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Abstract: We consider a Dirichlet problem for the Poisson equation in a periodically

perforated domain. The geometry of the domain is controlled by two parameters: a real

number ε > 0, proportional to the radius of the holes, and a map φ, which models the

shape of the holes. So, if g denotes the Dirichlet boundary datum and f the Poisson

datum, we have a solution for each quadruple (ε, φ, g, f). Our aim is to study how the

solution depends on (ε, φ, g, f), especially when ε is very small and the holes narrow to

points. In contrast with previous works, we do not introduce the assumption that f

has zero integral on the fundamental periodicity cell. This brings in a certain singular

behavior for ε close to 0. We show that, when the dimension n of the ambient space is

greater than or equal to 3, a suitable restriction of the solution can be represented with

an analytic map of the quadruple (ε, φ, g, f) multiplied by the factor 1/εn−2. In case of

dimension n = 2, we have to add log ε times the integral of f/2π.
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1 Introduction

The object of this paper is to study a singular perturbation of a Dirichlet-Poisson prob-

lem in a periodically perforated domain. The aim is to show that the solution can

be written as a combination of real analytic maps and–possibly singular but completely

known–elementary functions of the perturbation parameters. The geometry of the prob-

lem is controlled by two parameters: a positive real number ε that determines the size

of the holes and a shape function φ that deforms the boundary of a certain reference

domain Ω into the shape of the holes. To wit, the holes are shifted copies of εφ(∂Ω) and

thus, for ε that tends to zero, they shrink down to points. Next, we take a Dirichlet

datum g and a Poisson datum f in such a way that the problem has a unique solution for

each choice of the four variables ε, φ, g, and f . So it makes sense to ask ourselves what

we can say of the map that takes a quadruple (ε, φ, g, f) to the corresponding solution.

In particular, we want to see what happens when ε is close to zero and the holes are

shrinking to points.

The interest for periodic problems for the Laplace equations is (in part) motivated

by their relevance in the applications. For instance, problems of this kind arise in the

study of effective properties of composite materials. The reader may find some examples

in the works of Ammari, Kang, and Lim [2], Ammari, Kang, and Touibi [3], Drygaś,

Gluzman, Mityushev, and Nawalaniec [10], Gluzman, Mityushev, and Nawalaniec [14],

and Kapanadze, Mishuris, and Pesetskaya [15, 16].

Indeed, we have ourselves already written on this topic. In particular, the problem of

this paper is very similar to those of [34] and [35]. There is a critical difference though:

in [34] we take the Poisson datum f equal to 0 and in [35] the function f is required to

have zero integral on the periodicity cell, whereas here we abandon this assumption. As

a consequence, we have to deal with a specific singular behavior that appears for ε close

to zero: If the ambient space has dimension n ≥ 3, the solution shows a singularity of the

order of 1/εn−2, and, for n = 2, a (log ε)-singularity. Also, in the previous works [34, 35]

the number ε was solely responsible for the geometric deformation of the problem, and

thus only homothetic transformations of the holes were allowed. Here, instead, the holes

can change shape according to the function φ and we analyze the joint dependence on

the set of variables (ε, φ, g, f).

We now describe our problem in detail. We fix once for all

n ∈ N \ {0, 1} and q11, . . . , qnn ∈ ]0,+∞[ ,
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where N denotes the set of natural numbers including 0. We set

q :=



q11 0 · · · 0

0 q22 · · · 0

...
...

. . .
...

0 0 · · · qnn


and Q :=

n∏
j=1

]0, qjj [ ⊆ Rn.

The set Q is the fundamental periodicity cell and the diagonal matrix q is the periodicity

matrix associated with the cell Q.

We consider a set Ω ⊆ Rn satisfying the following assumption:

Ω is a bounded open connected subset of Rn of class C1,α

such that Rn \ Ω is connected.

(1)

In (1), as well as in the rest of the paper, α is a fixed number in the open interval ]0, 1[

and the symbol · denotes the closure of a set. For the definition of sets and functions of

the Schauder class Cj,α (j ∈ N) we refer, e.g., to Gilbarg and Trudinger [13].

The boundary ∂Ω of Ω plays the role of a reference set and the boundary of the

holes is obtained rescaling and shifting the image of ∂Ω under a suitable map φ. The

set of the functions φ that we allow is denoted by A1,α
∂Ω and consists of the functions

of C1,α(∂Ω,Rn) := (C1,α(∂Ω))n that are injective and have injective differential at all

points of ∂Ω. We can verify that A1,α
∂Ω is open in C1,α(∂Ω,Rn) (see, e.g., Lanza de

Cristoforis and Rossi [26, Lem. 2.2, p. 197] and [25, Lem. 2.5, p. 143]). Moreover, if

φ ∈ A1,α
∂Ω , then the Jordan-Leray separation theorem (see, e.g, Deimling [9, Thm. 5.2,

p. 26]) ensures that φ(∂Ω) splits Rn into exactly two open connected components. We

denote by I[φ] the bounded one and we can verify that I[φ] is a set of class C1,α (cf. [25,

Lem. 2.6, p. 144]). To put it simple, the modified set I[φ] keeps the same regularity of

the reference set Ω. Incidentally, we observe that this might not be the case with sets of

a lower regularity. For example, a bi-Lipshitz image of the boundary of a Lipshitz set

might not be the boundary of a Lipschitz set (cf., e.g., McLean [33, Fig. 2 (iii)]).

Next we fix a point

p ∈ Q ,

which is the point where the hole in the reference periodicity cell shrinks to. It will be

convenient to consider perturbations around a fixed

φ0 ∈ A1,α
∂Ω .
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Figure 1: A 2-dimensional example of perforated reference periodicity cell. The hole
Ωε,φ shrinks toward the point p when ε tends to 0.

There is no loss of generality in this choice, because φ0 can be any function of A1,α
∂Ω . The

advantage is that there exist a real number ε0 > 0 and an open neighborhood Oφ0
of φ0

in A1,α
∂Ω such that

p+ εI[φ] ⊆ Q ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0 . (2)

Then, for these ε’s and φ’s we can define the hole

Ωε,φ := p+ εI[φ] ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0
,

which is contained in Q, has size proportional to ε, and shape determined by φ. When

ε tends to 0, the hole shrinks toward the point p while its shape changes according to φ

(see Figure 1).

The periodic set of holes is given by

S[Ωε,φ] :=
⋃
z∈Zn

(qz + Ωε,φ) ,

and the periodic domain where we define the Poisson equation is

S[Ωε,φ]− := Rn \ S[Ωε,φ] ∀(ε, φ) ∈ ]−ε0, ε0[×Oφ0
.

In other words, the domain S[Ωε,φ]− is obtained removing from Rn the periodic set of

holes S[Ωε,φ] (see Figure 2). When ε approaches zero, the hole in the cell qz+Q shrinks

toward qz + p.

We now introduce suitable spaces for the functional data of the problem. For the

right-hand side of the Dirichlet boundary condition we take a function

g ∈ C1,α(∂Ω) ,

which we properly transplant to be defined on ∂Ωε,φ = p+ εφ(∂Ω). As for the Poisson

datum, regularity has to be chosen more carefully. Lanza de Cristoforis in [19] and

Preciso in [38, 39] shown that Roumieu analytic functions produce analytic composition
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Figure 2: A 2-dimensional example of periodically perforeted set S[Ωε,φ]−.

operators and analytic Newtonian potentials, a feature that will come handy later on

in our analysis. Moreover, since we are dealing with a periodic problem, we have to

take periodicity into account. So, the right-hand side of the Poisson equation will be a

function

f ∈ C0
q,ω,ρ(Rn) ,

where ρ > 0 is fixed and C0
q,ω,ρ(Rn) denotes the Roumieu class of q-periodic analytic

functions (see (5) for the exact definition of C0
q,ω,ρ(Rn), see also [35]).

All the ingredients are now introduced and we can state our Dirichlet-Poisson prob-

lem. For a quadruple (ε, φ, g, f) ∈ ]0, ε0[×Oφ0 × C1,α(∂Ω)× C0
q,ω,ρ(Rn), we look at


∆u(x) = f(x) ∀x ∈ S[Ωε,φ]−,

u(x+ qz) = u(x) ∀x ∈ S[Ωε,φ]−, ∀z ∈ Zn,

u(x) = g ◦ φ(−1)(ε−1(x− p)) ∀x ∈ ∂Ωε,φ .

(3)

It is well known that problem (3) has a unique solution in the space C1,α(S[Ωε,φ]−) (see

Theorem 3.1, see also [35, Prop. 2.2]). To emphasize the dependence on (ε, φ, g, f), we

denote it by

u[ε, φ, g, f ] .

Then our goal is to describe the map

]0, ε0[×Oφ0
× C1,α(∂Ω)× C0

q,ω,ρ(Rn) 3 (ε, φ, g, f) 7→ u[ε, φ, g, f ] ∈ C1,α(S[Ωε,φ]−) .
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We observe, however, that the space in the right-hand side depends on ε, and so it

is not suited to be the codomain of a function that depends on ε itself. To fix this

inconvenience, we take an open bounded set V compactly contained in Rn \ (p + qZn)

and for ε sufficiently small we consider the restriction of u[ε, φ, g, f ] to V . In this way

u[ε, φ, g, f ]|V belongs to C2(V ), a space that does not depend on ε.

In our main Theorem 4.1 we show that, up to taking a smaller ε0 > 0 and a smaller

open neighborhood Oφ0 of φ0, the map that takes (ε, φ, g, f) to u[ε, φ, g, f ]|V is described

by the formula

u[ε, φ, g, f ]|V =
1

εn−2
U[ε, φ, g, f ] + δ2,n

log ε

2π

ˆ
Q

f(x) dx ,

where δ2,n is the Kronecker delta symbol and where

U : ]−ε0, ε0[×Oφ0 × C1,α(∂Ω)× C0
q,ω,ρ(Rn)→ C2(V )

is real analytic (here C2(V ) could be replaced with Ck(V ) for any k > 0). The formula

above makes evident that for n = 2 the singular behavior of the solution only appears

as soon as f has non-zero integral over Q. The same is true for n ≥ 3, as we can deduce

comparing this result with those in [35].

With the regularity chosen for f and g we can solve the problem in the framework of

Schauder spaces. It would be possible to use Sobolev spaces instead of Schauder spaces

(as in [4], for example, where we studied a perturbation near a vertex point). Doing so

we might relax the regularity assumption on g and–with a straightforward modification

of the analysis that we will present–obtain results similar to those in described above.

It seems more difficult, instead, to relax the assumptions on f .

Usually, boundary value problems in singularly perturbed domains are studied with

the methods of Asymptotic Analysis, as we can find in the works of Kozlov, Maz’ya and

Movchan [17], Maz’ya, Movchan, and Nieves [30], Mazya, Nazarov and Plamenewskii [31,

32], Novotny and Soko lowski [37], and so on. In this paper we adopt a different approach,

named Functional Analytic Approach, which is more suited to obtain representation

formulas in terms of analytic functions (see [6] for a detailed introduction). For this

specific problem we will employ some periodic potential theory and we will exploit the

idea of [36] (later developed in [24] and [29]) of using the periodic Newtonian potential

corrected with a suitable multiple of the periodic fundamental solution of the Laplace

equation. The singular behavior that arises when f has non-zero integral over Q is
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related to the fact that, in that case, the problem

 ∆u(x) = f(x) ∀x ∈ Rn,

u(x+ qz) = u(x) ∀x ∈ Rn, ∀z ∈ Zn,
(4)

has no solution (as one can check applying the Divergence Theorem to u in Q). Problem

(4) may be seen as the limit of (3) as ε goes to 0. Indeed, in a recent paper Feppon and

Ammari [11] have related the appearance of singular behaviors to the failure of similar

compatibility conditions. The problems studied in [11] are not too far from the one that

we analyze in this paper, but involve some specific generalized periodicity conditions.

We also mention that the result that we present here is, in a sense, a periodic counterpart

of a result obtained by Lanza de Cristoforis [20, 21] for a bounded domain with a single

small hole.

Incidentally, we point out that the application of the Functional Analytic Approach

to perturbations of parabolic equations is still an open problem (to us). The potential

theoretic tools to deal with periodic and non-periodic problems for the heat equations

have been developed in [22, 27, 28]. Nevertheless, the anisotropy between space and

time prevents from a direct extension of the method. It is a future goal of the authors

and collaborators to extend the methods of the present paper to parabolic problems,

starting from regular perturbation and then passing to singular ones.

The paper is organized as follows: In Section 2 we list some preliminary results of

periodic potential theory that are used in Section 3 to transform problem (3) into an

equivalent system of integral equations. In Section 4 we prove our main Theorem 4.1.

2 Preliminaries of potential theory

As mentioned in the introduction, we use periodic potential theory to transform problem

(3) into an equivalent system of integral equations. More precisely, we use the periodic

double layer potential, whose definition differs from that of the classical double layer

potential because we replace the fundamental solution of the Laplace operator ∆ =∑n
j=1 ∂

2
xj with a periodic analog. This will be a q-periodic tempered distribution Sq,n

such that

∆Sq,n =
∑
z∈Zn

δqz −
1

|Q|n
,
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where δqz denotes the Dirac distribution with mass in qz and where | · |n denotes the

n-dimensional measure of a set. To define Sq,n we can take

Sq,n(x) := −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2 e
2πi(q−1z)·x ,

where the series converges in the sense of distributions on Rn (cf., e.g., Ammari and

Kang [1, p. 53], [6, §2.1]). It can be shown that Sq,n is real analytic in Rn \ qZn and is

locally integrable in Rn (cf., e.g., [6, Thms. 12.3, 12.4]).

We will also find useful to write Sq,n as the sum of the classical fundamental solution

of the Laplacian

Sn(x) :=


1
s2

log |x| ∀x ∈ R2 \ {0}, if n = 2,

1
(2−n)sn

|x|2−n ∀x ∈ Rn \ {0}, if n ≥ 3,

and a remainder Rq,n := Sq,n − Sn which is regular around the origin. Here above sn

is the (n − 1)-dimensional measure of the boundary ∂Bn(0, 1) of the unit ball Bn(0, 1)

in Rn. We note that Rq,n has an analytic extension to (Rn \ qZn) ∪ {0}, which we still

denote by Rq,n, and that

∆Rq,n =
∑

z∈Zn\{0}
δqz −

1

|Q|n

in the sense of distributions (see, e.g., [6, Thm. 12.4]).

We now recall the definition of the classical (non-periodic) double layer potential. We

introduce another set Ω̃, which we use as a dummy for our definitions: Ω̃ is a bounded

open connected subset of Rn of class C1,α such that Rn \ Ω̃ is connected. The classical

double layer potential supported on Ω̃ and with density θ ∈ C1,α(∂Ω̃) is defined by

wΩ̃[θ](t) := −
ˆ
∂Ω̃

νΩ̃(s) ·DSn(t− s)θ(s) dσs ∀t ∈ Rn ,

where νΩ̃ denotes the outward unit normal to ∂Ω̃ and the symbol “·” denotes the scalar

product in Rn. As is well known, the restriction wΩ̃[θ]|Ω̃ extends to a function w+

Ω̃
[θ]

in C1,α(Ω̃) and the restriction wΩ̃[θ]|Rn\Ω̃ extends to a function w−
Ω̃

[θ] in C1,α
loc (Rn \ Ω̃).

Moreover, on the boundary we have the jump formula:

w±
Ω̃

[θ]|∂Ω̃ = ±1

2
θ + wΩ̃[θ]|∂Ω̃ ∀θ ∈ C1,α(∂Ω̃)

(cf. Folland [12, Ch. 3], [6, § 4.5]).
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To define the periodic double layer potential we need some more notation about

periodic domains. If Ω̃Q is an arbitrary subset of Rn such that Ω̃Q ⊆ Q (another

dummy set), we define

S[Ω̃Q] :=
⋃
z∈Zn

(qz + Ω̃Q) = qZn + Ω̃Q , S[Ω̃Q]− := Rn \ S[Ω̃Q] .

Then a function u from S[Ω̃Q] or from S[Ω̃Q]− to R is q-periodic if u(x+ qz) = u(x) for

all x in the domain of definition of u and for all z ∈ Zn. For j ∈ {0, 1} and α ∈ ]0, 1[,

we denote by Cj,αq (S[Ω̃Q]) and Cj,αq (S[Ω̃Q]−) the spaces of q-periodic functions of class

Cj,α in S[Ω̃Q] and in S[Ω̃Q]−, respectively (cf. [6, p. 491]).

If Ω̃Q is of class C1,α, then the periodic double layer potential with density µ ∈

C1,α(∂Ω̃Q) is defined by

wq,Ω̃Q [µ](x) := −
ˆ
∂Ω̃Q

νΩ̃Q
(y) ·DSq,n(x− y)µ(y) dσy ∀x ∈ Rn ,

and we see that the expression in the right-hand side differs from that in the definition

of wΩ̃[µ] because we replace Sn with Sq,n.

It is well known that the restriction wq,Ω̃Q [µ]|Sq [Ω̃Q] extends to a function w+

q,Ω̃Q
[µ]

of C1,α
q (Sq[Ω̃Q]) and the restriction wq,Ω̃Q [µ]|Sq [Ω̃Q]− extends to a function w−

q,Ω̃Q
[µ] of

C1,α
q (Sq[Ω̃Q]−). Moreover, on the boundary of Ω̃Q we have the jump formula

w±
q,Ω̃Q

[µ]|∂Ω̃Q
= ±1

2
µ+ wq,Ω̃Q [µ]|∂Ω̃Q

∀µ ∈ C1,α(∂Ω̃Q)

(cf., e.g., [6, Thm. 12.10]).

As mentioned in the introduction, we will use Roumieu analytic functions. The

advantage is that the composition operator

(u, v) 7→ u ◦ v

is real analytic in the pair of (u, v) if u is taken in a Roumieu class and v in a Schauder

space (see Proposition 2.2 below). Also, Roumieu analytic functions produce Roumieu

analytic Newtonian potentials (see Theorem 2.1). So, for all bounded open subsets Ω̃ of

Rn and ρ > 0, we set

C0
ω,ρ(Ω̃) :=

{
u ∈ C∞(Ω̃) : sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖

C0(Ω̃)
< +∞

}
,
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and

‖u‖
C0
ω,ρ(Ω̃)

:= sup
β∈Nn

ρ|β|

|β|! ‖D
βu‖

C0(Ω̃)
∀u ∈ C0

ω,ρ(Ω̃) ,

where |β| := β1 + · · ·+ βn is the length of the multi-index β := (β1, . . . , βn) ∈ Nn. As is

well known, the Roumieu class
(
C0
ω,ρ(Ω̃), ‖ · ‖

C0
ω,ρ(Ω̃)

)
is a Banach space.

If k ∈ N, then we set

Ckq (Rn) := {u ∈ Ck(Rn) : u(x+ qz) = u(x) ∀x ∈ Rn ,∀z ∈ Zn} ,

and

C∞q (Rn) := {u ∈ C∞(Rn) : u(x+ qz) = u(x) ∀x ∈ Rn ,∀z ∈ Zn} .

Similarly, if ρ > 0, we set

C0
q,ω,ρ(Rn) :=

{
u ∈ C∞q (Rn) : sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖C0(Q) < +∞

}
, (5)

and

‖u‖C0
q,ω,ρ(Rn) := sup

β∈Nn
ρ|β|

|β|! ‖D
βu‖C0(Q) ∀u ∈ C0

q,ω,ρ(Rn) .

We can see that the periodic Roumieu class
(
C0
q,ω,ρ(Rn), ‖·‖C0

q,ω,ρ(Rn)

)
is a Banach space.

It is common to use Newtonian potentials to convert boundary value problems for

the Poisson equation into boundary value problems for the Laplace equation. To keep

this tradition alive we need to introduce a periodic analog of the Newtonian potential:

if h ∈ C0
q (Rn), then we set

Pq[h](x) :=

ˆ
Q

Sq,n(x− y)h(y) dy ∀x ∈ Rn .

Some of the properties of the periodic Newtonian potential are listed in the following

theorem (we refer to [5] for an exhaustive overview).

Theorem 2.1. The following statements hold.

(i) Let f ∈ C1
q (Rn). Then Pq[f ] ∈ C2

q (Rn) and

∆Pq[f ](x) = f(x)− 1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ Rn .

(ii) Let ρ > 0. Then there exists ρ′ ∈ ]0, ρ] such that Pq[f ] ∈ C0
q,ω,ρ′(Rn) for all

f ∈ C0
q,ω,ρ(Rn) and such that Pq[·] is linear and continuous from C0

q,ω,ρ(Rn) to

C0
q,ω,ρ′(Rn).
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Then we introduce a slight variant of Preciso [38, Prop. 4.2.16, p. 51] and [39,

Prop. 1.1, p. 101] on the real analyticity of a composition operator (see also Lanza

de Cristoforis [18, Prop. 2.17, Rem. 2.19] and [20, Prop. 9, p. 214]).

Proposition 2.2. Let m, h, k ∈ N, h, k ≥ 1. Let α ∈ ]0, 1], ρ > 0. Let Ω′, Ω′′ be

bounded open connected subsets of Rh, Rk, respectively. Let Ω′′ be of class C1. Then

the operator T defined by

T [u, v] := u ◦ v

for all (u, v) ∈ C0
Ω′,ρ(Ω

′)×Cm,α(Ω′′,Ω′) is real analytic from the open subset C0
Ω′,ρ(Ω

′)×

Cm,α(Ω′′,Ω′) of C0
Ω′,ρ(Ω

′)× Cm,α(Ω′′,Rh) to Cm,α(Ω′′).

Finally, we need a last technical lemma about the real analytic dependence of certain

maps related to the change of variables in integrals and to the pullback of the outer

normal field. For a proof we refer to Lanza de Cristoforis and Rossi [25, p. 166] and to

Lanza de Cristoforis [20, Prop. 1].

Lemma 2.3. Let α, Ω be as in (1). Then the following statements hold.

(i) For each ψ ∈ A1,α
∂Ω , there exists a unique σ̃[ψ] ∈ C0,α(∂Ω) such that σ̃[ψ] > 0 and

ˆ
ψ(∂Ω)

w(s) dσs =

ˆ
∂Ω

w ◦ ψ(y)σ̃[ψ](y) dσy, ∀w ∈ L1(ψ(∂Ω)).

Moreover, the map σ̃[·] from A1,α
∂Ω to C0,α(∂Ω) is real analytic.

(ii) The map from A1,α
∂Ω to C0,α(∂Ω,Rn) that takes ψ to νI[ψ] ◦ ψ is real analytic.

3 Formulation of problem (3) in terms of integral

equations

First we convert problem (3) into a Dirichlet problem for the Laplace equation. In order

to do so, we would like to use a function whose Laplacian equals the right-hand side

f ∈ C0
q,ω,ρ(Rn) of the first equation in problem (3). The natural candidate would be the

periodic Newtonian potential Pq[f ]. However, we have

∆Pq[f ](x) = f(x)− 1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− . (6)

So we need to get rid of the term 1
|Q|n
´
Q
f(y) dy in equation (6): We note that the

function from Rn \ (p+ qZn) to R that takes x to −Sq,n(x− p)
´
Q
f(y) dy is q-periodic

11



and analytic, and that

∆

[
− Sq,n(x− p)

ˆ
Q

f(y) dy

]
=

1

|Q|n

ˆ
Q

f(y) dy ∀x ∈ Rn \ (p+ qZn) .

As a consequence,

∆

[
Pq[f ](x)− Sq,n(x− p)

ˆ
Q

f(y) dy

]
= f(x) ∀x ∈ S[Ωε,φ]− (7)

and we can use the corrected Newtonian potential

Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

to transform problem (3) into a Dirichlet problem for the Laplace equation, that in turn

we can analyze using the periodic double layer potential.

This is what we do to prove the following Theorem 3.1: first we transform the

Dirichlet-Poisson problem into a Dirichlet-Laplace problem, and then we represent the

solution as the sum of a constant and a double layer potential with a density that satisfies

a certain boundary integral equation pulled-back to ∂Ω.

Theorem 3.1. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let

(φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω) × C0

q,ω,ρ(Rn). Let ε0, Oφ0
be as in (2). Let (ε, φ, g, f) ∈

]0, ε0[×Oφ0×C1,α(∂Ω)×C0
q,ω,ρ(Rn). Then problem (3) has a unique solution u[ε, φ, g, f ]

in C1,α
q (S[Ωε,φ]−), which is delivered by the formula

u[ε, φ, g, f ](x) := ω(ε, φ, g, f, x) + Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− ,
(8)

where

ω(ε, φ, g, f, x) := w−q,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c ∀x ∈ S[Ωε,φ]−

and where (θ, c) is the unique solution in C1,α(∂Ω)×R of the system of integral equations

−1

2
θ(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ(s)σ̃[φ](s) dσs (9)

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy +Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,
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ˆ
∂Ω

θσ̃[φ] dσ = 0 . (10)

Proof. By (7) we can see that a function u ∈ C1,α
q (S[Ωε,φ]−) solves problem (3) if and

only if the function

u(x)− Pq[f ](x) + Sq,n(x− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]−

is a solution of the following boundary value problem



∆ω(x) = 0 ∀x ∈ S[Ωε,φ]− ,

ω(x+ qz) = ω(x) ∀x ∈ S[Ωε,φ]− ,∀z ∈ Zn ,

ω(x) = g ◦ φ(−1)(ε−1(x− p))− Pq[f ](x)

+Sq,n(x− p)
´
Q
f(y) dy − δ2,n log ε

2π

´
Q
f(y) dy ∀x ∈ ∂Ωε,φ .

(11)

By [6, Prop. 12.24] the solution of problem (11) exists, is unique, belongs to C1,α
q (S[Ωε,φ]−),

and can be written as

ω(x) = w−q,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c ∀x ∈ S[Ωε,φ]− ,

where (θ, c) is the unique pair in C1,α(∂Ω)× R such that
´
∂Ω
θσ̃[φ] dσ = 0 and

−1

2
θ ◦ φ(−1)(ε−1(x− p)) + wq,Ωε,φ [θ ◦ φ(−1)(ε−1(· − p))](x) + c

= g ◦ φ(−1)(ε−1(x− p))− Pq[f ](x)

+Sq,n(x− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ ∂Ωε,φ .

By a change of variable, the last equation can be rewritten as

−1

2
θ(t)− εn−1

ˆ
∂Ω

νΩε,φ(p+ εφ(s))DSq,n(p+ εφ(t)− (p+ εφ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+ Sq,n(p+ εφ(t)− p)
ˆ
Q

f(y) dy − δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀t ∈ ∂Ω .

(12)

Then we note that

Sq,n(εφ(t))

ˆ
Q

f(y) dy =
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy + δ2,n
log ε

2π

ˆ
Q

f(y) dy

+Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω
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and, since

νΩε,φ(p+ εφ(s)) = νI[φ] ◦ φ(s) ∀s ∈ ∂Ω

(cf., e.g., Lanza de Cristoforis [21, Lem. 3.1]), equation (12) can be rewritten as

−1

2
θ(t)− εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s)DSq,n(ε(φ(t)− φ(s)))θ(s)σ̃[φ](s) dσs + c

= g(t)−
ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+
1

εn−2
Sn(φ(t))

ˆ
Q

f(y) dy +Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

which is easily seen to be equivalent to (9).

We denote by (θε,φ,g,f , cε,φ,g,f ) the unique solution of (9)–(10). We would like, how-

ever, to have integral equations that are defined also for ε = 0, and system (9)-(10) is

not. So we rescale and take

(θ#
ε,φ,g,f , c

#
ε,φ,g,f ) := εn−2(θε,φ,g,f , cε,φ,g,f )

for all (ε, φ, g, f) ∈ ]0, ε0[×Oφ0
× C1,α(∂Ω)× C0

q,ω,ρ(Rn). We see that (θ#
ε,φ,g,f , c

#
ε,φ,g,f )

coincides with the unique pair (θ#, c#) ∈ C1,α(∂Ω)× R such that

−1

2
θ#(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ#(s)σ̃[φ](s) dσs (13)

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ#(s)σ̃[φ](s) dσs + c#

= εn−2g(t)− εn−2

ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy

+Sn(φ(t))

ˆ
Q

f(y) dy + εn−2Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

ˆ
∂Ω

θ#σ̃[φ] dσ = 0 , (14)

and (13)-(14) makes sense also for ε = 0.

Using the pair (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) instead of (θε,φ,g,f , cε,φ,g,f ) we obtain from Theorem

3.1 the following alternative representation formula for u[ε, φ, g, f ].

Corollary 3.2. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let

(φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω) × C0

q,ω,ρ(Rn). Let ε0, Oφ0
be as in (2). Let (ε, φ, g, f) ∈

]0, ε0[×Oφ0
×C1,α(∂Ω)×C0

q,ω,ρ(Rn). Then the unique solution u[ε, φ, g, f ] in C1,α
q (S[Ωε,φ]−)
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of problem (3) (which is also given by (8)) can be written as

u[ε, φ, g, f ](x) =
1

εn−2
w−q,Ωε,φ [θ#

ε,φ,g,f ◦ φ(−1)(ε−1(· − p))](x) +
1

εn−2
c#ε,φ,g,f

+ Pq[f ](x)− Sq,n(x− p)
ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy ∀x ∈ S[Ωε,φ]− ,

where (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) is the unique solution in C1,α(∂Ω)× R of system (13)-(14).

For (ε, φ, g, f) that tends to (0, φ0, g0, f0) system (13)-(14) turns into the following

“limiting system of integral equations,”

−1

2
θ#(t)−

ˆ
∂Ω

νI[φ0] ◦ φ0(s) ·DSn(φ0(t)− φ0(s))θ#(s)σ̃[φ0](s) dσs + c# (15)

= δ2,ng0(t)− δ2,n
ˆ
Q

Sq,n(p− y)f0(y) dy

+Sn(φ0(t))

ˆ
Q

f0(y) dy + δ2,nRq,n(0)

ˆ
Q

f0(y) dy ∀t ∈ ∂Ω ,

ˆ
∂Ω

θ#σ̃[φ0] dσ = 0 . (16)

In the following Theorem 3.3 we prove that (15)-(16) has a solution and that such

solution is unique. As we shall see, system (15)-(16) is related to a specific boundary

value problem, which we call the “limiting boundary value problem.” The proof of

Theorem 3.3 follows the guidelines of the proof of [34, Lem. 3.4].

Theorem 3.3. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let

(φ0, g0, f0) ∈ A1,α
∂Ω ×C1,α(∂Ω)×C0

q,ω,ρ(Rn). Let τ̃ be the unique solution in C0,α(∂Ω) of

 −
1
2τ(t) +

´
∂Ω
νI[φ0] ◦ φ0(t) ·DSn(φ0(t)− φ0(s))τ(s)σ̃[φ0](s) dσs = 0 ∀t ∈ ∂Ω ,

´
∂Ω
τ σ̃[φ0]dσ = 1 .

(17)

Then the following statements hold.

(i) The limiting system (15)-(16) has one and only one solution (θ̃#, c̃#) in C1,α(∂Ω)×

R. Moreover,

c̃# =

ˆ
∂Ω

g#
n τ̃ σ̃[φ0] dσ ,

where, for all t ∈ ∂Ω we have

g#
n (t) :=


g0(t)−

´
Q
Sq,n(p− y)f0(y) dy + Sn(φ0(t))

´
Q
f0(y) dy

+Rq,n(0)
´
Q
f0(y) dy if n = 2 ,

Sn(φ0(t))
´
Q
f0(y) dy if n ≥ 3 .
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(ii) The limiting boundary value problem


∆u(x) = 0 ∀x ∈ Rn \ I[φ0] ,

u(x) = g#
n ◦ φ(−1)

0 (x) ∀x ∈ φ0(∂Ω) ,

limx→∞ u(x) = c̃# ,

(18)

has one and only one solution ũ# in C1,α
loc (Rn \ I[φ0]). Moreover,

ũ#(x) = w−I[φ0][θ̃
# ◦ φ(−1)

0 ](x) + c̃# ∀x ∈ Rn \ I[φ0] . (19)

Proof. By classical potential theory (cf., e.g., Folland [12, Ch. 3 ], [6, Lem. 6.34]) and by

the theorem of change of variable in integrals, we can see that problem (17) has a unique

solution τ̃ ∈ C0,α(∂Ω). Then the validity of statement (i) follows by [6, Thm. 6.37 (i)]

and, once more, by the theorem of change of variable in integrals.

To prove statement (ii) we first observe that problem (18) has at most one continuous

solution (this follows by a classical argument based on the Maximum Principle). Then,

by the properties of the classical double layer potentials and exploiting the fact that

(θ̃#, c̃#) is a solution of (15)-(16), we can see that the function ũ# in (19) is harmonic

and satisfies the second and the third conditions in (18) (cf. [6, § 4.5]). Thus it coincides

with the unique solution of (18).

We might be curious to know what is the constant c̃# that appears in Theorem 3.3.

In the following remark we attempt an explanation.

Remark 3.4. By the computations of [8, Lem. 7.2], we can verify that if n = 2, then

ũ# coincides with the unique solution of


∆u(x) = 0 ∀x ∈ R2 \ I[φ0] ,

u(x) = g#
n ◦ φ(−1)

0 (x) ∀x ∈ φ0(∂Ω) ,

supx∈R2\I[φ0] |u(x)| < +∞ ,

and that

c̃# = lim
x→∞

ũ#(x) .

If, instead, n ≥ 3, then an extension of the 2-dimensional argument of [8, Lem. 7.2] to

the (n ≥ 3)-dimensional case shows that

c̃# =
1

(2− n)sn

ˆ
Q

f0(y) dy
(

lim
x→∞

|x|n−2H0(x)
)−1

,
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where H0 is the unique function of C1,α
loc (Rn \ I[φ0]) such that


∆H0(x) = 0 ∀x ∈ Rn \ I[φ0] ,

H0(x) = 1 ∀x ∈ φ0(∂Ω) ,

limx→∞H0(x) = 0

and where we can see that the limit

lim
x→∞

|x|n−2H0(x)

exists and belongs to ]0,+∞[ (see, e.g., Folland [12, Chap. 2, Prop. 2.74]). In particular,

we have

c̃# 6= 0 as soon as

ˆ
Q

f0(y)dy 6= 0.

In the following Theorem 3.5 we consider the map that takes (ε, φ, g, f) to the pair

(θ#
ε,φ,g,f , c

#
ε,φ,g,f ) and prove that it has a real analytic continuation in a neighborhood of

(0, φ0, g0, f0). The proof of Theorem 3.5 exploits the Implicit Function Theorem for real

analytic maps in Banach spaces (cf., e.g., Deimling [9, Thm. 15.3]).

Theorem 3.5. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let

(φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω)× C0

q,ω,ρ(Rn). Let ε0, Oφ0 be as in (2). Then there exist

ε#,1 ∈ ]0, ε0[, an open neighborhood O′φ0
of φ0 in A1,α

∂Ω , an open neighborhood U0 of

(g0, f0) in C1,α(∂Ω)× C0
q,ω,ρ(Rn), and a real analytic map

(Θ#, C#) : ]−ε#,1, ε#,1[×O′φ0
× U0 → C1,α(∂Ω)× R

such that

(Θ#[ε, φ, g, f ], C#[ε, φ, g, f ]) = (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) ∀(ε, φ, g, f) ∈ ]0, ε#,1[×O′φ0

× U0 ,

(Θ#[0, φ0, g0, f0], C#[0, φ0, g0, f0]) = (θ̃#, c̃#) .

Proof. Let Λ# := (Λ#,1,Λ#,2) be the map from ]−ε0, ε0[×Oφ0
×C1,α(∂Ω)×C0

q,ω,ρ(Rn)×

C1,α(∂Ω)× R to C1,α(∂Ω)× R defined by

Λ#,1[ε, φ, g, f, θ#, c#](t) := −1

2
θ#(t)−

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSn(φ(t)− φ(s))θ#(s)σ̃[φ](s) dσs

−εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DRq,n(ε(φ(t)− φ(s)))θ#(s)σ̃[φ](s) dσs + c#

−εn−2g(t) + εn−2

ˆ
Q

Sq,n(p+ εφ(t)− y)f(y) dy
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−Sn(φ(t))

ˆ
Q

f(y) dy − εn−2Rq,n(εφ(t))

ˆ
Q

f(y) dy ∀t ∈ ∂Ω ,

Λ#,2[ε, φ, g, f, θ#, c#] :=

ˆ
∂Ω

θ#σ̃[φ] dσ ,

for all (ε, φ, g, f, θ#, c#) ∈ ]−ε0, ε0[×Oφ0
× C1,α(∂Ω)× C0

q,ω,ρ(Rn)× C1,α(∂Ω)× R.

We first note that equation Λ#[0, φ0, g0, f0, θ
#, c#] = 0 in the unknown (θ#, c#) ∈

C1,α(∂Ω)×R is equivalent to the limiting system (15)-(16), which has one and only one

solution (θ̃#, c̃#) in C1,α(∂Ω)× R. Similarly, if (ε, φ, g, f) ∈ ]0, ε0[×Oφ0
× C1,α(∂Ω)×

C0
q,ω,ρ(Rn), then equation Λ#[ε, φ, g, f, θ#, c#] = 0 in the unknown (θ#, c#) ∈ C1,α(∂Ω)×

R is equivalent to the system (13)-(14) and has one and only one solution (θ#
ε,φ,g,f , c

#
ε,φ,g,f )

belonging to C1,α(∂Ω)× R.

Then we observe that Λ# is real analytic in a neighborhood of (0, φ0, g0, f0, θ̃
#, c̃#).

Namely, it is real analytic from ]−ε0, ε0[×Oφ0×C1,α(∂Ω)×C0
q,ω,ρ(Rn)×C1,α(∂Ω)×R to

C1,α(∂Ω)×R. This follows by the real analyticity results for the double layer potential of

Lanza de Cristoforis and Rossi [26, Thm. 4.11 (iii)], by real analyticity results for integral

operators with real analytic kernel (cf. [23]), by the regularity result for volume potentials

of Theorem 2.1, by the analyticity results for the composition operator of Valent [40,

Thm. 5.2, p. 44], by Proposition 2.2, by Lemma 2.3, and by standard calculus in Banach

spaces.

Since we plan to use the Implicit Function Theorem, we now consider the partial

differential ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃
#, c̃#] of Λ# at (0, φ0, g0, f0, θ̃

#, c̃#) with respect to

the variable (θ#, c#). By standard calculus in Banach spaces we have

∂(θ#,c#)Λ#,1[0, φ0, g0, f0, θ̃
#, c̃#](θ, c)(t)

= −1

2
θ(t)−

ˆ
∂Ω

νI[φ0] ◦ φ0(s) ·DSn(φ0(t)− φ0(s))θ(s)σ̃[φ0](s) dσs + c ∀t ∈ ∂Ω ,

∂(θ#,c#)Λ#,2[0, φ0, g0, f0, θ̃
#, c̃#](θ, c) =

ˆ
∂Ω

θσ̃[φ0] dσ ,

for all (θ, c) ∈ C1,α(∂Ω) × R. By arguing as in the proofs of Theorem 3.3 (i) and of

[6, Prop. 13.10], we can see that ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃
#, c̃#] is a bijection. Then

by the Open Mapping Theorem, the operator ∂(θ#,c#)Λ#[0, φ0, g0, f0, θ̃
#, c̃#] is also a

homeomorphism from C1,α(∂Ω)× R to itself.

We can invoke the Implicit Function Theorem for real analytic maps in Banach

spaces (cf., e.g., Deimling [9, Thm. 15.3]) and deduce the existence of ε#,1, O′φ0
, U0, and

(Θ#, C#) as in the statement.
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4 A functional analytic representation theorem for

the solution

We are ready to prove our main Theorem 4.1. As mentioned in the introduction, we

will write the map (ε, φ, g, f) 7→ u[ε, φ, g, f ]V as a combination of real analytic maps

of (ε, φ, g, f) and–possibly singular but completely known–elementary functions of ε. In

particular, we will focus on the case where (ε, φ, g, f) is close to a quadruple (0, φ0, g0, f0)

with the size parameter ε equal to 0, which is interesting also because of the singular

behavior that appears when
´
Q
f0 dx 6= 0. Theorem 4.1 is a consequence of Theorem 3.5

on the analytic continuation of (ε, φ, g, f) 7→ (θ#
ε,φ,g,f , c

#
ε,φ,g,f ) and of the representation

formula for u[ε, φ, g, f ] of Corollary 3.2.

Theorem 4.1. Let α ∈ ]0, 1[. Let ρ > 0. Let p ∈ Q. Let Ω be as in (1). Let

(φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω) × C0

q,ω,ρ(Rn). Let ε#,1, O′φ0
, U0 be as in Theorem 3.5.

Let V be a bounded open subset of Rn \ (p+ qZn). Then there exist ε#,2 ∈ ]0, ε#,1[, an

open neighborhood O′′φ0
of φ0 in A1,α

∂Ω contained in O′φ0
, and a real analytic map U from

]−ε#,2, ε#,2[×O′′φ0
× U0 to C2(V ) such that

V ⊆ S[Ωε,φ]− ∀(ε, φ) ∈ ]−ε#,2, ε#,2[×O′′φ0
(20)

and

u[ε, φ, g, f ]|V =
1

εn−2
U[ε, φ, g, f ] + δ2,n

log ε

2π

ˆ
Q

f(y) dy

∀(ε, φ, g, f) ∈ ]0, ε#,2[×O′′φ0
× U0 .

(21)

Moreover,

U[0, φ0, g0, f0](x) = c̃# + δ2,nPq[f0](x)− δ2,nSq,n(x− p)
ˆ
Q

f0(y) dy ∀x ∈ V . (22)

Proof. Clearly, (20) holds true for ε#,2 and O′′φ0
small enough. Then we note that

u[ε, φ, g, f ](x) = − ε
ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSq,n(x− p− εφ(s))Θ#[ε, φ, g, f ](s)σ̃[φ](s) dσs

+
1

εn−2
C#[ε, φ, g, f ] + Pq[f ](x)− Sq,n(x− p)

ˆ
Q

f(y) dy

+ δ2,n
log ε

2π

ˆ
Q

f(y) dy
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for all x ∈ V and all (ε, φ, g, f) ∈ ]0, ε#,2[×O′′φ0
× U0 and we set

U[ε, φ, g, f ](x) := −εn−1

ˆ
∂Ω

νI[φ] ◦ φ(s) ·DSq,n(x− p− εφ(s))Θ#[ε, φ, g, f ](s)σ̃[φ](s) dσs

+ C#[ε, φ, g, f ] + εn−2Pq[f ](x)− εn−2Sq,n(x− p)
ˆ
Q

f(y) dy

for all x ∈ V and all (ε, φ, g, f) ∈ ]−ε#,2, ε#,2[×O′′φ0
× U0. By Theorem 2.1, by Lemma

2.3, by real analyticity results for integral operators with real analytic kernel (cf. [23]),

and by standard calculus in Banach spaces, we deduce that U is a real analytic map from

]−ε#,2, ε#,2[×O′′φ0
×U0 to C2(V ) such that equality (21) holds. Since C#[0, φ0, g0, f0] =

c̃#, we also deduce the validity of (22).

If we fix (φ, g, f) = (φ0, g0, f0) ∈ A1,α
∂Ω × C1,α(∂Ω)× C0

q,ω,ρ(Rn) with

ˆ
Q

f0 dx 6= 0 ,

then formula (21) shows that for n = 2 the function u[ε, φ0, g0, f0] displays a singular

behavior of order log ε as ε tends to 0. Under the same assumptions on the triple (φ, g, f),

we can see that, for n ≥ 3, u[ε, φ0, g0, f0] has a singularity of order ε2−n as ε tends to

0. This can be deduced from (21) and (22) and remembering that c̃# 6= 0 (cf. Remark

3.4).

Also, the fact that U is real analytic means that we can expand U[ε, φ, g, f ] into a

power series that converges (in norm) for (ε, φ, g, f) in a neighborhood of (0, φ0, g0, f0).

The approach presented in this paper can be used to compute the corresponding coeffi-

cients (see, e.g., [6, 7, 8]).
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