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Abstract

We study the eigenvalues of time-harmonic Maxwell’s equations in a cavity upon
changes in the electric permittivity ε of the medium. We prove that all the eigen-
values, both simple and multiple, are locally Lipschitz continuous with respect to
ε. Next, we show that simple eigenvalues and the symmetric functions of multiple
eigenvalues depend real analytically upon ε and we provide an explicit formula for
their derivative in ε. As an application of these results, we show that for a generic
permittivity all the Maxwell eigenvalues are simple.
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1 Introduction
In this paper we present some sensitivity results for the eigenvalues of the time-
harmonic Maxwell’s equations in a cavity upon perturbations of the permittivity
parameter. The cavity is represented by a bounded domain (i.e. a connected open
subset) Ω of R3, and it is thought made of a material which in general is inhomo-
geneous and anisotropic. Accordingly, the permittivity ε of the medium filling the
domain Ω is described by a (3× 3)-matrix valued function in Ω. In particular cases
where the material presents additional properties and symmetries, the permittivity ε
takes simpler forms, for example becoming scalar in the case of a isotropic material,
or even a scalar constant if the medium is both isotropic and homogeneous.

The eigenfrequency problem in a bounded domain Ω ⊂ R3 consists in finding
two non-zero eigenfields E,H and a non-zero eigenfrequency ω (also called angu-
lar frequency) such that the time-harmonic Maxwell’s equations are satisfied in Ω,
namely

curlE − iωµH = 0, curlH + iωεE = 0 in Ω. (1)

The vector field E denotes the electric part of the electromagnetic field, while H
the magnetic one. Furthermore, ε and µ are (3 × 3)-matrix valued maps which
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represent the electric permittivity and the magnetic permeability tensors of the
medium, respectively. For the sake of simplicity, since we are interested in studying
the behavior of problem (1) upon variation of ε, we normalize the permeability to
have µ = I3, where I3 denotes the (3 × 3)-identity matrix. By applying the curl
operator to the first equation of (1) and setting ω2 = λ we obtain

curl curlE = λεE in Ω.

Since the divergence of a curl is always zero then

div εE = 0 in Ω.

We couple the system with the boundary conditions of a perfect conductor, which
for the electric field E read as follows:

ν × E = 0 on ∂Ω. (2)

Here ν denotes the outer unit normal vector to the boundary of Ω hence condition
(2) means that the electric field is orthogonal to the surface ∂Ω. Therefore, we arrive
at the following (electric) eigenvalue problem:

curl curlE = λ εE, in Ω,

div εE = 0, in Ω,

ν × E = 0, on ∂Ω.

(3)

Note that it is also possible to obtain the magnetic counterpart of problem (3).
However, in the present work, we will devote our attention to the electric side.
The spectrum of problem (3) is discrete (cf. [23, Thm. 4.34]) and it consists of
a divergent sequence of ε-dependent non-negative eigenvalues {λj [ε]}j∈N of finite
multiplicity that can be arranged in an increasing way

0 ≤ λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞,

where each eigenvalue is repeated in accordance with its multiplicity. The kernel
Kε(Ω) of problem (3), i.e. those eigenfields associated with λ = 0, is composed of
curl-free vector fields which are normal to the boundary and such that div εE = 0
in Ω, namely

Kε(Ω) =
{
E ∈ L2(Ω)3 : curlE = 0 in Ω, div εE = 0 in Ω, ν × E = 0 on ∂Ω

}
.

(4)
If m ∈ N is the number of connected components of the boundary of Ω, then
dimRK

ε(Ω) = m − 1. In particular, if ∂Ω has only one connected component,
Kε(Ω) = {0}. It is worth noting that the presence of the zero eigenvalue, and its
multiplicity, depends only on the topology of Ω. For a proof we refer to [5, Prop.
6.1.1] (see also [4, Prop. 3.18], [17, Ch. IX-A §1.3]).

On the one hand, the aim of our work is to understand the dependence of all
the eigenvalues λj [ε], both simple and multiple, with respect to variations of the
permittivity ε. On the other hand, as a consequence of our sensitivity analysis, we
prove that all the eigenvalues are generically simple with respect to ε.

The mathematical study of Maxwell’s equations and in particular of electromag-
netic cavities has great interest not only from the theoretic side but also for its real
world applications, for example in designing cavity resonators or shielding struc-
tures for electronic circuits. Here we mention, without the sake of completeness, the
monographs [9, 17, 21, 35, 37, 42] and the classical papers [13, 14, 15] for a complete
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introduction to this field and a detailed discussion of both theoretic and applied
problems in the mathematical theory of electromagnetism. For more recent papers
we refer to, e.g., [3, 6, 12, 30, 39, 26]. Incidentally, we note that in [25] Lamberti and
the second named author have considered the eigenvalues of problem (3) with fixed
and constant permittivity ε = I3 on a variable domain and proved a real analytic
dependence upon variation of the shape of the domain. To the best of the authors’
knowledge, the dependence of the eigenvalues λj [ε] upon perturbation of ε has not
yet been investigated.

As a first step, we consider the stability of the eigenvalues and we show that all
the eigenvalues, both simple and multiple, are continuous with respect to ε varying
in W 1,∞. Actually we are able to prove a stronger result, indeed we show that the
eigenvalues are locally Lipschitz continuous in ε (see Theorem 3.2).

Then, we pass to consider higher regularity properties. At this stage we face a
first issue related to bifurcation phenomena of multiple eigenvalues which is common
to any eigenvalue problem depending on a parameter. In our case, if one has a
multiple eigenvalue λ = λj [ε] = · · · = λj+m−1[ε] and ε is slightly perturbed, λ
could split into different eigenvalues of lower multiplicity and thus the corresponding
branches can present a corner at the splitting point, and then be not differentiable.
A possible way to overturn this problem is to consider only perturbations {εt}t∈R,
with ε0 = ε, depending on a single scalar parameter t ∈ R and consider the one-sided
derivative of the multiple eigenvalue at t = 0 (see, e.g., [19, 20] for the one-sided
shape derivative of a–possibly multiple–eigenvalue for two different problems). Note
that this approach, being based on the variational characterization of the eigenvalues,
has been effectively applied only to the first non-zero eigenvalue.

Here we adopt a different point of view that allows us to deal with multiple eigen-
values and general (infinite dimensional) perturbations of the permittivity: instead
of considering a single eigenvalue we consider the symmetric functions of multiple
eigenvalues and we show that they depend real analytically on ε. In addition we pro-
vide an explicit formula for the (Fréchet) derivative in ε of the symmetric functions
of the eigenvalues (see Theorem 4.2). This suggests that the symmetric functions are
a natural quantity to consider when dealing with the regularity (and the optimiza-
tion) of multiple eigenvalues. This approach was introduced by Lamberti and Lanza
de Cristoforis [27] and later adopted in other works (see, e.g., [7, 8, 25, 28, 31]).
We also consider the case of perturbations depending on a single scalar parameter,
like the ones we introduced above, and we prove a Rellich-Nagy-type theorem which
describes the bifurcation phenomenon of multiple eigenvalues. More precisely, we
show that all the eigenvalues splitting from a multiple eigenvalue of multiplicity m
can be described by m real analytic functions of the scalar parameter (see Theorem
4.3).

As an application of the above described results, we show that all the non-zero
eigenvalues of problem (3) are simple for a generic permittivity. That is, in few
words, given any permittivity ε it is always possible to find a perturbation ε̃ as
close as desired to ε such that the non-zero eigenvalues {λj [ε̃]}j∈N are all simple (see
Theorem 5.4).

To a certain extent, our work is inspired by Lamberti [24] and Lamberti and
Provenzano [29] where the authors investigate the behavior of the eigenvalues of the
Laplacian and of a general elliptic operators upon perturbations of mass density.
Incidentally, we mention that this paper is a first step towards understanding the
behavior of Maxwell eigenvalues upon permittivities variations. In particular the
authors plan to investigate issues related to the optimization of Maxwell eigenvalues
with respect to ε in a future work.

After the present introduction the paper is organized as follows: Section 2 is a
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section of preliminaries containing notation, the functional setting and basic results
about the eigenvalue problem. In Section 3 we prove that all the eigenvalues are
locally Lipschitz continuous in ε. In Section 4 we show that the symmetric functions
of the eigenvalues depend analytically upon ε and we obtain an explicit formula for
the ε-derivative. Moreover, we prove a Rellich-Nagy-type result for permittivities
depending on a single scalar parameter. Finally, in Section 5 we show that all the
non-zero eigenvalues are simple for a generic permittivity.

2 Some preliminaries
If X is a Hilbert space of scalar functions, by X 3 we denote the Hilbert space of
vector-valued functions whose components belong to X , endowed with the natural
inner product

〈f, g〉X 3 =
3∑
i=1

〈fi, gi 〉X

for all f = (f1, f2, f3), g = (g1, g2, g3) ∈ X 3, where 〈·, ·〉X is the inner product of X .
In this sense, e.g., if L2(Ω) is the standard Lebesgue space of square integrable real
valued functions, then the space L2(Ω)3 is endowed with the inner product∫

Ω
u · v dx =

∫
Ω

(u1v1 + u2v2 + u3v3) dx ∀u, v ∈ L2(Ω)3.

Let Ω be a bounded domain of R3. We denote by L∞(Ω)3×3 and W 1,∞(Ω)3×3

the spaces of real matrix-valued functions M =
(
Mij

)
1≤i,j≤3

: Ω → R3×3 whose
components are in L∞(Ω) and W 1,∞(Ω), respectively. We endow these spaces with
the norms

‖M‖L∞(Ω)3×3 := max
1≤i,j≤3

∥∥Mij

∥∥
L∞(Ω)

and
‖M‖W 1,∞(Ω)3×3 := max

1≤i,j≤3

∥∥Mij

∥∥
W 1,∞(Ω)

.

For the sake of simplicity, we will respectively write L∞(Ω) and W 1,∞(Ω) instead
of L∞(Ω)3×3 and W 1,∞(Ω)3×3, and the space we are referring to will be clear from
the context. Let M ∈ L∞(Ω). One has the following trivial inequalities that we will
exploit in the paper:

|Mξ · ξ| ≤ 3‖M‖L∞(Ω)|ξ|
2 , |Mξ| ≤ 3‖M‖L∞(Ω) |ξ|

for all ξ ∈ R3 and a.e. in Ω.
In order to consider our eigenvalue problem, we first need to specify where we

take the permittivities ε. From now on we will assume that:

Ω is a bounded domain of R3 of class C1,1. (5)

The admissible set where we take the permittivities is the following

E :=
{
ε ∈W 1,∞ (Ω)∩ Sym3(Ω) :

∃ c > 0 s.t. ε(x) ξ · ξ ≥ c |ξ|2 for a.a. x ∈ Ω, for all ξ ∈ R3
}
,
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where Sym3(Ω) denotes the set of (3× 3)-symmetric matrix valued functions in Ω.
Given ε ∈ E , we denote by cε > 0 the greatest positive constant that guarantees the
coercivity condition in the above definition, that is

cε := max
{
c > 0 : ε(x) ξ · ξ ≥ c |ξ|2 for a.a. x ∈ Ω, for all ξ ∈ R3

}
. (6)

The set E is open in W 1,∞(Ω) ∩ Sym3(Ω). This is implied by the continuity of the
map (

E , ‖ · ‖L∞(Ω)

)
→ R+, ε 7→ cε.

Indeed let ε1, ε2 ∈ E . Since
∣∣(ε2 − ε1) ξ · ξ

∣∣ ≤ 3‖ε2 − ε1‖L∞(Ω)|ξ|
2 a.e. in Ω, then

ε2 ξ · ξ = ε1 ξ · ξ + (ε2 − ε1) ξ · ξ ≥
(
cε1 − 3‖ε2 − ε1‖L∞(Ω)

)
|ξ|2 .

Hence cε2 ≥ cε1 − 3‖ε2 − ε1‖L∞(Ω). Eventually exchanging the role of ε1 and ε2, we
have that ∣∣cε2 − cε1∣∣ ≤ 3‖ε2 − ε1‖L∞(Ω) . (7)

Let ε ∈ E . We denote by L2
ε(Ω) the space L2(Ω)3 endowed with the inner product

〈u, v〉ε = Jε[u][v] :=

∫
Ω
εu · v dx ∀u, v ∈ L2(Ω)3. (8)

Note that the above inner product induces a norm equivalent to the standard L2-
norm since

cε

∫
Ω
|u|2 dx ≤

∫
Ω
εu · u dx ≤ 3‖ε‖L∞(Ω)

∫
Ω
|u|2 dx ∀u ∈ L2(Ω)3.

Next we introduce the natural functional setting and tools in order to deal with
problem (3). By H(curl,Ω) we denote the space of vector fields u ∈ L2(Ω)3 with
distributional curl in L2(Ω)3, i.e. those square integrable vector fields for which
there exists a function curlu ∈ L2(Ω)3 such that∫

Ω
u · curlϕdx =

∫
Ω

curlu · ϕdx ∀ϕ ∈ C∞c (Ω)3. (9)

We endow this space with the inner product

〈u, v〉H(curl,Ω) :=

∫
Ω
εu · v dx+

∫
Ω

curlu · curl v dx ∀u, v ∈ H(curl,Ω),

which makes it a Hilbert space. By H0(curl,Ω) we denote the closure of C∞c (Ω)3

in H(curl,Ω). If a vector field u is regular enough to be traced on the boundary,
say it is smooth up to the boundary, then the tangential trace of u coincides exactly
with the cross product between its restriction to ∂Ω and the outer unit normal, i.e.
ν×u|∂Ω. From now on we use the same notation also to denote the tangential trace
of a vector field u ∈ H(curl,Ω), which in general is just an element of the dual space
of H1/2(∂Ω)3 (see [21, Thm. 2.11]). We will also often omit the boundary restriction
subscript. It turns out that H0(curl,Ω) is exactly the space of those vector fields
whose tangential trace vanish on ∂Ω (cf. [21, Thm. 2.12]), i.e.

H0(curl,Ω) =
{
u ∈ H(curl,Ω) : ν × u|∂Ω = 0

}
,

hence it naturally encodes the electric boundary condition (2). For more details we
refer to [21, Ch. 2] or [17, Ch. IX-A §1.2].
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Similarly, we introduce the space H(div ε,Ω) of vector fields u ∈ L2(Ω)3 such
that the vector field εu has distributional divergence in L2(Ω), namely there exists
a function div(εu) ∈ L2(Ω) such that∫

Ω
εu · ∇ϕdx = −

∫
Ω

div(εu)ϕdx ∀ϕ ∈ C∞c (Ω).

We endow H(div ε,Ω) with the inner product

〈u, v〉H(div ε,Ω) :=

∫
Ω
εu · v dx+

∫
Ω

div(εu) div(εv) dx ∀u, v ∈ H(div ε,Ω),

which makes it a Hilbert space. Moreover, we consider the space

Xε
N(Ω) := H0(curl,Ω) ∩H(div ε,Ω)

equipped with inner product

〈u, v〉Xε
N(Ω) :=

∫
Ω
εu · v dx+

∫
Ω

curlu · curl v dx+

∫
Ω

div(εu) div(εv) dx

for all u, v ∈ Xε
N(Ω). Finally, we set

Xε
N(div ε0,Ω) :=

{
u ∈ Xε

N(Ω) : div (εu) = 0
}

=
{
u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3,div(εu) = 0, ν × u|∂Ω = 0

}
.

If ε ∈ E and the assumption (5) holds, i.e. if Ω is a bounded domain of R3 of class
C1,1, the space Xε

N(Ω) is continuously embedded into H1(Ω)3. This is implied by the
so-called Gaffney (or Gaffney-Friedrichs) inequality, which states that there exists a
constant Cε > 0 such that

‖u‖2H1(Ω)3 ≤ Cε
(
〈εu, u〉L2(Ω)3 +‖curlu‖2L2(Ω)3 + ‖ div εu‖2L2(Ω)

)
= Cε‖u‖Xε

N(Ω)

(10)
for all u ∈ Xε

N(Ω). We refer to Prokhorov and Filonov [40, Thm. 1.1] for a proof of
the above inequality. Their result includes more general permittivities and domains,
such as convex domains or in general Lipschitz domains satisfying the exterior ball
condition. Another proof can be found in Alberti and Capdeboscq [2]. Other clas-
sical references for the Gaffney inequality are Saranen [43] and Mitrea [34]. More
recently, Creo and Lancia [16] generalized the Gaffney inequality to more irregular
domains in dimension 2 and 3. Incidentally, we point out that one of the main rea-
sons for the regularity assumption (5) we require on Ω is exactly the validity of (10).
Note that if we lower the regularity assumptions, for example requiring Ω just of
Lipschitz class, there is no guarantee to obtain the same perturbation results. The
authors plan to address this issue in future works.

We recall here a known formula for the divergence of the matrix-vector product
εv with ε ∈ E and v ∈ H1(Ω)3 that we will exploit extensively throughout the paper:

div(εv) = tr(εDv) + div ε · v a.e. in Ω. (11)

where tr(·) denotes the trace operator and div ε is the vector field defined by

div ε :=
(

div ε(1),div ε(2), div ε(3)
)
.

with ε(k) denoting the k-th column of ε =
(
ε(1)| ε(2)| ε(3)

)
.
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Recall the electric eigenvalue problem
curl curlu = λ ε u in Ω,

div εu = 0 in Ω,

ν × u = 0 on ∂Ω.

(12)

By classical integration by parts, one has that∫
Ω

curlF ·Gdx =

∫
Ω
F · curlGdx+

∫
∂Ω

(G× ν) · F dσ

for all sufficiently regular vector fields F,G (see, e.g. [23, Thm. A.13]). Then is
readily seen that the weak formulation of problem (12) is∫

Ω
curlu · curl v dx = λ

∫
Ω
εu · v dx ∀v ∈ Xε

N(div ε0,Ω), (13)

in the unknowns λ ∈ R (the eigenvalues) and u ∈ Xε
N(div ε0,Ω) (the eigenvectors).

The eigenvalues of problem (13) are non-negative, as one can easily see by testing
the eigenfunction u against itself.

For our purposes it will be convenient to work in the space Xε
N(Ω) rather than

Xε
N(div ε0,Ω). Hence, following Costabel [14] and Costabel and Dauge [15], we

consider the following eigenvalue problem which presents an additional penalty term:∫
Ω

curlu · curl v dx+ τ

∫
Ω

div(εu) div(εv) dx = σ

∫
Ω
εu · v dx ∀v ∈ Xε

N(Ω), (14)

in the unknowns u ∈ Xε
N(Ω) and σ ∈ R. Here τ > 0 is any fixed positive real

number. Solutions of problem (13) will then corresponds to solutions u of (14) with
div(εu) = 0 in Ω (see Theorem 2.2 below). Observe that also the eigenvalues σ of
problem (14) are non-negative, and that the zero eigenspace of problem (14) (and
of problem (13)) coincides with the set Kε(Ω) defined in (4).

Following a standard procedure, one can convert problem (14) into an eigenvalue
problem for a compact self-adjoint operator. Recall the map Jε defined in (8),
which is nothing but the bilinear form corresponding to the inner product of L2

ε(Ω).
Obviously Jε can be thought as an operator acting from L2

ε(Ω) to (Xε
N(Ω))′. We

define the operator Tε from Xε
N(Ω) to its dual (Xε

N(Ω))′ by

Tε[u][v] :=

∫
Ω
εu·v dx+

∫
Ω

curlu·curl v dx+τ

∫
Ω

div(εu) div(εv) dx ∀u, v ∈ Xε
N(Ω).

Observe that by the Riesz theorem, Tε is a homeomorphism from Xε
N(Ω) to its dual

and thus it can be inverted. We can therefore define the operator Sε, acting from
L2
ε(Ω) to itself, by setting

Sε := ιε ◦ T−1
ε ◦ Jε : L2

ε(Ω)→ L2
ε(Ω), (15)

where ιε denotes the embedding of Xε
N(Ω) into L2

ε(Ω). Observe that the space L2
ε(Ω)

is equal to L2(Ω)3 as a set, and the varying inner products depending on ε are all
equivalent to the standard one. We then have the following lemma.

Lemma 2.1. Let ε ∈ E. Then the operator Sε is a self-adjoint operator from L2
ε(Ω)

to itself. Moreover, σ is an eigenvalue of problem (14) if and only if µ = (σ + 1)−1

is an eigenvalue of the operator Sε, the eigenvectors being the same.
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Proof. Since Jε and Tε are both symmetric we get that

Jε[Sε[u]][v] = Jε[v][T−1
ε ◦ Jε[u]] = Tε[T

−1
ε ◦ Jε[v]][T−1

ε ◦ Jε[u]]

= Tε[T
−1
ε ◦ Jε[u]][T−1

ε ◦ Jε[v]] = Jε[u][Sε[v]] ∀u, v ∈ L2
ε(Ω),

proving that Sε is self-adjoint in L2
ε(Ω).

Finally, if (σ, u) ∈ R × Xε
N(Ω) is an eigenpair of problem (14), then Tε[u] =

(σ+1)Jε[u]. Viceversa, if (µ, u) ∈ R×L2
ε(Ω) is such that Sε[u] = µu then u ∈ Xε

N(Ω)
and Tε[u] = µ−1Jε[u], and thus u is an eigenvector of problem (14) corresponding
to the eigenvalue σ = µ−1 − 1.

If the space Xε
N(Ω) is compactly embedded into L2(Ω)3, which is true under

our assumptions on ε and Ω (see Weber [44]), the operator Sε is compact and its
spectrum consists of {0} ∪ {µn}n∈N with µn being a decreasing sequence composed
of positive eigenvalues of Sε of finite multiplicity converging to zero. Accordingly,
by Lemma 2.1, the spectrum of problem (14) is composed by (ε-dependent) non-
negative eigenvalues of finite multiplicity which can be arranged in an increasing
sequence

0 ≤ σ1[ε] ≤ σ2[ε] ≤ · · · ≤ σn[ε] ≤ · · · ↗ +∞.

Here each eigenvalue is repeated in accordance with its multiplicity. Note that the
zero eigenvalue has fixed multiplicity depending only on the topology of Ω. By the
min-max formula every eigenvalue can be variationally characterized as follows:

σj [ε] = min
Vj⊂Xε

N(Ω),
dimVj=j

max
u∈Vj ,
u6=0

∫
Ω|curlu|2 dx+ τ

∫
Ω

∣∣div(εu)
∣∣2 dx∫

Ω εu · u dx
. (16)

Moreover, we have the following result, in the same spirit of Costabel and Dauge
[15, Thm 1.1].

Theorem 2.2. Let Ω be as in (5). Let ε ∈ E. Then the eigenpairs (σ, u) ∈ R×Xε
N(Ω)

of problem (14) are spanned by the following two disjoint families:

i) the pairs (λ, u) ∈ R×Xε
N(div ε0,Ω) solutions of problem (13);

ii) the pairs (τρ,∇f) where (ρ, f) ∈ R×H1
0 (Ω) is an eigenpair of the problem{

−div(ε∇f) = ρf in Ω,

f = 0 on ∂Ω.
(17)

In particular, the set of eigenvalues of problem (14) are given by the union of the set
of eigenvalues of problem (13) and the set of eigenvalues of the operator −div(ε∇·)
with Dirichlet boundary conditions in Ω multiplied by τ .

Proof. It is easily seen that if (λ, u) ∈ R×Xε
N(div ε0,Ω) is an eigenpair of problem

(13), then it is an eigenpair of problem (14). Moreover, if u = ∇f , where f ∈ H1
0 (Ω)

is a solution of problem (17), then u ∈ Xε
N(Ω) solves (14) with σ = τρ.

Conversely, suppose that (σ, u) ∈ R×Xε
N(Ω) is an eigenpair of problem (14). If

p := div(εu) = 0,

then clearly u ∈ Xε
N(div ε0,Ω) and solves (13). Suppose now that p 6= 0. We set

H1
0 (Ω,div(ε∇·)) := {u ∈ H1

0 (Ω) : div(ε∇u) ∈ L2(Ω)}.
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Then for all ψ ∈ H1
0 (Ω, div(ε∇·)), by taking ∇ψ as test functions in (14) we get∫

Ω
τ p div(ε∇ψ) dx = σ

∫
Ω
εu · ∇ψ dx = −σ

∫
Ω
pψ dx,

thus ∫
Ω
p
(
τ div(ε∇ψ) + σψ

)
dx = 0. (18)

Necessarily σ/τ belongs to the spectrum of the operator −div(ε∇·) with Dirichlet
boundary conditions, because if not we could find a ψ̂ such that div(ε∇ψ̂)+ σ

τ ψ̂ = p,
hence from (18) we would get p = 0, which is a contradiction. From the Fred-
holm alternative we deduce that p belongs to the associated eigenspace, thus p ∈
H1

0 (Ω, div(ε∇·)) and
div(ε∇p) +

σ

τ
p = 0. (19)

Now, we define the field
w := u+

τ

σ
∇p ∈ Xε

N(Ω).

If w = 0 then u = − τ
σ ∇p, and recalling (19) one deduces that (σ, u) is of the form

in ii). Therefore, suppose that w 6= 0. Observe that w satisfies

div(εw) = p+
τ

σ
div(ε∇p) = 0 and curlw = curlu.

Hence for any v ∈ Xε
N(Ω)∫

Ω
curlw · curl v dx =

∫
Ω

(
σ εu · v − τ p div(εv)

)
dx =

∫
Ω

(σ εu+ τ ε∇p) · v dx

= σ

∫
Ω
εw · v dx.

Thus the pair (σ,w) belongs to the family in i) and σ is a multiple eigenvalue of
(14). In this case we can split the eigenspace corresponding to σ according to the
two families in i) and ii).

In view of the previous theorem, we introduce the following definition.

Definition 2.3. Let Ω be as in (5). Let ε ∈ E . An eigenvalue σ of problem (14)
is said to be a Maxwell eigenvalue if there exists u ∈ Xε

N(div ε0,Ω), u 6= 0, such
that (σ, u) is an eigenpair of problem (13). In this case, we say that u is a Maxwell
eigenvector. We denote the set of Maxwell eigenvalues by:

0 ≤ λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞,

where we repeat the eigenvalues in accordance with their (Maxwell) multiplicity, i.e.
the dimension of the space generated by the corresponding Maxwell eigenvectors.

We stress that the introduction of problem (14) is of technical nature to bypass
the problem of working in ε-dependent spaces, but in this paper we are mostly
interested in the behavior of Maxwell eigenvalues. Accordingly, we will focus more
on the behavior of {λj [ε]}j∈N ⊆ {σ[ε]}j∈N than on the one of all {σ[ε]}j∈N. Note
also that the Maxwell eigenvalues {λj [ε]}j∈N do not depend upon the choice of
the parameter τ > 0 multiplying the penalty term of problem (14), meaning that
different values of τ provide exactly the same Maxwell spectrum.
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3 Continuity of the eigenvalues
We first focus on the continuity of the eigenvalues σj [ε] of problem (14), which in
particular implies the continuity of the Maxwell eigenvalues λj [ε]. For the sake of
simplicity, in this section we will fix τ = 1. Note that the results presented below
remain valid independently of the value of τ > 0.

We find it convenient to introduce the space

H1
N(Ω) :=

{
u ∈ H1(Ω)3 : ν × u = 0 on ∂Ω

}
, (20)

endowed with the usual H1-norm. Note that in view of formula (11) and of the
Gaffney inequality (10) (valid under our assumptions (5)) the spaces Xε

N(Ω) and
H1

N(Ω) coincide as sets for every ε ∈ E , and their respective norms are equivalent.
Hence one can use the space H1

N(Ω) for the variational characterization of the eigen-
values: the benefit lies in the fact that in this way we do not have to deal with
Hilbert spaces that may depend on the permittivity parameter ε, allowing us to
compare Rayleigh quotients relative to different permittivities. In other words, the
min-max characterization (16) can be equivalently written as

σj [ε] = min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u6=0

∫
Ω|curlu|2 dx+

∫
Ω

∣∣div(εu)
∣∣2 dx∫

Ω εu · u dx
, (21)

which is the one we will exploit in order to prove our continuity result.
Before doing so, we first prove a locally uniform Gaffney inequality, that can be

obtained by exploiting the standard inequality (10) for a fixed permittivity.

Proposition 3.1. Let Ω be as in (5). Let ε̃ ∈ E. Then there exist two constants
δ, CG > 0 such that

‖u‖2H1(Ω)3 ≤ CG
(
〈εu, u〉L2(Ω)3 + ‖ curlu‖2L2(Ω)3 + ‖ div(εu)‖2L2(Ω)

)
(22)

for all u ∈ H1
N(Ω) and for all ε ∈ E with ‖ε− ε̃‖W 1,∞(Ω) < δ.

Proof. First of all, we observe that if ε′ ∈ E then by formula (11) we have that

div(ε′u) = tr(ε′Du) + (div ε′) · u. (23)

Moreover, if M is a 3× 3 matrix then the following inequalities

| tr(ε′(x)M)| ≤ 9
∥∥ε′∥∥

L∞(Ω)
|M |, (24)

|div ε′(x)| ≤ 3
√

3
∥∥ε′∥∥

W 1,∞(Ω)
(25)

hold for a.e. x ∈ Ω, where |M | denotes the matrix norm |M | := maxi,j |Mij |.
Fix u ∈ H1

N(Ω) and ε ∈ E . From (10) we have that the Gaffney inequality holds
for ε̃, namely there exists a constant Cε̃ > 0 independent of u such that

‖u‖2H1(Ω)3 ≤ Cε̃
(
〈ε̃u, u〉L2(Ω)3 + ‖ curlu‖2L2(Ω)3 + ‖ div ε̃u‖2L2(Ω)

)
. (26)

Moreover ∣∣∣tr(ε̃Du)2 − tr(εDu)2
∣∣∣ =
∣∣∣tr ((ε̃+ ε)Du

)
tr
(
(ε̃− ε)Du)

)∣∣∣
≤ 92 ‖ε̃+ ε‖L∞(Ω)‖ε̃− ε‖L∞(Ω) |Du|

2,
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and ∣∣∣(div ε̃ · u)2 − (div ε · u)2
∣∣∣ =
∣∣∣(div(ε̃− ε) · u

) (
div(ε̃+ ε) · u

)∣∣∣
≤ (3
√

3)2 ‖ε̃+ ε‖W 1,∞(Ω)‖ε̃− ε‖W 1,∞(Ω) |u|
2

and

2
∣∣tr(ε̃Du) div ε̃ · u− tr(εDu) div ε · u

∣∣
≤ 2
∣∣tr(ε̃Du) div(ε̃− ε) · u

∣∣+ 2
∣∣∣tr ((ε̃− ε)Du) div ε · u

∣∣∣
≤ 2 · 9 · 3

√
3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω)

)
‖ε̃− ε‖W 1,∞(Ω) 2 |u| |Du|

≤ 54
√

3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω)

)
‖ε̃− ε‖W 1,∞(Ω) ( |u|2 + |Du|2).

Thus ∣∣∣∥∥div(ε̃u)
∥∥2

L2(Ω)
−
∥∥div(εu)

∥∥2

L2(Ω)

∣∣∣
≤ 54

√
3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω) +‖ε̃+ ε‖W 1,∞(Ω)

)
×‖ε̃− ε‖W 1,∞(Ω)

(∫
Ω
|u|2 +

∫
Ω
|Du|2

)
.

(27)

Moreover, we have that∣∣∣〈ε̃u, u〉L2(Ω)3 − 〈εu, u〉L2(Ω)3

∣∣∣ ≤ 3‖ε̃− ε‖L∞(Ω)‖u‖
2
L2(Ω)3 . (28)

Therefore, making use of (27) and (28) in (26) we obtain that

‖u‖2H1(Ω)3 ≤ Cε̃
(
〈εu, u〉L2(Ω)3 +‖curlu‖2L2(Ω)3 +‖div εu‖2L2(Ω)

)
+

+ Cε̃

(
54
√

3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω) +‖ε̃+ ε‖W 1,∞(Ω)

)
+ 3

)
‖ε̃− ε‖W 1,∞(Ω)‖u‖

2
H1(Ω)3

≤ Cε̃
(
〈εu, u〉L2(Ω)3 +‖curlu‖2L2(Ω)3 +‖div εu‖2L2(Ω)

)
+

+ Cε̃

(
3 · 54

√
3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω)

)
+ 3

)
‖ε̃− ε‖W 1,∞(Ω)‖u‖

2
H1(Ω)3 .

Hence, taking δ > 0 small enough such that for all ε ∈ E with ‖ε̃ − ε‖W 1,∞(Ω) < δ
we have that

1− Cε̃
(

162
√

3
(
‖ε̃‖W 1,∞(Ω) +‖ε̃− ε‖W 1,∞(Ω)

)
+ 3

)
‖ε̃− ε‖W 1,∞(Ω) > 0,

then we get that formula (22) holds with

CG :=
Cε̃

1− δ Cε̃
(

162
√

3
(
‖ε̃‖W 1,∞(Ω) + δ

)
+ 3

) .

We are now ready to show that the eigenvalues σj [ε] of problem (14) are locally
Lipschitz continuous in ε.

Theorem 3.2. Let Ω be as in (5). Let j ∈ N and ε1 ∈ E. Then there exist two
constants δ, C̃ > 0 such that∣∣σj [ε1]− σj [ε2]

∣∣ ≤ C̃‖ε1 − ε2‖W 1,∞(Ω) (29)

for all ε2 ∈ E such that ‖ε1 − ε2‖W 1,∞(Ω) < δ.
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Proof. For the sake of simplicity in this proof, given ε ∈ E and u ∈ H1
N(Ω), we set

R[u] :=

∫
Ω
| curlu|2dx, Dε[u] :=

∫
Ω
|div(εu)|2dx.

Let be δ > 0 be as in Proposition 3.1 with ε̃ = ε1. Let ε2 ∈ E be such that
‖ε1 − ε2‖W 1,∞(Ω) < δ and recall that cε1 , cε2 denote the constants associated with
the coercivity of ε1, ε2 respectively (see (6)). Fix u ∈ H1

N(Ω). Then∣∣∣∣∣R[u] +Dε1 [u]∫
Ω ε1u · u dx

− R[u] +Dε2 [u]∫
Ω ε2u · u dx

∣∣∣∣∣ (30)

≤
R[u]

∣∣∣∫Ω(ε2 − ε1)u · u dx
∣∣∣+
∣∣∣Dε1 [u]

∫
Ω ε2 u · u dx−Dε2 [u]

∫
Ω ε1 u · u dx

∣∣∣
(
∫

Ω ε1u · u dx)(
∫

Ω ε2u · u dx)

≤
3 ‖ε2 − ε1‖L∞(Ω)R[u]

∫
Ω|u|

2 dx

(
∫

Ω ε1u · u dx)(
∫

Ω ε2u · u dx)

+

∣∣∣Dε1 [u]
∫

Ω ε2 u · u dx−Dε1 [u]
∫

Ω ε1 u · u dx
∣∣∣

(
∫

Ω ε1u · u dx)(
∫

Ω ε2u · u dx)

+

∣∣∣Dε1 [u]
∫

Ω ε1 u · u dx−Dε2 [u]
∫

Ω ε1 u · u dx
∣∣∣

(
∫

Ω ε1u · u dx)(
∫

Ω ε2u · u dx)

≤
3 ‖ε1 − ε2‖W 1,∞(Ω)

cε2

R[u] +Dε1 [u]∫
Ω ε1u · u dx

+

∣∣Dε1 [u]−Dε2 [u]
∣∣∫

Ω ε2u · u dx
.

We now focus on the second term in the right hand side of the above inequality.
By the same reasoning used to prove inequality (27) we deduce that there exist a
constant C > 0 not depending on ε1, ε2 and u such that

∣∣Dε1 [u]−Dε2 [u]
∣∣ ≤ C max

i=1,2

{
‖εi‖W 1,∞(Ω)

}
‖ε1 − ε2‖W 1,∞(Ω)

(∫
Ω
|u|2 dx+

∫
Ω
|Du|2 dx

)
.

(31)

Moreover, thanks to the locally uniform Gaffney inequality (22) there exists a con-
stant CG > 0 such that for i = 1, 2∫

Ω
|Du|2 dx ≤ CG

∫
Ω

(
εiu · u+ | curlu|2 + |div(εiu)|2

)
dx.

Using the above inequality with i = 2 we get∫
Ω |Du|

2 dx∫
Ω ε2u · u dx

≤ CG

(
1 +
R[u] +Dε2 [u]∫

Ω ε2u · u dx

)
,

which applied to (31) yields∣∣Dε1 [u]−Dε2 [u]
∣∣∫

Ω ε2u · u dx
≤ C max

i=1,2

{
‖εi‖W 1,∞(Ω)

}
‖ε1 − ε2‖W 1,∞(Ω) (32)

×

 1

cε2
+ CG

(
1 +
R[u] +Dε2 [u]∫

Ω ε2u · u dx

) .
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Thus it follows from (30) and (32) that

R[u] +Dε1 [u]∫
Ω ε1u · u dx

(
1− 3

‖ε2 − ε1‖W 1,∞(Ω)

cε2

)

≤ R[u] +Dε2 [u]∫
Ω ε2u · u dx

(
1 + CG C max

i=1,2

{
‖εi‖W 1,∞(Ω)

}
‖ε1 − ε2‖W 1,∞(Ω)

)
+ C max

i=1,2

{
‖εi‖W 1,∞(Ω)

}
‖ε1 − ε2‖W 1,∞(Ω)

(
1

cε2
+ CG

)
.

(33)

Eventually taking a smaller δ > 0, and taking the appropriate supremum and infi-
mum in (33), the min-max formula (21) yields

σj [ε1]− σj [ε2] ≤

(
3

cε2
σj [ε1] + CG C max

i=1,2

{
‖εi‖W 1,∞(Ω)

}
σj [ε2]

+ C max
i=1,2

{
‖εi‖W 1,∞(Ω)

}( 1

cε2
+ CG

))
‖ε1 − ε2‖W 1,∞(Ω).

Exchanging the role of ε1 and ε2, we get the inequality (29) but with a constant
possibly depending also on ε2, which is:

Ĉ(ε2) := 3 max

{
σj [ε1]

cε2
,
σj [ε2]

cε1

}
(34)

+ C max
i=1,2

{
‖εi‖W 1,∞(Ω)

}(
CG max

i=1,2

{
σj [εi]

}
+ max
i=1,2

{
1

cεi

}
+ CG

)
.

In order to finish the proof, it only remains to show that this constant can be chosen
uniform in ε2. Up to taking a smaller δ, we note that by (7) the constant cε2 is
uniformly bounded away from zero in ε2. Indeed by (7) one has that

cε2 ≥ cε1 − 3δ.

Moreover, σj [ε2] is also locally uniformly bounded in ε2. Indeed, from (23), (24) and
(25) it is not difficult to see that there exists a constant C ′ > 0 not depending on ε2

such that for all u ∈ H1
N(Ω) one has∫

Ω

∣∣div(ε2u)
∣∣2 dx ≤ C ′‖ε2‖2W 1,∞(Ω)

∫
Ω

(
|u|2 + |Du|2

)
dx.

Then, applying the standard Gaffney inequality (with unitary permittivity) we get
that for all u ∈ H1

N(Ω):∫
Ω

∣∣div(ε2u)
∣∣2 dx ≤ C ′‖ε2‖2W 1,∞(Ω)

∫
Ω

(
|u|2 + | curlu|2 + | div u|2

)
dx.

Hence, using the min-max formula (21) for σj [ε2] we have that

σj [ε2] = min
Vj⊂H1

N(Ω),
dimVj=j

max
u∈Vj ,
u6=0

∫
Ω | curlu|2 dx+

∫
Ω | div(ε2u)|2 dx∫

Ω ε2 u · u dx

≤
C ′‖ε2‖2W 1,∞(Ω) + 1

cε2
min

Vj⊂H1
N(Ω),

dimVj=j

max
u∈Vj ,
u6=0

(∫
Ω | curlu|2 dx+

∫
Ω | div u|2 dx∫

Ω |u|2 dx
+ 1

)

=
C ′‖ε2‖2W 1,∞(Ω) + 1

cε2
(σj [I3] + 1)

≤
C ′
(
‖ε1‖W 1,∞(Ω) + δ

)2
+ 1

cε1 − 3δ
(σj [I3] + 1),
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where σj [I3] is the j-th eigenvalue of problem (14) set with unitary permittivity.
Accordingly, the constant Ĉ(ε2) defined in (34) is bounded above by a constant C̃
independent of ε2 for all ε2 ∈ E such that ‖ε1− ε2‖W 1,∞(Ω) < δ. Thus the inequality
(29) is proved.

4 Analyticity and the derivative in ε

In the previous section we have showed that the eigenvalues σj [ε] of the modified
problem (14) (and in particular the Maxwell eigenvalues λj [ε]) are locally Lipschitz
continuous in ε ∈ E . In this section we are interested in proving higher regularity
properties. More in detail we plan to show that the eigenvalues depend analyt-
ically upon ε, and provide an explicit formula for their ε-derivative. As already
mentioned in the introduction, if we consider a multiple eigenvalue, a perturbation
of the permittivity can in principle split the eigenvalue into different eigenvalues of
lower multiplicity and thus the corresponding branches can have a corner at the
splitting point. In this case we will not even have differentiability. Our strategy
in order to bypass this problem is to consider the symmetric functions of multiple
eigenvalues. This point of view has been first introduced by Lamberti and Lanza
de Cristoforis in [27] and later successfully adopted in many other works (see, e.g.,
[7, 8, 25, 28, 31]).

Recall that
0 < σ1[ε] ≤ σ2[ε] ≤ · · · ≤ σn[ε] ≤ · · · ↗ +∞.

are the eigenvalues of problem (14), while instead

0 < λ1[ε] ≤ λ2[ε] ≤ · · · ≤ λn[ε] ≤ · · · ↗ +∞.

are the subset of Maxwell eigenvalues of problem (14) (see Definition 2.3). Also
recall that, by Lemma 2.1, {σj [ε]}j∈N coincide with the reciprocal minus one of the
eigenvalues of the operator Sε defined in (15). In order to obtain an explicit formula
for the derivatives of the Maxwell eigenvalues with respect to the permittivity ε we
need the following technical lemma.

Lemma 4.1. Let Ω be as in (5). Let ε̃ ∈ E and ũ, ṽ ∈ X ε̃
N(div ε̃0,Ω) be two Maxwell

eigenvectors associated with a Maxwell eigenvalue λ̃ with permittivity ε̃. Then

〈d|ε=ε̃Sε[η][ũ], ṽ〉ε̃ = λ̃(λ̃+ 1)−2

∫
Ω
ηũ · ṽ dx (35)

for all η ∈W 1,∞ (Ω) ∩ Sym3(Ω).

Proof. Under our assumptions on Ω, the space Xε
N(Ω) coincides with the space

H1
N(Ω) introduced in (20), and their norm are equivalent. Then, it is easily seen

that the compact self-adjoint operator Sε in L2(Ω) is obtained by compositions
and inversions of real-analytic maps in ε (such as linear and multilinear continuous
maps). As a consequence Sε depends real analytically upon ε.

Now let η ∈ W 1,∞ (Ω) ∩ Sym3(Ω). Since Jε̃[ũ] = (λ̃ + 1)−1Tε̃[ũ], Jε[ṽ] = (λ̃ +
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1)−1Tε̃[ṽ], and Sε̃ is symmetric, we have that

〈d|ε=ε̃Sε[η][ũ], ṽ〉ε̃
= 〈ιε ◦ T−1

ε̃ ◦ d|ε=ε̃Jε[η][ũ], ṽ〉ε̃ + 〈ιε ◦ d|ε=ε̃T−1
ε [η] ◦ Jε̃[ũ], ṽ〉ε̃

= Jε̃[ṽ]
[
ιε ◦ T−1

ε̃ ◦ d|ε=ε̃Jε[η][ũ]
]

+ Jε̃[ṽ]
[
ιε ◦ d|ε=ε̃T−1

ε [η] ◦ Jε̃[ũ]
]

= (λ̃+ 1)−1Tε̃[ṽ]
[
T−1
ε̃ ◦ d|ε=ε̃Jε[η][ũ]− T−1

ε̃ ◦ d|ε=ε̃Tε[η] ◦ T−1
ε̃ ◦ Jε̃[ũ]

]
= (λ̃+ 1)−1Tε̃

[
T−1
ε̃ ◦ d|ε=ε̃Jε[η][ũ]− T−1

ε̃ ◦ d|ε=ε̃Tε[η] ◦ T−1
ε̃ ◦ (λ̃+ 1)−1Tε̃[ũ]

]
[ṽ]

= (λ̃+ 1)−1
(
d|ε=ε̃Jε[η][ũ][ṽ]− (λ̃+ 1)−1d|ε=ε̃Tε[η][ũ][ṽ]

)
.

(36)

Moreover, by standard calculus,

d|ε=ε̃Jε[η][ũ][ṽ] =

∫
Ω
ηũ · ṽ dx (37)

and

d|ε=ε̃Tε[η][ũ][ṽ] =

∫
Ω
ηũ · ṽ dx+

∫
Ω

(
div(ε̃ũ) div(ηṽ) + div(ηũ) div(ε̃ṽ)

)
dx. (38)

Since div(ε̃ũ) = 0 = div(ε̃ṽ) in Ω, using (36), (37) and (38), we get (35).

Following [27], given a finite set of indices F ⊂ N, we consider those permittivities
ε ∈ E for which Maxwell eigenvalues with indices in F do not coincide with Maxwell
eigenvalues with indices outside F . We then introduce the following sets:

E [F ] :=
{
ε ∈ E : λj [ε] 6= λl[ε] ∀j ∈ F, l ∈ N \ F

}
and

Θ[F ] :=
{
ε ∈ E [F ] : λj [ε] have a common value λF [ε] for all j ∈ F

}
.

Let ε ∈ E [F ]. The elementary symmetric function of degree s ∈ {1, . . . ,|F |} of the
Maxwell eigenvalues with indices in F is defined by

ΛF,s[ε] :=
∑

j1,...,js∈F
j1<···<js

λj1 [ε] · · ·λjs [ε].

In the following theorem we show that the maps ε 7→ ΛF,s[ε] are real analytical on
E [F ] and we compute their Fréchet derivatives with respect to ε.

Theorem 4.2. Let Ω be as in (5). Let F be a finite subset of N and s ∈ {1, . . . , |F |}.
Then E [F ] is open in W 1,∞ (Ω) ∩ Sym3(Ω) and the elementary symmetric function
ΛF,s depend real analytically upon ε ∈ E [F ].

Moreover, if {F1, . . . , Fn} is a partition of F and ε̃ ∈
⋂n
k=1 Θ[F ] is such that for

each k = 1, . . . , n the Maxwell eigenvalues λj [ε̃] assume the common value λFk
[ε̃] for

all j ∈ Fk, then the differential of the function ΛF,s at the point ε̃ is given by the
formula

d|ε=ε̃ΛF,s[η] = −
n∑
k=1

ck
∑
l∈Fk

∫
Ω
ηẼ(l) · Ẽ(l) dx, (39)
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for all η ∈W 1,∞ (Ω) ∩ Sym3(Ω), where

ck :=
∑

0≤s1≤|F1|
...

0≤sn≤|Fn|
s1+...+sn=s

(
|Fk| − 1

sk − 1

)
(λFk

[ε̃])sk
n∏
j=1
j 6=k

(∣∣Fj∣∣
sj

)
(λFj [ε̃])

sj ,

and for each k = 1, . . . , n, {Ẽ(l)}l∈Fk
is an orthonormal basis in L2

ε̃(Ω) of Maxwell
eigenvectors for the eigenspace associated with λFk

[ε̃].

Proof. Let ε̃ ∈ E . As we have already pointed out, Maxwell eigenvalues are inde-
pendent on the choice of the parameter τ > 0 in (14). Thus, to avoid problems of
different enumeration between Maxwell eigenvalues and the eigenvalues of Sε, we
can fix τ big enough such that all the Maxwell eigenvalues {λj [ε̃]}j∈F are strictly
smaller than any other eigenvalue of (14) which is not a Maxwell eigenvalue (i.e. an
eigenvalue belonging to the family ii) in Theorem 2.2). In this way σj [ε̃] = λj [ε̃] for
all j ∈ F .

The eigenvalues µj of the operator Sε and the eigenvalues σj of (14) satisfy
µj = (σj + 1)−1. Then the sets E [F ] and

{
ε ∈ E : µj [ε] 6= µl[ε] ∀j ∈ F, l ∈ N \ F

}
coincide locally around ε̃. By Lemma 2.1, Sε is a compact self-adjoint operator
acting on L2

ε(Ω). Furthermore, as already pointed out in the proof of Lemma 4.1,
Sε depends real analytically on ε. In the same way one shows that also the scalar
product 〈·, ·〉ε on L2(Ω)3 depends real analytically on ε. Therefore, by the abstract
result of Lamberti and Lanza de Cristoforis [27, Thm. 2.30], we have that the set{
ε ∈ E : µj [ε] 6= µl[ε] ∀j ∈ F, l ∈ N \ F

}
is open in W 1,∞ (Ω) ∩ Sym3(Ω) and that

the function
MF,s[ε] :=

∑
j1,...,js∈F
j1<···<js

µj1 [ε] · · ·µjs [ε]

depend real analytically on ε ∈ E [F ]. From this, to infer the real analyticity of the
functions ΛF,s on ε ∈ E [F ], one can just observe that if we denote

Λ̂F,s[ε] :=
∑

j1,...,js∈F
j1<···<js

(λj1 [ε] + 1) · · · (λjs [ε] + 1),

then we have

Λ̂F,s[ε] =
MF, |F |−s[ε]

MF, |F |[ε]

and by elementary combinatorics

ΛF,s[ε] =

s∑
k=0

(−1)s−k
(
|F | − k
s− k

)
Λ̂F,k[ε], (40)

where we have set Λ̂F,0 = 1. Then we can deduce that locally around ε̃ the maps
ΛF,s[ε] are real analytic and accordingly the analyticity part of the statement follows
since ε̃ is arbitrary.

Next, we turn to prove formula (39). We start by the case n = 1, that is F1 = F
and ε̃ ∈ Θ[F ]. Let η ∈W 1,∞ (Ω) ∩ Sym3(Ω). By [27, Thm. 2.30] we get that

d|ε=ε̃MF,s[η] =

(
|F | − 1

s− 1

)
(λF [ε̃] + 1)1−s

∑
l∈F
〈d|ε=ε̃ Sε[η][Ẽ(l)], Ẽ(l)〉ε̃.
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Moreover, by using formula (35) of Lemma 4.1, we have that

d|ε=ε̃Λ̂F,s[η]

=
(
d|ε=ε̃MF,|F |−s[η]MF,|F | [ε̃]−MF,|F |−s [ε̃] d|ε=ε̃MF,|F | [η]

)
(λF [ε̃] + 1)2|F |

=

((
|F | − 1

|F | − s− 1

)
(λF [ε̃] + 1)s+1−2|F | −

(
|F |
s

)(
|F | − 1

|F | − 1

)
(λF [ε̃] + 1)s+1−2|F |

)
· (λF [ε̃] + 1)2|F |

∑
l∈F
〈d|ε=ε̃ Sε[η][Ẽ(l)], Ẽ(l)〉ε̃

= −λF [ε̃](λF [ε̃] + 1)s−1

(
|F | − 1

s− 1

)∑
l∈F

∫
Ω
ηẼ(l) · Ẽ(l) dx.

Finally, recalling (40), we get

d|ε=ε̃ΛF,s[η]

= −λF [ε̃]
s∑

k=1

(−1)s−k(λF [ε̃] + 1)k−1

(
|F | − k
s− k

)(
|F | − 1

k − 1

)∑
l∈F

∫
Ω
ηẼ(l) · Ẽ(l) dx

= −
(
|F | − 1

s− 1

)
λF [ε̃]

s−1∑
k=0

(
s− 1

k

)
(λF [ε̃] + 1)k(−1)s−k−1

∑
l∈F

∫
Ω
ηẼ(l) · Ẽ(l) dx

= −
(
|F | − 1

s− 1

)
(λF [ε̃])s

∑
l∈F

∫
Ω
ηẼ(l) · Ẽ(l) dx.

Next we consider the case n ≥ 2. By means of a continuity argument, one can easily
see that there exists an open neighborhoodW of ε̃ in E [F ] such thatW ⊆

⋂n
k=1 E [Fk].

Thus

ΛF,s[ε] =
∑

0≤s1≤|F1|
...

0≤sn≤|Fn|
s1+...+sn=s

n∏
k=1

ΛFk,sk [ε] ∀ε ∈ W.

Differentiating the above equality at the point ε̃ and using formula (39) with n = 1
to each function ΛFk,sk , one can see that formula (39) holds true for any n ∈ N.

We conclude this section by studying the case of one-parametric families of per-
mittivities. Using Lemma 4.1 and classical analytic perturbation theory we can
recover a Rellich-Nagy-type theorem which allows us to describe all the eigenvalues
splitting from a multiple eigenvalue of multiplicity m by means of m real-analytic
functions. For classical results in analytic perturbation theory we refer to the seminal
works of Rellich [41] and Nagy [36]. More up do date formulations can be found in
Chow and Hale [11, Theorem 5.2, p. 487], Kato [22, Theorem 3.9, p. 393], Lamberti
and Lanza de Cristoforis [27, Theorem 2.27].

Theorem 4.3. Let Ω be as in (5). Let ε̃ ∈ E and let {εt}t∈R ⊆ E be a family
depending real analytically on t and such that ε0 = ε̃. Let λ̃ be a Maxwell eigen-
value of multiplicity m ∈ N and Ẽ(1), . . . , Ẽ(m) a corresponding orthonormal basis
of Maxwell eigenvectors in L2

ε̃(Ω) with ε = ε̃. Let λ̃ = λn[ε̃] = · · · = λn+m−1[ε̃] for
some n ∈ N. Then there exist an open interval I ⊆ R containing zero and m real
analytic functions g1, . . . , gm from I to R such that

{λn[εt], . . . , λn+m−1[εt]} = {g1(t), . . . , gm(t)} ∀t ∈ I.
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Moreover, the derivatives g′1(0), . . . , g′m(0) of the functions g1, . . . , gm at zero coincide
with the eigenvalues of the matrix(

−λ̃
∫

Ω
ε̇0 Ẽ

(i) · Ẽ(j) dx

)
i,j=1,...,m

,

where ε̇0 denotes the derivative at t = 0 of the map t 7→ εt.

Proof. Again, we can assume that τ is big enough such that λ̃ is strictly smaller
than any eigenvalue of (14) which is not a Maxwell eigenvalue. By applying [27,
Thm. 2.27, Cor. 2.28] to the operator Sε defined in (15) we get that there exist an
open interval I of R containing zero and m real analytic functions h1, . . . , hm from I
to R such that {(λn[εt] + 1)−1, . . . , (λn+m−1[εt] + 1)−1} = {h1(t), . . . , hm(t)} for all
t ∈ I. Furthermore, the derivatives at zero of the functions hi, i = 1, . . . ,m coincide
with the eigenvalues of the matrix(

〈d|ε=ε̃Sε[ε̇0]Ẽ(i), Ẽ(j)〉ε̃
)
i,j=1,...,m

.

By continuity we have that, eventually further restricting the interval I, the functions
hi are away from zero for all t ∈ I. Then, setting

gi(t) :=
1

hi(t)
− 1

we have that {λn[εt], . . . , λn+m−1[εt]} = {g1(t), . . . , gm(t)}. Finally, noticing that

d

dt
gi(t)|t=0 = −(λ̃+ 1)2 d

dt
hi(t)|t=0,

we deduce that the derivatives at zero of the functions gi coincide with the eigenval-
ues of the matrix

−(λ̃+ 1)2
(
〈d|ε=ε̃Sε[ε̇0]Ẽ(i), Ẽ(j)〉ε̃

)
i,j=1,...,m

=

(
−λ̃
∫

Ω
ε̇0 Ẽ

(i) · Ẽ(j) dx

)
i,j=1,...,m

,

where this last equality is justified by Lemma 4.1.

5 The spectrum is simple for generic permittiv-
ities
The issue of understanding if the eigenvalues of a parameter dependent problem
can be made all simple by an arbitrarily small perturbation of the parameter is a
natural question and has been already investigated by several authors for different
problems. For example, Albert [1] proved the generic simplicity of the spectrum
of an elliptic operator with respect to the perturbation of the zeroth order term.
Moreover, the generic simplicity of the spectrum has been also considered with
respect to the domain perturbation in various papers. We mention, e.g, Micheletti
[32, 33] for the Laplacian and for a general elliptic operator and Ortega and Zuazua
[38] and Chitour, Kateb and Long [10] for the Stokes system in dimension two and
three, respectively. Finally, we also mention the more recent paper by Dabrowski
[18] where the author analyze the Laplacian with different boundary conditions and
consider also singular perturbations of the domain.

A first step, as we will show in the next proposition, is to prove that it is al-
ways possible to find a small perturbation of the permittivity that splits a non-zero
Maxwell eigenvalue of multiplicity m into m simple eigenvalues.
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Proposition 5.1. Let Ω be as in (5). Let ε̃ ∈ E, λ̃ 6= 0 a Maxwell eigenvalue of
multiplicity m ∈ N and Ẽ(1), . . . , Ẽ(m) a corresponding orthonormal basis of Maxwell
eigenvectors in L2

ε̃(Ω) with ε = ε̃. Let λ̃ = λn[ε̃] = · · · = λn+m−1[ε̃] for some n ∈ N.
Define

ε̃t,η := ε̃+ tη ∀t ∈ R,

for all η ∈ W 1,∞ (Ω) ∩ Sym3(Ω), ‖η‖W 1,∞(Ω) ≤ 1. Then for all T > 0 there exist
η ∈ W 1,∞ (Ω) ∩ Sym3(Ω) with ‖η‖W 1,∞(Ω) ≤ 1, and t ∈ ]0, T [ such that ε̃t,η ∈ E and
the eigenvalues λn[ε̃t,η], . . . , λn+m−1[ε̃t,η] are all simple.

Proof. We will only prove that there exist η ∈W 1,∞ (Ω)∩Sym3(Ω) with‖η‖W 1,∞(Ω) ≤
1 and t > 0 as small as desired such that the eigenvalues λn[ε̃t,η], . . . , λn+m−1[ε̃t,η]
are not all equal. Then, repeating the same argument for the eigenvalues that have
still a multiplicity strictly greater than one, in a finite number of steps we are done.
Note that by the continuity of the eigenvalues with respect to permittivity variations
and by choosing t small enough we can avoid that the eigenvalues splitting from a
multiple eigenvalue could overlap or switch position with other eigenvalues.

Hence, suppose by contradiction that there exists T > 0 such that for all η ∈
W 1,∞ (Ω) ∩ Sym3(Ω) with ‖η‖W 1,∞(Ω) ≤ 1 and for all t ∈ ]0, T [, all the eigenvalues
λn[ε̃t,η], . . . , λn+m−1[ε̃t,η] coincide. As a consequence, all the right derivatives at
t = 0 of the branches coincide. Then, if we fix η and use Theorem 4.3, we get that
all the eigenvalues of the matrix

M :=

(
−λ̃
∫

Ω
ηẼ(i) · Ẽ(j) dx

)
i,j=1,...,m

(41)

coincide. Since the above matrix is a real symmetric matrix with only one eigenvalue,
it is a scalar matrix. In other words, there exists µ[η] ∈ R such that

M = µ[η] Im, (42)

where Im denotes the (m×m)-identity matrix. For h = 1, 2, 3 we set

ηh :=‖ξ‖−1
W 1,∞(Ω) ξ ehh

with 0 6= ξ ∈ C1
c (Ω) arbitrary and ehh the (3× 3)-matrix with (h, h)-entry equal to

1 and zeros elsewhere. Since λ̃ 6= 0, by (41), (42) and using the above defined ηh we
can recover that for all ξ ∈ C1

c (Ω)∫
Ω
ξ E

(i)
h E

(j)
h dx = 0 ∀i, j ∈ {1, . . . ,m}, i 6= j, ∀h = 1, 2, 3,

and ∫
Ω
ξ
(

(E
(i)
h )2 − (E

(j)
h )2

)
dx = 0 ∀i, j ∈ {1, . . . ,m}, ∀h = 1, 2, 3.

By the fundamental lemma of calculus of variations we get that a.e. in Ω

E
(i)
h E

(j)
h = 0 ∀i, j ∈ {1, . . . ,m}, i 6= j, ∀h = 1, 2, 3,

and
(E

(i)
h )2 − (E

(j)
h )2 = 0 ∀i, j ∈ {1, . . . ,m}, ∀h = 1, 2, 3.

The above relations clearly implies that Ei = 0 for all i ∈ {1, . . . ,m}, which is a
contradiction since they are not identically zero, being eigenfunctions.
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Remark 5.2. The constraint ‖η‖W 1,∞(Ω) ≤ 1 in the above proposition can be re-
placed by ‖η‖W 1,∞(Ω) ≤ δ for any δ > 0.

Remark 5.3. The argument we have used to split a multiple eigenvalue into several
eigenvalues of lower multiplicity uses that η is a general symmetric matrix and not
a scalar matrix. However, noticing in which way ηh is defined, one can easily realize
that such an argument still works if η varies in the class of diagonal matrices. Instead,
in the case that we restrict ourselves to the case of scalar matrices, what we can
recover by arguing in the same way is that

E(i) · E(j) = 0 ∀i, j ∈ {1, . . . ,m}, i 6= j.

and
|E(i)|2 − |E(j)|2 = 0 ∀i, j ∈ {1, . . . ,m}.

This does not immediately lead to a contradiction. Thus, it would be interesting to
investigate whether it is still possible to split the whole spectrum when the permit-
tivies are scalar.

We are now ready to show that the whole positive Maxwell spectrum is generically
simple with respect to the permittivity. We note that our proof is inspired by the
methods of Albert [1]

Theorem 5.4. Let Ω be as in (5). Let ε̃ ∈ E and let δ > 0 be small enough such
that

ε̃+ η ∈ E

for all η ∈W 1,∞ (Ω) ∩ Sym3(Ω) with ‖η‖W 1,∞(Ω) ≤ δ. Let

B0 :=
{
η ∈W 1,∞ (Ω) ∩ Sym3(Ω) : ‖η‖W 1,∞(Ω) ≤ δ

}
and

Bn := {η ∈ B0 : the first n positive Maxwell eigenvalues with ε = ε̃+ η are simple}

for n ∈ N. Then

B :=
⋂
n∈N

Bn = {η ∈ B0 : all the positive Maxwell eigenvalues with ε = ε̃+ η are simple}

is dense in B0.

Proof. The proof follows by applying the Baire’s lemma in the complete metric space
B0. In order to do this, we have to show that

i) Bn is open in B0 for all n ∈ N,

ii) Bn+1 is dense in Bn for all n ∈ N.

Statement i) follows from the continuity of the eigenvalues with respect to the per-
mittivity parameter (see Theorem 3.2). Next we prove statement ii) by contradic-
tion. Assume that Bn+1 is not dense in Bn for some n ∈ N. Then there exists
η ∈ Bn \Bn+1 and a neighborhood U of η in B0 such that

U ⊆ Bn \Bn+1.

Since η ∈ Bn \Bn+1 then

• the first n non-zero Maxwell eigenvalues with ε = ε̃+ η are simple,
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• the (n + 1)-th non-zero Maxwell eigenvalue with ε = ε̃ + η has multiplicity k
for some k ∈ N, k ≥ 2.

Moreover, we note that for all ρ ∈ U ⊆ Bn \Bn+1 we have:

• the first n non-zero Maxwell eigenvalues with ε = ε̃+ ρ are simple,

• the (n+ 1)-th non-zero Maxwell eigenvalue with ε = ε̃+ ρ is not simple.

By Proposition 5.1 there exist ρ̂ ∈ W 1,∞ (Ω) ∩ Sym3(Ω) with ‖ρ̂‖W 1,∞(Ω) ≤ 1 and
t > 0 arbitrarily small such that η+tρ̂ ∈ U and all the non-zero Maxwell eigenvalues
with ε = ε̃+η+tρ̂ with indices from (n+1) to (n+k) are simple, therefore we deduce
that in particular η + tρ̂ ∈ Bn+1. This is a contradiction since U ⊆ Bn \Bn+1.
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