



# The effect of bentonite fining on the volatile and non-volatile profile of Italian white wines

Matteo Marangon<sup>1,2</sup>, Yogesh Kumar<sup>1</sup>, Edward Brearley-Smith<sup>1</sup>, Christine Mayr Marangon<sup>1</sup>, Alberto De Iseppi<sup>1</sup>, Maurizio Piergiovanni<sup>3,4</sup>, Silvia Carlin<sup>5</sup>, Maria Alessandra Paissoni<sup>6</sup>, Paola Piombino<sup>7</sup>, Giuseppina Paola Parpinello<sup>8</sup>, Fulvio Mattivi<sup>4,5</sup>, Maurizio Ugliano<sup>9</sup> Andrea Curioni<sup>1,2</sup>

1. Department of Agronomy, Food, Natural Resources Animals and Environment (DAFNAE), University of Padua, Italy; 2. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), Italy; 3. Department of Chemistry, Life Sciences and Environmental Sustainability (SCVSA), Parma, Italy; 4. Center Agriculture Food Environment (C3A), University of Trento, Italy; 5. Research and Innovation Centre, Fondazione Edmund Mach, Italy; 6. Department of Agricultural, Forest and Food Sciences, University of Torino, Italy; 7. Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, Italy; 8. Department of Agricultural and Food Sciences, University of Bologna, Italy; 9. University of Verona, Department of Biotechnology, Italy. Email: matteo.marangon@unipd.it



#### **BACKGROUND AND AIM**

Bentonite is used in white winemaking to remove the heat unstable wine proteins responsible for haze formation [1], but being a nonspecific adsorbent, it removes other wines compounds linked to wine quality including volatiles [2].

Using some Italian monovarietal white wines, this study was designed to investigate whether the depletion of non-volatiles and volatiles specifically differs according to the variety, when the right amount of bentonite is used to reach full stability.



- Wines heat stability ranged from 10 to 177 NT
- These values did not correlate well with bentonite requirements ( $R^2 =$ 0.6138) that was between Stability 200 to 800 mg/L.



### BENTONITE IMPACT ON WINE COMPOSTION

| WINES   | рН       |      | Titratable acidity (g/L) |      | Na       |      | Mg       |      | K        |       | Са       |      | Р        |       |
|---------|----------|------|--------------------------|------|----------|------|----------|------|----------|-------|----------|------|----------|-------|
|         | С        | Т    | С                        | Т    | С        | Т    | С        | Т    | С        | С     | С        | Т    | С        | T     |
| FIA01   | 3.04     | 3.06 | 7.40                     | 6.67 | 7.91     | 9.28 | 78.1     | 79.9 | 565      | 562   | 74.1     | 79.2 | 347      | 345   |
| FIA02   | 3.33     | 3.36 | 6.37                     | 5.77 | 9.13     | 9.85 | 71.4     | 73   | 721      | 717   | 46       | 49.5 | 167      | 167   |
| FIA03   | 3.28     | 3.33 | 5.87                     | 5.60 | 6.43     | 8.54 | 69.7     | 71.2 | 682      | 659   | 46       | 51.5 | 201      | 196   |
| FIA04   | 3.20     | 3.26 | 6.17                     | 5.87 | 7.97     | 10.5 | 71.8     | 73.7 | 667      | 659   | 49       | 56.7 | 136      | 135   |
| FIA05   | 3.38     | 3.44 | 5.97                     | 5.80 | 7.53     | 8.77 | 78.6     | 80   | 800      | 774   | 45       | 49.8 | 176      | 175   |
| FAL04   | 3.28     | 3.34 | 6.73                     | 6.50 | 10       | 10.6 | 77.7     | 78.7 | 743      | 728   | 51.4     | 55.1 | 150      | 151   |
| GRE03   | 3.18     | 3.23 | 7.07                     | 6.47 | 9.09     | 10.1 | 73.5     | 75.1 | 712      | 705   | 60.6     | 64.6 | 168      | 167   |
| GRE04   | 3.14     | 3.22 | 6.53                     | 6.40 | 8.78     | 9.44 | 69.6     | 72.1 | 592      | 596   | 68.1     | 71.3 | 179      | 181   |
| VER09   | 3.33     | 3.37 | 5.07                     | 4.90 | 14.6     | 17.2 | 83.4     | 84   | 800      | 791   | 39.1     | 44.2 | 170      | 169   |
| VER10   | 3.40     | 3.40 | 4.97                     | 4.73 | 16.5     | 19.3 | 83.9     | 85.9 | 783      | 771   | 51       | 58.9 | 223      | 223   |
| VER11   | 3.36     | 3.37 | 5.23                     | 4.98 | 16       | 17.9 | 83.8     | 85.8 | 726      | 720   | 58.2     | 64   | 234      | 232   |
| VER12   | 3.34     | 3.36 | 5.35                     | 5.00 | 15.7     | 18.1 | 84.4     | 86.8 | 739      | 740   | 56.3     | 62.6 | 236      | 237   |
| VEM04   | 3.47     | 3.51 | 4.92                     | 4.80 | n.m.     | n.m. | n.m.     | n.m. | n.m.     | n.m.  | n.m.     | n.m. | n.m.     | n.m.  |
| AVERAGE | 3.29     | 3.33 | 5.97                     | 5.65 | 10.8     | 12.5 | 77.2     | 78.8 | 710.8    | 701.8 | 53.7     | 58.9 | 198.9    | 198.2 |
| P-value | P<0.0001 |      | P<0.0001                 |      | P<0.0001 |      | P<0.0001 |      | P= 0.005 |       | P<0.0001 |      | P=0.1802 |       |

Bentonite fining generally led to a decrease in wine acidity and K concentration and an increase in Na, Mg and Ca. C and T: before and after bentonite treatment



# BENTONITE IMPACT ON VOLATILE COMPOUNDS

In general, for the 107 volatile compounds analyzed:

- Bentonite fining led to a moderate but generalized reduction in volatiles' concentration
- **Ethyl esters** were the class of compounds most impacted by the treatment, but differently depending on the wine
- There was no correlation between the observed % decrease and bentonite fining rates
- Lack of a clear effect of the variety



#### EXPERIMENTAL DESIGN

Thirteen unfined white wines from 5 Italian varieties (Fiano - FIA, Falanghina - FAL, Greco di Tufo - GRE, Vernaccia di San Gimignano -VER, Vermentino di Gallura - VEM), were treated with the minimum bentonite (Na-Ca Bentonite) dose required to reach protein stability, and compared with the untread wines for chemical composition (by HPLC-SEC), protein profiles (by RP-HPLC), polysaccharide (by HR-SEC) and phenolic concentration (by colorimetric method), particles' size (by nanoparticles tracking analysis) and volatile profiles (by GC-MS/MS [3,4]).





## BENTONITE IMPACT ON WINE MACROMOLECULES

- Obvious decrease in protein content (on average -83%).
- Significant reduction in wine total phenolics (average -35%, range -25 to -40%)
- Small reduction in total polysaccharides' content (average 6,5%)



Bentonite fining variable reduction the concentration colloidal of particles (range **4-74** %, -41% average): the rate of colloids removal by bentonite depends on the wine.



diameter of average colloids was slightly reduced (before: 248 nm; after: 237 nm)

Bentonite tends to remove the largest colloids.

Results confirm that bentonite is a non-specific adsorbent that can affect wine quality, but its impact could not be related to the dose necessary to stabilize different wines.









