

Estimate of canopy bulk density through clip-on fisheye lens: an easy fix to forest fires simulations

Flavio Taccaliti*

Niccolò Marchi

Emanuele Lingua

*flavio.taccaliti@unipd.it

Università degli Studi di Padova

Scuola di Agraria e Medicina veterinaria

Dipartimento Territorio e Sistemi Agro Forestali

1. Introduction

Forest fires hot topic of land management

Fire simulators to face fire risk \rightarrow FLAMMAP

For land managers, firefighting bodies, etc.

Some input data from remote sensing (stand h, land cover, ...)

Fuel data often difficult to get \rightarrow one-size-fits-all values

e.g., Canopy Bulk Density (CBD)

1. Introduction

 \rightarrow Mass of burnable fuel per volume unit of forest canopy (i.e., set of trees crowns)

- Destructive sampling for measurement
- Changing with forest structure, species, phenology, age, ...
- Necessary for crown-to-crown fire spread simulation

... often inputted as constant

1. Introduction

Indirect methods to estimate CBD

Keane et al. 2005*, 6 methods

Fisheye lens to take hemispherical photos

Part of table from Keane et al. 2005*

*Keane, R. E., Reinhardt, E. D., Scott, J., Gray, K., & Reardon, J. (2005). Estimating forest canopy bulk density using six indirect methods. Canadian Journal of forest research, 35(3), 724-739.

Hypothesis

Can we estimate Canopy Bulk Density from a smartphone clip-on fisheye lens and free software?

GNSS receiver

2. Materials and methods

Pinus pinaster

Clip-on fisheye lens + smartphone

Custom-made stand (levelled, h=2 m)

3 sampling areas in NE Italy

Total 148 photos with fisheye:

- 90 in two *Pinus pinaster* stands (58+32)
- 58 in a Pinus nigra stand

2. Materials and methods

Gap Light Analyser for photos processing

CBD from Keane et al. 2005* equations \rightarrow mostly based on LAI^{45°} or gap fraction

Literature values as control

(gap fraction = percent of sky visible from beneath the forest canopy)

Mask Area: 0.1 Canopy Openness: 42.	1
& Canopy Openness: 42.	_
	66
Site Openness: 42.	62
• Site Openness: 42.	62

2. Materials and methods

LiDAR on same plots to spatialise

- \rightarrow 2 batches:
- *P. nigra* ca. 16 pts/m², flight 2017-2020
- *P. pinaster* ca. 1 pt/m², flight 2012

FUSION and LASTools via QGIS plugins for analyses

Linear regression between fisheye

gap fraction (y) and LiDAR canopy

cover (x) using R

3. Results and discussion

Only *P. nigra* significant, R²adj = 0.38

CBD from fisheye pics and equations

Equation n.	Pinus nigra	Pinus pinaster
1 («Hemiphoto E»)	0.11	-0.13
2 («Hemiphoto A»)	0.07	0.11
3 («Hemiphoto E» + ancillary data)	0.16	0.02

Literature values*: 0.06-0.21 kg/m³

Scott, Joe H.; Reinhardt, Elizabeth D. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. Res. Pap. RMRS-RP-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 59 p.

3. Results and discussion

Results from fisheye photographs CBD in

line with literature

• If recent and high-quality LiDAR data,

possible to **spatialise** CBD

• For *P. pinaster* no significant relation with LiDAR: possibly old LiDAR, forest cuts, ...

Caveats and possible improvements

- Equations used "as are"
- Validate with ground truth if possible

(forest thinnings)

• Account for forest structure

4. Conclusions

- Methodology simple and cheap enough to replicate with land managers, etc.
- Coupling with LiDAR satisfactory if "good" data available

Next steps

 \rightarrow Increase sample size

 \rightarrow Test simulator with new data

Progetto strategico co-finanziato dal Fondo europeo di sviluppo regionale Strateški projekt sofinancira Evropski sklad za regionalni razvoj

.....

