (1.205), one could obtain the Feynman amplitude associated with the
Compton’s scattering differential cross-section. Before to do that, let us put ourselves in the reference frame
defined by Fig. 1.5, in which the electron is at rest (qe = 0): this means that the conservation of energy and
three-momentum lead to

pe = q γ − p γ =⇒ pγ = qγ +me −
√

m2
e + |q γ − pγ|2, (1.223)

where we have substituted Eq. (1.134). By solving Eq. (1.223) with respect to pγ, we find the famousComp-
ton shift formula:

pγ =
qγme

me + qγ(1− q̂ γ · p̂γ)
. (1.224)

Let us now take one of the main approximations of this section, i.e. thatme ≫ qγ: this is done by noting
that the electronmass (me ≃ 0.51MeV) is usuallymuch larger than that of the average cosmological photon
(Eγ ≲ 13.6 eV), so that the latter is almost unable to deviate the former from its path. Therefore, Eq. (1.224)
simply reduces to pγ ≃ qγ and in turn the Klein-Nishina differential cross-section simplifies to

dσ
dΩ

(q γ, qe, p γ, pe)
∣

∣

∣

(γ, e−) 7→ (γ, e− )
≃ 3σT

8π
[

ελq(q̂ γ) · ελp(p̂ γ)
]2
, (1.225)

which is the differential cross-section of theThomson scattering, i.e. the low-energy version of the Comp-
ton scattering. Now a question naturally arise: what is the Feynman amplitude which once substituted in
Eq. (1.205) will yield the Thomson cross-section? Well, to avoid any computation in quantum electrody-
namics, we are simply going to invert Eq. (1.205). Indeed, because of Eq. (1.223), we can write

∂

∂pγ
[

pγ + Ee(qe)
]

≃ me

Ee( pe )
, (1.226)

and, since the relative velocity between the electron at rest and the incoming photon is 1, we then find

|M(γ, e) 7→ (γ, e)
(

q γ, qe|p γ, pe
)

|2 ≃ 12πm2
e σT
[

ελq(q̂ γ) · ελp(p̂ γ)
]2 (1.227)

where we highlight that such an amplitude only depends on q̂ γ and p̂ γ.

17Indeed, in a three-dimensional space there are two unit vectors that are orthogonal to a third one.
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Boltzmann Equation for CMB Intensity

We now want to compute the intensity I of the electromagnetic radiation for cosmological photons. By
definition, intensity is nothing but a measure of the power per unit area carried by a wave, and the power is
the amount of energy carried by the wave per unit time, so that the following general relation holds true:

d
dt

[∫

d3x ϱγ(t, x)
]

≡
∫

dS · I(t, x, p̂ γ) (1.228)

where ϱγ(t, x) is the photons’ energy density, whereas I(t, x, pγ) is the intensity vectorof an electromagnetic
wave propagating in the p̂γ-direction, i.e. a vector whose magnitude is given by the properly said intensity
and whose direction is that indicating the path along which energy is being transported. It is then clear in
the case of an electromagnetic wave, the intensity vector points in the direction of the wave’s motion, i.e.
I = I p̂ γ. Without loss of generality, let us now consider a spherical volume of radius |x| = r, so that we can
easily imagine that I is “piercing” such a sphere, i.e. p̂ γ · dS = r 2 d 2p̂γ, and we can rewrite Eq. (1.228) as

4π
dr
dt
r 2ϱ(t, x) =

∫

d 2p̂γ r 2 I(t, x, p̂ γ) =⇒ ϱ(t, x) =
∫ d2p̂γ

4π
I(t, x, p̂γ), (1.229)

where we have implicitly assumed that the energy density is spherically symmetric, and used that for an elec-
tromagnetic wave dr/dt = 1, since the wave-front propagates at the speed of light. Moreover, by comparing
Eq. (1.185) with Eq. (1.229), we easily notice that we must have

I(τ, x, p̂ γ) =

∫ ∞

0

dpγ p 2
γ

2π2 Eγ( pγ ) fγ(τ, x, p γ) =
π2

15
T 4
γ (τ) +

∞
∑

n=1

δI (n)(τ, x, p̂ γ), (1.230)

where we have moved from the cosmic time t to the conformal time τ, as usually, and defined

δI (n)(τ, x, p̂ γ) ≡
∫

dp p 2

2π 2 Eγ( pγ ) δf (n)
γ (τ, x, p γ). (1.231)

Letusnotice that, as a further evidenceof the validity of our approach,wehavederived theStefan-Boltzmann
law expressing the intensity of the power radiated by a photons’ distribution, i.e. I(τ) = π 2T 4

γ (τ)/15. We
nowwant to find the study the evolution of the photons’ intensity at first order in perturbation theory, and
for this reason we are going to provide a new definition,

δI (1)(τ, x, p̂γ) ≡ 4ϱγ(τ)Θ
(1)
T (τ, x, p̂ γ), (1.232)
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and we apply the
∫ [

d3pγ Eγ( pγ )
]

/(2π)3 operator to Eq. (1.218) for photons (Eγ = pγ), so that we find

[

∂

∂τ
+ p̂ i

γ∂i

]

Θ (1)
T (τ, x, p̂ γ) + G (1)(τ, x, p̂ γ) =

a(τ)
4ϱγ(τ)

∫ dpγ p2γ
2π 2 C[ fγ(τ, x, p γ)], (1.233)

where we have used the definition of energy density we gave in Eq. (1.185) together with the continuity
equation, i.e. Eq. (1.149), and defined

G (1)[τ, x, p̂ γ] ≡
∂

∂τ
Φ (1)(τ, x) + 2

[

H(τ) ω (1)
i (τ, x) + ∂iΨ (1)(τ, x)

]

p̂iγ

+

[

∂iω (1)
j (τ, x) + ∂jω (1)

i (τ, x) +
∂

∂τ
γ (1)
ij (τ, x)

] p̂ i
γ p̂

j
γ

2
.

(1.234)

According to Eq. (1.206), the collision term for the Compton scattering at first order reads

C(γ, e−) 7→ (γ, e−)[ fγ(τ, x, p γ)] =

≡
∫

d 3p e

(2π)32Ee( pe )

∫ d 3qγ
(2π)32E γ(q γ)

∫

d 3qe
(2π)32Ee(qe)

δ (3)
(

p γ + pe − q γ − qe
)

[

f γ (τ, q γ)δ f (1)
e (τ, x, qe) + δ f (1)

γ (τ, x, q γ) fe (τ, qe)

− fγ (τ, p γ)δ f (1)
e (τ, x, pe)− δ f (1)

γ (τ, x, p γ) fe (τ, pe)
]

(2π)4|M(γ, e) 7→ (γ, e)
(

q γ, qe|p γ, pe
)

|2δ
[

E γ( p γ ) + Ee( pe )− E γ(q γ)− Ee(qe)
]

,

(1.235)

which can be further simplified by integrating over pe with the help of the Dirac delta,

C(γ, e−) 7→ (γ, e−)[ fγ(τ, x, p γ)] ≃

≃
∫ d 3qγ

2q γ

∫

d 3qe
(2π)54m2

e
δ
[

p γ +
|q γ + qe − p γ|2

2me
− q γ −

q2e
2me

]

[

f γ (τ, qγ)δ f
(1)
e (τ, x, qe) + δ f (1)

γ (τ, x, q γ) fe (τ, qe)

− fγ (τ, pγ)δ f
(1)
e (τ, x, q γ + qe − p γ)− δ f (1)

γ (τ, x, p γ) fe (τ, |q γ + qe − p γ |)
]

|M(γ, e) 7→ (γ, e)
(

q γ, qe|p γ, p γ − q γ − qe
)

|2.

(1.236)
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where we have also reasonably assumed that the electron’s velocity is negligible with respect to that of the
photon, so that it behaves as a non-relativistic particle and its energy is dominated by the mass:

Ee( qe ) =
√

q2e +m2
e = me +

q2e
2me

+O(q4e /m3
e ). (1.237)

In order to further proceed we can make another approximation: since the electron mass-energy is usually
somuch larger than that of the average photon, we can assume that the latter is almost unable to deviate the
former from its path. Mathematically speaking, this implies |p γ| ≃ |q γ| ≪ |qe|, so that

|q γ + qe − p γ|2 =
q2e
2me

+
qe · (q γ − p γ)

me
+O

(

|q γ − p γ|2
)

, (1.238)

and hence the Dirac delta over the energies can be rewritten as

δ
[

p γ +
|q γ + qe − p γ|2

2me
− q γ −

q2e
me

]

≃ δ
[

p γ +
qe · (q γ − p γ)

me
− q γ

]

≃ δ( pγ − qγ) +
qe · (p γ − q γ)

me

∂δ( pγ − qγ)
∂qγ

.

(1.239)

We are now going to substitute these expression, as well as the Feynman amplitude, within Eq. (1.236), but
when doing that we also include “by hand” a summation over the photon’s initial polarization states. This
is done for exactly the same reason we are integrating over the three-momenta of the initial particles, that
is for averaging over our ignorance about the situation before the scattering process. Therefore, after some
trivial algebra, Eq. (1.236) reduces to

C(γ, e−) 7→ (γ, e−)[ fγ(τ, x, p γ)] ≃

≃ 3σT
2me

∫ d 3qγ
4πq γ

∫

d 3qe
(2π)3

∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2

{

qe · (p γ − q γ)
[

f γ (τ, qγ)− fγ (τ, pγ)
]

δ f (1)
e (τ, x, qe)

∂δ( pγ − qγ)
∂qγ

+me fe (τ, qe)
[

δ f (1)
γ (τ, x, q γ)− δ f (1)

γ (τ, x, p γ)
]

δ( pγ − qγ)
}

,

(1.240)
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where we have exploited the Dirac deltas and used that

∫

d3qe
(2π)3

qe fe(τ, qe) = ϱe(τ)
∫ 2π

0
dφqe

∫ +1

−1

dϑqe
4π







cosφqe sin ϑqe
sinφqe sin ϑqe

cos ϑqe






= 0. (1.241)

By recalling the definition of Eq. (1.184), we see that

∫

d3qe
(2π)3

fe(τ, qe) = ne(τ),
∫

d3qe
(2π)3

qe δf (1)
e (τ, x, qe) = mene(τ)ve(τ, x), (1.242)

where meve(τ, x) is, by definition, the non-relativistic three-momentum of an electron. Thanks to these
intermediate results, we are now able to rewrite Eq. (1.240) as

C(γ, e−) 7→ (γ, e−)[ fγ(τ, x, p γ)] =
3pγ
2a(τ)

dκ(τ)
dτ

∫ d 2q̂γ
4π

∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2

{

δ f (1)
γ (τ, x, p γ)− δ f (1)

γ (τ, x, pγ q̂ γ) + ve(τ, x) ·
(

p̂ γ − q̂ γ
)

pγ
∂

∂pγ
f γ (τ, pγ)

}

,

(1.243)

where we have defined the so called optical depth κ(τ) as

dκ(τ)
dτ

≡ −σT a(τ)ne(τ). (1.244)

By substituting Eq. (1.243) within Eq. (1.233) we finally find

[

∂

∂τ
+ p̂γ ·∇

]

Θ (1)
T (τ, x, p̂ γ) + G (1)(τ, x, p̂ γ) =

3
2
dκ(τ)
dτ

∫ d 2q̂γ
4π

∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2

{

Θ (1)
T (τ, x, p̂ γ)−Θ (1)

T (τ, x, q̂ γ) + ve(τ, x) ·
(

q̂ γ − p̂ γ
)

}

.

(1.245)

In order to further proceed, wemust understand how to deal with the polarization vectors, that are defined
by the property in Eq. (1.222). For instance, if we write down here the most general expression of q̂ γ in
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spherical coordinates, it follows that the polarization vector can be written as

q̂ γ ≡







cosφqγ sin ϑqγ
sinφqγ sin ϑqγ

cos ϑqγ






=⇒ ε±1(q̂ γ) =

1√
2







cos ϑqγ cosφqγ ± sinφqγ

cos ϑqγ sinφqγ ∓ cosφqγ

− sin ϑqγ






, (1.246)

since this is themost general unit vector satisfying the required properties, and, as justmentioned before, the
label λq = ±1 defines the two possible polarization states. Therefore it is possible to evaluate the following
integrals e.g. with Mathematica,

∫ d2q̂γ
4π

∑

λq=±1

[

ελp(q̂ γ) · ελq(p̂ γ)
]2

=
2
3
, (1.247)

∫ d2q̂γ
4π

q̂ γ
∑

λq=±1

[

ελq(q̂ γ) · ελp(p̂ γ)
]2

= 0, (1.248)

so that we finally find

[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

Θ (1)
T (τ, x, p̂ γ) + G (1)(τ, x, p̂ γ) =

= −dκ(τ)
dτ







ve(τ, x) · p̂ γ +
3
2

∫ d 2q̂γ
4π

∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2 Θ (1)

T (τ, x, q̂ γ)







.

(1.249)

Boltzmann Equation for CMB Polarization

After a bit of calculations we have finally found Eq. (1.249), i.e. the Boltzmann equation for the intensity
of cosmological photons at first order in perturbation theory. However, as we discussed in Sec. 1.1.3, this
is just part of the story, since also the other three Stokes parameter Q,U and V are necessary to completely
characterize any kind of electromagnetic radiation. In Eq. (1.229) we have seen that the intensity of an
electromagnetic wave is directly associated with its energy density, whose general expression can be derived
by means of the energy-momentum tensor,

ϱγ(t, x) = −T 0
0 = g0μTμ0(t, x) = −g 0μ(t, x) δ ν0

2√−g(t, x)
δ

δg μν(t, x)

∫

d4x̃
√

−g(̃t, x) Fαβ(̃t, x̃)F αβ(̃t, x̃)

= −LEM(t, x)− F 0μ(t, x)F0μ(t, x) =
1
2
[

E 2(t, x) + B 2(t, x)
]

= E 2(t, x),
(1.250)

58



where we used Eq. (1.123) and Eq. (1.44). In fact, let us notice that, in the case p̂ γ = x̂3, it is easy to see that
Eq. (1.62) yields

ϱγ(τ, x) =
∫ d2p̂γ

4π
I(t, x, p̂ γ = x̂3) = E 2

1 (t, x) + E 2
2 (t, x) = |E(x, t)|2, (1.251)

as expected. Hence our characterization of the Stokes parameter I as the intensity of the electromagnetic
wave is consistent with the definition of intensity we derived in Eq. (1.229). This should not surprise us,
since it is a manifestation of the intrinsic wave-particle duality of light, which can be described in terms of
of photons, as well as electromagnetic waves, but the two prescriptions must be consistent. Now, from a
phenomenological point of view, the Compton scattering is nothing but the collision between a photon
and an electron: when the electric field associated with such a photon interacts with the electron, this starts
to oscillate and to emit electromagnetic waves in almost all directions. In Sec. 1.1.4 we have found that the
expression of the electric field generated by a moving electron is provided by Eq. (1.95),

E(t, x) = e
∫

d̃t
4π

[1− v 2(̃t)] [x− s(̃t)− v(̃t)]
{ |x− s(̃t)| − [x− s(̃t)] · v(̃t) } 3 δ[ t̃− t+ |x− s(t)| ]

+ e
∫

d̃t
4π

[x− s(̃t)]× {[x− s(̃t)− v(̃t)]× a(̃t)}
{ |x− s(̃t)| − [x− s(̃t)] · v(̃t) } 3 δ[ t̃− t+ |x− s(t)| ].

(1.252)

However, our purpose here is to discuss about the cosmic microwave background radiation, and not all
the terms on the right-hand side of the equation above contribute to the electromagnetic energy flux as
“radiation”. Indeed, when talking about radiation, we have to consider only those contributions that give
rise to a radiated energy, i.e. something which detaches itself from the source and propagates off to infinity:
this is why we are able to see CMB photons today on Earth with our telescopes, even if the last Compton
scattering occurred billions of years ago at the borders of the observable Universe. Therefore, it is clear that
the first term of Eq. (1.252) is completely negligible when |x − s(̃t)| → +∞, with respect to the second
one, so that we can write

Esc(t, x) ≃ e
∫

d̃t
4π

[x− s(̃t)]× {[x− s(̃t)− |x− s(̃t)|v(̃t)]× a(̃t)}
{ |x− s(̃t)| − [x− s(̃t)] · v(̃t) } 3 δ[ t̃− t+ |x− s(t)| ]. (1.253)

Now, let us assume that, after the collision, the electron is moving with a non-relativistic velocity v ≪ 1 at a
distance from us which is large compared to the movements performed by the electron with respect to the
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arccos
(

q̂ γ · p̂γ
)

x̂ in
3

x̂ in
1 x̂ sc

3x̂ sc
1

Figure 1.6: Plane where the Compton scattering occurs. The unit vectors x̂ in
2 and x̂ sc

2 are equal and going
out from the page orthogonally.

origin of the reference frame, i.e. |s(t)| ≪ |x|, so that we can write

Esc(t, x) ≃
e

4π|x| {x̂× [x̂× a(t)]} . (1.254)

Now, since we are assuming a non-relativistic regime for the electron, it is clear that its acceleration can be
computed by considering the electrostatic force acting on it, i.e. that one sourced by the electric field of the
incoming photon,

me a(t) ≃ eEin(t, x, q̂ γ) =⇒ Esc(t, x, p̂ γ) ≃
√

3σT
8π|x|2

{

p̂ γ ×
[

p̂γ × Ein(t, x, q̂ γ)
]}

, (1.255)

where, by exploiting Eq. (1.41), we have also noticed that

0 = p̂γ · Esc(t, x, p̂ γ) =

√

3σT
8π|x|2

{(

p̂γ · x̂
) [

x̂ · Ein(t, x, q̂ γ)
]

− p̂γ · Ein(t, x, q̂ γ)
}

, (1.256)

which is satisfied by x̂ = ±p̂ γ, as it can be verified by direct substitution. Without loss of generality, in order
tomake advantage of the expressions for the Stokes parameters we provided in Eqs. (1.62)-(1.57), let us now
define our reference frame as shown in Fig. 1.6, in such a way that q̂ γ = x̂ in

3 and p̂ γ = x̂ sc
3 . Therefore,

by looking at Fig. 1.6, it is clear that with this simple geometry we can decompose the incoming and the
scattered electric field as

Ein(t, x, q̂ γ = x̂ in
3 ) = E in

1 (t, x)x̂ in
1 + E in

2 (t, x)x̂ in
2 (1.257)

Esc(t, x, p̂ γ = x̂ sc
3 ) = E sc

1 (t, x)x̂ sc
1 + E sc

2 (t, x)x̂ sc
2 , (1.258)
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where the two frames are related by a rotation about an angle ψ ≡ arccos
(

q̂γ · p̂γ
)

around the x̂ in
2 -axis,







x̂ sc
1

x̂ sc
2

x̂ sc
3






=







cosψ 0 − sinψ
0 1 0

sin ϑ 0 cos ϑ













x̂ in
1

x̂ in
2

x̂ in
3






, (1.259)

which means that, by recalling again Eq. (1.91), we can rewrite Eq. (1.255) as

Esc(t, x, p̂ γ = x̂ sc
3 ) =

√

3σT
8π|x|2

{[

x̂sc3 · Ein(t, x, q̂ γ = x̂ in
3 )
]

x̂sc3 − Ein(t, x, q̂ γ = x̂ in
3 )
}

,

= −
√

3σT
8π|x|2

[

E in
1 (t, x, q̂ γ = x̂ in

3 ) cos
2 ψ x̂ in

1 + E in
2 (t, x, q̂ γ = x̂ in

3 ) x̂ in
2

− E in
1 (t, x, q̂ γ = x̂ in

3 ) sinψ cosψ x̂ in
3

]

.

(1.260)

We can then derive the components of Esc through the standard procedure,

E sc
1 (t, x) = x̂ sc

1 · Esc(t, x, p̂ γ = x̂ sc
3 ) = −

√

3σT
8π|x|2 cosψE

in
1 (t, x), (1.261)

E sc
2 (t, x) = x̂ sc

2 · Esc(t, x, p̂ γ = x̂ sc
3 ) = −

√

3σT
8π|x|2E

in
2 (t, x), (1.262)

so that, by means of Eqs. (1.62)-(1.57), we are now in the position of relating the Stokes parameter of the
scattered electromagnetic wave to those of the incoming one as

Isc(t, x, p̂ γ = x̂ sc
3 ) =

3σT
8π|x|2

{

cos2 ψ 〈
[

E in
1 (t, x)

]2〉t + 〈
[

E in
2 (t, x)

]2〉t
}

, (1.263)

[Q± iU ]sc (t, x, p̂ γ = x̂ sc
3 ) =

3σT
8π|x|2

{

cos2 ψ 〈
[

E in
1 (t, x)

]2〉t − 〈
[

E in
2 (t, x)

]2〉t (1.264)

± i cosψUin(t, x, q̂ γ = x̂ in
3 )
}

,

Vsc(t, x, p̂ γ = x̂ sc
3 ) =

3σT
8π|x|2 cosψVin(t, x, q̂ γ = x̂ in

3 ). (1.265)
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By rewriting the incoming electric field in terms of its Stokes parameter, after a bit of manipulation we then
find the following relation, which holds true, as it can be verified by direct substitution:

λ−1(|x|)











Isc
(Q+ iU )sc
(Q− iU )sc

Vsc











(t, x, p̂ γ = x̂ sc
3 ) =

=



















1+ cos2 ψ
2

− sin2 ψ
4

− sin2 ψ
4

0

− sin2 ψ
2

(1+ cosψ)2

4
(1− cosψ)2

4
0

− sin2 ψ
2

(1− cosψ)2

4
(1+ cosψ)2

4
0

0 0 0 cosψ





























Iin
(Q+ iU )in
(Q− iU )in

Vin











(t, x, q̂ γ = x̂ in
3 ),

(1.266)

where we have defined λ(|x|) ≡ 3σT/(8π|x|2). However, Eq. (1.266) is valid only in the scattering plane
we have defined in Fig. 1.6, and it must be generalized to any reference frame. To do that, we have simply
to apply a rotation of an angle (say −ς ) which will bring q̂ γ from being along the x̂ in

3 axes on a generic
direction, and similarly a rotation of angle (say ξ ) which will do the same for p̂ γ. Luckily, we already know
from Sec. 1.1.3 how the Stokes parameters transform under a rotation, so that, by denoting with S(ψ) the
scattering matrix, i.e. the 4 × 4 matrix on the right-hand side of Eq. (1.266), and by R(−ς ), R(ξ ) the
rotation matrices parameterized by the angles−ς, ξ, respectively, we have

R(ξ )











Isc
(Q+ iU )sc
(Q− iU )sc

Vsc











(t, x, p̂ γ) = λ(|x|)S(ψ)R(−ς )











Iin
(Q+ iU )in
(Q− iU )in

Vin











(t, x, q̂ γ), (1.267)

which means the vector containing the Stokes parameters of the scattered electric field is obtained by multi-
plying the matrix λ(|x|)R−1(ξ )S(ψ)R(−ς) by the vector containing the Stokes parameters of the incoming
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Table 1.1: Explicit functional formof some of the spin-0 and spin-2 spherical harmonics as computed from
Eq. (1.269). The complex conjugated functions are sY ∗

ℓm(ψ, ς) = (−1)s+m
−sYℓ−m(ψ, ς).

m 0Y2m(ψ, ς) 2Y2m(ψ, ς)

0
1
4

√

5
π
(3 cos2 ψ− 1)

3
4

√

5
6π

sin2 ψ

±1
1
2

√

15
2π

sinψ cosψ e±iς 1
4

√

5
π
sinψ (1∓ cosψ)e±iς

±2
1
4

√

15
2π

sin2 ψ e±2iς 1
8

√

5
π
(1∓ cosψ)2e±2iς

one18. After some trivial algebra, we then find

R−1(ξ )S(ψ)R(−ς ) =











1 0 0 0
0 e−2iξ 0 0
0 0 e2iξ 0
0 0 0 1











S(ψ)











1 0 0 0
0 e−2iς 0 0
0 0 e2iς 0
0 0 0 1











=
1
2



















1+ cos2 ψ −e−2iς sin
2 ψ
2

−e2iς
sin2 ψ
2

0

−e−2iξ sin2 ψ e−2i(ξ+ς) (1+ cosψ)2

2
e−2i(ξ−ς) (1− cosψ)2

2
0

−e 2iξ sin2 ψ e 2i(ξ−ς) (1− cosψ)2

2
e 2i(ξ+ς) (1+ cosψ)2

2
0

0 0 0 2 cosψ



















.

(1.268)

In order to further proceed, it is convenient to collect the whole matrix’s functional dependence on the
angles ψ, ς in some special functions called spin-weighted spherical harmonics (see Refs. [158, 159]),

sYℓm(ψ, ς) =
(

− s
|s|

)s
√

(l− |s|)!
(l+ |s|)!

|s|
∑

j= 0

(

|s|
j

)

(

is
|s|

) j
∂ |s|−j

∂ψ |s|−j
1

sin j(ψ)
∂ j

∂ς j 0
Yℓm(ψ, ς), (1.269)

where a non-vanishing result is obtained only if |m|, |s| < ℓ, and the 0Yℓm(ψ, ς) can be found e.g. in the
tables of the ParticleDataGroup. In fact, for sake of simplicity, we have computed the spin-weighted spheri-
cal harmonics relevant for us, and collected them inTab. 1.1, so that it is possible to verify that the following

18Indeed, the function λ(|x)| only depends on the modulus of x, and hence it is not affected by a rotation.
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expression, derived in Ref. [160] starting from the results present in Ref. [161], holds true:

3
2

√

5
π
R−1(ξ )S(ψ)R(−ς) =

=















0Y20(ψ, ς) + 2
√
50Y00(ψ, ς) −

√

3
20Y2−2(ψ, ς) −

√

3
2 0Y22(ψ, ς) 0

−
√
6e−2iξ

2Y20 3e−2iξ
2Y2−2(ψ, ς) 3e−2iξ

2Y22(ψ, ς) 0
−
√
6e 2iξ−2Y20(ψ, ς) 3e 2iξ−2Y2−2(ψ, ς) 3e 2iξ−2Y22(ψ, ς) 0

0 0 0
√
15 0Y10(ψ, ς)















.

(1.270)

We can further simplify such a result, by exploiting the addition theorem of spherical harmonics,

ℓ
∑

m=−ℓ

s1Y ∗
ℓm(ϑqγ ,φqγ) s2Yℓm(ϑpγ ,φpγ) =

√

2ℓ+ 1
4π s2Yℓ−s1(ψ, ς)e−is2ξ, (1.271)

which relates the set of angles defining p̂ γ and q̂ γ,

p̂ γ ≡
(

cosφpγ sin ϑpγ , sinφpγ sin ϑpγ , cos ϑpγ
)

, (1.272)

q̂ γ ≡
(

cosφqγ sin ϑqγ , sinφqγ sin ϑqγ , cos ϑqγ
)

, (1.273)

to the so called Euler angles ς, ψ, ξ as shown in Fig. 1.7. Therefore, we find

R−1(ξ )S(ψ)R(−ς)− 4π√
15

1
∑

m=−1











0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0Y ∗

1m 0Y1m











(q̂ γ, p̂ γ) =

=
4π
15

2
∑

m=−2













5
2π

δm0 + 0Y ∗
2m 0Y2m −

√

3
2 2Y ∗

2m 0Y2m −
√

3
2−2Y ∗

2m 0Y2m 0

−
√
6 0Y ∗

2m 2Y2m 3 2Y ∗
2m 2Y2m 3−2Y ∗

2m 2Y2m 0
−
√
6 0Y ∗

2m −2Y2m 3 2Y ∗
2m −2Y2m 3−2Y ∗

2m −2Y2m 0
0 0 0 0













(q̂ γ, p̂ γ).

(1.274)

where the complex conjugates spherical harmonics depend on q̂ γ whereas the others depend on p̂ γ. Now
we substitute such a result within Eq. (1.266), so that we finally find the expression of the Stokes parameters
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x̂1

x̂2

x̂3

ψ

ξ ς

(ϑqγ ,φqγ)

(ϑpγ ,φpγ)

Figure 1.7: A rotation from (ϑpγ ,φpγ) through the origin to (ϑqγ ,φqγ) is equivalent to a direct rotation by
the Euler angles (ς,ψ, ξ). In fact, these angles represent the rotation by ς from the p̂ γ = x̂3 frame to the
scattering frame, by the scattering angle ψ, and by ξ back into the p̂ γ frame.

for the scattered electric field in terms of incoming one’s those,











Isc
(Q+ iU )sc
(Q− iU )sc

Vsc











(t, x, p̂ γ) =
σT

4π|x|2











Iin(t, x, q̂ γ)

0
0
0











+
σT

10|x|2
2
∑

m=−2

Pm(q̂ γ, p̂ γ)











Iin
(Q+ iU )in
(Q− iU )in

0











(t, x, q̂ γ)

+
3σT

2
√
15|x|2

1
∑

m=−1
0Y ∗

1m(q̂ γ) 0Y1m(p̂ γ)











0
0
0

Vin(t, x, q̂ γ)











,

(1.275)
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where to lighten up the notation we have defined the following matrix:

Pm(q̂ γ, p̂ γ) ≡















0Y ∗
2m 0Y2m −

√

3
2 2Y ∗

2m 0Y2m −
√

3
2−2Y ∗

2m 0Y2m 0

−
√
6 0Y ∗

2m 2Y2m 3 2Y ∗
2m 2Y2m 3−2Y ∗

2m 2Y2m 0
−
√
6 0Y ∗

2m −2Y2m 3 2Y ∗
2m −2Y2m 3−2Y ∗

2m −2Y2m 0
0 0 0 0















(q̂ γ, p̂ γ). (1.276)

If we multiply both sides of Eq. (1.275) by ne(τ)a(τ)|x|2 and then apply the
∫

d2q̂γ operator, we get

∫

d2q̂γne(τ)a(τ)|x|2











Isc
(Q+ iU )sc
(Q− iU )sc

Vsc











(t, x, p̂ γ) = −dκ(τ)
dτ

∫ d2q̂γ
4π











Iin(t, x, q̂ γ)

0
0
0











− dκ(τ)
dτ

4π
10

∫ d2q̂γ
4π

2
∑

m=−2

Pm(q̂ γ, p̂ γ)











Iin
(Q+ iU )in
(Q− iU )in

0











(t, x, q̂ γ)

+
6π√
15

dκ(τ)
dτ

∫ d2q̂γ
4π

1
∑

m=−1
0Y ∗

1m(q̂ γ) 0Y1m(p̂ γ)











0
0
0

Vin(t, x, q̂ γ)











.

(1.277)

Let us now focus on Isc: we know that thanks to Eq. (1.255), we can write

|Esc(t, x, p̂ γ)|2 =
√

3σT
8π|x|2

{

[p̂ γ · Ein(t, x, q̂ γ)]p̂ γ − Eint(t, x, q̂ γ)
}

· Esc(t, x, p̂ γ)

= −
√

3σT
8π|x|2 |Esc(t, x, p̂ γ)||Ein(t, x, q̂ γ)|2Êin(q̂ γ) · Êsc(p̂ γ)

(1.278)

so that, after dividing by |Esc(t, x, p̂ γ)| and squaring the result, it becomes evident that if Eq. (1.278) holds
true, then can write

Isc(t, x, p̂ γ) =
3σT

8π|x|2
∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2 Iin(τ, x, q̂ γ), (1.279)
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It is then clear that the right-hand side of Eq. (1.277) can be rewritten as

4π ne(τ)a(τ)|x|2











Isc
(Q+ iU )sc
(Q− iU )sc

Vsc











(t, x, p̂ γ) =

=

∫ d2q̂γ
4π















−3
2
dκ(τ)
dτ

∑

λq

[

ελq(q̂ γ) · ελp(p̂ γ)
]2 4ϱγ(τ)Θ

(1)
T (τ, x, q̂ γ)

4π ne(τ)a(τ)|x|2 [Q+ iU ]sc (t, x, p̂ γ)

4π ne(τ)a(τ)|x|2 [Q− iU ]sc (t, x, p̂ γ)

4π ne(τ)a(τ)|x|2Vsc(t, x, p̂ γ),















,

(1.280)

where, after having recalled that at first order in perturbation theory I ≃ 4ϱγΘ
(1)
T , we see that the first row

of such a matrix equation is exactly the right-hand side of Eq. (1.249) times 4ϱγ. Hence, this implies that
the right-hand side of Eq. (1.249) must be equal to the right-hand side of Eq. (1.277) divided by 4ϱγ. It
then follows that if this equality holds true for the Stokes parameter associated with the intensity, the same
will occur also for the other Stokes parameter, whose left-hand side can be easily built in analogy with I.
Therefore, by defining some new quantities in the very same fashion of Θ (1)

T ,











Θ (1)
T

+Θ
(1)
P

−Θ
(1)
P

Θ (1)
V











(τ, x, p̂ γ) ≡
1

4ϱγ(τ)











Isc
(Q+ iU)sc
(Q− iU)sc

Vsc











(τ, x, p̂ γ), (1.281)

we find the final form of the Boltzmann equations for cosmic photons at first order in perturbation theory,
[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

Θ(1)
T (τ, x, p̂γ) = S(1)

T (τ, x, p̂ γ), (1.282)
[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

±Θ
(1)
P (τ, x, p̂γ) = ±S(1)

P (τ, x, p̂ γ), (1.283)
[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

Θ(1)
V (τ, x, p̂γ) = S(1)

V (τ, x, p̂ γ), (1.284)
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where we have defined the source terms of the Boltzmann equation as

S(1)
T (τ, x, p̂ γ) ≡ −G (1)(τ, x, p̂ γ)−

dκ(τ)
dτ

[

1
4
δ (1)γ (τ, x) + ve(τ, x) · p̂ γ

]

−
√

3
2
dκ(τ)
dτ

∫ d2q̂γ
10

2
∑

m=−2
0Y2m(p̂ γ)

[

√

2
3 0Y ∗

2m(q̂ γ)Θ
(1)
T (τ, x, q̂ γ)

− 2Y ∗
2m(q̂ γ) +Θ

(1)
P (τ, x, q̂ γ)− −2Y ∗

2m(q̂ γ) −Θ
(1)
P (τ, x, q̂ γ)

]

,

(1.285)

±S(1)
P (τ, x, p̂ γ) ≡

3
10

dκ(τ)
dτ

∫

d2q̂γ
2
∑

m=−2
±2Y2m(p̂ γ)

[

√

2
3 0Y ∗

2m(q̂ γ)Θ
(1)
T (τ, x, q̂ γ)

− 2Y ∗
2m(q̂ γ) +Θ

(1)
P (τ, x, q̂ γ)− −2Y ∗

2m(q̂ γ) −Θ
(1)
P (τ, x, q̂ γ)

]

,

(1.286)

where we have used Eq. (1.229) and the definition of density contrast we gave in Eq. (1.193), whereas

S (1)
V (τ, x, p̂ γ) ≡

√

3
5
dκ(τ)
dτ

∫ d2q̂γ
2

1
∑

m=−1
0Y1m(p̂ γ)0Y ∗

1m(q̂ γ)Θ
(1)
V (τ, x, q̂ γ). (1.287)

These source terms have been obtained by simply collecting together all terms on the right-hand side of the
Boltzmann equations, and by writing explicitly the matrix product between the matrix Pm and the vector
containing the Stokes parameter of the incoming photon, as it follows from Eq. (1.277). Let us notice
that V is not coupled with the other Stokes parameter, and this is a direct consequence of the fact that the
Compton scattering is unable to produce circular polarization, but just linear one. Moreover, Eqs. (1.282)-
(1.284) have been derived byworking at first order in perturbation theory, but by repeating all the procedure
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we have described in this section for any order, it is possible to generalize such results,

[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

Θ(n)
T (τ, x, p̂γ) = S(n)

T (τ, x, p̂ γ), (1.288)

[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

±Θ
(n)
P (τ, x, p̂γ) = ±S(n)

P (τ, x, p̂ γ), (1.289)

[

∂

∂τ
+ p̂γ ·∇− dκ(τ)

dτ

]

Θ(1)
V (τ, x, p̂γ) = S(n)

V (τ, x, p̂ γ), (1.290)

where the conversion factor connecting the Stokes parameters to the Θ′s is still just a function of conformal
time but not necessary 4ϱγ, and where the n-th order source functions have more complicated expressions
which can be found e.g. in Refs. [162–168]. However, what is true at any perturbative order is that we can
decompose such source functions as

±S (n)
P (τ, x, p̂ γ) ≡ −dκ

dτ

√

6π
5

2
∑

m=−2
±2Y2m(p̂ γ)Π (n)

m (τ, x), (1.291)

so that, for instance, by comparing Eq. (1.291) with Eq. (1.286), we can easily infer that

Π (1)
m (τ, x) =

√

6π
5

∫ d2q̂γ
4π

[

2Y ∗
2m(q̂ γ) +Θ

(1)
P (τ, x, q̂ γ) + −2Y ∗

2m(q̂ γ) −Θ
(1)
P (τ, x, q̂ γ)

−
√

2
3 0Y ∗

2m(q̂ γ)Θ
(1)
T (τ, x, q̂ γ)

]

.

(1.292)

However, we are not going to solve here the perturbed Boltzmann equations, since we prefer to directly do
that in Sec. 2.2when also the contribution coming fromcosmicbirefringence are taken into account. Finally,
let usmention here that our derivation is correct but not themost rigorous one, which can be found instead
in Ref. [169].
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2
Theory of Cosmological Birefringence

In the previous chapterwe have reviewed the basics of theCMBpolarization theory, andherewe are going to
introduce the main topic of this thesis: cosmic birefringence. In fact, Chap. 1 had two purposes: providing
the standard mathematical formalism and definitions to the reader, and explaining what is the description
of the CMB polarization in the context of the standard cosmological paradigm. However, what if such a
model can be extended? Indeed, as discussed in Sec. 1.3.1, the ΛCDMmodel is literally made up by Λ as a
candidate for dark energy, and dark matter, and we do not know what is the exact nature of none of them.
Therefore, it becomes quite natural trying to stress the paradigm e.g. by introducing extra cosmic species in
order to explain the dark sector of the Universe, or investigate the phenomenological consequences of the
modification of the fundamental theories ruling the Universe, such as gravity or electromagnetism. In this
thesis, we are particularly interested in the possibility that, as well as the weak interactions (see Ref. [170])
also the electromagnetic theory could encode some parity-breaking signatures. In order to address this in-
triguing question, extensions of Maxwell’s electromagnetism have been proposed in the literature, e.g. in
the form of extra couplings between photons and new cosmic fields. As we will see in the next sections, a
phenomenological consequence of this extension is the rotation of the photons’ linear polarization plane
of an angle α, which could have left measurable imprints in the CMB polarization signal. In fact, cosmic
birefringence yields a modification of the observed CMB power spectra and in particular provides a non-
vanishing value for the parity-breaking cross-correlations TB and EB (see e.g. Refs. [2, 89]). As we will
show in the course of this chapter, birefringence is a propagation effect and therefore larger is the path of
the photon, larger will be the probability to produce an appreciable value for α. This is the reason why the
most promising observations of such a phenomenon come from cosmology: since CMB photons represent
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the oldest source of electromagnetic radiation in the Universe, they have traveled the longest possible path.
Constraining parity-violation from CMB data is a well known historical effort for cosmologists, but in the
last years there has been an increasing amount of important observational constraints on cosmic birefrin-
gence: these results. In particular, the authors of Ref. [101], by using Planck maps from the third public
release (PR3), have been able to extract a promising measurement of a non-vanishing birefringence angle,
and then such a treatment has been also extended to PR4 in Ref. [106], yielding the tantalizing result of
α = (0.30± 0.11)◦. Similar results come by a joint analysis of polarization data from the space missions
WMAP andPlanck, as shown inRef. [92]. Although there exists the possibility that this effect is just caused
by interstellar dust emission, as discussed e.g. in Refs. [104, 110, 112–116], confirming these detections by
observations with higher statistical significance in the future might have a profound implication for funda-
mental physics. The Planck result mentioned before has been possible thanks to a new technique which
takes also into account information present in the Galactic foreground emission. Indeed, if one relied only
on the CMB power spectra, it would not be possible to distinguish between α and a miscalibration of the
instrumental polarization angle (see Refs. [90, 107, 108, 111]). However, since, as we will show, the bire-
fringence angle is proportional to the difference between the value of the scalar field inducing birefringence
today and that one at the emission time of the photon, it is reasonable to expect that the polarized emission
fromourGalaxy is only negligibly affected by cosmic birefringence. Therefore, it is possible to use this prop-
erty to isolate the two different rotation angles (see Ref. [109]). However, as we will see in the next sections,
the fact that the whole birefringence effect can be parameterized by a single number, i.e. the birefringence
angle, is possible only if we assume that photons of the CMB were all emitted at the recombination time.
However, they are instead statistically distributed over the photon visibility function, and hence α should
be a function not a number. This is a crucial point that we are briefly mentioning right now, but that will
follows in a very natural way after having developed the mathematical formalism needed for understanding
cosmic birefringence. The structure of the chapter is organized as follows. In Sec. 2.1 wemathematically re-
view the phenomenon of cosmic birefringence, mainly following Ref. [79]. In Sec. 2.2 we show the impact
of cosmic birefringence on the Boltzmann equation of CMB polarization, mainly following Ref. [171]. In
Secs. 2.3-2.4 we discuss how it is possible to exploit a tomographic description of cosmic birefringence to
probe axion-like fields as candidates for dark matter or dark energy, mainly following Ref. [77].

2.1 A Parity-Violating Extension of Electrodynamics

In Sec. 1.1 we have partially reviewed the standard formulation of electromagnetism: here our purpose is
instead to investigate the phenomenological consequences of a parity-violating deviation from such a theory.
In particular, the modification we are going to consider involves adding the so-calledChern-Simons term
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to the Maxwell’s action [172],

S =
∫

d4x
√

−g
[

− 1
4
F μνFμν + χμAν F̃ μν

]

. (2.1)

where F̃ μν is the dual electromagnetic tensor as defined in Eq. (1.28), and χμ is a yet unspecified four-vector.
As we are going to see, this simple extension of standard electromagnetism has an important impact on
cosmological observables, since it is responsible for a parity-breaking phenomenon affecting the CMB po-
larization, named cosmic birefringence (see e.g. Refs. [1, 2, 79]). We start by determining under which
conditions the theory defined in Eq. (2.1) is gauge-invariant, in the same sense we expressed in Eq. (1.21).
Indeed, this is due to the fact we want to consider a “new” theory of electrodynamics able to produce the
parity-violating signatures we are interested in, but preserving the electromagnetic field’s gauge-invariance.
In fact, gauge-transforming Eq. (2.1) yields

S 7→ S+
∫

d4x
√

−g χμ∇ν h F̃ μν = S−
∫

d4x
√

−g h
(

∇ν χμ
)

F̃ μν

= S+
1
2

∫

d4x
√

−g h F̃ μν
(

∇μ χν −∇ν χμ
)

,

(2.2)

where we have integrated by parts and used that we already know Fμν is gauge-invariant, whereas, by defini-
tion, the dual Maxwell tensor satisfies Eq. (1.102). Gauge invariance requires that S 7→ S for an arbitrary
scalar function h, and the non-trivial way this can happen is for χμ = −(β/2)∇μ χ, i.e. if χμ is the covariant
derivative of a scalar field χ times a coupling constant−β/2, since, according to Eq. (1.100), we have

∇μ χν −∇ν χμ =
β
2

[

∂ν ∂μ χ− Γ σ
νμ∂σ χ− ∂μ ∂ν χ+ Γ σ

μν∂σ χ
]

= 0. (2.3)

Therefore, because of gauge-invariance, after integrating by parts, the theory defined in Eq. (2.1) simply
reduces to

S =
∫

d4x
√

−g
[

− 1
4
F μνFμν +

β
4
χFμνF̃ μν

]

. (2.4)

We can easily find the equation of motion associated with the action above by applying the Hamilton’s
principle, as stated in Eq. (1.15), but with the rules collected in Eq. (1.99),

δS
δAμ

= 0 =⇒ ∇μF μν = β F̃ μν∇μ χ. (2.5)
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Now, by recalling the expression of the commutator for covariant derivatives we provided in Eq. (1.106), it
is not difficult to show that the following identity holds,

∇μFρσ +∇ρFσμ +∇σFμρ =
[

∇ρ,∇σ
]

Aμ +
[

∇σ,∇μ
]

Aρ +
[

∇μ,∇ρ
]

Aσ

= −g αβAα
(

Rβμρσ + Rβρσμ + Rβσμρ
)

= 0,

(2.6)

because of the first Bianchi identity, as shown in Eq. (1.105). Therefore, by applying the ∇μ operator to
Eq. (2.6) we get

∇ μ∇μFρσ = −g μν
{[

∇ν,∇ρ
]

+∇ρ∇ν
}

Fσμ − gμν {[∇ν,∇σ] +∇σ∇ν} Fμρ
= β

[

∇ρ
(

F̃μσ∇ μχ
)

−∇σ
(

F̃μρ∇ μχ
)]

+ g μν
(

FμρRνσ − FμσRνρ
)

− F μνRμνρσ,
(2.7)

where we have used again Eq. (1.106) together with Eq. (1.105) to invert the order of differentiation, and
substituted Eq. (2.5).

2.1.1 Solution of theModifiedMaxwell Equations

Up to now, we have derived three differential equations involving Fμν, i.e. Eqs. (2.5)-(2.7), but solving them
by brute force will be extremely challenging and the risk is that of losing the physical understanding of what
is the impact of the Chern-Simons coupling on the theory of electromagnetism. In fact, we are going to
approach the problem by following the original derivation shown in Ref. [79], and to adopt the geometric
optics approximation (GOA), which is valid whenever the wavelength of the electromagnetic waves we
are considering is very short compared to the length scales associated with the curvature of spacetime (see
e.g. Ref. [127]), so that the waves can be regarded locally as plane waves propagating through a spacetime of
negligible curvature. In such a case we can then disregard the terms depending on the Riemann and Ricci
tensors in Eq. (2.7) and also assume the following ansatz for the electromagnetic tensor:

Fμν =

[

∞
∑

n=0

ε n F (n)
μν

]

exp
[

−Ξ
iε

]

, (2.8)

being Ξ is a real scalar function and ε a real small parameter (i.e. |ε| ≪ 1), whereas the F μν
(n)’s form a set of

tensors defining such a perturbative expansion, so that all the “post-GOA” corrections are put into them
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and none are put into Ξ. We substitute now Eq. (2.8) in Eqs. (2.6), finding

0 =
∞
∑

n=0

exp
[

−Ξ
iε

]

{

ε n
[

∇μF (n)
ρσ +∇ρF (n)

σμ +∇σF (n)
ρσ

]

+ iε n−1
[

F (n)
ρσ ∇μ + F (n)

σμ ∇ρ + F (n)
ρσ ∇σ

]

Ξ
}

,

(2.9)

which at dominant order (i.e. n = 0, since ε is a small quantity) reduces to
[

F (0)
ρσ ∇μ + F (0)

σμ ∇ρ + F (0)
ρσ ∇σ

]

Ξ = 0. (2.10)

Let us notice that Eq. (2.10) is telling us that F (0)
μν must be an antisymmetric tensor like Fμν, which means

that we can define it as
F (0)

μν ≡ A (0)
ν ∇μΞ−A (0)

μ ∇νΞ, (2.11)

since this identically solves Eq. (2.10). Similarly, by substituting the GOA expansion in Eq. (2.7) and drop-
ping out the terms proportional to the Ricci and Riemann tensors, we get

∞
∑

n=0

{

ε n∇ μ∇μF (n)
ρσ + iε n−1

[

F (n)
ρσ ∇ μ + 2∇ μF (n)

ρσ

]

∇μΞ− ε n−2F (n)
ρσ ∇μΞ∇ μΞ

}

=

= −β
∞
∑

n=0

{

ε n
[

∇σ F̃ (n)
μρ −∇ρ F̃ (n)

μσ + F̃ (n)
μρ ∇σ − F̃ (n)

μσ ∇ρ

]

+ iεn−1
[

F̃ (n)
μρ ∇σ − F̃ (n)

μσ ∇ρ

]

Ξ
}

∇μχ,

(2.12)

whose dominant contribution is again the n = 0 one, yielding the following system of equations














∇μΞ∇ μΞ = 0 terms∝ ε−2,
[

F (n)
ρσ ∇ μ + 2∇ μF (0)

ρσ

]

∇μΞ = −β∇μχ
[

F̃ (n)
μρ ∇σ − F̃ (n)

μσ ∇ρ

]

Ξ terms∝ ε−1.
(2.13)

The first equation implies the following orthogonality relation,

∇ν
(

∇μΞ∇ μΞ
)

= 0 =⇒ ∇ μΞ∇μ∇νΞ = 0, (2.14)
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since∇μΞ = ∂μΞ because Ξ is scalar function, whereas the second one can be rewritten with the help of
Eq. (2.11) as

∇ρΞ∇ μΞ∇μA (0)
σ −∇σΞ∇ μΞ∇μA (0)

ρ +
1
2
∇ μ∇μΞ∇ρΞA (0)

σ =

=
1
2
∇ μ∇μΞ∇σΞA (0)

ρ +
β εμβνκ

2√−g
∇μ χA (0)

κ ∇νΞ
(

gβσ∇ρΞ− gβρ∇σΞ
)

,
(2.15)

where some terms vanish because of Eq. (2.14). By defining some new differential operators,

D ≡ ∇ μΞ∇μ, ω ≡ ∇μ∇ μΞ, (2.16)

it is then possible to express the product between∇ σΞ and Eq. (2.15) as

DA (0)
μ +

ω
2
A (0)

μ =
β
2
εαβρσ√−g

∇α χ gμβ∇ρΞA (0)
σ . (2.17)

In the very same fashion, we can now apply the GOA also to Eq. (2.5), finding

∑

n=0

[

εn∇ μF (n)
μν + iε n−1F (n)

μν ∇ μΞ
]

= β
∞
∑

n=0

F̃ (n)
μν ∇ μχ, (2.18)

whose dominant contribution for n = 0 yields

A (0)
μ ∇ μΞ = 0. (2.19)

2.1.2 Impact on the Stokes Parameters

In order to investigate how the Chern-Simons extension of Maxwell’s theory affects the propagation of the
electromagnetic waves, we must study its impact on the Stokes parameters. In Sec, 1.1.3 we have provided
some definitions of them, but they are valid only in the context of flat spacetime, and we can generalize this
to GR by means of the tetrad formalism we briefly mentioned in Sec. 1.2. In fact, we are going to consider
the local inertial reference frame in which an observer is at rest (so its spatial velocity is zero), and which
sees an electromagnetic wave traveling along the x̂3-direction. We know from Sec. 1.1.1 that the electric and
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magnetic fields in special relativity are defined as

Ei|SR = ∂iA0 − ∂0Ai = Fi0 = Fiν δ ν0, (2.20)

Bi|SR = δilε0ljk∂jAk = F̃ 0jδij = F̃μiδ
μ
0, (2.21)

so that, according to Eq. (1.130), they should generalize in general relativity as

Ei|LIF = Eμ e
μ
(i), Bi|LIF = Bμ e

μ
(i). (2.22)

In order to understand how to perform such an operation, it is convenient to define a “new” quantity, i.e.
the 4-velocity u μ ≡ dx μ/dλ, i.e. a four-vector satisfying Eq. (1.128) with respect to an affine parameter
λ = is, called proper time. It then follows that

u μuμ = g μν u μu ν = −g μν
dx μ

ds
dx ν

ds
= −gμνdx μdx ν

ds2
= −1. (2.23)

In the local inertial frame, the free fall observer’s four-velocity is given by ui|LIF = δ 0i, so that in the coordi-
nate frame it reads

uμ = ui|LIF e μ(i) = δ i0e
μ
(i) = e μ(0). (2.24)

One of the reasons we introduced the concept of 4-velocity is that, with a bit of imagination, it allows us to
generalize Eqs. (2.20)-(2.21) to curved spacetime as (see e.g. Ref. [173])

Eμ ≡ Fμν u ν Bμ ≡ F̃μν u ν. (2.25)

Indeed, ifwe choose a reference frame such that the observer’s four-velocitymatches the 4-velocity of an iner-
tial observer in special relativity (i.e. the LIF), the effects of gravity become negligible, andwe should recover
the same expressions as in special relativity. Moreover, let us recall that the quantity Ξ satisfies Eq. (2.14), so
that we can rewrite it with the help of Eq. (1.100) as

0 = ∇μΞ∇μ∇ νΞ = ∇ μΞ
(

∂μ∇ νΞ+ Γνμσ∇ σΞ
)

=
∇ μΞ
dx μ/dλ

d
dλ

∇ νΞ+ Γ ν
μσ∇ μΞ∇ σΞ, (2.26)

which yields the geodesic equation, by setting∇ μΞ = dx μ/dλ for a proper affine parameter. Without loss
of generality, we can choose λ to be the samewhich appears in Eq. (1.133), so that the vanishing of the inner
product∇ μΞ∇μΞ fits perfectly for a massless particle. Therefore,∇ μΞ is related to the 4-momentum of
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the photons associated with the electromagnetic wave, and in the local inertial frame, we can then write

∇ iΞ|LIF = y
(

δ i0 + δ i3
)

, (2.27)

since in the LIMwe have chosen the wave propagates along the x̂3-direction, with y being a parameter with
the right dimensionality. Therefore, by moving to the coordinate frame, we find

∇ μΞ = ∇ iΞ|LIF e μ(i) = y
(

δ i0 + δ i3
)

e μ(i) = y
[

u μ + e μ(3)
]

=⇒ e μ(3) =
∇ μΞ
y

− u μ, (2.28)

where we have substituted Eq. (2.24). Indeed, the other tetrad vectors e μ(1) and e
μ
(2) are orthogonal to each

other and to e μ(0), as well as to e μ(3). Thanks to Eq. (2.22), we are finally in the position to compute the
components of the electric field,

Ei|LIF =
∑

n=0

[

ε nF (n)
μν

]

exp
(

−Ξ
iε

)

u νe μ(i) ≃
[

A (0)
ν ∇μΞ−A (0)

μ ∇νΞ
]

exp
(

−Ξ
iε

)

u νe μ(i) (2.29)

where, as previously done, we have adopted again the GOA and truncated at dominant order n = 0. Let
us notice that all this procedure has been performed in order to use the definitions of Stokes parameter we
provided in Sec. 1.1.3, that are valid in special relativity and so they can also be used inGRwhen considering
the local inertial frame. For instance, the intensity of the electromagnetic wave is given as

I = 〈E1|LIF E ∗
1 |LIF〉t + 〈E2|LIF E ∗

2 |LIF〉t

= y2
〈

∣

∣

∣

{

gμσA (0)
ν

(

e σ(0) + e σ(3)
)

− gνϱA (0)
μ

[

e ϱ(0) + e ϱ(3)
]}

e ν(0)e
μ
(1)

∣

∣

∣

2
〉

t

+ y2
〈

∣

∣

∣

{

gμσA (0)
ν

(

e σ(0) + e σ(3)
)

− gνϱA (0)
μ

[

e ϱ(0) + e ϱ(3)
]}

e ν(0)e
μ
(2)

∣

∣

∣

2
〉

t

= y2
〈

∣

∣

∣
A (0)

μ e μ(1)
∣

∣

∣

2
〉

t
+ y2

〈

∣

∣

∣A (0)
μ e μ(2)

∣

∣

∣

2
〉

t
,

(2.30)

77



where we have exploited Eq. (1.131). In the very same fashion, we can easily work out also the other Stokes
parameter, so that we find1

I = y2〈A (0)
μ A (0) ∗

ν 〉t
[

e μ(1)e
ν
(1) + e μ(2)e

ν
(2)

]

, (2.31)

Q± iU = y2〈A (0)
μ A (0) ∗

ν 〉t
{

e μ(1)e
ν
(1) − e μ(2)e

ν
(2) ± i

[

e μ(1)e
ν
(2) + e μ(2)e

ν
(1)

]}

, (2.32)

V = iy2〈A (0)
μ A (0) ∗

ν 〉t
[

e μ(1)e
ν
(2) − e μ(2)e

ν
(1)

]

. (2.33)

Let us now apply the operatorD defined in Eq. (2.16) to the tensor L (0)
μν ≡ 〈A (0)

μ A (0) ∗
ν 〉t,

DL (0)
μν =

〈

D
[

A (0)
μ

]

A (0) ∗
ν

〉

+
〈

A (0)
μ D

[

A (0) ∗
ν
]

〉

t

= −ωL (0)
μν +

βεκλϱσ√−g
∇κ χ∇λΞL (0)

μϱ gσν
(2.34)

where we have used Eq. (2.17). We now reasonably require the tetrad frame not to be physically rotating, i.e.
De μ(i) = 0, so that by applying theD operator also to Eqs. (2.31)-(2.33), we get

[D + ω] I = 0, (2.35)

[D + ω] (Q± iU ) = ±iβ (Q± iU )D χ, (2.36)

[D + ω]V = 0. (2.37)

Let us recall that we can evaluate the angle defining the orientation of the polarization ellipse shown in
Fig. 1.1 by simply inverting Eq. (1.56),

α ≡ 1
2
arctan

[

−i
(Q+ iU )− (Q− iU )

(Q+ iU ) + (Q− iU )

]

=⇒ Dα =
β
2
Dχ. (2.38)

Since α and χ are scalars, such a differential equation is identically solved for

αfin − αini =
β
2

∫ fin

ini
d x μ∂μ χ =

β
2
(

χfin − χini
)

, (2.39)

with “fin” and“ini” denoting thefinal and initial spacetimepoints of the electromagneticwave’s path, respec-
tively. Moreover, by recalling the definitions given in Eq. (2.16) and exploiting the fact that ω = ∇ μ∇μΞ is

1Let us notice that here the dependence on the difference in phase β between the components E1 and E2 of the electric field
has been reabsorbed in the definition ofA (0)

μ .
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a scalar, we get

Dω = ∇ μΞ∇μω =
dx μ

dλ
∂μω, (2.40)

where we have used that∇μΞ solves the geodesic equation. Therefore, since also the Stokes parameters are
scalars2, we are now able to rewrite Eq. (2.36) as

D [ln (Q± iU )] = − (ω∓ iβDχ) =⇒ (Q± iU )fin
(Q± iU )ini

= exp
[

−
∫ fin

ini
d x μ∂μω

]

e±2i(χfin−χini), (2.41)

where we have used that ω = ∇ μ∇μΞ is a scalar. Similarly, it is trivial to show that the Stokes parameters I
andV are instead unaffected by the presence of the Chern-Simons term,

Ifin
Iini

= exp
[

−
∫ fin

ini
d x μ∂μω

]

=
Vfin

Vini
. (2.42)

By looking at Eq. (2.41), we then infer that the Chern-Simons term modifies the standard propagation of
electromagneticwave bymerely adding a rotationof the linear polarizationplane (see Fig. 1.1) parameterized
by the angle α defined in Eq. (2.38), which is called birefringence angle,

[Q± iU ]obs (τ, x, p̂ γ) = [Q± iU ]EM (τ⋆, x⋆, p̂ γ) exp {±2i [χ(τ, x)− χ(τ⋆, x⋆)]} , (2.43)

for τ ≥ τ⋆, where the underscript “EM” labels the Stokes parameters predicted by the standard Maxwell’s
theory, whereas “obs” the real observed ones in the extendedmodel. By theway, as pointed out inRef. [174],
the term “birefringence” refers generically to the property exhibited by certain materials in which electro-
magnetic waves split into two distinct rays with different velocities when passing through thematerial. This
occurs because the material has different refractive indices for waves polarized in different directions, result-
ing in optical effects like double refraction, i.e. a bi-refringence. However, in the cosmological literature,
the term cosmic birefringence instead describes the specific case of the linear polarization plane’s rotation
induced by theChern-Simons coupling, and in crystal optics, the same effect is instead defined as optical ac-
tivity. Furthermore, let us notice that we can rewrite the argument of the complex exponential in Eq. (2.43)
in terms of the birefringence angle of a photon observed today (τ = τ0) on Earth (x = x0) as

±2i [ χ(τ, x)− χ(τ⋆, x⋆)] = ±2i {[ χ(τ0, x0)− χ(τ⋆, x⋆)]− [ χ(τ0, x0)− χ(τ, x)]}
= ±2i [α(τ⋆, x⋆)− α(τ, x)] ,

(2.44)

2In fact, although the Stokes parameters are not in general invariant under Lorentz transformations, e.g. under spatial rota-
tions, and so they are not scalars in SR, they are coordinate scalars in GR, as shown e.g. in Ref. [79].
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where we have used Eq. (2.39) to define the physical birefringence angle of a photon emitted at the time τ
in the point with spatial coordinates x as

α(τ, x) ≡ β
2
[ χ(τ0, x)− χ(τ, x)] , (2.45)

so that Eq. (2.43) reduces to3

[Q± iU ]obs (τ, x, p̂ γ) = [Q± iU ]EM (τ⋆, x⋆, p̂ γ) exp {±2i [α(τ⋆, x⋆)− α(τ, x)]} . (2.46)

2.2 Modified Boltzmann Equations for CMB Polarization

In the previous section we have proved that if we add a Chern-Simons term to the Maxwell’s action, the
Stokes parameters associated with the linear polarization experience a rotation. It is now time to investi-
gate how this phenomenon affects cosmological photons, i.e. to consider the case of cosmic birefringence.
Indeed Eq. (2.39) shows that birefringence is a propagation effect and therefore larger is the path of the
photon, larger will be the probability for the field χ to change enough to produce an appreciable value for
α. In other words, since in the model described by Eq. (2.4) the birefringence angle is proportional to the
distance traveled by photons, a tiny coupling to theChern-Simons term can become observable if the source
of linearly polarized photons is the farthest possible, which is exactly the case of CMB. In order to see what
is the impact of birefringence on cosmological photons, let us see how the standard polarized Boltzmann
equation for CMB photons is modified because of cosmic birefringence. Let us rewrite here the Fourier
transform of Eq. (1.289),

[

∂

∂τ
+ i p̂γ · k−

dκ(τ)
dτ

]

±Θ
(n)
P (τ, k, p̂γ) = ±S(n)

P (τ, k, p̂), (2.47)

where we have used














±Θ
(n)
P (τ, x, p̂γ) ≡

∫

d3k
(2π)3±

Θ(n)
P (τ, k, p̂γ) eik·x,

±S(n)
P (τ, x, p̂) ≡

∫

d3k
(2π)3±

S(n)
P (τ, k, p̂) eik·x.

(2.48)

3Indeed what can be physicaly observed is the not the angle itself, but the variation in the orientation’s angle of the linear
polarization plane.
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Since, our goal here is to find how cosmic birefringence impacts on the Boltzmann equation, let us assume
just for now that CMB polarization is only affected by the presence of the Chern-Simons term, so that we
will include the contribution from the source function ±S (n)

P only later. Let us now rewrite Eq. (2.46) in
terms of ±Θ

(n)
P ,

±Θ
(n)
P (τ, x, p̂ γ)|obs = ±Θ

(n)
P (τ⋆, x⋆, p̂ γ)|EM exp {±2i [α(τ⋆, x⋆)− α(τ, x)]} , (2.49)

and let us differentiate its left-hand side with respect to the conformal time,

d
dτ

[

±Θ
(n)
P (τ, x, p̂ γ)|obs

]

=

∫

d3k
(2π)3

[

∂

∂τ
+ i p γ · k̂

]

±Θ
(n)
P (τ, x, p̂γ)|obs ei k·x. (2.50)

However, according to the right-hand side of Eq. (2.49), we should also have

d
dτ

[

±Θ
(n)
P (τ, x, p̂ γ)|obs

]

= ∓2i±Θ (n)
P (τ, x, p̂ γ)|obs

d
dτ

α(τ, x), (2.51)

where we have omitted the underscript “obs” to lighten up the notation. We now adopt the standard per-
turbative approach also for the birefringence angle,

α(τ, x) = α(τ) +
∞
∑

n=1

δα (n)(τ, x), (2.52)

aswe are going to see in the course of this thesisα is responsible for an isotropic cosmicbirefringence,whereas
its perturbations δα are associatedwith anisotropic cosmic birefringence (ACB). By Fourier-transforming
the right-hand side of Eq. (2.50) we obtain

∫

d3k
(2π)3

[

∂

∂τ
+ i p̂ γ · k

]

±Θ
(n)
P (τ, k, p̂ γ)ei k·x = ∓2i

{

d α(τ)
dτ

∫

d3k
(2π)3 ±Θ

(n)
P (τ, k, p̂ γ)ei k·x

+

∫

d3ka d3kb
(2π)6 ±Θ

(n)
P (η, ka, p̂ γ)

[

∂

∂τ
+ i p̂ γ · kb

]

δα (n)(τ, k2) ei(ka+kb)·x

}

.

(2.53)

In order to addnow the contribution from theThomson scattering, we take the inverse Fourier transformof
Eq. (2.53) and we include this result within Eq. (2.47). We now find two generalized Boltzmann equations:
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the former is valid at first-order in perturbation theory,
[

∂

∂τ
+ i p̂ γ · k−

dκ(τ)
dτ

± 2i
dα(τ)
dτ

]

±Θ
(1)
P (τ, k, p̂ γ) = ±S(1)

P (τ, k, p̂ γ), (2.54)

and the latter at second-order,
[

∂

∂τ
+ i p̂ γ · k−

dκ(τ)
dτ

± 2i
dα(τ)
dτ

]

±Θ
(2)
P (τ, k, p̂ γ) = ±S(2)

P (τ, k, p̂ γ)

∓ 2i
∫

d3ka d3kb
(2π)3

δ(3)(k− ka − kb) ±Θ
(1)
P (τ, ka, p̂ γ)

[

∂

∂τ
+ i kb · p̂ γ

]

δα (1)(τ, kb),
(2.55)

whereas further perturbative orders are beyond the purpose of this thesis. Now it is clear why we have
adopted a perturbative expansion of the relevant quantities: as it can be seen by looking at Eqs. (2.54)-
(2.55), isotropic cosmic birefringence affectsCMBpolarization at any order in perturbation theory, whereas
anisotropic cosmic birefringence does it starting from the second-order. This is obvious, since the inhomo-
geneous perturbation of the birefringence angle is, in fact, an extra cosmological perturbation. In order to
solve the two differential equations, we firstly integrate over the conformal time both the sides of Eq. (2.54),

±Θ
(1)
P (τ, k, p̂ γ) = ±Θ

(1)
P (0, k, p̂ γ)e−i k·p̂ γτ0e−[κ(0)−κ(τ)]e±2i[α(0)−α(τ)]

+

∫ τ

0
dτ̃ ±S(1)

P (τ̃, k, p̂ γ)ei k·p̂ γ(τ̃−τ)e−[κ(τ̃)−κ(τ)]e±2i[α(τ̃)−α(τ)].
(2.56)

This procedure in standard in cosmological perturbation theory, and it is done because what we are looking
for is the expression of the ±ΘP’s for τ = τ0 and x = x0, since the observation of CMB anisotropies is
made today on Earth, by looking at the photons propagating along the p̂ γ-direction. This means that our
direction of observation, say n̂, is given by

n̂ = −p̂ γ, (2.57)

and from thismomentwewill use it instead of p̂ γ. However, in our case we do not need just±Θ
(1)
P (τ0, k, n̂),

but also ±Θ
(1)
P,±(τ, k, n̂), since, Eq. (2.55) depends on the first-order transfer function. By the way, if we

recall the definition of the optical depth we provided in Eq. (1.244), we see that it can be written as

κ(τ) = σT
∫ τ0

τ
dτ̃ a(τ̃)ne(τ̃), (2.58)
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so that, after solving it numerically, it is possible to notice that κ(τ) becomes extremely large in the radiation-
dominated epoch (see e.g. Ref. [175]), i.e. for τ → 0, so that the first term on the right-hand side becomes
exponentially suppressed and then completely negligible. Therefore, we find the same result obtained e.g.
in Refs. [51, 176–180],

±Θ
(1)
P (τ0, k, n̂) =

∫ τ0

0
dτ ±S(1)

P (τ, k, n̂)eik·n̂(τ0−τ)e−κ(τ)e±2i α(τ), (2.59)

where we have used that the optical depth’s value is zero today because of Eq. (2.58), and that the isotropic
birefringence angle for a photon emitted today is identically vanishing, according to the definition given in
Eq. (2.45). Similarly, the second-order transfer function, after integrating by parts, reads

±Θ
(2)
P (τ0, k, n̂) =

∫ η0

0
dη ei k·n̂(τ0−τ)e−κ(τ)e±2i α(τ)

[

±S(2)
P (τ, k, n̂)

± 2i
∫

d3k̃
(2π)3

δα (1)(τ, k− k̃) ±S(1)
P (τ, k̃, n̂)

]

.

(2.60)

Eqs. (2.59)-(2.60) are the core of our generalized treatment of CMB polarization. Armed with these ex-
pressions, we can investigate what is the impact on the main CMB observables. In order to do that, it is
convenient to define the following quantity, just valid for the perturbative orders n = 1, 2,

±Δ
(n)
λ (τ, k) ≡ e±2iα(τ)

[

Π(n)
λ (τ, k)± 2i(n− 1)

∫

d3k̃
(2π)3

δα (1)(τ, k− k̃)Π(1)
λ (τ, k̃)

]

. (2.61)

Indeed, if we substitute Eq. (1.291) within Eqs. (2.59)-(2.60), we can then write a compact expression valid
for the perturbative order n = 1, 2,

±Θ
(n)
P (τ0, k, n̂) =

√

6π
5

∫ τ0

0
dτ ei k·n̂(τ0−τ)g(τ)

2
∑

λ=−2
±2Y2λ(n̂) ±Δ

(n)
λ (τ, k), (2.62)

where we have defined the photons’ visibility function as

g(τ) ≡ −
[

dκ(τ)
dτ

]

exp [−κ(τ)] , (2.63)
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which physically represents the Poissonian probability that a photon is last scattered at a conformal time τ.
Let us highlight here that Eq. (2.62) is the main result of this section, and we have put it in such a specific
form because now the mathematical computation becomes less challenging, since it has exactly the same
form of the standard transfer function of CMB polarization, such as e.g. Eq. (14) of Ref. [181]. Let us now
move to the harmonic space, and in order to do that we notice that the dependence of the ±Θ

(n)
P on n̂ is

encoded in ±Δ
(n)
λ but also in the complex exponential, which can be rewritten via the plane wave expansion

(see e.g. Ref. [182]),

ei k·n̂(τ0−τ) = 4π
∞
∑

L=0

L
∑

M=−L

i LjL[k(τ0 − τ)] 0Y ∗
LM(k̂) 0YLM(n̂), (2.64)

where jL is the L-th spherical Bessel function. Therefore, let us evaluate the following harmonic transform:

±2P (n)
ℓm (τ0, x0) ≡

∫

d2n̂
4π ±2Y ∗

ℓm(n̂)
∫

d3k
(2π)3 ±Θ

(n)
P (τ0, k, n̂)ei k·x0 . (2.65)

By substituting Eq. (2.64) in Eq. (2.62), we can easily see that now the dependence on n̂ is encoded in the
product of two spin-weighted spherical harmonics, which can rewritten as a single one by means of the
composition of angular momenta (see e.g. Ref. [183]),

s1Yℓ1m1(n̂) s2Yℓ2m2(n̂) =
∑

ℓ3

∑

m3

∑

s3

√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
4π

(

ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

s3Y ∗
ℓ3m3

(n̂),

(2.66)

where the “matrix” is aWigner 3-j symbol, which satisfies the following selection rules:














|ℓ1 − ℓ2| ≤ ℓ3 ≤ |ℓ1 + ℓ2|,
m1 +m2 +m3 = 0,

s1 + s2 + s3 = 0.

(2.67)

However, in order to better digest such a long computation, it is better to adopt a standard trick in CMB
calculations: indeed, instead of directly evaluating Eq. (2.65). we apply a sort of “fake” rotation of the k̂
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unit vector, that is we firstly compute

±Θ
(n)
P (τ0, k, n̂) = Rk x̂3 7→k

[

±Θ
(n)
P (τ0, k x̂3, n̂)

]

. (2.68)

In other words, we choose to work in the coordinate system where k ‖ x̂3, and then, before to perform the
angular integration, we apply a rotation Rk x̂3 7→k which brings k in a generic direction. Nevertheless, it is
clear that rotating the reference system implies that also n̂ rotates and we have to take this into account. We
then substitute Eq. (2.64) and Eq. (2.66) within Eq. (2.62) and we plug all together in Eq. (2.68), so that we
obtain

±Θ
(n)
P (τ0, k, n̂) =

√

3
2

∫ τ0

0
dτ g(τ)

∑

LM

i LjL[k(τ0 − τ)]
∑

L′M′

√

(2L+ 1)(2L′ + 1)

(

L 2 L′

0 ∓2 ±2

)

2
∑

λ=−2

(

L 2 L′

M λ M′

)

Rk x̂3 7→k

[

0Y ∗
LM(x̂3) ±Δ

(n)
λ (η, k x̂3) ∓2Y ∗

L′M′(n̂)
]

.

(2.69)

Thanks to our choice of k̂ = x̂3, the associated spherical harmonics is simply given as (see e.g. Ref. [184])

0Y ∗
LM(x̂3) = δM0

√

2L+ 1
4π

, (2.70)

so that in the last line of Eq. (2.69) we have

Rk x̂3 7→k

[

Y ∗
LM(x̂3) ±Δ

(n)
λ (τ, k x̂3) ∓2Y ∗

L′M′(n̂)
]

= δM0

√

2L+ 1
4π ±Δ

(n)
λ (τ, k)Rk x̂3 7→k [ ∓2Y ∗

L′M′(n̂)] , (2.71)

where we have exploited that the rotation operator is unitary, and so applying it to a product of quantities
is equivalent to multiply the rotated quantities themselves. The action of the rotation operator on the spin-
weighted spherical harmonics is given as (see e.g. Ref. [184]),

Rk x̂3 7→k [ ∓2Y ∗
L′M′(n̂)] =

L′
∑

m′=−L′
D

(L′)
m′M′

[

R−1
k x̂3 7→k

]

∓2Y ∗
L′m′(n̂)

=
L′
∑

m′=−L′

√

4π
2L′ + 1 M′Y ∗

L′m′(k̂) ±2YL′m′(n̂),

(2.72)
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where theD(L)
m′M′ ’s are elements of theWignerD-matrix. Wenow substitute the results of Eqs. (2.71)-(2.72)

in Eq. (2.69). By exploiting the orthonormality of spin-weighted spherical harmonics (see e.g. Ref. [159]),
∫

d2n̂ sY ∗
ℓ1m1

(n̂) sYℓ2m2(n̂) = δℓ1ℓ2δm1m2 , (2.73)

∀ swe can finally evaluate the right-hand side of Eq. (2.65),

±2P (n)
ℓm (τ0, x0) =

√

3
2

ℓ+2
∑

L=|ℓ−2|

i L(2L+ 1)

(

L 2 ℓ

0 ∓2 ±2

)

2
∑

λ=−2

(

L 2 ℓ

0 λ −λ

)

∫

d3k
(2π)3 −λY ∗

ℓm(k̂)
∫ τ0

0
dτ g(τ) ±Δ

(n)
λ (τ, k) jL[k(τ0 − τ)],

(2.74)

where we have used that x0 = 0 by putting us at the center of the reference frame. At this point it becomes
crucial to introduce that the CMB polarization field can be decomposed into “electric” and “magnetic”
components that are signatures of distinct physical processes, and that behave differently under parity trans-
formations (see e.g. Ref. [185]),

±2P (n)
ℓm (τ0, x0) ≡ −

[

E (n)
ℓm ± iB (n)

ℓm

]

(τ0, x0). (2.75)

Therefore, we are now in the position to give the most general expression for the harmonic coefficients of
the CMB polarization. By recalling all the procedure that we have made, it can be easily understood that
the results of Eq. (2.76) and Eq. (2.77) are valid for any kind of cosmological perturbations (scalar, vector or
tensor) up to the second-order in perturbation theory (x = 1, 2), and for any kind of initial conditions:

E (n)
ℓm (τ0, x0) =

√

3
8

ℓ+2
∑

L=|ℓ−2|

i L+2(2L+ 1)

(

L 2 ℓ

0 −2 2

)

2
∑

λ=−2

(

L 2 ℓ

0 λ −λ

)

∫

d3k
(2π)3 −λY ∗

ℓm(k̂)

∫ τ0

0
dτ g(τ)

[

+Δ
(n)
λ (τ, k) + (−1)ℓ+L

−Δ
(n)
λ (τ, k)

]

jL[k(τ0 − τ)],

(2.76)

B (n)
ℓm (τ0, x0) =

√

3
8

ℓ+2
∑

L=|ℓ−2|

i L+1(2L+ 1)

(

L 2 ℓ

0 −2 2

)

2
∑

λ=−2

(

L 2 ℓ

0 λ −λ

)

∫

d3k
(2π)3 −λY ∗

ℓm(k̂)

∫ τ0

0
dτ g(τ)

[

+Δ
(n)
λ (τ, k)− (−1) ℓ+L

−Δ
(n)
λ (τ, k)

]

jL[k(τ0 − τ)].

(2.77)
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Let us now focus on n = 1 case, for which we remark that if we stop our summation by just considering the
λ = 0 contribution, we get

E (1)
ℓm (τ0, x0)

∣

∣

λ=0 =

√

3
2

ℓ+2
∑

L=|ℓ−2|

i L+2(2L+ 1)

(

L 2 ℓ

0 −2 2

)(

L 2 ℓ

0 0 0

)

∫

d3k
(2π)3

Y ∗
ℓm(k̂)

∫ τ0

0
dτ g(τ) cos[2 α(τ)]Π(1)

0 (τ, k)jL[k(τ0 − τ)],

(2.78)

B (1)
ℓm (τ0, x0)

∣

∣

λ=0 =

√

3
2

ℓ+2
∑

L=|ℓ−2|

i L+2(2L+ 1)

(

L 2 ℓ

0 −2 2

)(

L 2 ℓ

0 0 0

)

∫

d3k
(2π)3

Y ∗
ℓm(k̂)

∫ τ0

0
dτ g(τ) sin[2 α(τ)]Π(1)

0 (τ, k)jL[k(τ0 − τ)].

(2.79)

By inspecting the first-order expressions, we can see that, in such a case, if the isotropic birefringence angle
equals zero, we have no B-modes, and this is something completely expected, since in the standard ΛCDM
model they are sourced just by inflationary tensor perturbations, i.e. primordial gravitational waves, or
by the gravitational lensing of the E modes. In fact, by recalling Eq. (1.292), it is possible to show that
setting λ = 0 has the meaning of selecting just scalar perturbations, because of the axis-symmetry of the
radiation field around the mode axis4 for this case, as discussed e.g. in Ref. [186]. However, directly evalu-
ating Eqs. (2.76)-(2.77) could be extremely challenging, since it involves the interplay between second-order
perturbations. For this reason, we are going to motivate the usage of a really suitable approximation that
will be exploited a lot in the course of this thesis. Let us start by substituting Eq. (1.291) within Eq. (2.60)
expressed in the real space,

±Θ
(2)
P (τ0, x0, n̂) =

√

6π
5

2
∑

λ=−2
±2Y2λ(n̂)

∫ τ0

0
dτ g(τ)e±2i α(τ)

{

∫

d3k
(2π)3

ei k·n̂(τ0−τ)Π(2)
λ (τ, k)± 2i

∫

d3k
(2π)3

ei k·n̂(τ0−τ)
[

δα (1)(τ) ∗Π(1)
λ (τ)

]

(k)

}

,

(2.80)

4However, let us point out that this is no more true when going at second order in perturbation theory, because such a
rotational symmetry around the wave-vector is broken by coupling to other modes (see e.g. Refs. [162, 181]).
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where we have recognized the definition of the convolution product, and used again that x0 = 0. We can
now simplify Eq. (2.80), by exploiting the convolution theorem, which allows us to deal with the Fourier
transform of the convolution in the last line, so that we can write

±Θ
(2)
P (τ0, x0, n̂) =

√

6π
5

2
∑

λ=−2
±2Y2λ(n̂)

∫ τ0

0
dτ g(τ)e±2i α(τ)

{

Π(2)
λ [τ, (τ0 − τ)n̂]± 2iδα (1)[τ, (τ0 − τ)n̂]Π(1)

λ [τ, (τ0 − τ)n̂]

}

.

(2.81)

As said before, evaluating the time-integral involving second-order perturbations is not trivial at all, but we
can reduce a lot the problem by adopting a simple but reasonable approximation. In fact, if in Eq. (2.81)
we substitute the photons’ visibility function with a series of Dirac deltas associated with the peaks of the
original g(τ), as shown in Fig. 2.1, i.e., according to the discussion made in Sec. 1.3.4, the recombination
and reionization epochs5, respectively,

g(τ) ≃ grecδ(τ− τrec) + greiδ(τ− τrei), (2.82)

with grec ≫ grei, then the time integral can be trivially computed leading to the following result:

±ΘP(τ0, x0, n̂)|obs =
∑

i= rec, rei

exp {±2iα(τi)± 2iδα[τi, (τ0 − τi)n̂]} ±ΘP(τ0, x0, n̂)|EM, (2.83)

where we have resummed up all the perturbative orders. Let us underline here that Eq. (2.83) is the “master
equation” used in literature to deal also with the anisotropic birefringence contribution (see e.g. Refs. [74–
77, 79–85, 85, 86]). However, let us mention here, that from this moment, we will stop considering the
second-order contributions to CMBpolarization except for those coming from anisotropic cosmic birefrin-
gence. This is done, in order to be consistent with the main literature on the topic, and for this reason, we
will not use the superscript (2) when dealing with CMB anisotropies, anymore.

5Although, for sake of simplicity, here we write some Dirac deltas, the numerical code we have used in this thesis to simulate
cosmic birefringence, does not evaluate the relevant quantities only at τrec or τrei but in practice convolves it with the photon
visibility function g(τ) in the neighborhood of the recombination and reionization peak, so thatwe can isolate the recombination
contribution fromtheone fromreionization epoch. This approach is not onlynumericallymore accurate but alsomorephysically
correct since of course, we have an important amount of photons emitted also in a finite range of τ close to the peaks.
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Figure 2.1: The photons visibility function g as function of the conformal time τ from the numerical
calculation performed with CLASS for the ΛCDMmodel.

2.3 The AxionHypothesis

We have seen in the previous sections how the presence of a Chern-Simons coupling between a scalar field χ
with the electromagnetic one can alter the photons’ standard polarization. Therefore, it is now time to dis-
cuss about the nature of this field χ, and this is strictly related to its property under parity transformations.
In fact, a parity transformation is nothing but a spatial inversion, i.e. the flip of the signs of each spatial
coordinates in the reference frame, which is something different from a standard rotation, since there is no
rotation operator R able to induce x 7→ −x. At the contrary, the only operator which can do that is the
parity operator. Hence, if parity is not a rotation, there is no guaranty that the field χwill be left unchanged
by this kind of coordinate transformations. For instance, although the quantity F μνFμν is parity-even, the
opposite occurs for F̃ μνFμν, which is indeed parity-odd:

F μνFμν(t, x)
x 7→−x−−−→ + F μνFμν(t,−x), F̃ μνFμν(t, x)

x7→−x−−−→ − F̃ μνFμν(t,−x), (2.84)

because of the antisymmetric Levi-Civita symbol appearing in the definition of F̃ μν. By direct inspection of
Eq. (2.5), we then easily see that since F̃ μνFμν changes sign under inversion of spatial coordinates, it follows
that also χ needs to be a parity-odd quantity, such that the whole Chern-Simons term remains invariant.
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However, let us point that such a requirement is not mandatory at all: the only fundamental rules a field
theory in curved spacetime must obey are that its associated action has to be real and invariant under the
GR version of Poincarè group’s transformations, i.e. spatial rotations, boosts and spacetime translations,
and parity is none of them. However, the fact that Eq. (2.4) is parity-invariant under the assumption of
a parity-odd field χ does not mean that there is not parity-violation: indeed, as we are going to see in the
next sections, cosmic birefringence is effectively a parity-breaking phenomenon, since it allows us to probe
parity-breaking cosmological observable. Now, if χ is parity-odd, then it is said to be a pseudoscalar field,
which we are introducing in the jargon of cosmic species to switching-on cosmic birefringence. A question
then naturally arises: who is it? The intriguing point is that χ can be seen as a candidate for a component
of the Universe’s dark sector, i.e. dark matter or dark energy, in the form of a pseudoscalar field. Indeed,
the current cosmological paradigm is not able to explain the exact nature of none of them, and, as we briefly
mentioned in Sec. 1.3.1, several candidates have been proposed in the literature. Therefore, CMB provides
us a powerful way of testing the pseudoscalar field hypothesis for dark matter or dark energy thanks to its
observable polarization, which is in principle sensitive to eventual birefringence effects sourced by χ. Even
before the advent of studies about cosmic birefringence, the possibility that dark matter (see e.g. Refs. [55–
61]) or dark energy (see e.g. Refs. [47–54]) are present in the Universe in the form of pseudoscalar field, has
been deeply investigated [62–73, 187–189], and the hypothetical particle associated with such a field χ is
said to be an axion, in analogy with the elementary particle first proposed in Ref. [190] to solve the strong
CPproblem in quantum chromodynamics. The action of the axion-like field χ si then given by the standard
Klein-Gordon one plus the Chern-Simons addition,

Sχ =
∫

d4x
√

−g
[

− 1
2
g μν∂μ χ∂ν χ− V( χ) +

β
2
χF̃ μνFμν

]

, (2.85)

where V( χ) is the axion potential, whose expression defines the model for the pseudoscalar field itself. As
shown in Eq. (2.45), the birefringence angle is associated with the difference in value for χ between the
moments of emission and observation of the photons. Therefore, since we have adopted a perturbative
expansion for α in Eq. (2.52), it is clear that we can do the same also for the the axion-like field,

χ(τ, x) = χ(τ) +
∞
∑

n=1

δχ (n)(τ, x). (2.86)
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We are now going to investigate separately the homogeneous χ and its perturbations, because, by recalling
Eq. (2.45), it is clear that they are responsible for the isotropic and anisotropic birefringence, respectively:

α(τ) =
β
2
[ χ(τ0)− χ(τ)] , δα (n)(τ, x0) =

β
2
[

δχ (n)(τ0, x0)− δχ (n)(τ, x)
]

. (2.87)

2.3.1 Background Evolution of a Pseudoscalar Field

The evolution of χ(τ) is governed by its equation of motion, which is found by applying the Hamilton’s
principle we stated in Eq. (1.15) to the action defined Eq. (2.85) with respect to χ in the FLRWmetric,

d 2 χ(τ)
dτ2

+ 2H(τ)
d χ(τ)
dτ

+ a 2(τ)
dV( χ)
d χ

= 0. (2.88)

In order to track the evolution of such a pseudoscalar field, in this thesis we specialize our analysis to the case
in which χ is a quintessence-like field playing the role of early dark energy, characterized by the following
potential (see e.g. Refs. [49, 51, 81–83]:

V [ χ(τ)] = m2
χ M2

Pl

{

1− cos
[

χ(τ)
MPl

]}2

, (2.89)

whereMPl ≡
√
8πmPl is the Planck mass andmχ is a parameter which defines the mass of the field χ. We

havemodified theBoltzmanncodeCLASS [191] inorder to solveEq. (2.88) andget theplot shown inFig. 2.2,
whose upper panel shows the evolution of χwith respect to χ(τini) as a function of the cosmic redshift,

z(τ) ≡ 1
a(τ)

− 1, (2.90)

for different values of themass parametermχ: by inspecting such a plot, we can observe that smaller the field
mass is, slower its evolution is (see e.g. Refs. [75, 76]). It is possible to qualitatively identify five different
phenomenological regimes:

• ifmχ ≫ 10−27 eV, then χ(τ) fluctuates around zero at recombination, at reionization and today, so
that, by recalling Eq. (2.87), there is no isotropic cosmic birefringence.

• if 10−29 eV ≪ mχ ≲ 10−27 eV, then only recombination contributes to isotropic cosmic birefrin-
gence, since χ(τrec) 6= 0 = χ(τ0) but χ(τrei) = 0 = χ(τ0);
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Figure 2.2: Background axion quantities as functions of z for the model defined by Eq. (2.89). The nu-
merical computation has been performed for several values ofmχ with χ(τini) = mpl, d χ/dτ(τini) = 0, and
the fiducial ones of the ΛCDMparameters given in Ref. [144]. The colored regions have been numerically
evaluated by using the HyRec algorithm for recombination and the tanh()model for reionization.
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• if 10−32 eV ≪ mχ ≲ 10−29 eV, then both recombination and reionization contribute to isotropic
cosmic birefringence, with different rotation angles;

• ifmχ ≲ 10−32 eV, then both recombination and reionization contribute to isotropic cosmic birefrin-
gence, but the rotation angle is the same, since χ(τrec) = χ(τrei);

• ifmχ ≪ 10−32 eV, there is again no isotropic cosmic birefringence, since χ(τrec) = χ(τrei) = χ(τ0).

From this analysis we can infer that an appreciable birefringence effect occurs only within a finite window
of masses (mχ ∈ [10−32eV, 10−27eV]). As we will see in the next sections, the anisotropic contribution to
cosmic birefringence allows one to probe higher values for the axion mass. Note that independently on the
axion mass, the field experiences a slow-roll phase at early times (and so at high redshifts): this is due to the
fact that we have taken d χ/dτ(τini) = 0, which is a natural requirement for χ if wewant it to behave as early
dark energy (EDE). To understand this, let us compute the energy-momentum tensor for the scalar field:
this can be done by evaluating Eq. (1.123) for the action defined in Eq. (2.85)

Tμν(τ, x) ≡ − 2√−g
δSχ
δg μν

= ∂μ χ∂ν χ − gμν
[

1
2
g αβ∂α χ ∂β χ+ V( χ)

]

, (2.91)

so that we can easily get the background energy density and pressure of the scalar field as

ϱχ(τ) = −T 0
0(τ) =

1
2a 2(τ)

[

d χ(τ)
dτ

]2

+ V [ χ(τ)], (2.92)

Pχ(τ) =
1
3
δ ijT

j
i(τ) =

1
2a 2(τ)

[

d χ(τ)
dτ

]2

− V [ χ(τ)]. (2.93)

Therefore the equation of state of the homogeneous scalar field χ(τ) is given by

wχ(τ) =
Pχ(τ)
ϱχ(τ)

=
[d χ(τ)/dτ]2 − 2a2(τ)V [ χ(τ)]
[d χ(τ)/dτ]2 + 2a2(τ)V [ χ(τ)]

, (2.94)

and it is equal towχ = −1, i.e., as discussed in Sec. 1.3.1, itmimics the behavior of the cosmological constant,
when χ is frozen, i.e. for d χ/dτ = 0. Hence, the requirementwχ(τini) = −1 implies d χ/dτ = 0 for τ = τini.
In the central panel of Fig. 2.2wehaveused again ourmodified versionof CLASS to track the evolutionof the
equation of state for the scalar field χ. Let us notice that this axion-like field has a rich phenomenology, since
differentmasses imply a different nature of the field: e.g., ifmχ ≃ 10−31 eV, although the fieldmayhave been
dark energy in the early Universe, today it may be contributing to dark matter, since wχ(τ0) ≃ 0. However,
let us justmention that in this thesis, as well as inRefs. [75–77], for sake of simplicity, we have not added the
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contribution due to the axion field in the conformal Hubble parameterH appearing in Eq. (2.88): this is a
sort of spectator field approximation for the axion field, which is valid only if ϱχ makes χ a subdominant
cosmic species, and the field initials conditions are chosen to satisfy this condition, as shown in the lower
panel of Fig. 2.2.

2.3.2 First-Order Axion Perturbations

We now derive the equation of motion of the axion valid at first order in perturbation theory. By applying
again the Hamilton’s principle, we then vary the action defined in Eq. (2.85) in the usual Poisson gauge we
introduced in Eq. (1.175), getting

∂2

∂τ2
δχ (1)(τ, x) + 2H(τ)

∂

∂τ
δχ (1)(τ, x) +

[

k2 + a2(τ)
d2V( χ)
d χ2

]

δχ (1)(τ, x) =

=

[

d2χ(τ)
dτ2

+ 2H(τ)
d χ(τ)
dτ

+
d χ(τ)
dτ

∂

∂τ

]

[

3Φ (1)(τ, x) + Ψ (1)(τ, x)
]

+ a2(τ)
dV( χ)
d χ

[

3Φ (1)(τ, x)− Ψ (1)(τ, x)
]

,

(2.95)

where we have set the background component of the electromagnetic field equal to zero for ensuring statis-
tical isotropy, and we have moved to the Fourier space. By substituting Eq. (2.88) in Eq. (2.95), we find

∂2

∂τ2
δχ (1)(τ, x) + 2H(τ)

∂

∂τ
δχ (1)(τ, x) +

[

k2 + a2(τ)
d2V( χ)
d χ

]

δχ (1)(τ, x) =

=
d χ(τ)
dτ

∂

∂τ
[

3Φ(1)(τ, x) + Ψ (1)(τ, x)
]

− 2a2(τ)
dV( χ)
d χ

Ψ (1)(τ, x).
(2.96)

The form of Eq. (2.96) is telling us that the first-order anisotropic cosmic birefringence is sourced just by
scalar perturbations, explaining how the field fluctuation δχ (1) is related to the metric perturbations. Now,
it is time to understand how the axion inhomogeneities can effectively induce the anisotropic signature in
the birefringence angle: in fact, from Eq. (2.83) we see that the spatial dependence of δα enters as (τ− τ0)n̂,
so that, by recalling Eq. (2.87), we can infer

δα (1) [τ, (τ0 − τ)n] = −β
2
δχ (1) [τ, (τ0 − τ)] , (2.97)
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since δχ (1)(τ0, 0) only gives rise to a redefinition of χ(τ0). The crucial point is that for each fixed τ it is now
possible to expand the anisotropic birefringence angle over the sky through a standard spherical harmonics
decomposition,

δα (1) [τ, (τ0 − τ)n̂] ≡
∑

ℓm

α (1)
ℓm (τ) 0Yℓm(n̂), (2.98)

since δα is a scalar quantity, whose harmonic coefficients αℓm are given at any emission time as

α (1)
ℓm (τ) = −β

2

∫

d2n̂ 0Y ∗
ℓm(n̂) δχ (1)(τ,Δτ n̂), (2.99)

with Δτ ≡ τ0 − τ. We nowmove to the Fourier space,

δχ (1)(τ,Δτ n̂) =
∫

d3k
(2π)3

eiΔτ k·n̂δχ (1)(τ, k), (2.100)

and we adopt the plane wave-expansion as we did in Eq. (2.64), so that we can rewrite Eq. (2.99) as

α (1)
ℓm (τ) = −4πi ℓ

β
2

∫

d3k
(2π)3 0Y ∗

ℓm(k̂) jℓ(kΔτ)δχ (1)(τ, k), (2.101)

where we have exploited Eq. (2.73) to perform the angular integration. We are now in the position to in-
troduce another fundamental concept in cosmology: if we statistically average over multiple realizations or
observations of the CMB sky, i.e. we perform the ensemble average 〈· · ·〉, we can extract the underlying
significant signal from random fluctuations of the CMB fields. In particular, it gives us the possibility to de-
termine the angular power spectrum Cℓ of the given observable, which tells us how much variation there
is in such an observable across different angular sizes of regions in the sky:

〈M ∗
ℓmNℓ′m′〉 = CMN

ℓ δℓℓ′δmm′ , (2.102)

for any couple of observable M(τ, x, n̂) and N(τ, x, n̂). The fact that the angular power spectrum just
depends on ℓ is a consequence of the assumption that any kind of two-point correlation function, such as
the left-hand side of Eq. (2.102), preserves statistical isotropy (see e.g. Refs. [137, 192]). The reason we
are treating cosmological perturbations as random variables can be intuitively understood by thinking to
the fact that, observationally, we are not in general interested in predicting e.g. the position of a certain
galaxy at a certain time. Though this might be interesting to some extent, we are rather more concerned
with averaged quantities, such as the average distance among galaxies, because these contain information on
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gravity and the expanding universe. Armed with the expression given in Eq. (2.101), we can then compute
the first-order angular power spectrum of anisotropic cosmic birefringence:

〈α (1)∗
ℓm (τ) α (1)

ℓ′m′(τ ′)〉 = 4π 2β2i ℓ2−ℓ1

∫

d3k d3k′

(2π)6 0Yℓm(k̂)0Y ∗
ℓ′m′(k̂′)

jℓ(kΔτ) jℓ′(k′Δτ ′)
〈

δχ (1)∗(τ, k)δχ (1)(τ ′, k′)
〉

.

(2.103)

If we assume now statistically isotropic and adiabatic initial conditions6 for the cosmological perturba-
tions7, it is possible to define the two-point correlation function for the first-order field fluctuations as

〈

δχ (1)∗(τ, k)δχ (1)(τ ′, k′)
〉

=
16π5

k3
PR(k)δχ (1)(τ, k)δχ (1)(τ ′, k)δ (3)(k1 − k2), (2.104)

where, since, as shown inEq. (2.96) the first-order axion fluctuations are sourced just by scalar perturbations,
PR(k) is the dimensionless power spectrum (in the Fourier space) of the comoving curvature perturbation,
a gauge-invariant linear combination of many scalar perturbations, which in the Poisson gauge reads

R (1)(τ, x) ≡ Φ (1)(τ, x) +
2m2

PlH(τ)
a2(τ)[ϱ(τ) + P(τ)]

[

∂

∂τ
Φ (1)(τ, x)−H(τ)Ψ (1)(τ, x)

]

, (2.105)

where ρ and P are the total background energy density and pressure of the Universe. This quantity is par-
ticularly relevant in cosmology, because, when assuming the above mentioned adiabatic initial conditions,
it becomes constant in time on large scales (i.e. for kτ ≪ 1), and any initial condition of the other scalar
perturbations can be easily related to that ofR, making it the only real scalar perturbationwhose initial con-
ditions we have to deal with. This can be easily understood also because, by looking Eq. (2.96), we can see
that nothing in such an EOM depends on k̂, which means that all the dependence of δχ (1) on it is encoded
in its initial condition, and so onR, i.e.















δχ (1)(τ, k) = δχ (1)(τ, k)R (1)(0, k)

Φ (1)(τ, k) = Φ (1)(τ, k)R (1)(0, k)

Ψ (1)(τ, k) = Ψ (1)(τ, k)R (1)(0, k).

(2.106)

6When talking about “adiabatic” cosmological perturbations, we refer to the fact that it is possible to show that for instance
the scalar ones produce density variations in all forms of matter and energy with equal density contrasts in the number density.
In such a way it is possible to prove, through thermodynamic relations, that there is no variation of entropy (see e.g. Ref. [141]).

7See e.g. Refs. [193, 194] for a discussion about isocurvature modes as initial conditions instead.
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The power spectrum of the comoving scalar perturbation, in the scale-invariant case, has been observation-
ally estimated as PR ≃ 2.1× 10−9 (see Ref. [195]), whereas, as just mentioned, δχ (1)(τ, k) is the solution of
Eq. (2.96), which here plays the role of a transfer function for the axion first-order perturbations, evolving
it from early primordial epoch to the given time τ. Therefore, we obtain (see e.g Refs. [79–83]):

〈

α (1)∗
ℓm (τ) α (1)

ℓ′m′(τ ′)
〉

= 4π
(

β
2

)2 ∫ dk
k
PR(k) jℓ(kΔτ) jℓ(kΔτ ′)δχ (1)(τ, k)δχ (2)(τ ′, k)δℓℓ′δmm′ , (2.107)

so that, by recalling Eq. (2.102), we can parameterize the amplitude of the angular power-spectrum in
Eq. (2.107) as

〈

α (1)∗
ℓm (τx) α (1)

ℓ′m′(τz)
〉

= C αα|(1)
ℓ

∣

∣

xzδℓℓ′δmm′ , (2.108)

where now x and z are labels for the different epochs8. The angular power spectrumoffirst-order anisotropic
birefringence is then given as

C αα|(1)
ℓ

∣

∣

xz = 4π
(

β
2

)2 ∫ dk
k
PR(k) jℓ(kΔτx) jℓ(kΔτz)δχ (1)(τx, k)δχ (1)(τz, k). (2.109)

Similarly, it is possible to consider also cross-correlations between cosmic birefringence with CMB intensity
and polarization [77, 80–83, 85]:

〈

α (1)∗
ℓm (τx)T EM|(1)

ℓ′m′ (τz)
〉

= C αT |(1)
ℓ, EM

∣

∣

xzδℓℓ′δmm′ , (2.110)
〈

α (1)∗
ℓm (τx)E EM|(1)

ℓ′m′ (τz)
〉

= C αE |(1)
ℓ, EM

∣

∣

xzδℓℓ′δmm′ , (2.111)

whereas the C αB |(1)
ℓ, EM cross-correlation is predicted to be identically zero at first-order, since the B modes of

CMB polarization are instead sourced just by tensor perturbations. The harmonic coefficients of CMB
intensity,

Θ (1)
T (τ0, x0, n̂) =

∑

ℓm

T (1)
ℓm (τ0, x0) 0Yℓm(n̂) (2.112)

are denoted by Tℓm because they encode the information about theCMB temperature anisotropies. This
is simply due to the fact that by substituting Eq. (1.197) in the definition of ΘT, it becomes clear that all the
dependence on the photons’ direction of propagation is encoded in δT (1). In Ref. [77], we have modified
the Boltzmann code CLASS, in order to implement anisotropic cosmic birefringence: our code evaluates the

8In our case they refer to recombination or reionization, as shown in Eq. (2.83).
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first-order angular power spectra defined in Eqs. (2.109)-(2.111) by solving the perturbed EOMwe derived
inEq. (2.96) togetherwith theEinstein equations for the two scalar potentialsΨ andΦ. Inparticular,C αα|(1)

ℓ ,
C αT |(1)
ℓ, EM and C αE |(1)

ℓ, EM given in Eq.(2.109) and Eqs. (2.110)-(2.111) are plotted in Fig. 2.3 for τx = τz = τrec,
where for now we have not considered the signal coming from reionization in order to be consistent with
the current observational constraints. By looking at Fig. 2.3, we can remark that for the potential defined
in Eq. (2.89), larger the scalar field mass is, larger the spectra’s amplitudes are9: this is a peculiar behavior of
anisotropic cosmic birefringence. Note that, as we discussed in Sec. 2.3.1, an heavy axion field would im-
plies no isotropic birefringence, since the background field χ(τ) starts to oscillate before the recombination
time; on the contrary Fig. 2.3 is telling us an interesting aspect: the more massive the axion field, the more
amplitude is enhanced, allowing us to investigate a wider range of masses. There is in fact a clear physical
explanation for this intriguing phenomenon. Indeed, since anisotropic birefringence is sourced by the per-
turbations of the axion field, the fact that the larger the axion mass is, larger the field fluctuations are, can
seem counter-intuitive, since we expect a heavy field to fluctuate less than a light one. In order to clarify this
aspect, let now us focus on Eq. (2.101): the birefringence angle is related to the value of the axion fluctua-
tion at the recombination or at the reionization time, whose precise dynamics is ruled by Eq. (2.96). We can
see that coupling with the metric perturbations, which is what is able to turn-on the correlation functions
defined inEqs. (2.109)-(2.111) because of the adiabatic initial conditions, enters in theEOMfor δχ (1) asmul-
tiplied by the time derivative of χ or by the functional derivative of the axion potential. On the one hand,
because of Eq. (2.89), we can then see that the strength of this coupling is proportional to dV/dχ, which is in
turn proportional tom2

χ , and on the other hand we have already noticed in Fig. 2.2 that the larger the axion
mass is, the faster its background time-evolution is. Therefore, this explains why increasing the axion mass
implies an enhancement of the spectra’s amplitude for anisotropic cosmic birefringence. Of course, a van-
ishing potential prevents the axion-like field perturbations from having any correlation with perturbations
in the matter/radiation density (see e.g. Ref. [80]), so that a trivial consequence of this is that, if the axion
mass is exactly zero, we would have C αT |(1)

ℓ, EM = C αE |(1)
ℓ, EM = 0. Finally, let us just mention that the theoretical

results shown in Fig. 2.3 are consistent with those derived in e.g. in Refs. [82, 83], and are compared with
the most recent measurements, in particular with the analysis of Planck PR3 data performed in Ref. [103],
which gives the observational constraints on the scale-invariant angular correlations of anisotropic birefrin-
gence using the Commander component separation method. Other important constraints on anisotropic
cosmic birefringence come by former analysis of the Planck mission (see Refs. [100, 102]), and by other
experiments, such as ACTPol , SPTpol, Bicep-Keck, Polarbear and WMAP (see Refs. [91, 93, 95–98], re-
spectively). Although a full comparison of theory with observations is beyond the purpose of this thesis, we

9We have checked that using a quadratic potential,V( χ) = m2
χ χ 2/2, considered e.g. in Refs. [75, 76], does not qualitatively

affect our plots in a significant way.
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Figure 2.3: Absolute value of the angular power spectra involving anisotropic cosmic birefringence for the
model defined by Eq. (2.89), with β = 10−18GeV−1 and fir the same set of parameters of Fig. 2.2. The
shaded regions are excluded by the present constraints from Planck PR3 with the Commander component
separation method, ACTPol and SPTpol (see Refs. [95, 96, 103], respectively).
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nevertheless just point out that a joint investigation of all the cross-spectra of cosmic birefringence can allow
us to extract fundamental information. For example, already from these results from anisotropic birefrin-
gence, one can conclude that, within the context of thesemodels and for the fixed value of the axion-photon
coupling parameter β = 10−18 GeV−1 that we have chosen in Ref. [77], spectra with higher masses than
those we considered in this thesis are generally excluded by the current observational constraints, as shown
in Fig. 2.3. A direct implication of that is that for sure a non-vanishing isotropic birefringence should be
produced, since that the range of masses that are excluded by the anisotropic signal forces the background
axion field to evolve in time as shown in Fig. 2.2.

2.4 Tomographic Approach to Cosmic Birefringence

It is now time to compute the angular power spectra of the cosmic microwave background, and for this
purpose we are now going to directly use Eq. (2.83): in practice, the fact that CMB photons were mainly
emitted at two different epochs, i.e. recombination and reionization, allows us for adopting a tomographic
approach, in which we study the impact of birefringence on CMB observables by separating the contri-
butions coming from reionization from those coming from reionization. As discussed in Sec. 1.1.3, since
the linear combination of Stokes parameters (Q ± iU ) behaves as a spin-2 field, it can be projected on the
celestial sky via a proper set of spin-weighted spherical harmonics, as we implicitly did in Eq. (2.65),

±ΘP(τ0, x0, n̂)|obs = 4π
∑

ℓm
±P obs

ℓm (τ0) ±2Yℓm(n̂), (2.113)

where we have suppressed the dependence of ±Pobs
ℓm on x0 to lighten-up the notation. Therefore, the related

harmonic coefficients are then obtained by inverting Eq. (2.83),

±P obs
ℓm (τ0) =

∑

i= rec, rei

∑

LM

∫

d2n̂ ±2Y ∗
ℓm(n̂) ±2YLM(n̂) ±P EM

LM(τi)e±2i{α0(τi)+δα (1)[τi,(τ0−τi)n̂]}, (2.114)

where the±P EM
ℓm ’s are the unrotatedharmonic coefficients for the Stokes parameters, i.e. those thatwewould

have in absence of cosmic birefringence,

±P EM
ℓm (τi) =

∫

d2n̂
4π ±2Y ∗

ℓm(n̂) ±ΘP(τi, x0, n̂)|EM. (2.115)
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Theharmonic coefficients of theE andBpolarizationmodes are thenobtainedby simply recallingEq. (2.75),
so that, after some trivial calculations, it is easy to show that the following formula holds true :

[

E obs
ℓm (τ0)

B obs
ℓm (τ0)

]

=
1
2
∑

i= rec, rei

∑

s=±2

e isα(τi)
∑

LM

∫

dn̂ sY ∗
ℓm(n̂) sYLM(n̂)

(

1 is/2
−is/2 1

)[

E EM
LM(τi)

B EM
LM(τi)

]

exp
{

isδα (1)[τi, (τ0 − τi)n̂]
}

,

(2.116)

whereas the harmonic coefficients of CMB temperature anisotropies instead are not affected by cosmic bire-
fringence:

ΘT(τ0, x0, n̂)|obs =
∑

ℓm

T EM
ℓm (τ0)0Yℓm(n̂) = ΘT(τ0, x0, n̂)|EM, (2.117)

whence
T obs
ℓm (τ0) =

∫

d2n̂ 0Y ∗
ℓm(n̂)ΘT(τ0, x0, n̂)|obs =

∑

i= rec,rei

T EM
ℓm (τi). (2.118)

The CMB power spectra affected by cosmic birefringence are then given as

C EE
ℓ,obs = C EE

ℓ,obs

∣

∣

rec,rec + 2C EE
ℓ,obs

∣

∣

rec,rei + C EE
ℓ,obs

∣

∣

rei,rei, (2.119)

C BB
ℓ,obs = C BB

ℓ,obs

∣

∣

rec,rec + 2C BB
ℓ,obs

∣

∣

rec,rei + C BB
ℓ,obs

∣

∣

rei,rei, (2.120)

C EB
ℓ,obs = C EB

ℓ,obs

∣

∣

rec,rec + C EB
ℓ,obs

∣

∣

rec,rei + C EB
ℓ,obs

∣

∣

rei,rec + C EB
ℓ,obs

∣

∣

rei,rei, (2.121)

CTE
ℓ,obs = CTE

ℓ,obs

∣

∣

rec,rec + CTE
ℓ,obs

∣

∣

rec,rei + CTE
ℓ,obs

∣

∣

rei,rec + CTE
ℓ,obs

∣

∣

rei,rei, (2.122)

CTB
ℓ,obs = CTB

ℓ,obs

∣

∣

rec,rec + CTB
ℓ,obs

∣

∣

rec,rei + CTB
ℓ,obs

∣

∣

rei,rec + CTB
ℓ,obs

∣

∣

rei,rei. (2.123)

2.4.1 Derivation of Birefringent CMBAngular Power Spectra

we are now going to compute all the terms collected in Eqs. (2.119)-(2.123). In order to do this, it is conve-
nient to rewrite Eq. (2.116) as

aobsj,ℓm(τx) =
∑

s=±2

e isα(τx)

2
∑

LM

∫

d2n̂ sY ∗
ℓm(n̂) sYLM(n̂)R(s)

jk aEMk,LM(τx)e isδα
(1)[τx,(τ0−τx)n̂], (2.124)
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where for j, k = 1, 2 we have defined

aℓm =

(

Eℓm

Bℓm

)

, R
(s) ≡

(

1 is/2
−is/2 1

)

, (2.125)

and the sumover khas to be understood. To calculate the components of the observed correlation functions
ofCMBanisotropieswenowassume that thefirst-orderEMCMBfields, aswell as thefirst-order anisotropic
birefringence angle can all be treated asGaussian randomfields, and that the underlying inflationarymodel
is parity-conserving, so that C EB

ℓ, EM = 0 = CTB
ℓ, EM for primordial unrotated modes. The simplest way to

proceed is to evaluate the following general cross-correlator of CMB polarization:

〈aobsj,ℓ1m1
(τx)aobsi,ℓ2m2

(τz)〉 =
∑

s1s2

e is1α(τx)e is2α(τz)

4
∑

L1M1

∑

L2M2

∫

d2n̂1 d2n̂2 R
(s1)
jk R

(s2)
il s1Y ∗

ℓ1m1
(n̂1)

s1YL1M1(n̂1) s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)〈aEMk,L1M1
(τx)aEMl,L2M2

(τz)e is1δα[τx,(τ0−τx)n̂1]e is2δα[τz,(τ0−τz)n̂2]〉.
(2.126)

We then Taylor-expand the exponential containing the anisotropic angle at the quadratic order:

eisδα (1)[τ,(τ0−τ)n̂] ≃ 1+ is
∑

pq

α(1)pq (τ)0Ypq(n̂)− 2
∑

pq

∑

uv

α (1)
pq (τ)α (1)

uv (τ)0Ypq(n̂)0Yuv(n̂), (2.127)

so that the ensemble average in the last line of Eq. (2.126) can be rewritten as follows

〈aEMk,L1M1
(τx)aEMl,L2M2

(τz)eis1δα
(1)[τx,(τ0−τx)n̂1]eis2δα (1)[τz,(τ0−τz)n̂2]〉 ≃

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)
〉

− 2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p1q1(τx)α(1)u1v1(τz)
〉

− 2
∑

p2q2

∑

u2v2
0Yp2q2(n̂2)0Yu2v2(n̂2)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p2q2(τz)α(1)u2v2(τz)
〉

− s1s2
∑

p1q1

∑

p2q2
0Yp1q1(n̂1)0Yp2q2(n̂2)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p1q1(τx)α
(1)
p2q2(τz)

〉

.

(2.128)
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Each one of the four terms on the right-hand side of the previous equation can be in turn decomposed by
means of the Isserlis’ theorem (see Ref. [196]):

〈G1

n
∏

j=2

Gj〉 =















n
∑

i=2

〈G1Gi〉〈∂Gi

n
∏

j=2

Gj〉 if n is an even integer,

0 if n is an odd integer,

(2.129)

valid for any combination of Gaussian random fields Gi’s. For instance, the term in the second line at the
right-hand side of Eq. (2.128) yields

−2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p1q1(τx)α(1)u1v1(τx)
〉

=

= −2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

[

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)
〉

〈α(1)p1q1(τx)α(1)u1v1(τz)〉

+ 〈aEMk,L1M1
(τx)α(1)p1q1(τx)〉

〈

aEMl,L2M2
(τz)α(1)u1v1(τx)

〉

+
〈

aEMk,L1M1
α(1)u1v1(τx)

〉

〈aEMl,L2M2
(τz)α(1)p1q1(τx)〉

]

,

(2.130)

which can be simplified with the definition of angular power spectrum, shown e.g. in Eq. (2.109) as

−2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p1q1(τx)α(1)u1v1(τx)
〉

=

= −2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

[

C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
p1

∣

∣

xxδL1L2δM1,−M2δp1u1δq1,−v1

+ C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xzδL1p1δM1,−q1δL2,u1δM2,−v1

+ C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xzδL1u1δM1,−v1δL2p1δM2,−q1

]

,

(2.131)
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so that it further reduces to

−2
∑

p1q1

∑

u1v1
0Yp1q1(n̂1)0Yu1v1(n̂1)

〈

aEMk,L1M1
(τx)aEMl,L2M2

(τz)α(1)p1q1(τx)α(1)u1v1(τx)
〉

=

= −2
[

C kl|(1)
L1, EM

∣

∣

xzδL1L2δM1,−M2

∑

p1q1
0Yp1q1(n̂1)0Y ∗

p1q1(n̂1)C αα|(1)
p1

∣

∣

xx

+

(

C αk|(1)
L1 EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xz + C αk|(1)
L2, EM

∣

∣

xxC
αl|(1)
L1, EM

∣

∣

xz

)

0Y ∗
L1M1

(n̂1)0Y ∗
L2M2

(n̂1)

]

.

(2.132)

We now define the first-order variance of the anisotropic birefringence angle as the

V (1)
α
∣

∣

xx ≡
∑

p1q1
0Yp1q1(n̂1)0Y ∗

p1q1(n̂1)C αα|(1)
p1

∣

∣

xx =
∑

p1

(

2p1 + 1
4π

)

C αα|(1)
p1

∣

∣

xx, (2.133)

wherewe have used theUnsöld’s theorem (seeRef. [197]). By repeating the same procedure for all the terms
on the right-hand side of Eq. (2.128), we find after lengthy calculations

〈aEMk,L1M1
(τx)aEMl,L2M2

(τz)eis1δα
(1)[τx,(τ0−τx)n̂1]eis2δα(1)[τz,(τ0−τz)n̂2]〉 =

= C kl
L1

∣

∣

xz

(

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

)

δL1L2δM1,−M2

− 4C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xz0Y
∗
L1M1

(n̂1)0Y ∗
L2M2

(n̂1)

− 4C αk|(1)
L1, EM

∣

∣

xzC
αl|(1)
L2, EM

∣

∣

zz0Y
∗
L1M1

(n̂2)0Y ∗
L2M2

(n̂2)

− s1s2
∑

p1q1

C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
p1

∣

∣

xz0Y
∗
p1q1(n̂1)0Y ∗

p1q1(n̂2)δL1L2δM1,−M2

− s1s2C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

zz0Y
∗
L1M1

(n̂1)0Y ∗
L2M2

(n̂2)

− s1s2C αk|(1)
L1, EM

∣

∣

xzC
αl|(1)
L2, EM

∣

∣

xz0Y
∗
L2M2

(n̂1)0Y ∗
L1M1

(n̂2).

(2.134)

We now substitute Eq. (2.134) within Eq. (2.126), so that at the very end we have just to compute the fol-
lowing object:

〈aobsj,ℓ1m1
(τx)aobsi,ℓ2m2

(τz)〉 =

=
1
4
∑

s1s2

eis1α(τx)eis2α(τz)R(s1)
jk R

(s2)
il [I+ II+ III+ IV+ V+ VI]kl|(1)ℓ1ℓ2m1m2s1s2 (τx, τz),

(2.135)
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with

Ikl|(1)ℓ1ℓ2m1m2s1s2(τx, τz) ≡
[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

∑

L1M1

∑

L2M2

C kl|(1)
L1, EM

∣

∣

xzδL1L2δM1,−M2

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂1)

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)

=
[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

C kl|(1)
L1,EM

∣

∣

xzδℓ1ℓ2δm1,−m2 ,

(2.136)

where we have used Eq. (2.73) to perform the angular integration. Let us proceed in the evaluation of all
the pieces in Eq. (2.135): the second term is

IIkl|(1)ℓ1ℓ2m1m2s1s2(τx, τz) ≡ −4
∑

L1M1

∑

L2M2

C αk|(1)
L1, EM

∣

∣

zxC
αl|(1)
L2, EM

∣

∣

zz

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂1)

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)0Y ∗
L1M1

(n̂2)0Y ∗
L2M2

(n̂2)

= −4
∑

L2M2

C αk|(1)
ℓ1, EM

∣

∣

zx

∑

L2

Cαl|(1)
L2, EM

∣

∣

zz

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2)0Y ∗
ℓ1m1

(n̂2)

L2
∑

M2=−L2
s2YL2M2(n̂2)0Y ∗

L2M2
(n̂2)

= 0,

(2.137)

because of the following identity involving spin-weighted spherical harmonics (see e.g. Ref.[159]):

ℓ
∑

m=−ℓ

sYℓm(n̂) s′Y ∗
ℓm(n̂) =

2ℓ+ 1
4π

δss′ . (2.138)
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For the same reason, also the third term identically vanishes

IIIkl|(1)ℓ1ℓ2m1m2s1s2(τx, τz) ≡ −4
∑

L1M1

∑

L2M2

C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xz

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂1)Y ∗
L1M1

(n̂1)Y ∗
L2M2

(n̂1)

= −4
∑

L1

C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

xz

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1)Y ∗
ℓ2m2

(n̂1)

L2
∑

M2=−L2
s1YL1M1(n̂1)Y ∗

L1M1
(n̂1)

= 0.

(2.139)

Evaluating the fourth term is more tricky,

IV kl|(1)
ℓ1ℓ2m1m2s1s2(τx, τz) ≡ −s1s2

∑

L1M1

∑

L2M2

∑

p1q1

C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
p1

∣

∣

xzδL1L2δM1,−M2

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂2)Yp1q1(n̂1)

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)Y ∗
p1q1(n̂2),

(2.140)

since, in order perform the angular integration, we have to exploit a formula for the triple integral:

∫

d2n̂ s1Yℓ1,m1(n̂) s2Yℓ2,m2(n̂) s3Yℓ3,m3(n̂) = I−s1,−s2,−s3
ℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

, (2.141)

where we have defined

I−s1,−s2,−s3
ℓ1ℓ2ℓ3

≡
√

(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)
4π

(

ℓ1 ℓ2 ℓ3

−s1 −s2 −s3

)

, (2.142)
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and where we have made use of theWigner 3j-symbols we have already mentioned in Sec. 2.2, that obey the
following symmetries:

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

=

(

ℓ2 ℓ3 ℓ1

m2 m3 m1

)

=

(

ℓ3 ℓ1 ℓ2

m3 m1 m2

)

= (−1)ℓT
(

ℓ1 ℓ3 ℓ2

m1 m3 m2

)

= (−1)ℓT
(

ℓ3 ℓ2 ℓ1

m3 m2 m1

)

= (−1)ℓT
(

ℓ2 ℓ1 ℓ3

m2 m1 m3

)

= (−1)ℓT
(

ℓ1 ℓ2 ℓ3

−m1 −m2 −m3

)

,

(2.143)

with ℓT ≡ ℓ1 + ℓ2 + ℓ3 being the total multipole number. Therefore, Eq. (2.140) can be rewritten as

IV kl|(1)
ℓ1ℓ2m1m2s1s2(τx, τz) = −s1s2

∑

L1M1

∑

p1q1

C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
p1

∣

∣

xzI
s1,−s1,0
ℓ1L1p1 I s2,−s2,0

ℓ2L1p1

(

ℓ1 L1 p1
−m1 M1 q1

)(

ℓ2 L1 p1
−m2 −M2 −q1

)

= − s1s2
2ℓ1 + 1

δℓ1ℓ2δm1,−m2

∑

L1p1

(−1)ℓ1+L1+p1C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
p1

∣

∣

xzI
s1,s1,0
ℓ1L1p1I

s2,−s2,0
ℓ2L1p1 ,

(2.144)

where we have exploited the orthogonality relation of the Wigner 3j-symbol (see e.g. Ref. [183]):

∑

m1m2

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ1 ℓ2 ℓ′3
m1 m2 m′

3

)

=
δℓ3ℓ′3δm3m′

3

2ℓ3 + 1
. (2.145)

At the contrary, we now show that the fifth term vanishes:

V kl|(1)
ℓ1ℓ2m1m2s1s2(τx, τz) ≡ −s1s2

∑

L1M1

∑

L2M2

C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

zz

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂1)0Y ∗
L1M1

(n̂1)

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)Y ∗
L2M2

(n̂2)

= −s1s2
∑

L1M1

∑

L2M2

C αk|(1)
L1, EM

∣

∣

xxC
αl|(1)
L2, EM

∣

∣

zzI
−s1,s1,0
ℓ1L1L1 I−s2,s2,0

ℓ2L2L2

(

ℓ1 L1 L1

−m1 M1 −M1

)(

ℓ2 L2 L2

−m2 M2 −M2

)

= 0.

(2.146)
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Indeed, the previous expression can be set equal to zero because the selection rule of the Wigner 3j-symbol
forcesm1 = m2 = 0, but this implies e.g. (see e.g. Ref. [184])

(

ℓ1 L1 L1

0 M1 −M1

)

∝ δℓ10 = 0, (2.147)

since the monopole ℓ1 = 0 is not observable. Finally the last term is given as

VIkl|(1)ℓ1ℓ2m1m2s1s2(τx, τz) ≡ −s1s2
∑

L1M1

∑

L2M2

C αk|(1)
L1, EM

∣

∣

zxC
αl|(1)
L2, EM

∣

∣

xz

∫

d2n̂1 s1Y ∗
ℓ1m1

(n̂1) s1YL1M1(n̂1)0Y ∗
L2M2

(n̂1)

∫

d2n̂2 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)0Y ∗
L1M1

(n̂2)

= −s1s2
∑

L1M1

∑

L2M2

(−1)ℓ2+L1+L2C αk|(1)
L1, EM

∣

∣

zxC
αl|(1)
L2, EM

∣

∣

xzI
s1,−s1,0
ℓ1L1L2 I s2,0,−s2

ℓ2L1L2

(

ℓ1 L1 L2

−m1 M1 −M2

)(

ℓ2 L1 L2

m2 M1 −M2

)

= − s1s2
2ℓ1 + 1

δℓ1ℓ2δm1,−m2

∑

L1L2

C αk|(1)
L1, EM

∣

∣

zxC
αl|(1)
L2, EM

∣

∣

xzI
s1,−s1,0
ℓ1L1L2 I s2,0,−s2

ℓ1L1L2 .

(2.148)

We are now in the position to plug all the terms in the right-hand side of Eq. (2.135) together and find the
following general formula:

C ji|(1)
ℓ,obs

∣

∣

xz =
1
4
∑

s1s2

eis1α(τx)eis2α(τz)R(s1)
jk R

(s2)
il

{

[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

C kl|(1)
ℓ, EM

∣

∣

xz

− s1s2
2ℓ+ 1

∑

L1L2

(−1)ℓ+L1+L2I s1,−s1,0
ℓL1L2

[

C kl|(1)
L1, EM

∣

∣

xzC
αα|(1)
L2

∣

∣

xzI
s2,−s2,0
ℓL1L2 + C αk|(1)

L1, EM

∣

∣

zxC
αl|(1)
L2, EM

∣

∣

xzI
s2,0,−s2
ℓL1L2

]

}

.

(2.149)
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Such an expression has to be specialized for the cases of interest: this is done by performing the summation
over s1, s2 = ±2 for the elements of the vector aℓm defined in Eq. (2.125):

C EE|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

{

C EE|(1)
ℓ, EM

∣

∣

xz cos[2α(τx)] cos[2α(τz)]

+ C BB|(1)
ℓ, EM

∣

∣

xz sin[2α(τx)] sin[2α(τz)]
}

+
2

2ℓ+ 1
∑

L1L2

I 2,−2,0
ℓL1L2

[

C αα|(1)
L2

∣

∣

xzI
2,−2,0
ℓL1L2

(

C EE|(1)
L1, EM

∣

∣

xz

{

cos[2α(τx)− 2α(τz)]

− (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

+ C BB|(1)
L1, EM

∣

∣

xz

{

cos[2α(τx)− 2α(τz)] + (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

)

+ C αE|(1)
L1, EM

∣

∣

xzC
αE|(1)
L2, EM

∣

∣

zxI
2,0,−2
ℓL1L2

{

cos[2α(τx)− 2α(τz)]− (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

]

,

(2.150)

C BB|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

{

C BB|(1)
ℓ, EM

∣

∣

xz cos[2α(τx)] cos[2α(τz)]

+ C EE|(1)
ℓ, EM

∣

∣

xz sin[2α(τx)] sin[2α(τz)]
}

+
2

2ℓ+ 1
∑

L1L2

I 2,−2,0
ℓL1L2

[

C αα|(1)
L2

∣

∣

xzI
2,−2,0
ℓL1L2

(

C EE|(1)
L1, EM

∣

∣

xz

{

cos[2α(τx)− 2α(τz)]

+ (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

+ C BB|(1)
L1, EM

∣

∣

xz

{

cos[2α(τx)− 2α(τz)]− (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

)

+ C αE|(1)
L1, EM

∣

∣

xzC
αE|(1)
L2, EM

∣

∣

zxI
2,0,−2
ℓL1L2

{

cos[2α(τx)− 2α(τz) + (−1)ℓ+L1+L2 cos[2α(τx) + 2α(τz)]
}

]

,

(2.151)

C EB|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

xx − 2V (1)
α
∣

∣

zz

]

{

C EE|(1)
ℓ, EM

∣

∣

xz cos[2α(τx)] sin[2α(τz)]

− C BB|(1)
ℓ, EM

∣

∣

xz sin[2α(τx)] cos[2α(τz)]
}

+
2

2ℓ+ 1
∑

L1L2

I 2,−2,0
ℓL1L2

[

C αα|(1)
L2

∣

∣

xzI
2,−2,0
ℓL1L2

(

C BB|(1)
L1, EM

∣

∣

xz

{

sin[2α(τx)− 2α(τz)]

− (−1)ℓ+L1+L2 sin[2α(τx) + 2α(τz)]
}

− C EE|(1)
L1, EM

∣

∣

xz

{

sin[2α(τx)− 2α(τz)] + (−1)ℓ+L1+L2 sin[2α(τx) + 2α(τz)]
}

)

− C αE|(1)
L1, EM

∣

∣

xzC
αE|(1)
L2, EM

∣

∣

zxI
2,0,−2
ℓL1L2

{

sin[2α(τx)− 2α(τz)]− (−1)ℓ+L1+L2 sin[2α(τx) + 2α(τz)]
}

]

.

(2.152)
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For completeness, it is then possible to find similar formulas also for the CMB angular power spectra involv-
ing a single polarization field, i.e. CTE|(1)

ℓ,obs and CTB|(1)
ℓ,obs . The procedure is the same previously described: one

has to start from the following general cross-correlator:

〈T obs
ℓ1m1

(τx)aobsj,ℓ2m2
(τz)〉 =

=
∑

s=±2

eisα(τz)

2
∑

LM

∫

d2n̂ sY ∗
ℓ2m2

(n̂2)sYLM(n̂)R(s)
jk 〈T EM

ℓ1m1
(τx)aEMk,LM(τz)eisδα[τz,(τ0−τz)n̂]〉,

(2.153)

and then expand the exponential containing the anisotropic cosmic birefringence angle at the quadratic or-
der with Eq. (2.127). By using again the Isserlis theorem, we can unpack the resulting four-point correlation
function in terms of angular power spectra, and the final result can be simplified by exploiting Eqs. (2.133)
and (2.138). At the very end, we find

CTj|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

zz

]

∑

s=±2

eisα(τz)

2
R

(s)
jk C

Tk|(1)
ℓ, EM

∣

∣

xz, (2.154)

which yields

CTE|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

zz

]

cos[2α(τz)]CTE|(1)
ℓ, EM

∣

∣

xz, (2.155)

CTB|(1)
ℓ,obs

∣

∣

xz =
[

1− 2V (1)
α
∣

∣

zz

]

sin[2α(τz)]CTB|(1)
ℓ, EM

∣

∣

xz. (2.156)

Let us notice that by setting x = y = reco, one should find some formulas valid when only the contri-
bution coming from recombination is considered, and by also disregarding the cross-correlation C αE|(1)

ℓ EM ,
then Eqs. (2.150)-(2.152) and Eqs. (2.155)-(2.156) just reduce to the standard formulas that can be found
e.g. in Ref. [79]. We are now in the position to plot the CMB angular power spectra affected by cosmic
birefringence. In order to do this we have numerically evaluated Eqs. (2.119)-(2.123), by computing each
component via Eqs. (2.150)-(2.152) and Eqs. (2.155)-(2.156). For this purpose, we have again exploited
our modified version of CLASS to calculate the spectra of anisotropic birefringence and the isotropic angle
from the two epochs, i.e. recombination and reionization. Let us just mention that we have neglected all
the unlensed unrotated terms coming from different sources (i.e. “rec-rei” and “rei-rec”). Since we expect
the CMB radiation transfer functions for the recombination and the reionization contributions to peak at
very different redshifts, it is reasonable to neglect such cross-correlations. The final results are plotted in
Figs. 2.4-2.5 up to ℓmax = 200 just for sake of simplicity, since the evaluation of Wigner 3j-symbols is nu-
merically time-consuming. If we look for instance at Fig. 2.4, we observe that theC EE|(1)

ℓ,obs spectrumpredicted
by the ΛCDMmodel (i.e. in absence of cosmic birefringence) is larger than the rotated ones: this is due to
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the fact that the birefringence mechanism induces a mixing of the E and B polarization modes, and so it
partially removes power from the former to transfer it to the latter. By direct inspection of Figs. 2.4-2.5, we
see that the impact of cosmic birefringence on CMB power spectra is consistent with our previous consid-
erations made in Sec. 2.3.1. For instance, as shown in Fig. 2.4, the angular power spectrum of the Emodes
of CMB polarization deviates from the ΛCDM one (i.e. without birefringence) formχ = 10−31 eV at low
multipoles. Indeed the dominant modification comes from isotropic cosmic birefringence, and according
to Fig. 2.2 an axion field of such mass is clearly present also after reionization, causing such an impact on
the low multipoles of C EE|(1)

ℓ,obs . Analogously, according again to Fig. 2.2, an axion with massmχ = 10−28 eV
does not experience a relevant time evolution after reionization: indeed, this is clearly noticed in Fig. 2.4,
where the reionization contribution to C EE|(1)

ℓ,obs at low multipoles is not significantly converted to C BB|(1)
ℓ,obs .

2.4.2 ACB fromRecombination and Reionization

By looking at Eqs. (2.119)-(2.123), whose components are given by the formulas collected in Eqs. (2.150)-
(2.152) andEqs. (2.155)-(2.156), we can see that cosmic birefringence enters in the expressions for theCMB
rotated spectra with both the recombination and reionization contributions. Thus, it is important to un-
derstand howmuch the two signals differ. To see this, we have used again our modified CLASS code to plot
the angular power spectra of anisotropic birefringence from the two epochs in Fig. 2.6. Let us notice that
different masses of the axion field imply a different contribution to the reionization signal: indeed, it turns
out that for a sufficiently light axion scalar field, the contribution from reionization can be larger than that
one from recombination at least at low multipoles for the spectra we considered, i.e. C αα|(1)

ℓ , C αT|(1)
ℓ , and

C αE|(1)
ℓ . On the other hand, as the axion mass increases, the two contributions become comparable to each

other.

111



Figure 2.4: Absolute value of the unlensed power spectra of CMB polarization affected by isotropic and
anisotropic cosmic birefringence, from recombination and reionization, for themodel defined by Eq. (2.89)
with the same set of parameters used in Fig. 2.3. The tensor-to-scalar ratio is set equal to zero, so that there
are no primordial Bmodes. In absence of parity-violating mechanisms, the unlensed EB spectrum with no
birefringence is predicted to be zero by the standard ΛCDMmodel.
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Figure 2.5: Absolute value of the unlensed cross-correlations of CMB temperature with polarization af-
fected by isotropic and anisotropic cosmic birefringence, from recombination and reionization, for the
model defined by Eq. (2.89) with the same set of parameters used in Fig. 2.3. The tensor-to-scalar ratio
is set equal to zero, so that there are no primordial Bmodes. In absence of parity-violating mechanisms, the
unlensed TB spectrum with no birefringence is predicted to be zero by the standard ΛCDMmodel.
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Figure 2.6: Absolute value of the angular power spectra involving anisotropic cosmic birefringence for the
model defined by Eq. (2.89), coming from recombination (solid line) and from reionization (dashed line)
for the same set of parameters used in Fig. 2.3. The mixed terms (e.g. recombination-reionization) are not
considered here.
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3
Cross-Bispectra of Anisotropic Birefringence

In the previous chapter we have introduced the phenomenon of cosmic birefringence, and computed the
angular cross-correlation between its anisotropic component and the standard CMB observables. In this
chapter instead, we are going farther, proposing a new kind of promising observable involving ACB. In
fact, in Ref. [82] the authors have calculated the CMB three-point angular correlation functions (in short
the angular bispectra), for the temperature and birefringent polarization fields, i.e. by taking into account
the cosmic birefringence effects. As we did in Sec. 2.4.1, the authors have performed such calculations un-
der the assumption that the temperature, the unrotated polarization fields of CMB and the anisotropic
rotation angle are all Gaussian random fields. Nevertheless, they have found that observed CMB bispec-
tra would arise if two-point cross-correlations of T with δα, and E with δα are non-vanishing. Instead, we
are going here to follow Ref. [85], and to calculate the three-point angular correlations between δα and the
CMB observables, showing that still keeping the Gaussian assumption for these fields, there exist non-zero
observed bispectra even in absence of an unrotated cross-correlation between the birefringence angle andT,
E, B. Furthermore, we will show in this chapter that the 〈δα TB〉 and 〈δα EB〉 bispectra are the three-point
angular correlation functions with the largest signal-to-noise ratio. However, before to start, let us perform
some brief warm-up computations in order to show ourmotivations in going beyond the simple two-point
correlation functions. In Sec. 2.3.2 we have computed the two-point angular cross-correlations between δα
and the unrotated CMB fields: at the contrary, here, we want co compute those with the birefringent ones.
Of course, since the temperature field is not affected by cosmic birefringence, the only relevant quantities are
the Stokes parameters associated with the linear polarization. Therefore, the most general cross-correlation
of the anisotropic component of birefringence angle with CMB polarization modes is obtained by slightly
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modifying Eq. (2.126),

〈α(1)∗ℓ1m1
(τx)aobsj,ℓ2m2

(τz)〉 =
∑

s2

e is2α(τ2)

2
∑

L2M2

∫

d2n̂ s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2)

R
(s2)
jk

〈

α(1)∗ℓ1m1
(τx)aEMk,L2M2

(τz)e is2δα
(1)[(τ0−τz)n̂2]

〉

.

(3.1)

The ensemble average on the right-hand side of the above equation can be easily evaluated by approximating
the exponential to unity, since we want to work at the leading order in δα. Thus, the term within angular
brackets on the right-hand side of Eq. (3.1) simply reduces to

〈α(1)∗ℓ1m1
(τx)aEMk,L2M2

(τz)e is2δα
(1)[(τ0−τ2)n̂2]〉 ≃ C αk|(1)

L2, EM|xzδℓ1L2δm1M2 . (3.2)

We then substitute the result above in Eq. (3.1) to obtain

〈α(1)∗ℓ1m1
(τx)aobsj,ℓ2m2

(τz)〉 =
1
2
∑

s2

e is2α(τz)
∫

d2n̂ s2Y ∗
ℓ2m2

(n̂2) s2Yℓ1m1(n̂2)R
(s2)
jk C αk|(1)

ℓ1, EM|xz. (3.3)

Therefore, by exploiting the orthogonality relation of spin-weighted spherical harmonics and performing
the summation over s2 = ±2, we get the following set of relations:

C αE
ℓ,obs|xz = C αE|(1)

ℓ, EM |xz cos [2α(τz)]− C αB|(1)
ℓ, EM |xz sin [2α(τz)] , (3.4)

C αB
ℓ,obs|xz = C αE|(1)

ℓ, EM |xz sin [2α(τz)] + C αB|(1)
ℓ, EM |xz cos [2α(τz)] . (3.5)

We can easily see that the observed angular power spectra are simply obtained from the EM ones by per-
forming a spatial rotation. This result is telling us that the rotated angular power spectra would vanish if
the unrotated correlations are absent. This conclusion albeit trivial, is interesting also because it provides an
additional motivation to investigate higher-order correlation functions. Indeed, as we will see very soon, we
will reach a very different conclusion for the angular bispectra. This chapter mainly follows Ref. [85], and
its structure is organized as follows. In Sec. 3.1 we explicitly compute the birefringent three-point angular
cross-correlation functions involving δα and CMB observables. In Sec. 3.2 we provide as an example some
plots showing the behavior of the angular bispectra obtained in Sec. 3.1 for a scale-invariantmodel of cosmic
birefringence. In Sec. 3.3 we estimate the signal-to-noise ratio for the angular bispectra we have computed
in Sec. 3.1.
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Table 3.1: Bispectra involving the anisotropic birefringence angle δα and theCMBanisotropymaps,T,E,B,
ordered according to the number of polarization fieldsNP.

NP
0 δα δα T δα TT
1 δα δα E δα δα B δα TE δα TB
2 δα EE δα EB δα BB

3.1 Birefringent Angular Bispectra

We nowmove on by evaluating all the three-point functions involving correlations between the anisotropic
birefringence angle δα and the CMBmaps. For this reason, we are going to calculate the ensemble averages
for the combinations listed in Tab. 3.1. Since cosmic birefringence only affects the Stokes parametersQ and
U, it is clear that the observed correlators 〈δα δα T 〉 and 〈δα TT 〉 correspond to the unrotated ones, and so
they are non-zero only in the presence of some intrinsic (primordial) underlying non-Gaussianity, a case
that we are not considering in this thesis, according to our previous assumptions. Anyway, as we are going
to show, differently from what occurs for the two-point correlation functions, vanishing primordial (three-
point) correlation functions do not prevent the possibility to have non-vanishing observed three-point cor-
relation functions for the other combinations. Therefore, let us focus on the three-point functions listed in
the second and the third line of Tab. 3.1.

3.1.1 One Polarization Field

In analogy with what we have done before, the bispectra involving a single polarization field in Tab. 3.1 can
be evaluated by firstly calculating the following general quantity:

〈α(1)ℓ1m1
(τx)b(1)ℓ2m2

(τy)aobs(τz)j,ℓ3m3
〉 =

∑

s3

e is3α(τz)

2
∑

L3M3

∫

dn̂3 s3Y ∗
ℓ3m3

(n̂3) s3YL3M3(n̂3)R
(s3)
jk

〈

α(1)ℓ1m1
(τx)b(1)ℓ2m2

(τy)aEMk,L3M3
eis3δα(1)[(τ0−τz)n̂3]

〉

,

(3.6)

and then specializing for bℓm = α(1)ℓm and T (1)
ℓm . From Eq. (3.6) is it easy to understand why we can have

non-vanishing three-point correlation functions evenunder theGaussian assumption: the ensemble average
within the angular integral is effectively a trispectrum, i.e. a four-point correlation function in the harmonic
space, which is in general non-zero for Gaussian random fields. In order to see this more clearly, we now
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expand the exponential as

eis3δα(1)(τ0−τz)n̂3] ≃ 1+ is3
∑

L′3M′

3

α(1)L′3M′

3
(τz)0YL′3M′

3
(n̂3). (3.7)

Wenowwant to investigate a specific case, i.e. that forwhichwehaveno two-point cross-correlationbetween
δα and the CMBmaps. Such a situation is possible for example when the potential is suppressed by a small
axion mass, as discussed in Sec. 2.3.2, but here we want more in general to study if it is possible to source
some non-Gaussian correlation functions, even without any unrotated cross-correlation. According to this,
it is then not difficult to show that the only non-vanishing contribution to the ensemble average on the
right-hand side of Eq. (3.6) is given by

〈α(1)ℓ1m1
(τx)b(1)ℓ2m2

(τy)aEMk,L3M3
(τz)e is3δα

(1)[(τ0−τz)n̂3]〉 = is3δℓ2L3δm2,−M3C αα
ℓ1
|xzC bk|(1)

ℓ2, EM|yz0Y
∗
ℓ1m1

(n̂3), (3.8)

wherewehave exploitedEq. (2.129), andneglected all the termsproportional to theunrotated cross-correlations
between α and the CMB fields. For the same reason, since our aim is to study what happens when the two-
point cross-correlations between the anisotropic birefringence angle and the CMB anisotropies are absent,
we can already infer that the only non-vanishing bispectra involving a single polarization field are those with
b(1)ℓm = T (1)

ℓm , and so from now on we replace the generic field b with the CMB temperature anisotropies.
We now substitute Eq. (3.8) in Eq. (3.6), and we perform the integration over the solid angle by means of
Eq. (2.141), so that Eq. (3.6) simply reduces to

〈α(1)ℓ1m1
(τx)T (1)

ℓ2m2
(τy)aobsj,ℓ3m3

(τz)〉 =

=
i
2

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

∑

s3 =±2

s3 eis3α(τz)R(s3)
jk C αα|(1)

ℓ1
|xzCTk|(1)

ℓ2, EM|yz I
0,s3,−s3
ℓ1ℓ2ℓ3

.
(3.9)

After performing the summation over s3 = ±2, we find the following expressions for the observed 〈δα TE〉
and 〈δα TB〉 angular bispectra:

〈α(1)ℓ1m1
(τx)T (1)

ℓ2m2
(τy)E obs

ℓ3m3
(τz)〉 =

{

i
[

1− (−1)ℓT
]

cos [2α(τz)]−
[

1+ (−1)ℓT
]

sin [2α(τz)]
}

C αα|(1)
ℓ1

|xzCTE|(1)
ℓ2, EM |yz I

0,2,−2
ℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

,
(3.10)
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with, by recalling Eq. (2.143), ℓT = ℓ1 + ℓ2 + ℓ3 being the total multipole number, and

〈α(1)ℓ1m1
(τx)T (1)

ℓ2m2
(τy)B obs

ℓ3m3
(τz)〉 =

{

[

1+ (−1)ℓT
]

cos [2α(τz)] + i
[

1− (−1)ℓT
]

sin [2α(τz)]
}

C αα|(1)
ℓ1

|xzCTE|(1)
ℓ2, EM |yz I

0,2,−2
ℓ1ℓ2ℓ3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

,
(3.11)

where we have disregarded the terms proportional to CTB
ℓ because of our assumptions. It is interesting to

note that we obtain some non-zero bispectra between δα and CMB maps, even assuming no correlation
between them at the two-(three) point level. Moreover, Eqs. (3.10)-(3.11) contain terms of mixed parity
for ℓT, where the imaginary part of the bispectra is non-vanishing only if ℓT is an odd number, encoding
parity-breaking signatures, as we will show in Sec. 3.2. Moreover, let us notice that the two bispectra are
non-vanishing even for α = 0, which corresponds to a regime of purely anisotropic cosmic birefringence.
From Eqs. (3.10)-(3.11) we see that setting α = 0 turns off one of the two terms associated with the parity
properties of ℓT, but the other term survives: this feature is suggesting that having a zero isotropic birefrin-
gence angle fixes the parity properties of the bispectrum itself, but it still produces a non-vanishing signal.

3.1.2 Two Polarization Fields

We now move on to consider the more complicated bispectra listed in the last line of Tab. 3.1. Similarly to
the previous case, we have

〈α(1)ℓ1m1
(τx)aobsi,ℓ2m2

(τy)aobsj,ℓ3m3
(τz)〉 =

1
4
∑

s2s3

e i[s2α(τy)+s3α(τz)]

∑

L2M2

∑

L3M3

∫

dn̂2
∫

dn̂3 s2Y ∗
ℓ2m2

(n̂2) s2YL2M2(n̂2) s3Y ∗
ℓ3m3

(n̂3) s3YL3M3(n̂3)

R
(s2)
ik R

(s3)
jl

〈

α(1)ℓ1m1
(τx)aEMk,L2M2

(τy)aEMl,L3M3
(τz)e is2δα

(1)[(τ0−τy)n̂2]e is3δα (1)[(τ0−τz)n̂3]
〉

,

(3.12)

where, expanding the Taylor-expanding the complex exponentials,

e is2δα(1)[(τ0−τy)n̂2]eis3δα(1)[(τ0−τz)n̂3] ≃
≃ 1+ is2

∑

L′2M′

2

α(1)L′2M′

2
(τy)0YL′2M′

2
(n̂2) + is3

∑

L′3M′

3

α(1)L′3M′

3
(τz)0YLM(n̂3),

(3.13)

119



and by exploiting again Eq. (2.129), we work out the ensemble average within the integral as

〈α(1)ℓ1m1
(τx)aEMk,L2M2

(τy)aEMl,L3M3
(τz)eis2δα

(1)[(τ0−τy)n̂2]eis3δα(1)[(τ0−τz)n̂3]〉 ≃

≃ i
2

[

C αα|(1)
ℓ1

|xy + C αα|(1)
ℓ1

|xz
]

C kl|(1)
L2, EM|yzδL2L3δM2,−M3

[

s2 0Y ∗
ℓ1m1

(n̂2) + s3 0Y ∗
ℓ1m1

(n̂3)
]

.
(3.14)

WenowreplaceEq. (3.14) inEq. (3.12) and, byperforming the angular integrationwith thehelpofEq. (2.73)
and Eq. (2.141), we finally get

〈α(1)ℓ1m1
(τx)aobsi,ℓ2m2

(τy)aobsj,ℓ3m3
(τz)〉 =

i
8

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

∑

s2s3

ei[s2α(τy)+s3α(τz)]R
(s2)
ik R

(s3)
jl

[

C αα|(1)
ℓ1

|xy + C αα|(1)
ℓ1

|xz
] [

s2C kl|(1)
ℓ3, EM|yz I

0,s2,−s2
ℓ1ℓ2ℓ3

+ s3C kl|(1)
ℓ2, EM|yz I

0,−s3,s3
ℓ1ℓ2ℓ3

]

.

(3.15)

Thus, we can use the expression in Eq. (3.15) to compute the bispectra listed in the last row of Tab. 3.1.
Let us notice that we get a relatively simple expression because, according to our assumptions, we have set
equal to zero all the two-point cross-correlations of the anisotropic cosmic birefringent angle with CMB
temperature and polarization modes, and because we are working at the leading order in δα: differently
from the case involving a single polarization field, this time no one of the configurations in the last line of
Tab. 3.1 is vanishing. After some algebra we obtain

〈α(1)ℓ1m1
(τx)E obs

ℓ2m2
(τy)E obs

ℓ3m3
(τz)〉 =

i
4
∑

s2s3

eis2α(τy)+is3α(τz)

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

[

C αα
ℓ1
|xy I 0,s2,−s2

ℓ1ℓ2ℓ3

(

s2C EE|(1)
ℓ3, EM|yz − s3C BB|(1)

ℓ3, EM|yz
)

+ C αα|(1)
ℓ1

|xz I 0,−s3,s3
ℓ1ℓ2ℓ3

(

s3C EE|(1)
ℓ2 EM |yz − s2C BB|(1)

ℓ2, EM|yz
) ]

,

(3.16)

〈α(1)ℓ1m1
(τx)B obs

ℓ2m2
(τy)B obs

ℓ3m3
(τz)〉 =

i
4
∑

s2s3

eis2α(τy)+is3α(τz)

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

[

C αα|(1)
ℓ1

|xy I 0,s2,−s2
ℓ1ℓ2ℓ3

(

s2C BB|(1)
ℓ3 EM |yz − s3C EE|(1)

ℓ3, EM|yz
)

+

+ C αα|(1)
ℓ1

|xz I 0,−s3,s3
ℓ1ℓ2ℓ3

(

s3C BB|(1)
ℓ2, EM|yz − s2C EE|(1)

ℓ2, EM|yz
) ]

,

(3.17)
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〈α(1)ℓ1m1
(τx)E obs

ℓ2m2
(τy)B obs

ℓ3m3
(τz)〉 =

1
4
∑

s2s3

eis2α(τy)+is3α(τz)

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

[

C αα|(1)
ℓ1

|xy I 0,s2,−s2
ℓ1ℓ2ℓ3

( s2s3
2
C EE|(1)
ℓ3, EM|yz − 2C BB|(1)

ℓ3, EM|yz
)

+

+ C αα|(1)
ℓ1

|xz I 0,−s3,s3
ℓ1ℓ2ℓ3

( s2s3
2
C BB|(1)
ℓ2, EM|yz − s2C EE|(1)

ℓ2, EM|yz
) ]

.

(3.18)

Interestingly enough, all the bispectra collected in Eqs. (3.16)-(3.18) contain terms of different parity, since
they are proportional to [1 ∓ (−1)ℓT ] and thus vanish for ℓT = even (odd). This is a manifest signature
that these objects encode parity-violating features, that are due to the parity-breaking nature of cosmic bire-
fringence. Moreover, as we could expect, all the bispectra that we have computed are proportional to the
self-correlatorC αα|(1)

ℓ , which obviously depends on the specificmodelwhich induces the birefringentmecha-
nism. Furthermore, it is interesting to see that, thanks to the symmetry properties of theWigner 3j-symbols,
the 〈δα EE〉 and 〈δα BB〉 angular bispectra are invariant under the index permutation ℓ2 ↔ ℓ3. We point
out this feature, because in general angular correlation functions involving different fields are not symmetric
under the simultaneous interchange of their three multipole numbers ℓ1 ℓ2 ℓ3 (for example the TTE, TET,
and ETT combinations of a bispectrum of CMB temperature and polarization would correspond to three
distinct bispectra , as discussed e.g. in Refs. [198–201]). We will use this property in Sec. 3.3, when we will
estimate the signal-to-noise ratio of the cross-bispectra we have computed here.

3.2 Reduced Bispectra

In order to explicitly evaluate some of the angular bispectra, we now adopt a phenomenological approach.
Differently from Chap. 2, we consider here a scale-invariant model of cosmic birefringence, for which the
self-correlator of δα reads:

C αα|(1)
ℓ ≡ C (1)

αα

ℓ(ℓ+ 1)
, (3.19)

whereC (1)
αα is amodel-dependent parameterwhich encodes the physics of the axionfield χ and that quantifies

the amplitude of the anisotropic component of the birefringence angle. Since we are working under the
assumption of statistical isotropy, our bispectra should be invariant under spatial rotations, and this requires
the angular bispectra should be proportional to the Wigner 3j-symbol (see e.g. Ref. [202]):

〈aX,ℓ1m1aY,ℓ2m2aZ,ℓ3m3〉 =
(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

BXYZ
ℓ1ℓ2ℓ3

, (3.20)
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where BXYZ
ℓ1ℓ2ℓ3

is the angular averaged bispectrum and X,Y,Z denote δα,T,E,B. However, in order to
extract the physical information we display the so-called reduced bispectra bXYZ

ℓ1ℓ2ℓ3
, that are related to the

angular averaged one via
BXYZ
ℓ1ℓ2ℓ3

= Gℓ1ℓ2ℓ3bXYZ
ℓ1ℓ2ℓ3

, (3.21)

where the functionGℓ1ℓ2ℓ3 is defined as:

Gℓ1ℓ2ℓ3 ≡ −2

√

(ℓ2 + 2)!(ℓ3 + 2)!
(ℓ2 − 2)!(ℓ3 − 2)!

{

ℓ1(ℓ1 + 1) [ℓ3(ℓ3 + 1) + ℓ2(ℓ2 + 1)− ℓ1(ℓ1 + 1)] +

+ ℓ2(ℓ2 + 1) [ℓ3(ℓ3 + 1)− ℓ2(ℓ2 + 1) + ℓ1(ℓ1 + 1)] +

+ (ℓ3 + 2)(ℓ3 − 1) [ℓ1(ℓ1 + 1)− ℓ2(ℓ2 + 1)− ℓ3(ℓ3 + 1)]
}−1

I 0,2,−2
ℓ1ℓ2ℓ3

.

(3.22)

Indeed such an expression matches the more common one for ℓT = even, as it can be shown via standard
techniques in quantum theory of angular momentum,

Gℓ1ℓ2ℓ3
ℓT = even−−−−→ I 0,0,0ℓ1ℓ2ℓ3

, (3.23)

and can be found by exploiting the recursive formulas for the Wigner 3j-symbols (see e.g Refs. [183, 203]).
The definition of Eq. (3.22) is more general, since it remains non-zero for ℓT = odd. Differently, I 0,0,0ℓ1ℓ2ℓ3

is
vanishing for ℓT = odd (see e.g. Ref. [204]). However, it is now time to understand how the parity of ℓT is
related to the the parity of the bispectrum itself (see e.g. Refs. [19, 23]): this can be understood by taking
the complex conjugate of Eq. (3.20),

〈a∗X,ℓ1m1
a∗Y,ℓ2m2

a∗Z,ℓ3m3
〉 = 〈aX,ℓ1,−m1aY,ℓ2,−m2aZ,ℓ3,−m3〉 , (3.24)

where we have exploited that the harmonic coefficients of the CMB observables obey a reality condition:

a∗X,ℓ1m1
= (−1)m1aX,ℓ1,−m1 . (3.25)

As shown in Eq. (2.67), theWigner-3j symbol automatically ensures the following selection rule on them’s:

m1 +m2 +m3 = 0, (3.26)
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so that we can express the complex conjugate of the angular bispectrum by means of Eq. (3.20) as before,
but with all the signs in front of them’s flipped:

[

〈aX,ℓ1m1aY,ℓ2m2aZ,ℓ3m3〉
]∗

=

(

ℓ1 ℓ2 ℓ3

−m1 −m2 −m3

)

BXYZ
ℓ1ℓ2ℓ3

= (−1)ℓT 〈aX,ℓ1m1aY,ℓ2m2aZ,ℓ3m3〉 , (3.27)

where we have used one of the properties collected in Eq. (2.143). This means that we can write the trans-
formation properties of the angular bispectrum under complex-conjugation (c.c.) as

ang. bispectrum c.c.−→







+ itself if ℓT = even,

− itself if ℓT = odd.
(3.28)

This is equivalent to say that: if ℓT is equal to an even number, then the angular bispectrum has to be a
purely real quantity, whereas if ℓT is equal to an odd number, then the angular bispectrumhas to be a purely
imaginary quantity. Therefore, the most general bispectrum, without any assumption about the parity of
ℓT can be written as

BXYZ
ℓ1ℓ2ℓ3

= BXYZ,even
ℓ1ℓ2ℓ3

+ iBXYZ,odd
ℓ1ℓ2ℓ3

, (3.29)

where the subscripts “even” and “odd” refers to the parity of ℓT. Moreover, this decomposition also plays a
role in defining the overall parity of the angular bispectrum, since

〈aX,ℓ1m1aY,ℓ2m2aZ,ℓ3m3〉
parity−−→ (−1)ℓT+NB 〈aX,ℓ1m1aY,ℓ2m2aZ,ℓ3m3〉 , (3.30)

beingNB the number ofB-mode polarizationCMBfields involved in the ensemble average. Hence, it is clear
that parity is violated if ℓT+NB is equal to an oddnumber. SinceNB is fixed from the type of bispectrumone
wants to evaluate, it follows that parity is automatically broken if the correlation function can be written as
the sum of terms of mixed parity of ℓT. Therefore, from Eq. (3.29), we can now infer that the most general
parity-violating CMB bispectrum is a complex quantity, since it involves components of different parity for
ℓT. Coming back to our specific case, we have shown in Sec. 3.1 that our angular bispectra contain both
parity-even and parity-odd components, so with the help of Eqs. (3.20)-(3.21), we can find the expression
of the reduced bispectra associated with Eqs. (3.10)-(3.11) and Eqs. (3.16)-(3.18):

bXYZ
ℓ1ℓ2ℓ3

= bXYZ,even
ℓ1ℓ2ℓ3

+ ibXYZ,odd
ℓ1ℓ2ℓ3

. (3.31)
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Therefore, we can adopt such a decomposition and plot the reduced bispectra starting from the angular
three-point correlation functions we have computed in Sec. 3.1. As done e.g. in Ref. [82], in order to
display our bispectra we fix two of the three different ℓ’s by using the following configurations:

ℓT = even : {ℓ1, ℓ2, ℓ3} = {4, ℓ, ℓ+ 4} (3.32)

ℓT = odd : {ℓ1, ℓ2, ℓ3} = {4, ℓ, ℓ+ 3} (3.33)

that automatically determine the overall parity properties, and ensure the triangular selection rule guar-
anteed by the Wigner 3j-symbol. We have numerically computed the reduced angular bispectra by using
Eq. (2.109), and the Boltzmann code CLASS to evaluate the CMB angular power spectra: the results are
shown in Figs. 3.1-3.2, where we have assumed only scalar perturbations, but we have taken into account
the weak gravitational lensing. Moreover, we have not considered the contribution coming from reioniza-
tion, but just the recombination one. Let us notice that the oscillating behavior exhibited by the bispectra
involving a single polarization field in Fig. 3.1 is due to the the fact that these objects are proportional to
the CMB cross-correlator CTE|(1)

ℓ, EM (see e.g. Ref. [144]). As mentioned before, an interesting result worth
to be noticed is that even by assuming no isotropic cosmic birefringence, anyhow a non-vanishing reduced
bispectra with a certain parity is generated.

3.3 Estimation of the Signal-to-Noise Ratio

In this section, we are going to compute the signal-to-noise ratio (SNR) for the birefringent bispectra of
Eqs. (3.10)-(3.11) and (3.16)-(3.18). According to its definition, the SNR is the ratio of the signal power to
the noise power, and so, in order to estimate the uncertainty in themeasurement of the bispectra, we invoke
the Cramer-Rao inequality, which states that the variance of an unbiased estimator for a given theoreti-
cal parameter cannot be less than the diagonal element of the inverse Fisher matrix (see e.g. Ref. [205]).
By working in analogy with what is usually done in the context of primordial non-Gaussianity (see e.g.
Refs. [150, 200, 202, 206–208]), we consider here the simplest scenario where the form of a given bispec-
trum is considered known and the only parameter of interest is its overall amplitude. Since we are consider-
ing a single parameter, the Fisher matrix reduces to being just a number (see e.g. Ref. [209]):

F(XYZ) =
∑

ℓ1≤ℓ2≤ℓ3

∑

ℓ′1≤ℓ′2≤ℓ′3

∑

ii ′
B i
ℓ1ℓ2ℓ3

[

Cov(B̂ i
ℓ1ℓ2ℓ3

, B̂ i ′
ℓ′1ℓ

′

2ℓ
′

3
)
]−1

B i ′
ℓ′1ℓ

′

2ℓ
′

3
. (3.34)
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Figure 3.1: Real and imaginary components of the reduced bispectra involving one polarization fields, in
the purely anisotropic regime (α = 0) and for a fixed value of the isotropic birefringence angle.
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Figure 3.2: Real and imaginary components of the reduced bispectra involving two polarization fields, in
the purely anisotropic regime (α = 0) and for a fixed value of the isotropic birefringence angle.
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where X,Y,Z = δα,T,E,B and the index

i = (X,Y,Z), (Y,Z,X ), (Z,X,Y ), . . . (3.35)

labels all thepossible non-redundantpermutations of afixed triplet of fields (i.e. they are 6whenX 6= Y 6= Z,
1 when X = Y = Z and 3 otherwise). B̂XYZ

ℓ1ℓ2ℓ3
is an unbiased estimator for the observed angular averaged

bispectrum (see e.g. Ref. [210]),

B̂XYZ
ℓ1ℓ2ℓ3

≡
∑

m1m2m3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

aX,obsℓ1m1
aY,obsℓ2m2

aZ,obsℓ3m3
, (3.36)

and Cov(B̂ i
ℓ1ℓ2ℓ3

, B̂ i ′
ℓ′1ℓ

′

2ℓ
′

3
) is the covariance matrix element. Differently from what is done e.g. in Ref. [199],

we are not summing over all the possible combinations of different fields, but we are treating separately each
contribution from the five non-vanishing bispectra that we have found in Sec. 3.1 (a similar approach has
been adopted for the CMB bispectra induced by weak gravitational lensing in Ref. [211]). The covariance
matrix element is defined as

Cov(B̂XYZ
ℓ1ℓ2ℓ3

, B̂X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
) ≡ 〈B̂XYZ

ℓ1ℓ2ℓ3
B̂X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
〉 − 〈B̂XYZ

ℓ1ℓ2ℓ3
〉〈B̂X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
〉. (3.37)

Aswe are going to show, the first term encodes several contributions, and some of them are at least quadratic
in δα, whereas the second term is at least quartic in δα because, as can be seen from Eqs. (3.10)-(3.11)
and (3.16)-(3.18), all our bispectra are proportional to C αα|(1)

ℓ1
. For this reason we can disregard the second

term on the right-hand side of Eq. (3.37), and approximate the covariance matrix element as

Cov(B̂XYZ
ℓ1ℓ2ℓ3

, B̂X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
) ≃

∑

m1m2m3

∑

m′

1m′

2m′

3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ′1 ℓ′2 ℓ′3
m′

1 m′
2 m′

3

)

〈

aXℓ1m1
aYℓ2m2

aZℓ3m3
aX′

ℓ′1m′

1
aY′ℓ′2m′

2
aZ′

ℓ′3m′

3

〉

obs
,

(3.38)

In our case, one of the three fields X,Y,Z is always set to be δα, and since we are working at the leading
perturbative order, here we can neglect the factor exp(±2iδα) appearing in Eq. (2.124). As a consequence,
according to our assumptions, there are no connected terms arising fromnon-Gaussian contributions in the
six-point correlation function on the right-hand side of Eq. (3.38), and so we can again exploit the Isserlis’
theorem. Furthermore, as shown in Eqs. (3.4)-(3.5), the observed two-point cross-correlations between δα
and the CMBmaps are simply a rotation of the unrotated ones, and so, according to our phenomenological
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assumptions, they vanish too. Thanks to all these approximations, the covariance matrix reduces to

Cov(B̂ XYZ
ℓ1ℓ2ℓ3

, B̂ X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
) ≃

∑

m1m2m3

∑

m′

1m′

2m′

3

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ′1 ℓ′2 ℓ′3
m′

1 m′

2 m′

3

)

[

〈aX,ℓ1m1aY,ℓ2m2〉〈aZ,ℓ3m3aX ′,ℓ′1m′

1
〉〈aY ′,ℓ′2m′

2
aZ ′,ℓ′3m′

3
〉+ 〈aX,ℓ1m1aZ,ℓ3m3〉〈aY,ℓ2m2aX ′,ℓ′1m′

1
〉〈aY ′,ℓ′2m′

2
aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aX ′,ℓ′1m′

1
〉〈aY,ℓ2m2aZ,ℓ3m3〉〈aY ′,ℓ′2m′

2
aZ ′,ℓ′3m′

3
〉+ 〈aX,ℓ1m1aY ′,ℓ′2m′

2
〉〈aY,ℓ2m2aZ,ℓ3m3〉〈aX ′,ℓ′1m′

1
aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aZ ′,ℓ′3m′

3
〉〈aY,ℓ2m2aZ,ℓ3m3〉〈aX ′,ℓ′1m′

1
aY ′,ℓ′2m′

2
〉+ 〈aX,ℓ1m1aY,ℓ2m2〉〈aZ,ℓ3m3aY ′,ℓ′2m′

2
〉〈aX ′,ℓ′1m′

1
aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aY,ℓ2m2〉〈aZ,ℓ3m3aZ ′,ℓ′3m′

3
〉〈aX ′,ℓ′1m′

1
aY ′,ℓ′2m′

2
〉+ 〈aX,ℓ1m1aZ,ℓ3m3〉〈aY,ℓ2m2aY ′,ℓ′2m′

2
〉〈aX ′,ℓ′1m′

1
aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aZ,ℓ3m3〉〈aY,ℓ2m2aZ ′,ℓ′3m′

3
〉〈aX ′,ℓ′1m′

1
aY ′,ℓ′2m′

2
〉+ 〈aX,ℓ1m1aX ′,ℓ′1m′

1
〉〈aY,ℓ2m2aY ′,ℓ′2m′

2
〉〈aZ,ℓ3m3aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aX ′,ℓ′1m′

1
〉〈aY,ℓ2m2aZ ′,ℓ′3m′

3
〉〈aZ,ℓ3m3aY ′,ℓ′2m′

2
〉+ 〈aX,ℓ1m1aY ′,ℓ′2m′

2
〉〈aY,ℓ2m2aX ′,ℓ′1m′

1
〉〈aZ,ℓ3m3aZ ′,ℓ′3m′

3
〉

+ 〈aX,ℓ1m1aY ′,ℓ′2m′

2
〉〈aY,ℓ2m2aZ ′,ℓ′3m′

3
〉〈aZ,ℓ3m3aX ′,ℓ′1m′

1
〉+ 〈aX,ℓ1m1aZ ′,ℓ′3m′

3
〉〈aY,ℓ2m2aX ′,ℓ′1m′

1
〉〈aZ,ℓ3m3aY ′,ℓ′2m′

2
〉

+ 〈aX,ℓ1m1aZ ′,ℓ′3m′

3
〉〈aY,ℓ2m2aY ′,ℓ′2m′

2
〉〈aZ,ℓ3m3aX ′,ℓ′1m′

1
〉
]

obs
.

(3.39)

Because of statistical isotropy, we can rewrite the two-point correlation functions in terms of the angular
power spectra: by doing this, the first nine terms in the square brackets on the right-hand side of Eq. (3.39)
become proportional to (see e.g. Ref [212])

∑

mm′

(

L ℓ ℓ

0 m −m

)(

L ℓ′ ℓ′

0 m′ −m′

)

=
∑

mm′

(−1)ℓ+ℓ′−m−m′

√

(2ℓ+ 1)(2ℓ′ + 1)
δL0. (3.40)

However, the observable multipoles start from L ≥ 2, and so this means that the term above gives no
contribution in the estimation of the signal-to-noise ratio. Therefore we are only left with

Cov(B̂XYZ
ℓ1ℓ2ℓ3 , B̂

X ′Y ′Z ′

ℓ′1ℓ
′

2ℓ
′

3
) = (−1)ℓTCXX ′

ℓ1,obsC
YY ′

ℓ2,obsC
ZZ ′

ℓ3,obsδℓ1ℓ′1δℓ2ℓ′2δℓ3ℓ′3 + CXX ′

ℓ1,obsC
YZ ′

ℓ2,obsC
ZY ′

ℓ3,obsδℓ1ℓ′1δℓ2ℓ′3δℓ3ℓ′2
+ CXY ′

ℓ1,obsC
YX ′

ℓ2,obsC
ZZ ′

ℓ3,obsδℓ1ℓ′2δℓ2ℓ′1δℓ3ℓ′3 + (−1)ℓTCXY ′

ℓ1,obsC
YZ ′

ℓ2,obsC
ZX ′

ℓ3,obsδℓ1ℓ′2δℓ2ℓ′3δℓ3ℓ′1
+ (−1)ℓTCXZ ′

ℓ1,obsC
YX ′

ℓ2,obsC
ZY ′

ℓ3,obsδℓ1ℓ′3δℓ2ℓ′1δℓ3ℓ′2 + CXZ ′

ℓ1,obsC
YY ′

ℓ2,obsC
ZX ′

ℓ3,obsδℓ1ℓ′3δℓ2ℓ′2δℓ3ℓ′1 ,

(3.41)

where we have used Eq. (2.145). It can seem not formally trivial to obtain the inverse covariance matrix
starting from Eq. (3.41). Anyway, we know that the covariance matrix element is non-vanishing only when
connecting the same triplets, i.e. when (ℓ1, ℓ2, ℓ3) is equal to (ℓ′1, ℓ

′
2, ℓ

′
3) or to a permutation of it. Thus,

since we restrict the summation in the (ℓ1 ≤ ℓ2 ≤ ℓ3) and (ℓ′1 ≤ ℓ′2 ≤ ℓ′3) domains, we can observe that
the covariance matrix is already diagonal in the triplets space, so that we can rewrite Eq. (3.34) as

F(XYZ) =
∑

ℓ1≤ℓ2≤ℓ3

∑

ii ′
B i
ℓ1ℓ2ℓ3

[

Cov(B̂ i
ℓ1ℓ2ℓ3

, B̂ i ′
ℓ1ℓ2ℓ3

)
]−1

B i ′
ℓ1ℓ2ℓ3

. (3.42)
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Let us just mention that the procedure of the domain restriction in the triplet space we have adopted from
the beginning of this section is physically correct: this is due to the fact that any angular averaged bispectrum
is symmetric under the simultaneous interchange of its three multipole numbers ℓ1, ℓ2, ℓ3 and its three field
indicesX,Y,Z (see e.g. Ref. [198]). Thus, in order to extract the information content, it is enough to study
just the subspace ℓ1 ≤ ℓ2 ≤ ℓ3, since we are already summing over all the possible field permutations. We
have now to specify the general formula of Eq. (3.42) for the five bispectra collected in Eqs. (3.10)-(3.11)
and (3.16)-(3.18). Before doing this, we make a further approximation: since the total angular averaged
bispectrum is the sum of different terms, it is reasonable to expect that the dominant contribution in the
signal would come from those terms that are non-vanishing even for α = 0. Hence, in this section we
consider a regime of purely anisotropic cosmic birefringence, which allows us to replace Cℓ,obs ≃ C (1)

ℓ EM

within the covariance in Eq. (3.42). Moreover, it is convenient to express the signal-to-noise ratio by means
of amatrix formalism by defining a proper quadratic form, which should involve data vectors containing all
the permutations of the given bispectrum and a suitable expression for the covariance matrix element:

Cov XYZ
ℓ1ℓ2ℓ3

=

{

CXX ′

ℓ1
C YZ ′

ℓ2 CZY ′

ℓ3 δℓ2ℓ3 + CXY ′

ℓ1
C YX ′

ℓ2 CZZ ′

ℓ3 δℓ1ℓ2 + CXZ ′

ℓ1
C YY ′

ℓ2 CZX ′

ℓ3 δℓ1ℓ3δℓ2ℓ3

+ (−1)ℓT
[

CXX ′

ℓ1
C YY ′

ℓ2 CZZ ′

ℓ3 + CXY ′

ℓ1
C YZ ′

ℓ2 CZX ′

ℓ3 δℓ1ℓ2δℓ2ℓ3 + CXZ ′

ℓ1
C YX ′

ℓ2 CZY ′

ℓ3 δℓ1ℓ3δℓ2ℓ3
]

}

EM
.

(3.43)

Therefore, we can substitute such a general expression in the definition of the Fisher matrix, so that we ob-
tain five formulas for the squared signal-to-noise ratios (one for each birefringent bispectrum). We report
the results of the numerical evaluationof inTab. 3.2: they have beenobtainedby summingup to ℓmax = 200
and by considering an ideal regime with zero instrumental noise. Our choice for ℓmax = 200 is dictated by
two reasons: in some realistic models for birefringence with a Chern-Simons term these are the typical mul-
tipole values up to which the power-spectrum of the anisotropic birefringence angle C αα

ℓ is approximately
scale-invariant, which is the kind of spectrum we are using here as a toy-model; secondly we are going to
specialize our Fisher forecast to a typical LiteBIRD-like satellite mission. In Tab. 3.2 we have reported both
the signal-to-noise ratio in units of

√
Cαα and according to the current tightest upper observational con-

straints on the amplitude of a scale-invariant angular power spectrum of anisotropic cosmic birefringence
from ACTPol and SPTpol (see Refs. [95, 96], respectively):

Cαα < 6.3× 10−5 rad2, (95%C.L., ACTPol, SPTpol). (3.44)

Present constraints on anisotropic birefringence, provided as amplitudeCαα of the scale-invariant spectrum
of δα(n̂), are also given by Planck and Bicep-Keck data (see Refs. [97, 100, 102, 103]). Other compatible,
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Table 3.2: Numerical estimation of the SNR for the birefringent bispectra in the ideal case (zero instru-
mental noise) in the purely anisotropic regime.

Bispectrum SNR (in units of
√
Cαα) SNR (if Cαα ∼ 6× 10−5)

δα TE ≈ 80 ≈ 0.62
δα TB ≈ 1926 ≈ 14.92
δα EB ≈ 3680 ≈ 28.51
δα EE ≈ 83 ≈ 0.64
δα BB ≈ 4 ≈ 0.03

even though weaker, constraints on this parameter are provided by Polarbear andWMAP observations (see
Refs. [91, 93], respectively). Future CMB observations are expected to improve the current bounds on cos-
mic birefringence by orders of magnitude, ad discussed e.g. in Ref. [213]. Similarly, we can now examine
the detection possibility of our bispectra for a future CMB experiment, like the LiteBIRD satellite (see e.g.
Ref. [214]), as we have mentioned before. Here, we analyze an idealized experimental configuration where
foregrounds are neglected. Thus, the signal-to-noise ratio is evaluated adding this time the instrumental
noise to the power spectra appearing in Eq. (3.43). By assuming a Gaussian form for the experimentalwin-
dow function of beam θ, and by considering a white instrumental noise, we can use the Knox’s formula
for the CMB correlators (see Ref. [215]) :

CXY
ℓ 7→ CXY

ℓ + μw−1 exp
(

ℓ 2θ 2

8 ln 2

)

(3.45)

where μ is a numerical factor which reads one for the TT spectrum, 2 for the EE and BB spectra, and zero
otherwise, and

√

1/w is the power noise. In fact, CMB cross-correlations have no noise contribution, since
the noises from different maps are not correlated (see e.g. Ref. [216]). A more complicated expression has
to be considered instead for the auto-spectrum of anisotropic cosmic birefringence (see Ref. [80]):

C αα
ℓ 7→ C αα

ℓ +







∑

L1L2

π(2L1 + 1)(2L2 + 1)(C EE
L1 )

2e−(L
2
1+L22)θ

2/(8 ln 2)
[

C BB
L1 e

−L21 θ
2/(8 ln 2) + 2w−1

] [

C EE
L2 e

−L22θ
2/(8 ln 2) + 2w−1

]

(

L1 ℓ L2

2 0 −2

)2






−1

. (3.46)

By substituting Eqs. (3.45)-(3.46) in Eq. (3.42) and by multiplying the overall result by the fraction of
the sky fsky to which the experiment is sensitive, we can estimate the SNR according for a LiteBIRD-like
experiment to the following instrumental parameters (see Refs. [83, 217]):

θ = 30′, w−1/2 = 4.5 μK-arcmin, fsky = 0.7. (3.47)

FromTab. 3.3we can see that the bispectra involving a singleB-mode in thepolarizationpattern, i.e. 〈δα TB〉
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Table 3.3: Numerical estimation of the SNR for the birefringent bispectra (including the LiteBIRD satel-
lite instrumental noise) in the purely anisotropic regime.

Bispectrum SNR (if Cαα ∼ 6× 10−5)
δα TE ≈ 0.0661
δα TB ≈ 4.0635
δα EB ≈ 7.5658
δα EE ≈ 0.0543
δα BB ≈ 0.0004

and 〈δα EB〉, are the more promising for what concerns a possible future detection. This is due to the form
assumed by the covariance matrix in Eq. (3.43) for these two specific cases, which, strictly speaking, once
inverted results in a matrix of fractions with denominators that are smaller than in the case of the other
bispectra. The reason for that is the dependence of the covariancematrix elements on quantities likeCTB

ℓ or
C EB
ℓ that are null by hypothesis (and also the fact that the covariance matrix will contain terms proportional

to the power spectrum of theBmodes). Moreover, it is not surprising that SNR for the 〈δα EB〉 bispectrum
is larger than that for the 〈δα TB〉, since in the former case the covariance matrix elements depend on the
CMB temperature power spectrum, whose amplitude is estimated to be larger than that of C EE

ℓ . These
results and considerations further motivate our choice of performing a Fisher forecast for a LiteBIRD-like
experiment, that is a B-mode devoted satellite mission. They also justify our choice of analyzing the SNR
for specific combinations of the various fields involved in the observations, since, according to our results,
we do expect that the bispectra involving a single B-mode would provide the dominant contribution to
the total SNR. The results shown in Tab. 3.3 are indeed quite promising, showing in principle that the
constraints they could provide are comparable to the present limits we have on anisotropic birefringence.
A few further comments are in order here. We have checked that the SNR remains very small either if we
start from lmin = 10 up to lmax = 200, or in the case where we stop at lmax = 10, which is indeed telling
us that the main contribution to the SNR comes from squeezed configurations where, e.g. ℓ1 ≪ ℓ2 ∼ ℓ3.
Also, as mentioned in Sec. 3.2, we accounted only for the recombination epoch as the time of polarization
generation. We do expect that adding the reionization epoch as well would not dramatically modify the
SNR. Indeed we have verified that this is the case, in the simplifying assumption that the power spectrum
of anisotropic birefringence from the reionization epoch is scale invariant and with the same amplitude as
that adopted in (3.19). For example, in Ref. [85], we have found that for the 〈αEB〉 bispectrum the SNR
slightly increases to SNRα=0

αEB = 8.0334.
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4
Conclusions

In this thesiswehave discussedhow it is possible to probe fundamental physics through cosmological observ-
ables. In particular, we have shown that the CMB polarization anisotropies are sensitive to parity-violating
extensions of Maxwell’s electromagnetism, able to induce a rotation of the linear polarization plane of pho-
tons during propagation, causing cosmic birefringence. After having reviewed the basic notions of modern
electrodynamics, general relativity and of the CMB physics in Chap. 1, we have focused on showing the
impact of the isotropic and anisotropic birefringence on the Stokes parameters of the cosmic microwave
background radiation. Indeed, in Chap. 2, we have reviewedRefs. [77, 171], and performed a tomographic
analysis of cosmic birefringence, by studying the dynamics of an axion-like field χ: We have solved the equa-
tion of motion of the background term χ(τ) and of its inhomogeneous fluctuation δχ (1)(τ, x) for several
values of the axion massmχ, that enter in the axion potential as described by Eq. (2.89). Our approach has
allowed us to clarify how cosmic birefringence affects the CMB observables. For instance, we have found
that different values for the axion mass imprint very different signatures in the birefringence signal, making
the tomographic approach to ACB a powerful probe of the axion field underlying physics, in analogy with
what has been found in previous studies in literature, e.g. in Refs. [74–76], but where the analysis was re-
stricted just to the isotropic case of cosmic birefringence. A relevant message we want to convey is that our
tomographic treatment of ACB is able to make manifest unique features of the birefringence anisotropies
with respect to the purely isotropic case: indeed, we have shown that, although a large axion mass prevents
the possibility to have isotropic cosmic birefringence, this behavior is notmimicked by the anisotropic coun-
terpart. As can be seen by comparing Fig. 2.2 with Fig. 2.3, this is due to the fact the larger the axionmass is,
larger the amplitudes of theC αα|(1)

ℓ ,C αT |(1)
ℓ andC αE|(1)

ℓ are. This fact has a very intriguing consequence: since
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CMBobservations have constrained the ACB amplitude below a certain threshold, it follows that the axion
mass can be constrained too up to an upper value. This is a clear example that ACB can encode additional
and complementary information, relevant also for the isotropic counterpart. Another important result we
have found in Chap. 2 is that for low multipoles and for sufficiently small values of the axion mass, the
reionization contribution to anisotropic cosmic birefringence is higher with respect to the recombination
one, as can be seen by looking at Fig. 2.6. For this reason, a future development of our research could be
trying to use the signal coming from reionization encoded in ACB as a probe of the axion parameters, as it
has been already done in the purely isotropic regime. All the aforementioned results were possible thanks to
the generalization of the standard formalism which describes how anisotropic cosmic birefringence affects
the CMB angular power spectra, by including the reionization contribution. Indeed, the general formulas
collected in Eqs. (2.150)-(2.152) and Eqs. (2.155)-(2.156) can be seen as a generalized version of the well
known equations for ACB that it is possible to find e.g. in Ref. [79]. Thanks to our modified version of the
Boltzmann code CLASS, we have been also able to numerically compute the rotated CMB spectra, which is
one of the observables where we expect to test our theoretical predictions. However, this was just a part of
the story, since relevant information can be found also in higher-order correlation functions with respect to
themerely two-point ones. In fact, we have thenmoved forward, and inChap. 3we have reviewedRef. [85]:
in particular we have shown what is the relation between the observed angular correlation functions involv-
ing the anisotropic birefringence angle and theCMBmaps, and their unrotated counterparts. The observed
angular power spectra are simply obtained by a rotation of the primordial ones, but this simple relation can-
not be extended to higher-order correlators. Indeed we have computed the angular three-point functions
and the corresponding reduced bispectra: we have found that even by assuming that δα, T and the unro-
tated E and B fields are all Gaussian random fields, and although any two-point cross-correlationC αX

ℓ (with
X = T,E,B) is taken to be zero, there exist non-vanishing parity-breaking bispectra. Moreover, from the
results shown in Figs. 3.1-3.2, it is possible to see that there are non-vanishing contributions also in a purely
anisotropic regime. We have also estimated the signal-to-noise ratio for the birefringent bispectra, showing
that a future LiteBIRD-like experiment could be eventually able to detect the signals encoded in the 〈δαTB〉
and 〈δαEB〉 bispectra. To conclude, cosmic birefringence is certainly a topic which has become more and
more relevant in cosmology, especially thanks to the hints of detection coming from the latest analysis of the
Planckdata: thiswas one of themotivations for the theoreticalworks onwhich this thesis is based. Themain
goal of such a dissertation was to show the robust potentialities of this topic as a probe of parity-violating
signatures in the Universe, even if the current cosmological paradigm is robust too. However, paraphrasing
the famous epistemologist Thomas Kuhn, stressing a paradigm is the best way to strengthen it, because, if
it survived, it will be because it has been subjected to critical thinking and not to the acceptance of dogmas.
We really think that, despite its limitation, the content of this thesis was devoted to this holy purpose.
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