Comparison of the Biological Damage Produced by Somatostatin Analog Radiopharmaceuticals Labelled with ¹⁶¹Tb and ¹⁷⁷Lu

L. Meléndez-Alafort^{1,2}, E. Azorín-Vega³, G. Ferro-Flores³, C. Bolzati^{4,5}, E. Farinelli⁶, M. Bello^{2,6}, A. Rosato^{1,7},

L. De Nardo $5,6$.

¹ Veneto Institute of Oncology IOV-IRCCS, Padova, Italy. ² INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy

³ Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Mexico. 4 Institute of

Condensed Matter Chemistry and Energy Technologies ICMATE-CNR, Padova, Italy. 5 INFN, Sezione di Padova, Padova, Italy. ⁶ Department of Physics and Astronomy, University of Padova, Padova, Italy. ⁷ Department of Surgery, Oncology and

Gastroenterology, University of Padova, Padova, Italy.

INTRODUCTION

Targeted radionuclide therapy (TRT) is a nuclear medicine technique based on the use of radiopharmaceuticals (RPs) with high affinity to antigens present on the surface of tumour cells, which allows the systemic radiation treatment of tumours and their metastatic lesions with minimal dose to normal tissues [1]. ¹⁷⁷Lu-RPs are currently the most used for TRT because they have demonstrated a favourable safety and good response rates to treatment. However, the number of commercial suppliers of the ¹⁷⁷Lu non-carrier added required for the TRT is limited, so its worldwide availability may not be sufficient in the long term [2]. To solve this problem, Lehenberger *et al.* proposed using ¹⁶¹Tb for TRT because its chemical and decay properties are similar to those of 177 Lu [3] (see Table 1). Moreover, it has been found that ¹⁶¹Tb-RPs enhance the therapeutic efficacy of ¹⁷⁷Lu-RPs since ¹⁶¹Tb emits a significantly higher amount of internal conversion electrons (IE) and Auger electrons (AE) of energies ≤ 40 keV, which increase the absorbed dose by the cells [4].

Recently Borgna *et al.* labelled three somatostatin analogues (STT) (DOTATOC-NLS, DOTATOC, and DOTA-LM3) with ¹⁶¹Tb and ¹⁷⁷Lu to study the effect of the RPs localization on AR42J cell viability and survival and concluded that IE and AE emitted by ¹⁶¹Tb contributed positively to its therapeutic efficacy [5]. However, the authors did not perform dosimetric studies.

This study aimed to assess and compare the biological damage produced by ¹⁶¹Tb-SST and ¹⁷⁷Lu-SST RPs localized in different regions within AR42J cells through cellular dosimetry and cell survival fraction assessment using the MIRDcell code [6,7].

Table 1. Comparison of ¹⁷⁷Lu and ¹⁶¹Tb main decay characteristics.

			γ -emission β -emission		IE	AE	Total electron
	E٧	Iγ	$E\beta_{avg}$	$I\beta^-$			keV/decaykeV/decay energy/decay
	(keV) $(\%)$		(keV)	(%)			(keV)
177 Lu	112	6	47	12	13.5	1.13	147.9
$T_{1/2}$ = 6.64 d	208	11	111	9			
			149	79			
161 Th	26	23	138	25	39.2	8.94	202.5
$T_{1/2}$ = 6.89 d	$46*$	11	157	65			
	49	17	175	5			
	75	10	184	5			

METHODS

Fluorescence images of alginate-embedded AR42J cells co-stained with propidium iodide $(1\mu M)$ and calcein green AM $(1µ)$ were acquired with an inverted microscope ImageXpress XL (Molecular Devices). Obtained images were analysed with Metaxpress software to determine the mean area of cells and nuclei of 50 cells.

Absorbed dose (AD) in AR42J cells after incubation with one of the SST analogues (DOTATOC-NLS, DOTATOC, or DOTA-LM3) labelled with ¹⁶¹Tb or ¹⁷⁷Lu were assessed with MIRDcell Software using as program input the full data electron emissions (β -spectra, IC, and AE) of each radionuclide obtained from the International Commission on Radiological Protection publication ICRP-107 [8].

The mean AD in the cell nucleus per unit of cumulated activity (S-Values) was obtained for each labelled-SST analogue, considering the membrane, cytoplasm, or nucleus as source regions (where the radioactivity was evenly distributed) and the cell nucleus as the only target region. Then, total AD in the cell nucleus per unit of cumulated activity was calculated for each RPs using the obtained Svalues and the reported percentage of activity of ¹⁶¹Tb-SST or ¹⁷⁷Lu-SST analogues in the cell source regions [5] (see Table 2), using the following equation:

 AD _(target←source) = N _(source) $\times S$ _(target←source) (1) where $N_{\text{(source)}}$ is the number of disintegrations in the source region per unit of administered activity (Bq·h/Bq).

Table 2. Uptake and distribution of radiolabelled-somatostatin analogue in AR42J cells.

	Total	Source region			
SST analogue	uptake	Membrane	Cytoplasm	Nucleus	
DOTATOC	10 %	19 %	80 %	$\frac{0}{6}$	
DOTATOC-NLS	15 %	16 %	78 %	6 %	
DOTA-LM3	70 %	92%	7 %	2%	

Finally, MIRDcell software was used to estimate the survival fraction of a 3D multicellular cluster of different sizes with a spherical shape after the treatment with one of ¹⁶¹Tb-SST or ¹⁷⁷Lu-SST RPs, using as a percentage of labelled cells the total uptake reported in Table 2. The cell survival probability (P) was obtained using the linear quadratic model equation 2, which takesinto account the AD

generated by the radiation emitted within the same cell (self) and the radiation emitted by neighbouring cells (cross) [9]. $P = e^{-\alpha_{self} D_{self} - \beta_{self} D^2}$ self $\times e^{-\alpha_{cross} D_{cross} - \beta_{cross} D^2}$ cross (2) where the α and β values of PC3 cells (0.551 and 0.21, respectively) were used because they present similar radioresistance to AR42J cells.

RESULTS

The mean diameter of the AR42J cell and its nucleus obtained by microscopic measurements of cell imaging was 8 ± 1 µm and 6 ± 1 µm, respectively (see Fig. 1).

Fig. 1. Representative image of alginate-embedded AR42J cells: A) phase contrast image, B) cytoplasmic distribution of calcein (green) in alive cells, C) nuclear imaging, staining with propidium iodide (red), and D) combined images of B) and C).

Dosimetric studies show that ¹⁶¹Tb labelled RPs produced much higher nucleus AD than those labelled with ¹⁷⁷Lu. In all the cases, the higher average nucleus AD was obtained with a larger cell cluster, where cells absorbed a greater percentage of the energy emitted by the radionuclide (see Fig. 2). The ¹⁷⁷Lu-RPs localization within the cells does not significantly affect the produced nucleus AD. In contrast, small differences in AD were found after ¹⁶¹Tb-RPs treatment.

Fig. 2. Mean nucleus absorbed doses obtained after treatment of three cell clusters of different sizes with ¹⁶¹Tb-RPs and ¹⁷⁷Lu-RPs.

DOTATOC-NLS produces the highest AD due to its higher concentration in the nucleus, followed by DOTATOC and DOTA-LM3, which were manly localized in the cytoplasm and the cell membrane respectively. However, the factor that has the greatest influence on the cell survival was the RPs total uptake. Using equal number of disintegrations, the treatment with DOTA-LM3 resulted in the lower cell survival fraction (SF), despite this agent produces the lower nucleus AD (see Fig. 3).

Fig. 3. Comparison of the AR42J cells SF after the treatment with ¹⁶¹Tb-RPs and ¹⁷⁷Lu-RPs.

CONCLUSIONS

Dosimetry evaluations conducted in this study reveal that most of the β -particles emitted by 177 Lu penetrate from the membrane to the nucleus. Therefore, the cellular localization of ¹⁷⁷Lu-RPs does not affect the nucleus AD and the generated biological damage. In contrast, ¹⁶¹Tb-RPs localization in small cluster causes differences in the nucleus AD due to the IE and AE emitted by ¹⁶¹Tb. However, when the cluster size increases, the AD difference due to the RPs localization is minimal and the survival fraction depends mainly on the RPs total uptake.

 161 Tb-RPs produce higher biological damage than 177 Lu-RPs with the same number of disintegrations.

- [1] J. Malcolm, et al., Cancers. 11 (2019) 12.
- [2] W. V. Vogel, et al., Eur. J. Nucl. Med. Mol. Imaging. 48 (2021) 2329.
- [3] S. Lehenberger, et al., Nucl. Med. Biol. 38 (2011) 917.
- [4] C. Muller, et al., Eur. J. Nucl. Med. Mol. Imaging. 46 (2019) 1919.
- [5] F. Borgna, et al., Eur. J. Nucl. Med. Mol. Imaging. 49 (2022) 1113.
- [6] S. Katugampola, et al., J. Nucl. Med.. 63 (2022) 1441.
- [7] B. Vaziri, et al., J. Nucl. Med.. 55 (2014) 1557.
- [8] ICRP-2008, Ann. ICRP 32 (2008).
- [9] L. De Nardo, et al., Medical Physics. 49 (2022) 2709.