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Binary classification of copy 
number alteration profiles in liquid 
biopsy with potential clinical 
impact in advanced NSCLC
Valeria Tosello 1,7, Angela Grassi 2,7, Dominic Rose 3, Loc Carlo Bao 4,5, Elisabetta Zulato 1, 
Chiara Dalle Fratte 1, Maurizio Polano 6, Paola Del Bianco 2, Giulia Pasello 4,5, 
Valentina Guarneri 4,5, Stefano Indraccolo 1,4* & Laura Bonanno 4,5

Liquid biopsy has recently emerged as an important tool in clinical practice particularly for lung cancer 
patients. We retrospectively evaluated cell-free DNA analyses performed at our Institution by next 
generation sequencing methodology detecting the major classes of genetic alterations. Starting 
from the graphical representation of chromosomal alterations provided by the analysis software, we 
developed a support vector machine classifier to automatically classify chromosomal profiles as stable 
(SCP) or unstable (UCP). High concordance was found between our binary classification and tumor 
fraction evaluation performed using shallow whole genome sequencing. Among clinical features, UCP 
patients were more likely to have ≥ 3 metastatic sites and liver metastases. Longitudinal assessment 
of chromosomal profiles in 33 patients with lung cancer receiving immune checkpoint inhibitors 
(ICIs) showed that only patients that experienced early death or hyperprogressive disease retained 
or acquired an UCP within 3 weeks from the beginning of ICIs. UCP was not observed following ICIs 
among patients that experienced progressive disease or clinical benefit. In conclusion, our binary 
classification, applied to whole copy number alteration profiles, could be useful for clinical risk 
stratification during systemic treatment for non-small cell lung cancer patients.
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Current international guidelines recommend daily routine molecular testing using next-generation sequencing 
(NGS) for actionable genetic alterations in advanced non-small cell lung cancer (NSCLC)1. When tissue biopsy 
is not sufficient or adequate for molecular characterization, liquid biopsy has been proposed as a tool to increase 
the availability of molecular characterization in clinical practice. Analyzing cell-free DNA (cfDNA) in plasma 
potentially provides a minimally invasive approach to diagnose, characterize, monitor the disease and shed 
light on tumor heterogeneity in cancer  patients2–4. The detection of targetable genetic alterations at baseline and 
genetic modifications associated with acquired resistance to targeted agents are currently the most important 
applications of liquid biopsy. On the other side, cfDNA analysis provides additional information whose potential 
usefulness for cancer management is under evaluation.

Among these, cfDNA concentration has emerged as a potential prognostic marker in different tumor  types5–7. 
In addition, cfDNA concentration emerged as a predictive marker of therapy response in specific contexts, such 
as locally advanced head and neck cancer, gastric and pancreatic cancer treated with  chemotherapy8–10. Cur-
rently, one of the most promising applications is related to potential predictive value for patients treated with 
immunotherapy. Although clinical role of immune checkpoint inhibitors (ICIs) is undoubtable in several types 
of cancers, clinical benefit is highly heterogenous and the identification of predictive biomarkers represents a 
crucial  issue11–13. In our previous study in NSCLC patients, longitudinal assessment of cfDNA concentration 
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at baseline and during therapy showed a dramatic increase in cfDNA concentration between baseline and after 
3–4 weeks since the start of ICIs in patients experiencing death within 12 weeks since the start of  ICIs14.

An additional promising biomarker in cfDNA analysis is based on the definition of the fraction of tumor-
derived DNA (tumor fraction, TF), that corresponds to the fraction of cfDNA shed from the tumors (ctDNA). 
Comprehensive Genomic profiling (CGP) applied to cfDNA analyses permits to define TF by considering ane-
uploidy or the highest variant allele fraction, excluding germline mutations and specific clonal hematopoiesis 
(CH)-associated alterations, whenever a tumor is characterized by lack of copy number alterations (CNAs)15. 
TF varies according to tumor type and during treatment and it is correlated to the number of oncogenic variants 
and to the level of copy number  alterations15. Shallow whole genome sequencing (sWGS) has also been used as 
a method to estimate TF in cfDNA and depicts the CNAs  profile16,17. Changes in cfDNA as detected by sWGS 
resulted a potential tool to evaluate clinical efficacy of  ICIs18,19.

Here, we genetically characterized the cfDNA of a large cohort of NSCLC patients using a commercial assay 
and we show that, besides detecting somatic alterations in clinical setting, it is possible to extract additional 
information from chromosomal profiles. We propose a machine learning (ML) approach that allows a binary 
classification of samples, as stable or unstable, based on chromosomal alteration patterns, and we explore the 
potential clinical impact of this classification.

Results
A support vector machine (SVM) classifier to predict chromosomal instability in cfDNA samples
AVENIO ctDNA Expanded kit is a capture-based NGS assay covering 77 cancer-associated genes used to detect 
four types of genetic alterations, including single nucleotide variants (SNVs), insertions/deletions (INDELs), 
selected CNAs and gene fusions in cfDNA samples. In addition to produce a report including metrics, filtered 
and unfiltered variants, the software generates a graphical representation of chromosomal alterations detected 
in cfDNA, which is generally viewed by the operator but it is not further used in downstream data exploitation. 
When analyzing cfDNA samples from NSCLC patients sent to our laboratory from referral oncologists for 
diagnostic purposes, we noticed two grossly divergent patterns in the CNA profiles that we defined as SCP or 
UCP (Fig. 1a,b). The SCP pattern shown in Fig. 1a is similar to that observed in healthy subjects (n = 7, Fig. 1c).

We thus decided to implement an SVM classifier to automatically classify CNA profiles as SCP or UCP, 
beyond operators’ experience. The first step was the definition of the features to be considered in the classifier. 
An alteration (“occurrence of instability”) in the CNA profile was defined each time we found a DNA segment of 
any size with absolute value of the log2 copy ratio exceeding a fixed cut-off. Two different cut-off values on log2 
copy ratio were examined: 0.1 and 0.2. Once the cut-off was defined, three features were considered as covari-
ates in the SVM classifier: (1) number of altered segments (Segments), (2) total length of altered regions (Size) 
and (3) number of affected chromosomes (Chromosomes). In order to classify patients’ samples as SCP or UCP 
based on AVENIO CNA profiles, we considered the segmented log2 ratios (.cns) files provided by the CNVkit 
 software20 and computed the three features described above: Segments, Size, Chromosomes.

A linear SVM classifier was trained on the 117 samples belonging to the training set, using a repeated tenfold 
cross validation procedure. Four models were evaluated: the 3-feature classifier (3f) and the three 2-feature clas-
sifiers (2f). Details of the best model for each classifier are reported in Table 1 and Supplementary Table 1, for 
the log2 copy ratio cut-off of 0.1 and 0.2, respectively. Defining of the features based on the 0.1 cut-off yielded 
higher accuracy both for the 3-feature model and for the three 2-feature models, so we selected this cut-off.

The performance of the four models was assessed on the 60 samples of the test set. As shown in Table 2, 
all of them performed very well, with overall sensitivity > 0.90 and balanced accuracy > 0.94, regardless of the 
model. On our dataset, the two-feature classifiers with covariates Segments and Size or Size and Chromosomes 
performed as well as the three-feature classifier.

For the performance of the four models, the choice to define the features based on a cut-off of 0.1 on the log2 
copy ratio was relevant. In fact, Supplementary Table 2 shows that with a cut-off of 0.2 on the log2 copy ratio the 
number of false negatives would significantly increase, leading to overall sensitivity (min–max: 0.5455–0.7273) 
and balanced accuracy (min–max: 0.7727–0.8534), both decreased compared to those obtained with the 0.1 
cut-off.

To select the final classifier among the three best performers we used the principle of parsimony (2f) and lower 
correlation between the selected covariates (Size and Chromosomes), Supplementary Fig. 1.

We tested the overall agreement between the 2f Size and Chromosome binary classification and that performed 
by two independent professionals through visual inspection of CNA profiles. As shown in Supplementary Fig. 2, 
out of 177 samples evaluated, there were only 5 discordant samples, which were classified as unstable by the 
human operators and stable by the classifier (Kappa: 0.90), indicating a very high degree of alignment between 
the two evaluations.

In conclusion, the 2f Size and Chromosome classifier was selected as the best model to substitute experienced 
researchers in the binary classification of AVENIO CNA profiles as SCP or UCP.

Binary classification of CNA profiles correlates with cfDNA concentration and TF
The 2f Size and Chromosome classifier claimed unstable profiles in 28 out of 177 samples (15.8%). When compar-
ing the predicted binary classification with commonly used liquid biopsy parameters, we noticed that cfDNA 
concentration in plasma was significantly higher in UCP with respect to SCP samples. The median cfDNA 
concentration of UCP and SCP samples was, respectively, 50.6 ng/ml and 11.2 ng/ml (p < 0.001; Supplementary 
Table 3). In addition, UCP samples had significantly higher number of tumor-associated variants detected by 
NGS (p < 0.001; Supplementary Table 3).
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In order to understand whether UCP could correlate with a higher tumor fraction in cfDNA, we used sWGS 
in 12 samples from individual NSCLC patients previously analyzed with the AVENIO ctDNA Expanded kit, 

Figure 1.  Chromosomal profiles in cfDNA samples analyzed by AVENIO ctDNA Expanded Kit. The image 
shows two examples of cfDNA samples with a stable pattern (SCP, panel a) and two examples of cfDNA samples 
with aneuploidy (UCP, panel b), as visually classified by two independent experienced researchers. The panel 
(c) shows two examples of cfDNA samples from healthy controls (Ctrl). Samples in panels (a) and (b) are from 
patients, whose plasma was analyzed by NGS with AVENIO ctDNA Expanded kit at diagnosis to assess possible 
actionable mutations. For each plot, the x-axis represents the loci targeted by the AVENIO Expanded kit, while 
the y-axis represents the log2 copy ratio observed at these loci. SCP stable chromosomal profile, UCP unstable 
chromosomal profile, Ctrl healthy donor.
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according to clinical practice. Among these patients, 4 were classified as SCP and 8 as UCP by the proposed clas-
sifier. Data demonstrated a high concordance between the two methods as shown by the representative examples 
displayed in Fig. 2. Mean TF was 3.6% and 36.6% in SCP and UCP samples, respectively. In particular, all samples 
defined as UCP presented a TF value > 3% and only 2 samples with a TF value close to the threshold (#43_21 and 
#54_21) were defined as SCP (Supplementary Table 4). Notably, NGS panel in clinical practice did not detect 
any tumor-associated genetic variants above the threshold of VAF 0.5% in two cases (#15_20 and #45_20) later 
classified as UCP and showing an elevated TF (40.7% and 17%, respectively; Supplementary Table 4).

Association between clinical/pathological features and binary classification in advanced 
NSCLC
To investigate potential association between clinical/pathological features and the binary classification with the 
selected SVM classifier, we conducted an analysis involving 84 patients, diagnosed with advanced non-small 
cell lung cancer, enrolled in our Institute and undergoing NGS analysis in plasma according to clinical practice.

The characteristics of the patients’ cohort and their association with binary classification are summarized 
in Table 3.

We observed that the presence of three or more metastatic sites and the occurrence of liver metastasis were 
significantly associated with UCP. On the other hand, it is important to note that no statistically significant asso-
ciation was found between the SCP/UCP binary classification and other traditional prognostic and predictive 
factors, such as smoking history, PD-L1 status, and the presence of known druggable alterations.

Longitudinal assessment of chromosomal profiles in advanced NSCLC patients treated with 
immunotherapy
For 33 patients enrolled in MAGIC 1 study and treated with  ICIs14 we longitudinally monitored plasma chro-
mosomal profiles during treatment, at baseline (T1) and following one cycle of ICI (T2).

Six cases were UCP and 27 were SCP at T1. In this set of patients, no significant association was found between 
the UCP/SCP classification and clinical features such as smoking, performance status, histology and positiv-
ity to PD-L1 expression. In addition, no association was found with tumor burden, in terms of the number of 
metastatic sites or the presence of bone and/or liver metastases.

Table 1.  Details of the best model for each classifier on the training set using a cut-off of 0.1 on the log2 
copy ratio. The features (Segments, Size and Chromosomes), considered as covariates in the four linear SVM 
classifiers, were defined using a cut-off of 0.1 on the log2 copy ratio. A repeated tenfold cross validation with 
3 repeats was used to assess the model performance on the training set (n = 117) and meanwhile to select the 
best cost parameter among 0.01, 0.1, 1, 10, 100. Here we report the details of the best model for each of the four 
classifiers in terms of cost parameter, accuracy, kappa parameter and training error. 3f: three-feature classifier; 
2f: two-feature classifier.

Cut off = 0.1 Cost Accuracy Kappa Training error

3f 0.01 0.9579 0.8349 0.0940

2f
Segments—Size 0.01 0.9605 0.8431 0.0940

2f
Size—Chromosomes 0.01 0.9605 0.8431 0.0855

2f
Segments—Chromosomes 0.1 0.9491 0.7971 0.0684

Table 2.  Performance of the four linear SVM classifiers on the test set when the features are defined using a 
cut-off of 0.1 on the log2 copy ratio. The features (Segments, Size and Chromosomes), considered as covariates 
in the four linear SVM classifiers, were defined using a cut-off of 0.1 on the log2 copy ratio. The performance 
of the best model for each classifier was evaluated on the test set (n = 60) in terms of accuracy, specificity, 
sensitivity, balanced accuracy and area under the ROC curve (AUROC). TP: true positives; TN: true negatives; 
FP: false positives; FN: false negatives.

Cut off = 0.1 TP TN FP FN Overall accuracy Overall specificity Overall sensitivity Balanced accuracy AUROC

3f 10 49 0 1 0.9833 1.0000 0.9091 0.9545 1.0000

2f
Segments—Size 10 49 0 1 0.9833 1.0000 0.9091 0.9545 1.0000

2f
Size—Chromosomes 10 49 0 1 0.9833 1.0000 0.9091 0.9545 1.0000

2f
Segments—Chromo-
somes

10 48 1 1 0.9667 0.9796 0.9091 0.9443 0.9981
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Our binary classification, determined at both T1 and T2, was investigated for association with clinical out-
come (Fig. 3). Among 33 enrolled cases, 5 patients experienced progression matching radiological criteria for 
hyperprogressive disease (HPD), 12 experienced early death (ED), 8 experienced progressive disease (PD) with-
out matching HPD criteria and 8 showed clinical benefit (CB). One patient (M#43) met radiological HPD criteria 
and experienced ED. The 2f Size and Chromosome classifier identified 9 UCP patients, showing the unstable 
profile at least one time point (T1, T2 or both). Importantly, 6 out of 9 patients presented with UCP at both T1 
and T2 and were included in HPD (n = 1) and ED (n = 5) groups. Among the remaining UCP patients, 2 were 
UCP at T1 and became SCP after therapy. Notably, these 2 patients were both included in the CB group. Finally, 
the last patient resulted SCP at T1 and presented UCP after immunotherapy and, importantly, this patient was 
included in the HPD group.

Overall, 7 out of 9 patients, experiencing either HPD or ED, had UCP after the beginning of ICIs treatment, 
while, amongst those not experiencing potential detrimental effects, none of the patients presented UCP after 
ICIs (Fig. 3).

In Fig. 4, representative examples of UCP patients that experienced CB and ED are shown. Amongst patients 
with CB, samples M#185 and M#251 were UCP at T1 and switched to SCP at T2 (top panel). In contrast, M#191 
and M#301 patients, that experienced ED, presented with UCP at diagnosis (T1), showed no change at T2 and 
poor response to immunotherapy (bottom panel).

Discussion
Liquid biopsy is an innovative tool whose exploitation both in translational research and in clinical practice 
is rapidly  increasing3,4,21. Most promising applications in the next features are the detection and monitoring 
of minimal residual disease in early-stage cancer patients and the dynamic evaluation of changes induced by 
systemic treatment in advanced  diseases22. In particular, our group focused on the study of longitudinal liquid 
biopsy as potential predictive marker for advanced NSCLC patients treated with  ICIs14.

Even though the idea of monitoring disease and anticipating treatment long-term efficacy by studying tumor-
associated alterations in blood is fascinating and widely accepted among scientific community, the practical 
application is highly challenging mainly due to technical issues. Among them, we would like to highlight the 
lack of standardized methods to quantitatively define tumor burden in plasma and the difficulties to perform 
wide genetic characterization in clinical practice.

In the current manuscript, we propose a ML approach to extract additional information from cfDNA analysis 
of a relatively small NGS liquid biopsy assay used for clinical practice genetic characterization and at no addi-
tional cost. For this purpose, we retrospectively evaluated the plasma NGS analysis of 177 samples performed 
at our Institution by using the AVENIO Expanded Kit, a panel of 77 genes, able to detect the main classes of 
genetic alterations. Our belief was that, alongside the specific information on the individual alterations, the whole 
alteration pattern that the analysis software represented only graphically, without further exploitation, could add 
relevant information about the sample. Starting from the observation, made by our expert researchers, of two 

Figure 2.  Concordance between sWGS analysis and binary SCP/UCP classification of chromosomal profiles. 
SCP and UCP representative cases analyzed with AVENIO expanded panel and the binary classifier are shown 
on the left panel. sWGS analysis and tumor fraction detection were performed in parallel as shown on the right 
panel. SCP stable chromosomal profile, UCP unstable chromosomal profile.
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grossly divergent chromosomal profiles (SCP and UCP), we wanted to investigate the potential relevancy of this 
classification in relation to known clinical/pathological parameters and as predictive marker of response to ICIs 
treatment in NSCLC. The SCP/UCP classification, performed by visual inspection of CNA profile graphs by two 
independent professionals, was used as a target to train an ML model and automate the classification procedure. 
Available samples were thus split into a training set and a test set. To extract the entire AVENIO CNA profiles, 
we considered the segmented log2 ratios (.cns) files provided by the AVENIO CNVkit software. On these data, 
we computed the three features (Segments, Size, Chromosomes) described in the "Methods" section. Four linear 
SVM classifiers, one with three features as covariates and the others based on the two-feature combinations, were 
developed and their parameters optimized. It is worth noting that the choice of the 0.1 cut-off on the log2 copy 
ratio used to define an “occurrence of instability”, and consequently to calculate the three features (Segments, 
Size and Chromosomes), had a major impact on the performance of the models. Based on the double criterion of 

Table 3.  Association between clinical features and SCP/UCP classification in patients with metastatic NSCLC. 
Analysis was performed in 84 patients undergoing NGS analysis in plasma according to clinical practice. SCP 
stable chromosomal profile, UCP unstable chromosomal profile. 1 n (%), 2Wilcoxon rank sum test; Fisher’s 
exact test.

Characteristic SCP, N =  671 UCP, N =  171 p-value2

Age—Median (Q1, Q3) 65 (58,72) 66 (61,71) 0.8

Sex > 0.9

 Male 38 (57%) 10 (59%)

 Female 29 (43%) 7 (41%)

Smoking status 0.4

 Never 23 (34%) 3 (18%)

 Actual 15 (22%) 4 (24%)

 Former 29 (43%) 10 (59%)

Number of metastatic sites 0.009

 < 3 55 (82%) 8 (47%)

 ≥ 3 12 (18%) 9 (53%)

Liver mets 0.010

 Absent 59 (88%) 10 (59%)

 Present 8 (12%) 7 (41%)

Bone mets 0.3

 Absent 42 (63%) 8 (47%)

 Present 25 (37%) 9 (53%)

Brain mets 0.2

 Absent 57 (85%) 12 (71%)

 Present 10 (15%) 5 (29%)

Extrathoracic mets 0.095

 Absent 44 (66%) 7 (41%)

 Present 23 (34%) 10 (59%)

Histology 0.2

 Adenocarcinoma 55 (82%) 11 (65%)

 Squamous carcinoma 8 (12%) 3 (18%)

 Others 4 (6.0%) 3 (18%)

PD-L1 class 0.7

 < 1% 26 (46%) 9 (60%)

 1–49% 14 (25%) 3 (20%)

 > 50% 17 (30%) 3 (20%)

 Unknown 10 2

PD-L1 positivity 0.6

 < 1% 30 (53%) 6 (40%)

 > 1% 27 (47%) 9 (60%)

 Unknown 10 2

Known driver mutations 0.084

 Absent 34 (54%) 12 (80%)

 Present 29 (46%) 3 (20%)

 Unknown 4 2
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parsimony and lower correlation between covariates, the 2f Size and Chromosome classifier was selected as the best 
model to substitute experienced researchers in the binary classification of AVENIO CNA profiles as SCP or UCP.

Notably, UCP samples strongly correlated with a positive tumor fraction as determined by shallow whole 
genome sequencing, a validated method to quantify TF and to detect CNAs widely used in liquid biopsy. CNAs 
are distinctive traits of tumor  cells23, differently from somatic nucleotide variants that can occur also in healthy 
individuals, as for examples for SNV associated with hereditary syndromes (germline mutations) or clonal 
 hematopoiesis24,25. For this reason, exploiting a relatively cheap technique as sWGS is being widely used to 
quantify the fraction of ctDNA in liquid biopsy samples. This approach is particularly suitable to refine the 
interpretation of samples that were classified as ctDNA-negative by mutation-based strategies and can provide 
guidance to properly select downstream  analyses26. This approach is also widely used in early cancer  detection27,28 
and as marker of tumor progression after systemic  treatment18. Generally, threshold for TF determination using 
sWGS is around 3% and samples having ctDNA fraction below this cut-off might not be informative and require 
more sensitive  approaches17. Therefore, using GCP analysis, that allows integration of CNAs with variant allele 
fraction and canonical alteration, it is possible to lower the threshold, down to 1%29. The characterization of TF 
can improve the reliability of a liquid biopsy test in particular when applied to clinical management of patients 
with advanced disease. In fact, recent guidelines on liquid biopsy underline the importance of specifying whether 
results coming from cfDNA analysis are informative or not. In particular, the detection of TF ≥ 1% in patients 
without genetic alterations found in plasma is suggested as a tool to avoid tissue re-biopsy29.

In this context, it is worth mentioning that our binary classification was found to be consistent with another 
validated method (sWGS), considering that SCP and UCP samples had significantly different TFs (3.6% and 
36.6%, respectively). It is also important to underline that, besides some similarities, our approach does not return 
a quantitative score associated to a limited threshold but a binary output that, combined with the detection of 
genetic alterations, allows, with a relatively low number of genes, both genetic information useful for clinical 
practice and the identification of cases with specific biological features. Notably, all the samples defined as UCP 
were characterized by a TF > 3% and by peculiar clinical/biological features.

In fact, in our series of NSCLC patients recruited and treated at our Institute, UCP was associated with tumor 
burden and presence of liver metastases, thus suggesting a potential negative prognostic value of profiles clas-
sified as unstable. On the other hand, it was neither associated with other clinical prognostic factors nor with 
commonly used molecular predictive markers, such as PD-L1 and presence of driver alterations (Table 3). This 
point hints the potential of the new classification to be integrated with other known prognostic and predictive 
markers in a multivariate statistical model.

Figure 3.  Association between the SCP/UCP binary classification and clinical outcome. SCP/ UCP 
classification was performed in 33 patients enrolled in the MAGIC-1 study both at baseline (T1) and following 
one cycle of ICIs (T2). For clinical outcome, patients were divided in 2 groups according the presence or absence 
of potential detrimental effects (ED + HPD and PD + CB, respectively). HPD hyperprogressive disease, ED early 
death, PD progressive disease, CB clinical benefit, SCP stable chromosomal profile, UCP unstable chromosomal 
profile.
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Figure 4.  Representative analyses of dynamic assessment of CNAs and response to immunotherapy. 
Representative plots of CNAs generated using AVENIO ctDNA Expanded Kit for patients undergoing 
immunotherapy treatment. Analyses were performed at baseline (T1) and following 1 cycle of ICI (T2); T3 
represents CT scan re-evaluation. In the upper panel, plots of two patients that belong to the CB group are 
shown (M#185 and M#251). In the lower panel, two patients that experienced ED are included (M#191 and 
M#301). ED early death, CB clinical benefit, SCP stable chromosomal profile, UCP unstable chromosomal 
profile.
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Importantly, using data from NSCLC patients treated with immunotherapy (MAGIC-1 clinical study), we 
highlighted the possible usefulness of our classifier after the start of systemic treatment, when it is likely to have 
a higher predictive value. Although our results need to be confirmed in a larger cohort, we could appreciate a 
high correlation between detection of UCP after treatment and patients that experienced either HPD or ED. 
None of patients not experiencing potential detrimental effects acquired UCP after the first cycle of ICIs (T2). 
Importantly, classification of chromosomal profile status at different time points can add important information 
for those patients who do not have mutations at baseline; this is the case of the M#185 sample that presented a 
switch from UCP to SCP, but no other alterations at T1 to track during therapy. These results suggest the rationale 
for longitudinal liquid biopsy assessments during treatment that should be implemented in prospective clinical 
 studies14,22,30–33. In conclusion, our study demonstrates that it is possible to extract additional information from 
an NGS liquid biopsy gene panel already used for clinical practice genetic characterization and at no additional 
cost. By considering the whole CNA profiles, through ML techniques, we binary classified chromosomal pro-
files and showed that the UCP status can be regarded as a novel parameter to be evaluated in liquid biopsy and 
integrated with other commonly used prognostic/predictive parameters. To be applied routinely, the proposed 
binary classifier requires further validation in a larger cohort of patients and the development of an easy-to-use 
tool for researches without specific bioinformatics expertise.

Materials and methods
Patients, plasma sample collection and study design
From January 2020 to March 2021, 100 advanced cancer patients underwent liquid biopsy according to clinical 
practice and their samples were analyzed by using the ctDNA AVENIO Expanded Kit—a NGS liquid biopsy 
assay containing a 77 pan-cancer gene panel (Roche Sequencing Solutions, Pleasanton, CA). All the patients 
signed informed consent to perform plasma NGS analysis.

An additional 77 samples were collected for different research projects and included 8 EGFR-mutated tumors 
after histological transformation in small-cell lung cancer, enrolled in ESTRA study, and 33 advanced EGFR-
ALK-ROS1 wild-type NSCLC patients treated with immunotherapy from January 2017 to August 2019 and 
enrolled in MAGIC-1 clinical  study14.

ESTRA clinical study was approved by the Istituto Oncologico Veneto Ethics Committee (protocol number 
2021/13, 25/01/2021). Written informed consent was obtained from the participants or their legal guardians. In 
this study plasma samples were collected at the time of histological transformation.

MAGIC-1 clinical study was approved by the Istituto Oncologico Veneto Ethics Committee (protocol number 
2016/82, 12/12/2016). Written informed consent was obtained from the participants or their legal guardians. 
In this study, plasma samples were collected at baseline (T1), after 3/4 weeks of treatment (T2), at the CT scan 
re-evaluation (T3) and at radiological progression (T4).

NGS was performed for all the 177 samples using the AVENIO Expanded Kit for cfDNA analysis.
For the construction of a binary classifier to predict SCP or UCP, all available samples were included, even 

those collected from the same patients at different time points. Specifically, 117 randomly selected cases were 
used as the training set for the classifier and the model’s performance in classifying profiles as stable or unstable 
was assessed on the remaining 60 cases in the test set.

Amongst all the samples analyzed, the correlation between the proposed binary classification and the clinical 
characteristics was performed only in advanced NSCLC patients enrolled and treated at our Institution (n = 84).

Among patients enrolled in MAGIC-1 clinical study an exploratory evaluation of chromosomal profile modi-
fication during treatment was performed.

All methods were performed according to the relevant guidelines and regulations.

Samples, cfDNA extraction and sequencing
For all samples, 20 ml of peripheral blood were collected in two Helix cfDNA Stabilization tubes (Streck Cor-
porate, La Vista, NE, USA) and processed within 24–72 h, as previously  described22. Briefly, blood sample was 
centrifuged at 2000×g for 10 min at 4 °C and the supernatant was subsequently centrifuged at 20,000×g for 
10 min. Plasma samples were stored at − 80 °C until the analysis.

Circulating free DNA (cfDNA) was extracted from 2 to 5 ml of plasma using the AVENIO cfDNA Isolation 
Kit (Roche Sequencing Solutions, Pleasanton, CA), according to manufacturer’s instructions, and eluted into 
60 µL of buffer, as previously  described34. Sequencing libraries were prepared from 10 to 50 ng cfDNA, using the 
AVENIO ctDNA Expanded kit (77 genes; Roche Diagnostics, Basilea, CHE), according to the manufacturer’s 
instructions. Four or eight purified libraries per run were pooled and sequenced on an Illumina NextSeq 500 
(Illumina, San Diego, CA, USA), using the 300-cycle NextSeq 500/550 Mid Output v2 kit or the 300-cycle Next-
Seq High Output kit, respectively, in paired-end mode (2 × 151 cycles).

Targeted sequencing analysis using AVENIO ctDNA Expanded kit
Following sequencing, alignment and gene variant calling were performed using the AVENIO Oncology Analysis 
Software (Roche Sequencing Solutions, Pleasanton, CA), with default parameter settings for the expanded panel. 
The analysis software includes three default reports that are automatically generated: a sample metrics report, 
an initial variant report (unfiltered listing all variants), and a second variant report (Roche default filter) which 
highlights known somatic mutations and discards known polymorphisms based on annotation databases. The 
percentage of aligned reads to the human genome that are within the targeted region (unique depth) according 
to the manufacturer’s instructions should be > 40%. Similarly, the expected median unique depth across bases in 
the targeted region should be at least 2500×, given 50 ng input cfDNA. All variants were manually inspected and 
gene variants present in population databases (ExAC, dbSNP, 1000 genomes) were not considered as relevant. 
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Variants were considered reliable with a VAF > 0.5%. To investigate pathogenicity value, the target variants were 
submitted to the disease-associated databases  COSMIC35,  VARSOME36 and  OncoKB37, and only variants anno-
tated as pathogenic or likely pathogenic were considered. The following 77 genes are included in the AVENIO 
ctDNA Expanded kit: ABL1, AKT1, AKT2, ALK, APC, AR, ARAF, BRAF, BRCA1, BRCA2, CCND1, CCND2, 
CCND3, CD274, CDK4, CDK6, CDKN2A, CSF1R, CTNNB1, DDR2, DPYD, EGFR, ERBB2, ESR1, EZH2, 
FBXW7, FGFR1, FGFR2, FGFR3, FLT1, FLT3, FLT4, GATA3, GNA11, GNAQ, GNAS, IDH1, IDH2, JAK2, JAK3, 
KDR, KEAP1, KIT, KRAS, MAP2K1, MAP2K2, MET, MLH1, MSH2, MSH6, MTOR, NF2, NFE2L2, NRAS, 
NTRK1, PDCD1LG2, PDGFRA, PDGFRB, PIK3CA, PIK3R1, PMS2, PTCH1, PTEN, RAF1, RB1, RET, RNF43, 
ROS1, SMAD4, SMO, STK11, TERT, TP53, TSC1, TSC2, UGT1A1, VHL.

ML approach
A ML approach based on a linear SVM classifier was applied to predict chromosomal instability. Binary clas-
sification into SCP and UCP, performed by visual inspection of individual profiles by two independent profes-
sionals (S.I. and E.Z.), was used as target. Analysis was performed in the R statistical environment version 4.4.0 
(R Foundation for Statistical Computing http:// www.r- proje ct. org/). Available samples (n = 177) were randomly 
partitioned into training (n = 117, 66%) and testing (n = 60, 34%) sets using the function sample.split() in the 
‘caTools’ package. Linear SVM models were trained using the ‘caret’  package38. A repeated tenfold cross validation 
with 3 repeats was used to assess the model performance on the training set and meanwhile to select the best 
cost parameter, C ∈ {0.01, 0.1, 1, 10, 100}. Pre-processing transformations (centering and scaling) were estimated 
from the training data and then applied to test data. Type of cross validation (repeated CV) as well as the number 
of cross validation folds and the number of repeats were specified with the trainControl() function, which was 
passed to the trControl argument in train() function implemented in the ‘caret’ package. The best classifier was 
then used to predict the chromosomal instability for the, previously unseen, samples in the test set, using the 
function predict(). The performance was evaluated in terms of accuracy and area under the receiver operating 
characteristic (ROC) curve using the ‘ROCR’ package. The ‘ggplot2’ package was used for graphical visualization.

Whole genome libraries preparation and sequencing
sWGS libraries were prepared starting from 10–20 ng of cfDNA using the KAPA Hyper Prep Kit with KAPA 
Dual-Indexed Adapters for Illumina platforms (Roche Sequencing Solutions, Pleasanton, CA). Briefly, after 
sequencing adapter ligation for 15 h at 20 °C, DNA libraries were purified by double-sided size selection to 
selectively capture DNA fragments comprised between 150 and 350 bp. Adapter-ligated libraries were amplified 
in 11 PCR cycles. Final libraries were diluted to a concentration of 10 nM and pooled in equimolar amount to 
a final sequencing concentration of 1 pM. Libraries were sequenced using 150-bp paired-end runs on a High 
output flow cell on a NextSeq 550 platform (Illumina) to average genome-wide fold coverage of 0.5×.

We used the ichorCNA tools  package16 to evaluate the fraction of tumor in cfDNA and predict locations of 
CNAs at the same time. For plasma samples, the tumor fraction (TF) was calculated, and the presence of ctDNA 
was indicated by setting the cut-off of 0.03 (a sensitivity threshold identified by ichorCNA). Plasma samples 
that failed quality checks on sWGS analysis (coverage > 0.1× and mean absolute deviation = MAD < 0.150) were 
excluded from the analysis. Only autosomal chromosomes were taken into account for CNA analysis.

Statistical analyses
To investigate possible associations between clinical characteristics and chromosomal profile clinical data were 
retrospectively collected from patients’ medical records. The radiological response was assessed using RECIST 
criteria v 1.139. CB was defined as the lack of progression within six months since the start of systemic treatment. 
Patients who had at least two computed tomography (CT) scans available prior to the initiation of ICIs treatment 
were evaluated to assess the presence of HPD. Tumor Growth Rate (TGR) was defined based on established 
 criteria40,41 with PD being classified as HPD when the TGR during ICI treatment exceeded 50% of the TGR 
measured before ICIs  initiation42. ED was defined as death within 12 weeks since the start of systemic treatment.

Statistical tests were performed by Fisher’s exact test or Wilcoxon rank sum test, as deemed appropriate. 
Statistical analysis was conducted using R software version 4.4.0 (R Foundation for Statistical Computing http:// 
www.r- proje ct. org/).

 Data availability
Data underlying the SVM classifier development are available in Zenodo repository, https:// doi. org/ 10. 5281/ 
zenodo. 11366 939. Clinical data are available upon request to the corresponding author.

 Code availability
Code is available upon request to the corresponding author.
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