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ABSTRACT
Graph Convolutional Neural Networks (GCNs) compute represen-
tations of graph nodes by exploiting convolution operators based
on some neighborhood aggregation scheme. These operators are
defined by using several stacked Graph Convolutional (GC) layers.
They are usually defined as additive building blocks that fuse mul-
tiple information streams. However, when considering information
integration in sequences, the flow of gradient has been shown to be
more robust by adopting the Multiplicative Integration (MI) tech-
nique. Because of that, it is worth investigating the impact of MI
in Graph Neural Networks. We propose three different GC layers
that exploit MI to improve various aspects of the neighborhood
aggregation scheme. We report both a theoretical and empirical
comparison of our proposals with respect to the most common GC
operators for the graph classification task.

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
Graph Neural Network, Multiplicative Integration, Structured Data,
Nodes Aggregation, Graph Classification
ACM Reference Format:
Paolo Frazzetto, Luca Pasa, Nicolò Navarin, and Alessandro Sperduti. 2024.
Beyond the Additive Nodes’ Convolutions: a Study on High-Order Mul-
tiplicative Integration. In The 39th ACM/SIGAPP Symposium on Applied
Computing (SAC ’24), April 8–12, 2024, Avila, Spain. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3605098.3636016

1 INTRODUCTION
Recently, there has been an increased interest in machine learning
models that deal with graph-structured data, such as kernelmethods
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and neural networks. Graph Neural Networks (GNNs) define a neu-
ral architecture that follows the graph topology. From the neurons
associated with a vertex and its neighbors, a hidden representation
corresponds to the same vertex in another network layer. For every
hidden layer of the GNN, a new transformation is performed. The
transformations are determined by relying on the definition of a
convolution operator in the graph domain. Graph Convolutions
(GC) are generally based on a neighborhood aggregation scheme
(aggregate) [8] considering, for each node, only its direct neigh-
bors, and a combine operation that merges the representation of
a node with the aggregation of its neighbors. The neighborhood
aggregation schemes implemented by the various GCs proposed in
literature usually exploit an additive building block [36].

In the structured domain, particularly in sequential learning, a
different procedure of information integration has been studied:
the Multiplicative Integration (MI) [36]. The idea is that, instead
of utilizing the sum operation to join the information conveyed by
the various elements that compose the recurrent model equation,
MI exploits the Hadamard product. Without introducing any extra
parameters, the authors leverage second-order interactions between
features, i.e., relationships or dependencies that exist between pairs
of features within the dataset. Unlike first-order interactions, which
involve individual features in isolation, second-order interactions
consider how two features jointly influence the output or prediction.
One of the first applications of MI on sequential domains was
proposed by Goudreau et. al [9] that introduced the Second-Order
Single-Layer Recurrent Neural Networks (Second-order SLRNN).

The most common model for sequences that adopts the MI is the
LSTM [14] (or variants of it, e.g. GRU [3]). This model employs the
MI to implement a gatingmechanism tomanage long-term temporal
dependencies. An enhanced version of the LSTM (and earlier, of the
RNN) that exploits the MI also to define the recurrent mechanism
is the multiplicative LSTM/RNN [23, 32]. These models use the
Hadamard product to combine the projection of the current time
step with the hidden states that come from the previous time step.
The idea of using MI to manage a gating mechanism and to combine
the information flow from different temporal domains is also used
in many other models, like in Highway Network [39]. Another
model that exploits a similar technique is the HyperNetwork [11].
The HyperNetwork dynamically generates the weights of a network
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using another (smaller) network. In particular, the recurrent version
(the HyperLSTM) generates a multiplicative bias that drives the
generation of dynamical weights. A similar approach that belongs
to the Bayesian framework was proposed by Krugers et al. [24].

In Graph Neural Networks, GC’s aggregation/combination oper-
ation shares some critical mechanisms with the time-based aggre-
gation mechanism used by Recurrent Neural Networks. Indeed, in
literature, the Multiplicative integration is shown to be particularly
convenient to aggregate contextual information that comes from
different sources[19]. Inspired by this similarity, in this paper, we
explore how MI can be applied to define novel GCs.

Some recently proposed GNN approaches do exploit some form
of multiplicative mechanisms, for instance implementing gating
mechanisms [2, 29, 33, 34] or hypernetwork-like models [2, 12, 28].
However, they all do not adopt the MI paradigm concerning nodes’
neighborhoods, and comparing such models with additive graph
convolutions does not show a consistent performance improve-
ment.

Inspired by the promising results obtained by Multiplicative
Integration in sequential domains, we explore its application in
GNNs. To the best of our knowledge, this is the first paper that
explores the application of MI inside a GC operator. We propose
three definitions of MI-based GC operators that stem from the
commonly used and very effective GraphConv operator [27]. These
three operators are defined with the aim of exploring how the
MI can be embedded into a graph convolution to obtain a second-
order GC operator. Such second-order interactions between features
can capture more intricate patterns and relationships in the data,
enabling us to go beyond traditional first-order feature analysis. We
empirically evaluate the proposed MI-GNNs on eight commonly
adopted graph classification benchmarks. The experiments show
howMI, applied in the aggregation and/or combination step, allows
us to uncover hidden dependencies contributing to improved model
performances. We compare the proposed methods with the most
common additive graph convolutional operators. In particular, we
analyze the results regarding the accuracy and computational time
required for training. The results highlight how the use of MI can
help obtain improved performance in terms of accuracy and speed
of convergence. We apply rigorous statistical hypothesis testing
to assess the statistical significance of the observed improvements.
Considering that the application of MI also influences the form
and the flow of the gradient of the GNN, we analyze how gradient
propagation differs among multiplicative and additive GCs.

2 GRAPH NEURAL NETWORKS
Let𝐺 = (𝑉 , 𝐸,X) be a graph, where𝑉 = {𝑣1, . . . , 𝑣𝑛} denotes the set
of nodes of the graph, 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges and X ∈ R𝑛×𝑠
is a multivariate signal on the graph nodes with the 𝑖-th row x𝑣𝑖
representing the attributes of 𝑣𝑖 . We define A ∈ R𝑛×𝑛 as the adja-
cency matrix of the graph, with elements 𝑎𝑖 𝑗 = 1 ⇐⇒ (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸.
With N(𝑣), we denote the set of nodes adjacent to node 𝑣 .

A Graph Neural Network (GNN) is a model that exploits the
structure of the graph and the information embedded in feature
vectors of each node in order to learn a representation h𝑣 ∈ R𝑚
for each vertex 𝑣 ∈ 𝑉 . In modern GNN models, the computation of
h𝑣 can be divided into two main steps: aggregate and combine. We

can define aggregation and combination by using two functions,
A and C, respectively:

h𝑣 = C(x𝑣,A(x𝑢 : 𝑢 ∈ N (𝑣)})) . (1)

It is possible to extend the range of the considered neighbor-
hood by iteratively performing aggregation and combination for 𝑘
iterations. In this way, we obtain a hidden representation h(𝑘 )

𝑣 of
the node 𝑣 that contains information about the structure and the
neighbors that are at a distance 𝑘 from 𝑣 :

h(𝑖 )
𝑣 = C(h(𝑖−1)

𝑣 ,A({h(𝑖−1)
𝑢 : 𝑢 ∈ N (𝑣)})), 𝑖 ∈ [1, . . . , 𝑘],

h(0)
𝑣 = x𝑣, h(𝑖 )

𝑣 ∈ R𝑚𝑖 ,

where𝑚𝑖 is the size of the convolutional layer 𝑖 . We thus obtain a
deep GNN of 𝑘-layers. The choice of aggregation function A and
combination function C defines the type of Graph Convolution
(GC) adopted by the GNN [21, 26].

In the last few years, several different GCs have been proposed,
and most of them share the same computational building block that
exploits a form of additive combination function. Generalizing, we
can define this building block as:

h(𝑖 )
𝑣 = 𝜙

(
F (h(𝑖−1)

𝑣 ) + A({h(𝑖−1)
𝑢 : 𝑢 ∈ N (𝑣)})

)
, (2)

where 𝜙 (·) is a nonlinear activation function, and F is usually
a linear projection. Moreover, it is important to notice that the
aggregation function A is commonly based on the sum of the
neighbor embeddings. This commutative operation allows it to be
invariant with respect to the order of the neighbors.

A very common formulation is the GraphConv [27], that is based
on the 1-dimensionalWeisfeiler-Leman graph invariant (1-WL) [10].
The GraphConv is defined as follows:

h(𝑖 )
𝑣 = 𝜙

(
Wh(𝑖−1)

𝑣 + WΣ

∑︁
𝑢∈N𝑣

h(𝑖−1)
𝑢 + b

)
(3)

where W,WΣ ∈ R𝑚𝑖×𝑚𝑖−1 (with 𝑚0 = 𝑠) and b ∈ R𝑚𝑖 are the
network learnable parameters. Here and in the following sections,
we denote the parameters with subscripts referring to their related
function.

3 MULTIPLICATIVE INTEGRATION AND
GRAPH CONVOLUTION

The GC operators defined in literature generally follow the same
general structure defined in Eq. (2), where A is defined as an ad-
ditive block. This work explores how the Hadamard product can
help perform aggregation and combination in GC. We decided to
explore the application of Multiplicative Integration on GC because
the aggregation and the combination blocks basically integrate con-
textual information from different sources, and MI is an effective
methodology to perform this task [19]. The advantage of using
Hadamard products to combine information flow in recurrent neu-
ral networks was discussed in [36]. Moreover, using MI allows the
definition of second-order GCs, the resulting model will define a
multiplicative interaction between all the neurons that compose
two GC contiguous layers, consequently influencing the model’s
gradient. Using the second-order layer to learn about structured
domains has already shown promising results, particularly consid-
ering sequential domains. In more detail, in [9], the authors study
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the improvement in representational ability achieved by utilizing a
second-order RNN where the recurrent neurons of a single layer
were multiplied by each other. A similar approach is exploited in
defining the mLSTM [23], where a multiplicative block is used to
differentiate the recurrent transition function as a function of the
input. Another advantage worth mentioning that arises from using
the MI paradigm is that the model has better gradient properties,
i.e., the gradient propagates in a stronger way from one layer to
the other.

In the following part of this section, we present three different
possibilities to extend the GraphConv operator by Multiplicative
Integration.

3.1 MI-GNN
The first proposed version of MI-GNN (named MI-GNN-v1) ex-
ploits MI to integrate the information from the current node with
the one from its neighborhood. This is obtained by replacing the
sum of the additive version of the GraphConv with the Hadamard
product between the current node projection and the aggregation
of its neighbors:

h(𝑖 )
𝑣 = 𝜙

((
Wh(𝑖−1)

𝑣 + b
)
⊙

∑︁
𝑢∈N(𝑣)

(
WΣh(𝑖−1)

𝑢 + bΣ
))
. (4)

The two bias terms b and bΣ are inserted to obtain a more expressive
formulation. In fact, by distributing the product over the sum and
rearranging the terms, we get the equivalent equation

h(𝑖 )
𝑣 = 𝜙

(
|N (𝑣) |

(
Wh(𝑖−1)

𝑣 + b
)
⊙ bΣ + b ⊙ WΣ

∑︁
𝑢∈N(𝑣)

h(𝑖−1)
𝑢 +

+ Wh(𝑖−1)
𝑣 ⊙

(
WΣ

∑︁
𝑢∈N(𝑣)

h(𝑖−1)
𝑢

))
. (5)

Note that the first two terms of the above equation constitute a
scaled version of the regular additive interaction between h(𝑖−1)

𝑣

and
∑
𝑢 h(𝑖−1)

𝑢 . The scaling is dynamic since, in addition to the con-
stant bias terms, the scaling factor also depends on the cardinality
of the neighborhood. Moreover, the weights regulating the multi-
plicative integration between these two components, defined by
the third term, are obtained by combining the two weight matrices
W and WΣ of the convolution, with no increase in the number
of parameters with respect to the additive GraphConv, except for
the additional bias. To further enhance the expressiveness of the
MI-GNN, at the cost of increasing the number of convolution pa-
rameters, the additive and multiplicative building blocks can be
combined explicitly, each with its own weights. We named this
variation MI-GNN-v2:

h(𝑖 )
𝑣 = 𝜙

((
Wh(𝑖−1)

𝑣 + b
)
+ WΣ

∑︁
𝑢∈N(𝑣)

h(𝑖−1)
𝑢 +

+ W⊙
(
h(𝑖−1)
𝑣 ⊙

∑︁
𝑢∈N(𝑣)

h(𝑖−1)
𝑢

))
(6)

The third MI variation of theGraphConv that we propose,MI-GNN-
v3, exploits the Hadamard product to define both the combination

and aggregation steps of the GC operator:

h(𝑖 )
𝑣 = 𝜙

((
Wh(𝑖−1)

𝑣 + b
)
⊙
(
WΠ


⊙∏

𝑢∈N(𝑣)
h(𝑖−1)
𝑢

 + bΠ
))

(7)

This formulation makes the interaction among all nodes involved in
the convolution uniform, implementing a global gating mechanism
while preserving the sharing scheme of the parameters used in
GraphConv.

The use of MI as a combination mechanism, however, involves
multiplying several node embeddings (projected using the same
shared weights) that can lead to numerical stability issues in case of
extremely small (close to 0) or large (significantly higher than 1) val-
ues. This can make the training phase unstable. To solve this issue,
by maintaining a multiplicative integration approach as an aggre-
gation mechanism, we propose to transform the product among the
neighbors into a sum by exploiting the logarithm function jointly
with the ReLU function to ensure that the co-domain of A(·) is
limited to a set of values that ensure a more stable training phase:

h(𝑖 )
𝑣 = 𝑅𝑒𝐿𝑈

(
Wh(𝑖−1)

𝑣 + b
)
⊙

⊙
(
W𝑙𝑜𝑔


∑︁

𝑢∈N(𝑣)
log

[
𝑅𝑒𝐿𝑈 (h(𝑖−1)

𝑢 ) + 𝜖

] + b𝑙𝑜𝑔
)
, (8)

where 𝜖 is a small positive constant which prevents the input to
log to be 0. Notice that when 𝜖 = 1, we get as output only positive
values, avoiding negative values with high modules. We applied the
ReLU function also on the current node embedding (Wh(𝑖−1)

𝑣 + b)
projection because we want to ensure that the new embedding will
be a positive tensor. This is critical since it will be used as input to
a logarithm in the subsequent GC layer (if it exists, i.e., if 𝑖 < 𝑘).

4 RELATEDWORKS
Several models inspired by the graph convolution idea have been
proposed recently. Some of them exploit the multiplicative oper-
ator to implement a gating mechanism. In particular, the Graph
Attention Networks (GAT) [34] uses multiplication in defining a
convolution operator based on masked self-attention. The idea is
to replace the adjacency matrix in the convolution with a matrix of
attention weights for multiple heads. While it may be more complex
to train, GAT allows assigning a different weight to each neighbor
of a node; thus, it is a very expressive graph convolution.

A similar gating approach is proposed in [25], where the authors
propose an extension of Graph Neural Networks to produce se-
quences in output. They define a propagation model reminiscent
of the GRU cell definition. In the resulting convolutional operator,
the aggregation is still defined using an addictive block. In contrast,
a projection of the node embeddings is used to perform GRU-like
updates of the embedding that mixes the information from the
other nodes and the previous timestep.

The recent work of Koishekenov and Bekkers [22] explores how
to combine features best to condition GNNs on additional informa-
tion. Their “strong conditioning”, is the Hadamard product between
the weighted adjacency and feature matrices that replace the layers
in an MLP. Differently from MI-GNNs, these three discussed gating
convolutions [22, 25, 33] do not exploit multiplicative integration to
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aggregate the embeddings of the various nodes in message-passing
graph neural network.

A different way to exploit the multiplicative operator in defining
the GC is proposed in [2], where the author proposes the GNN-
FiLM. This model exploits a hyper-network that, given the node
embedding, outputs two coefficients. One of the resulting coeffi-
cients is multiplied by the weights of the GCN, while the other
is summed to the affine transformation of the node embeddings.
Similar to the previously discussed gated GCs, in GNN-FiLM, the
aggregation and the combination steps are based on a summation
between node representations.

Hua et al. has proposed node pooling based on invariant multipli-
cation [16], where they define a GNN layer that can be seen as the
composition of a linear layer with a weight matrix, a multiplicative
pooling layer, and another linear map. This layer is used as both the
aggregation and update steps of a GNN, thus it does not explicitly
leverage the graph structure, but it relies purely on higher-order
feature interactions.

Finally, in [28], the authors propose two novel convolutions
based on the hyper-networks framework. Both operators dynami-
cally adjust the GC parameters based on the input node, and to do
it, the model uses a hyper-network generating a vector having a
different parameter for each node. This vector is then multiplied
by the GC’s weights to adjust them. Similar to the GNN-FiLM, the
multiplicative blocks are used to adapt the weights for the current
input without explicitly defining a multiplicative interaction among
the embeddings of the nodes and their neighborhood.

5 EXPERIMENTAL SETUP AND RESULTS
Our experimental assessment aimed to empirically verify whether
multiplication can be used to define graph convolutions with com-
petitive performance. Specifically, our experimental results show
that representative methods in literature exploiting multiplicative
operators, i.e., GAT and GNN-FiLM, do not show a performance
advantage over addition-based GCNs. We then explore the use of
MI in graph neural networks, evaluating the proposals presented
in Section 3, along with four widely adopted baselines, on seven
graph classification benchmark datasets. We start discussing the
considered GNN architectures and the adopted model selection
procedure in Section 5.1. Then, we describe the adopted datasets in
Section 5.2. We then present the comparison in terms of classifica-
tion accuracy in Section 5.3, where we also empirically study the
impact of adopting multiplicative integration in terms of training
time and speed of convergence. Finally, we validate the statistical
significance of the difference between the results obtained by the
various considered models in Section 5.4.

5.1 GNN Architecture and Model Selection
We considered as baselines two commonly adopted GC operators,
GCN [21] and GraphConv. Moreover, we also experiment with two
powerful convolutions for graphs that exploit the multiplicative
operation differently than the MI-GNN: GAT and GNN-FiLM.

We handled the experiments and validated all the models’ hyper-
parameters adopting the GraphGym [38] framework. Specifically,
we started off from their findings on the GNN architecture design

space by setting a common baseline configuration for all the exper-
iments based on the work of [38]. We set the PReLU as activation
function 𝜙 [13], batch normalization [18] for each layer, and among
layers, we adopted the SKIP-CAT scheme [17]. The training is car-
ried out with the ADAM optimizer [20], cosine learning rate sched-
ule (starting from 0.01 and annealed to 0, no restarting), 5× 10−4 L2
weight decay for regularization. The batch size is set to 32 for all the
datasets and we let every experiment run for 400 epochs. We used
the libraries PyTorch=2.0.0, PyTorch Geometric=2.3.0, and our
experiments have been carried out in a computing cluster equipped
with GPUs Nvidia RTX A5000. Each tested network consists of Mul-
tilayer Perceptron (MLP) layers before and after the GC operator
layers. This particular architectural setting is the one suggested
in GraphGym. The amount of these layers and their hidden units
are hyperparameters. In our evaluation, we consider graph classi-
fication tasks; therefore, all the considered models have a global
pooling layer to compute a graph-level representation given the
node embeddings. The pooling layer is defined by concatenating
the global mean, max, and sum aggregations [5]:

h𝑠 = [𝑚𝑒𝑎𝑛𝑣∈𝑉 (h(𝑘 )
𝑣 ),𝑚𝑎𝑥𝑣∈𝑉 (h(𝑘 )

𝑣 ), 𝑠𝑢𝑚𝑣∈𝑉 (h(𝑘 )
𝑣 )], (9)

where 𝑘 is the number of GC layers.
Each dataset is split in train/validation/test sets according to a

[80%, 10%, 10%] random split. Every configuration is run 3 times,
and we take the average of all the evaluation metrics (accuracy,
time, etc.) taken on the test set at the best epoch in validation. The
random generator seed is set likewise at the beginning of each run,
thus ensuring that the dataset splits are equal for each model and
making their comparison more robust and fair. We performed a full
grid search over all the hyper-parameters combinations reported
in Table 1, resulting in 96 configurations tested for each of the
7 datasets and of the 7 GNN layer types. The layers for GraphConv,
GCNConv, GATConv, and FiLMConv are taken from the PyTorch
library.

Table 1: Hyper-parameters Grid

Hyper-parameters Values

Pre-MLP layers 1, 2
GC layers 2, 4, 6, 8
Post-MLP layers 2, 3
Hidden units 64, 128, 256
Activation 𝜙 PReLU, Tanh

5.2 Datasets
All the considered methods were empirically validated on seven
commonly adopted graph classification benchmarks. Namely, we
used four datasets modeling bio-informatics problems: NCI1 [35],
PROTEINS, [1], D&D [7] and ENZYMES [1]. NCI1 involves chemi-
cal compounds represented by their molecular graph, where node
labels represent the atom type, and bonds correspond to edges. In
NCI1, the graphs represent anti-cancer screens for cell lung cancer.
The remaining datasets, PROTEINS, D&D and ENZYMES involve
graphs that represent proteins. Amino acids are represented by
nodes and edges that connect amino acids that in the protein are
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less than 6Å apart. All the prediction tasks are binary classification
tasks, except for the ENZYMES dataset, where a multi-class classi-
fication of chemical compounds (six classes) is represented. We fur-
ther considered three large social graph datasets: COLLAB, IMDB-B,
IMDB-M [37]. In COLLAB, each graph represents a collaboration
network of a corresponding researcher with other researchers from
three fields of physics. The task consists of predicting which one
of the researcher’s three physics fields belongs to. IMDB-B and
IMDB-M are composed of graphs derived from actors/actresses
who played in different movies collected on IMDB, together with
the movie genre information. Each graph has a target that rep-
resents the movie genre. IMDB-B models a binary classification
task, while IMDB-M contains graphs belonging to three classes. In
contrast to the bio-informatics datasets, the nodes contained in the
social datasets do not have any associated label, and therefore, only
the graph topology is regarded.

5.3 Results and Discussion
The results of our experiments are presented in Table 2. We can
start noticing that the two existing multiplication-based methods
(GNN-FiLM and GAT) do not result in the better-performing meth-
ods on any of the considered datasets. This observation enforces
our intuition that research is still required in multiplication-based
graph convolutions to achieve competitive performance. As for
the proposed methods, at least one version of the proposed MI-
GNNs is the best-performing method in six of the eight datasets.
The GCN performs well only in the COLLAB dataset, which is the
dataset that has the highest edges/graph ratio. We argue that the
normalized adjacency matrix of the GCN is more robust for such
cases, whereas the other multiplicative or additive operators are
penalized by the higher average degree. The GraphConv has the
highest accuracy only for the NCI1 dataset; however, MI-GNN-v1
and -v2 perform similarly. MI-GNN-v1 and MI-GNN-v2 are the best-
performing methods on two datasets each. MI-GNN-v3 performs
on par with MI-GNN-v1 on IMDB-B (but with a higher variance)
and is the best-performing method on IMDB-M.

Additionally, we analyzed whether the improved performances
of our implementation of the MI-GNNs also translate into briefer
training times. In Figure 1, we display each dataset’s accuracy and
total training time until the best validation epoch is reached. In the
plot, we also report the Pareto frontier—the set of all Pareto-efficient
points. In our case, those points refer to the methods for which
no improvement in one dimension (either accuracy or training
efficiency) is possible without losing performance on the other
dimension. Such points can be informally interpreted as the best
time/accuracy trade-off methods. We can see that the MI-GNNs
are often present in the Pareto-front, meaning that not only do
they achieve the best performances most of the time, but they also
require less or comparable time than the baselines. Notice that on
many datasets, some methods are extremely efficient (e.g., GCN on
COLLAB, IMDB-M, and PROTEINS) but perform very poorly. Even
though those points are part of the Pareto-front because of the low
training times, they are not interesting solutions for their degraded
predictive performance. We want to mention that GCN results
are the slowest method because, by default, it does not store the
normalized adjacency matrix. For this reason, its training could be

tweaked and sped up; however, its predictive performances would
not be altered.

5.4 Statistical Significance of the Results
Inspired by the analysis of [6], we investigated the performances of
our proposed models beyond a simple but naive maximum-accuracy
benchmark. Indeed, when comparing multiple classifiers on multi-
ple datasets, one should apply rigorous statistical hypothesis testing
before assessing whether the improvement is statistically signif-
icant. Additionally, when testing multiple hypotheses simultane-
ously, multiplicity issues arise and one should adopt the proper
corrections.

The Friedman test [30] is a non-parametric test that does not as-
sume the distribution and variances of the samples. For each dataset
and for each configuration, it ranks the accuracies of all the models.
Then, it computes a statistic 𝜒2

𝐹
under the null hypothesis, which

states that all the models are equivalent and their ranks should be
random. In our case, this test gives a 𝑝-value< 0.01, so the null
hypothesis is rejected, and we can proceed with a post-hoc test to
tell which algorithms perform the best. To calculate the statistical
significance of the pairwise comparisons between the models, we
used the Conover post-hoc test for unreplicated blocked data [4]
where the 𝑝-values are adjusted with the step-down method using
the Sidak corrections [31]. Other common 𝑝-values adjustments
yielded equivalent outcomes. The outcome of this analysis is neatly
presented with the critical difference (CD) diagrams in Fig. 2. This
plot displays the averages of the normalized ranks of the models
among all the configurations. On the x-axis, 1 would stand for a
model that always scores better; on the contrary, a model at 0 would
always be the last one in the rankings. The groups that could not
be statistically deemed different by the Conover test are linked
by a horizontal crossbar. We can see that GraphConv, MI-GNN-v1,
and -v2 are significantly better ranked than all the other models.
While the MI-GNN-v1 has the highest average rank of 0.71, indicat-
ing that it tends to be the best model more frequently for a given
configuration and dataset, there is insufficient statistical evidence
to confirm this conclusion. Therefore, conducting experiments on
additional datasets would be necessary to endorse this assessment.
Nevertheless, this shows that MI-GNN-v1 is a valid alternative to
GraphConv, and all the parameters and settings being equal, merely
replacing the additive term with the Hadamard product can lead to
improved performances. Moreover, the CD diagram shows us that
MI-GNN-v3 is, on average, in the middle of the rankings despite
achieving the best accuracy in PROTEINS and ENZYMES. This ad-
vises us that when evaluating new machine learning models, when
it is possible, it is crucial to go beyond the maximum accuracy
rationale—only by testing whether the new model performs statis-
tically better than the baselines for multiple configurations, one
can ensure that such improvements are significant and applicable
across different scenarios.

5.5 Open Graph Benchmark
To prove the validity of our approach, we additionally evaluated
the performances of the MI-GNNs on the molhiv dataset belonging
to the Open Graph Benchmark (OGB) [15]. This dataset is made
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Table 2: Accuracy and standard deviation, in percentages, on the test set for the best-validated models on all the datasets. The
best performances are highlighted in boldface.

Dataset \ GNN GNN-FiLM GAT GCN GraphConv MI-GNN-v1 MI-GNN-v2 MI-GNN-v3

COLLAB 68,9±9,2 55,7±1,4 79,4±1,6 75,9±1,7 76,9±2,7 75,9±0,7 74,5±0,9
DD 77,9±2,1 77,6±2,0 77,6±3,4 77,6±2,4 79,6±2,4 77,3±0,7 77,0±5,3
ENZYMES 58,9±0,8 58,3±3,6 62,2±4,2 62,2±0,8 62,8±0,8 63,3±2,4 60,6±3,9
IMDB-B 53,7±4,8 55,7±2,5 71,7±5,3 73,0±3,3 74,0±2,2 73,7±1,7 74,0±4,9
IMDB-M 41,1±7,5 40,0±2,2 50,5±2,7 50,9±2,5 49,6±3,8 49,8±3,8 51,3±3,3
NCI1 79,0±2,1 80,2±2,0 80,6±1,4 81,7±1,7 81,6±1,0 81,6±2,0 78,3±1,7
PROTEINS 73,8±3,0 74,1±2,6 73,8±2,3 75,0±4,1 75,3±3,4 75,9±2,6 74,4±2,8

Figure 1: Distribution of the training times of the best performing models w.r.t their accuracy. The MI-GNNs are marked with a
cross, and the other baselines are marked with a rounded point. The light-blue area (left side) helps to identify the Pareto-front.
For ogbg-molhiv, the AUC is reported on the vertical axis.

Figure 2: Critical Difference diagram of the Average score ranks.

of 41 127 graphs, an order of magnitude more than the ones previ-
ously considered, and it follows its pre-defined pre-processing and
evaluation pipeline. Due to its complexity and time constraints, we
restricted our experimental setup to a smaller hyper-parameters
grid and fewer models. For these reasons, it cannot be analyzed
along with the other datasets and the procedure described in the

previous section. Table 3 reports the best AUC on the test set, train-
ing time, and architecture for the model with the highest AUC score
on the validation set. MI-GNN-v2 has the best performance and it
requires fewer parameters, thus, this supports our intuition that MI
is able to grasp relevant complex interactions among nodes. It is
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worth noticing that such an AUC score would place our model in
the top 20 leaderboard for this dataset.

6 GRADIENT ANALYSIS
Pursuing the goal of characterizing the strengths and the weakness
of the application of the multiplicative integration in GC opera-
tors, we theoretically analyze the gradient of the various proposed
versions of MI-GNN and we compare them with the gradient of
the most similar additive model, the GraphConv. We denote as
H ∈ R𝑚𝑖×𝑛 the matrix of all the nodes’ embeddings at layer 𝑖 ,
H̄ ∈ R𝑚𝑖+1×𝑛 is the same matrix at the following layer 𝑖 + 1, and
𝛿𝑖 𝑗 the Kronecker delta function. In the following, we use Ein-
stein’s notation of summation over repeated indexes: 𝑎𝑖 𝑗 = A𝑖

𝑗
=∑

𝑘 𝑏𝑖𝑘𝑐𝑘 𝑗 = B𝑖
𝑘

C𝑘
𝑗
. For the GraphConv, the derivatives w.r.t. the

weights are (omitting the Jacobian of 𝜙 and the bias term):
𝜕H̄𝑥

𝑣

𝜕W𝑎
𝑏

= 𝛿𝑎𝑥H𝑏
𝑣 and,

𝜕H̄𝑥
𝑣

𝜕WΣ
𝑐
𝑑

= 𝛿𝑐𝑥H𝑑
𝑢A𝑢

𝑣, (10)

while the derivative of the MI-GNN-v1 w.r.t the weights are the
following:

𝜕H̄𝑥
𝑣

𝜕W𝑎
𝑏

= 𝛿𝑎𝑥H𝑏
𝑣 ·

(
WΣ

𝑥
𝜌H𝜌

𝑢A𝑢
𝑣

)
, (11)

𝜕H̄𝑥
𝑣

𝜕WΣ
𝑐
𝑑

= 𝛿𝑐𝑥H𝑑
𝑢A𝑢

𝑣 ·
(
W𝑥

𝜎H𝜎
𝑣

)
. (12)

It is worth noticing how the use of MI instead of an additive block
leads the gradient with respect to W to be influenced by WΣ and
vice-versa. Moreover, in the MI-GNN, the gradient of the weights
that multiply the current node 𝑣 also depends on the adjacency
matrix A, making it possible to carry information about the neigh-
bors when learning W. This enriched gradient for the first weights
matrix of Eq. 4 implies that the neighborhood will directly influence
the projection of the node 𝑣 . We can notice a similar effect compar-
ing the gradient of the GraphConv and the MI-GNN-v1 w.r.t. the
node embeddings of the previous layer. Indeed for the GraphConv,
the gradient is the following:

𝜕H̄𝑥
𝑣

𝜕H𝑧
𝑡

= 𝛿𝑡𝑣W𝑥
𝑧 + WΣ

𝑥
𝑧A𝑡

𝑣, (13)

while the one of the MI-GNN-v1 is:
𝜕H̄𝑥

𝑣

𝜕H𝑧
𝑡

= 𝛿𝑡𝑣W𝑥
𝑧 ·

(
WΣ

𝑥
𝜌H𝜌

𝑢A𝑢
𝑣

)
+
(
W𝑥

𝜎H𝜎
𝑣

)
·
(
WΣ

𝑥
𝑧A𝑡

𝑣

)
. (14)

For what concerns the MI-GNN-v2, we have three weight ma-
trices (see Eq. 6). The gradient of the hidden representations w.r.t
W and WΣ are the same as reported in Eq. 12, so the considera-
tion made for the MI-GNN-v1 holds also for these second version.
Interestingly, the gradient w.r.t. W⊙ keeps the same capability of
conveying information about the current node and the neighbor-
hood as in the case of the other two weights matrices:

𝜕H̄𝑥
𝑣

𝜕W⊙𝑒 𝑓
= 𝛿𝑒𝑥

(
H𝑓

𝑣 · A𝑓

𝑙
H𝑙

𝑣

)
. (15)

Differently from the gradient of the hidden representation with
respect to the previously considered W and WΣ parameter matrices,
in this case, the gradient is not influenced by the other weights of
the model.

Considering the MI-GNN-v3, the derivative w.r.t. the previous
layer is highly influenced by the ReLU function applied to the
projection of the node 𝑣 and the projection of the neighborhood.
Recall that the ReLU function is used to avoid instability during
the training. Let us start considering the gradient of the hidden
representation of a layer w.r.t. the representation of the layer before:

𝜕H̄𝑥
𝑣

𝜕H𝑧
𝑡

= 𝛿𝑡𝑣Θ
(
W𝑥

𝜎H𝜎
𝑣

)
W𝑥

𝑧 ·
(
Wlog

𝑥
𝜌

log
[
ReLU

(
H𝜌

𝑢

)]
A𝑢

𝑣

)
+

+ ReLU
(
W𝑥

𝜎H𝜎
𝑣

)
·
(
Wlog

𝑥
𝑧

A𝑡
𝑣

)
, (16)

whereΘ(·) is the derivative of the ReLU. If we consider the gradient
w.r.t. the weights W, Wlog we can notice that the gradient takes
into account the interaction between them, as well as the adjacency
matrix:

𝜕H̄𝑥
𝑣

𝜕W𝑎
𝑏

= 𝛿𝑎𝑥Θ
(
W𝑥

𝜎H𝜎
𝑣

)
H𝑏

𝑣 ·
(
Wlog

𝑥
𝜌

log
[
ReLU

(
H𝜌

𝑢

)]
A𝑢

𝑣

)
(17)

𝜕H̄𝑥
𝑣

𝜕Wlog
𝑐
𝑑

= ReLU
(
W𝑥

𝜎H𝜎
𝑣

)
· 𝛿𝑐𝑥 log

[
ReLU

(
H𝑑

𝑢

)]
A𝑢

𝑣 . (18)

Unlike the other version of MI-GNN, this one also considers the
log of the ReLU activation of the neighbors’ embeddings and the
ReLU derivative applied to the embedding of the current node 𝑣 . In
particular, for Wlog, this behavior ensures to have always a positive
value for the gradient.

We are committed to ensuring transparency and reproducibility
in our research. To facilitate this, all the detailed step-by-step com-
putations, along with the relevant code and experimental analysis,
are made openly accessible and available online1.

7 CONCLUSIONS AND FUTUREWORKS
This paper analyzed how Multiplicative Integration (MI) can be
exploited in defining graph convolution operators. We proposed
three variants that explore different ways to apply MI on graph-
structured data, which we dub MI-GNN. We empirically evaluated
the three versions of MI-GNN on eight benchmark classification
datasets, adopting a fair experimental setting and analyzing the
results with a solid statistical setting. The experimental assessment
showed competitive results of MI-GNNs in terms of accuracy, while
MI-GNNs tend to show a reduced training time compared to com-
peting models.

We also analyzed how the use of MI influences the training with
a theoretical study of the gradients, which showed the capability
of the MI-GNN models to convey structural information when
computing the gradients to update the weights of the model.

Moreover, the gradient flow of the MI-GNN was influenced by
the interaction between the different weights of the GC, showing
the capability to convey more information compared to the widely
adopted GraphConv.

In the future, we plan to study howMI can be exploited to design
novel architectures for learning in graph domains. In particular,
we will explore the application of MI in defining pooling layers to
compute a graph-level representation of the input. Moreover, we
also plan to explore if the richer gradient flow of the MI-GNN can be
helpful in graph continual learning settings where it is particularly
useful to consider the dynamic information of the neighbors (that
changes over time) during training. Finally, we intend to extend

1https://github.com/paolofraz/MI-GNN
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Table 3: Experimental results and architecture for the best-validated model on the ogbg-molhiv dataset.

GNN Type Pre-MLP layers GC-layers Post-MLP layers Hidden units # Param. AUC Training Time (s)

GCN 1 2 3 384 24 517 826 78,69±0,86 5538
GraphConv 1 4 3 384 69 506 498 78,72±2,15 6126
MI-GNN-v1 2 6 2 256 31 872 322 78,33±0,90 5009
MI-GNN-v2 2 4 3 128 7 983 554 79,39±0,15 5741
MI-GNN-v3 2 2 3 384 25 109 954 76,25±0,03 4788

the applicability of our approach beyond graph classification tasks
and explore its effectiveness in the domain of node classification.
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