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Abstract
We continue the study of the space BV α(Rn) of functions with bounded fractional
variation in R

n of order α ∈ (0, 1) introduced in our previous work (Comi and Stefani
in J Funct Anal 277(10):3373–3435, 2019). After some technical improvements of
certain results of Comi and Stefani (2019) which may be of some separated insterest,
we deal with the asymptotic behavior of the fractional operators involved as α → 1−.
We prove that the α-gradient of a W 1,p-function converges in L p to the gradient for
all p ∈ [1,+∞) as α → 1−. Moreover, we prove that the fractional α-variation
converges to the standard De Giorgi’s variation both pointwise and in the �-limit
sense as α → 1−. Finally, we prove that the fractional β-variation converges to the
fractional α-variation both pointwise and in the �-limit sense as β → α− for any
given α ∈ (0, 1).
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1 Introduction

1.1 A distributional approach to fractional variation

In our previous work [27], we introduced the space BV α(Rn) of functions with
bounded fractional variation in R

n of order α ∈ (0, 1). Precisely, a function f ∈
L1(Rn) belongs to the space BV α(Rn) if its fractional α-variation

|Dα f |(Rn) := sup

{∫
Rn

f divαϕ dx : ϕ ∈ C∞
c (Rn; R

n), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
(1.1)

is finite. Here

divαϕ(x) := μn,α

∫
Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy, x ∈ R
n, (1.2)

is the fractional α-divergence of ϕ ∈ C∞
c (Rn; R

n), where

μn,α := 2απ− n
2
�

( n+α+1
2

)
�

( 1−α
2

) (1.3)
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for any given α ∈ (0, 1). The operator divα was introduced in [72] as the natural dual
operator of the much more studied fractional α-gradient

∇α f (x) := μn,α

∫
Rn

(y − x)( f (y) − f (x))

|y − x |n+α+1 dy, x ∈ R
n, (1.4)

defined for all f ∈ C∞
c (Rn). For an account on the existing literature on the opera-

tor∇α , see [68, Section 1]. Here we only refer to [66–70, 72–74] for the articles tightly
connected to the present work and to [63, Section 15.2] for an agile presentation of
the fractional operators defined in (1.2) and in (1.4) and of some of their elementary
properties. According to [70, Section 1], it is interesting to notice that [42] seems to
be the earliest reference for the operator defined in (1.4).

The operators in (1.2) and in (1.4) are dual in the sense that

∫
Rn

f divαϕ dx = −
∫
Rn

ϕ · ∇α f dx (1.5)

for all f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn; R
n), see [72, Section 6] and [27, Lemma 2.5].

Moreover, both operators have good integrability properties when applied to test func-
tions, namely ∇α f ∈ L p(Rn) and divαϕ ∈ L p(Rn; R

n) for all p ∈ [1,+∞] for any
given f ∈ C∞

c (Rn) and ϕ ∈ C∞
c (Rn; R

n), see [27, Corollary 2.3].
The integration-by-part formula (1.5) represents the starting point for the dis-

tributional approach to fractional Sobolev spaces and the fractional variation we
developed in [27]. In fact, similarly to the classical case, a function f ∈ L1(Rn)

belongs to BV α(Rn) if and only if there exists a finite vector-valued Radon measure
Dα f ∈ M (Rn; R

n) such that

∫
Rn

f divαϕ dx = −
∫
Rn

ϕ · dDα f (1.6)

for all ϕ ∈ C∞
c (Rn; R

n), see [27, Theorem 3.2].
Motivated by (1.6) and similarly to the classical case, we can define the weak

fractional α-gradient of a function f ∈ L p(Rn), with p ∈ [1,+∞], as the function
∇α

w f ∈ L1
loc(R

n; R
n) satisfying

∫
Rn

f divαϕ dx = −
∫
Rn

∇α
w f · ϕ dx

for all ϕ ∈ C∞
c (Rn; R

n). For α ∈ (0, 1) and p ∈ [1,+∞], we can thus define the
distributional fractional Sobolev space

Sα,p(Rn) := {
f ∈ L p(Rn) : ∃ ∇α

w f ∈ L p(Rn; R
n)

}
(1.7)

naturally endowed with the norm

‖ f ‖Sα,p(Rn) := ‖ f ‖L p(Rn) + ‖∇α
w f ‖L p(Rn;Rn) ∀ f ∈ Sα,p(Rn). (1.8)
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It is interesting to compare the distributional fractional Sobolev spaces Sα,p(Rn)

with the well-known fractional Sobolev space Wα,p(Rn), that is, the space

Wα,p(Rn) :=
{
f ∈ L p(Rn) :

[ f ]Wα,p(Rn) :=
(∫

Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+pα

dx dy

) 1
p

< +∞
}

endowed with the norm

‖ f ‖Wα,p(Rn) := ‖ f ‖L p(Rn) + [ f ]Wα,p(Rn) ∀ f ∈ Wα,p(Rn).

If p = +∞, thenWα,∞(Rn) naturally coincides with the space of bounded α-Hölder
continuous functions endowed with the usual norm (see [32] for a detailed account on
the spaces Wα,p).

For the case p = 1, starting from the very definition of the fractional gradient ∇α ,
it is plain to see thatWα,1(Rn) ⊂ Sα,1(Rn) ⊂ BV α(Rn) with both (strict) continuous
embeddings, see [27, Theorems 3.18 and 3.25].

For the case p ∈ (1,+∞), instead, it is known that Sα,p(Rn) ⊃ Lα,p(Rn) with
continuous embedding, where Lα,p(Rn) is the Bessel potential space of parameters
α ∈ (0, 1) and p ∈ (1,+∞), see [27, Section 3.9] and the references therein. In the
subsequent paper [26], it will be proved that also the inclusion Sα,p(Rn) ⊂ Lα,p(Rn)

holds continuously, so that the spaces Sα,p(Rn) and Lα,p(Rn) coincide. In particular,
we get the following relations: Sα+ε,p(Rn) ⊂ Wα,p(Rn) ⊂ Sα−ε,p(Rn) with contin-
uous embeddings for all α ∈ (0, 1), p ∈ (1,+∞) and 0 < ε < min{α, 1 − α}, see
[69, Theorem 2.2]; Sα,2(Rn) = Wα,2(Rn) for all α ∈ (0, 1), see [69, Theorem 2.2];
Wα,p(Rn) ⊂ Sα,p(Rn) with continuous embedding for all α ∈ (0, 1) and p ∈ (1, 2],
see [76, Chapter V, Section 5.3].

In thegeometric regime p = 1, our distributional approach to the fractional variation
naturally provides a new definition of distributional fractional perimeter. Precisely, for
any open set � ⊂ R

n , the fractional Caccioppoli α-perimeter in � of a measurable
set E ⊂ R

n is the fractional α-variation of χE in �, i.e.

|DαχE |(�) = sup

{∫
E
divαϕ dx : ϕ ∈ C∞

c (�; R
n), ‖ϕ‖L∞(�;Rn) ≤ 1

}
.

Thus, E is a set with finite fractional Caccioppoli α-perimeter in � if |DαχE |(�) <

+∞.
Similarly to the aforementioned embedding Wα,1(Rn) ⊂ BV α(Rn), we have the

inequality

|DαχE |(�) ≤ μn,αPα(E;�) (1.9)
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for any open set � ⊂ R
n , see [27, Proposition 4.8], where

Pα(E;�) :=
∫

�

∫
�

|χE (x) − χE (y)|
|x − y|n+α

dx dy

+ 2
∫

�

∫
Rn\�

|χE (x) − χE (y)|
|x − y|n+α

dx dy (1.10)

is the standard fractional α-perimeter of a measurable set E ⊂ R
n relative to the open

set � ⊂ R
n (see [28] for an account on the fractional perimeter Pα). Note that, by

definition, the fractional α-perimeter of E in R
n is simply Pα(E) := Pα(E; R

n) =
[χE ]Wα,1(Rn). We remark that inequality (1.9) is strict in most of the cases, as shown
in Sect. 2.6 below. This completely answers a question left open in our previous work
[27].

1.2 Asymptotics and 0-convergence in the standard fractional setting

The fractional Sobolev space Wα,p(Rn) can be understood as an ‘intermediate
space’ between the space L p(Rn) and the standard Sobolev space W 1,p(Rn). In fact,
Wα,p(Rn) can be recovered as a suitable (real) interpolation space between the spaces
L p(Rn) andW 1,p(Rn). We refer to [13, 78] for a general introduction on interpolation
spaces and to [54] for a more specific treatment of the interpolation space between
L p(Rn) and W 1,p(Rn).

One then naturally expects that, for a sufficiently regular function f , the frac-
tional Sobolev seminorm [ f ]Wα,p(Rn), multiplied by a suitable renormalising constant,
should tend to ‖ f ‖L p(Rn) as α → 0+ and to ‖∇ f ‖L p(Rn) as α → 1−. Indeed, for
p ∈ [1,+∞), it is known that

lim
α→0+ α [ f ]pWα,p(Rn)

= An,p ‖ f ‖p
L p(Rn)

(1.11)

for all f ∈ ⋃
α∈(0,1) W

α,p(Rn), while

lim
α→1−(1 − α) [ f ]pWα,p(Rn)

= Bn,p ‖∇ f ‖p
L p(Rn;Rn)

(1.12)

for all f ∈ W 1,p(Rn). Here An,p, Bn,p > 0 are two constants depending only on n, p.
The limit (1.11) was proved in [51, 52], while the limit (1.12) was established in [14].
As proved in [30], when p = 1 the limit (1.12) holds in the more general case of BV
functions, that is,

lim
α→1−(1 − α) [ f ]Wα,1(Rn) = Bn,1 |Df |(Rn) (1.13)

for all f ∈ BV (Rn). For a different approach to the limits in (1.11) and in (1.13)
based on interpolation techniques, see [54].

The limits (1.12) and (1.13) are special consequences of the celebrated Bourgain–
Brezis–Mironescu (BBM, for short) formula
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lim
k→+∞

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|p 
k(|x − y|) dx dy

=
{
Cn,p ‖∇ f ‖p

L p(Rn)
for p ∈ (1,+∞),

Cn,1 |Df |(Rn) for p = 1,
(1.14)

where Cn,p > 0 is a constant depending only on n and p, and (
k)k∈N ⊂
L1
loc([0,+∞)) is a sequence of non-negative radial mollifiers such that

∫
Rn


k(|x |) dx = 1 for all k ∈ N and lim
k→+∞

∫ +∞

δ


k(r) r
n−1 dr = 0 for all δ > 0.

The BBM formula (1.14) has stimulated a profound development in the asymptotic
analysis in the fractional framework. On the one hand, the limit (1.14) played a cen-
tral role in several applications, such as Brezis’ analysis [18] on how to recognize
constant functions, innovative characterizations of Sobolev and BV functions and �-
convergence results [6–8, 11, 16, 48–50, 56–59, 63], approximation of Sobolev norms
and image processing [20, 22–24], and last but not least fractional Hardy and Poincaré
inequalities [15, 38, 61]. On the other hand, the BBM formula (1.14) has suggested
an alternative path to fractional asymptotic analysis by means of interpolation tech-
niques [54, 65]. Recently, the BBM formula in (1.14) has been revisited in terms of
a.e. pointwise convergence [21] and in connection with weak L p quasi-norms [25],
where the now-called Brezis–Van Schaftingen–Yung space

BSY α,p(Rn) =
{
f ∈ L1

loc(R
n) :

∥∥∥∥∥
| f (x) − f (y)|
|x − y| np +α

∥∥∥∥∥
L p

w(Rn×Rn)

< +∞
}
,

defined for α ∈ (0, 1] and p ∈ [1,+∞), has opened a very promising perspective in
the field [33].

The limits (1.11)–(1.14) have been connected to variational problems [10], gener-
alized to various function spaces, for example Besov spaces [43, 79], Orlicz spaces [2,
36, 37] and magnetic and anisotropic Sobolev spaces [45, 58–60, 75], and extended
to various ambient spaces, like compact connected Riemannian manifolds [44], the
flat torus [5], Carnot groups [12, 49] and complete doubling metric-measure spaces
supporting a local Poincaré inequality [31].

Concerning the fractional perimeter Pα given in (1.10), one has some additional
information besides equations (1.11) and (1.13).

On the one hand, thanks to [64, Theorem 1.2], the fractional α-perimeter Pα

enjoys the following fractional analogue of Gustin’s Boxing Inequality (see [41] and
[35, Corollary 4.5.4]): there exists a dimensional constant cn > 0 such that, for any
bounded open set E ⊂ R

n , one can find a covering

E ⊂
⋃
k∈N

Brk (xk)
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of open balls such that

∑
k∈N

rn−α
k ≤ cnα(1 − α)Pα(E). (1.15)

Inequality (1.15) bridges the two limiting behaviors given by (1.11) and (1.13) and
provides a useful tool for recovering Gagliardo–Nirenberg–Sobolev and Poincaré–
Sobolev inequalities that remain stable as the exponent α ∈ (0, 1) approaches the
endpoints.

On the other hand, by [3, Theorem 2], the fractional α-perimeter Pα �-converges
in L1

loc(R
n) to the standard De Giorgi’s perimeter P as α → 1−, that is, if � ⊂ R

n is
a bounded open set with Lipschitz boundary, then

�(L1
loc) - lim

α→1−(1 − α) Pα(E;�) = 2ωn−1P(E;�) (1.16)

for all measurable sets E ⊂ R
n , where ωn is the volume of the unit ball in R

n (it
should be noted that in [3] the authors use a slightly different definition of the frac-
tional α-perimeter, since they consider the functional Jα(E,�) := 1

2 Pα(E,�)). For
a complete account on �-convergence, we refer the reader to the monographs [17, 29]
(throughout all the paper, with the symbol �(X) - lim we denote the �-convergence
in the ambient metric space X ). The convergence in (1.16), besides giving a �-
convergence analogue of the limit in (1.13), is tightly connected with the study of
the regularity properties of non-local minimal surfaces, that is, (local) minimisers of
the fractional α-perimeter Pα .

1.3 Asymptotics and 0-convergence for the fractional˛-variation as˛ → 1−

The main aim of the present work is to study the asymptotic behavior of the fractional
α-variation (1.1) as α → 1−, both in the pointwise and in the �-convergence sense.

Weprovide counterparts of the limits (1.12) and (1.13) for the fractionalα-variation.
Indeed, we prove that, if f ∈ W 1,p(Rn) for some p ∈ [1,+∞), then f ∈ Sα,p(Rn)

for all α ∈ (0, 1) and, moreover,

lim
α→1− ‖∇α

w f − ∇w f ‖L p(Rn;Rn) = 0. (1.17)

In the geometric regime p = 1, we show that if f ∈ BV (Rn) then f ∈ BV α(Rn) for
all α ∈ (0, 1) and, in addition,

Dα f ⇀Df inM (Rn; R
n) and|Dα f |⇀|Df | inM (Rn) as α → 1− (1.18)

and

lim
α→1− |Dα f |(Rn) = |Df |(Rn). (1.19)
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We are also able to treat the case p = +∞. In fact, we prove that if f ∈ W 1,∞(Rn)

then f ∈ Sα,∞(Rn) for all α ∈ (0, 1) and, moreover,

∇α
w f ⇀∇w f in L∞(Rn; R

n) as α → 1− (1.20)

and

‖∇w f ‖L∞(Rn;Rn) ≤ lim inf
α→1− ‖∇α

w f ‖L∞(Rn;Rn). (1.21)

We refer the reader to Theorem 4.9, Theorem 4.11 and Theorem 4.12 below for
the precise statements. We warn the reader that the symbol ‘⇀’ appearing in (1.18)
and (1.20) denotes the weak*-convergence, see Sect. 2.1 below for the notation.

Some of the above results were partially announced in [71]. In a similar perspective,
we also refer to the work [53], where the authors proved convergence results for non-
local gradient operators on BV functions defined on bounded open sets with smooth
boundary. The approach developed in [53] is however completely different from the
asymptotic analysis we presently perform for the fractional operator defined in (1.4),
since the boundedness of the domain of definition of the integral operators considered
in [53] plays a crucial role.

Notice that the renormalising factor (1 − α)
1
p is not needed in the limits (1.17)–

(1.21), contrarily to what happened for the limits (1.12) and (1.13). In fact, this
difference should not come as a surprise, since the constant μn,α in (1.3), encoded in
the definition of the operator ∇α , satisfies

μn,α ∼ 1 − α

ωn
as α → 1−, (1.22)

and thus plays a similar role of the factor (1 − α)
1
p in the limit as α → 1−. Thus,

differently from our previous work [27], the constant μn,α appearing in the definition
of the operators ∇α and divα is of crucial importance in the asymptotic analysis
developed in the present paper.

Another relevant aspect of our approach is that convergence as α → 1− holds true
not only for the total energies, but also at the level of differential operators, in the strong
sense when p ∈ (1,+∞) and in the weak* sense for p = 1 and p = +∞. In simpler
terms, the non-local fractional α-gradient ∇α converges to the local gradient ∇ as
α → 1− in the most natural way every time the limit is well defined.

We also provide a counterpart of (1.16) for the fractional α-variation as α → 1−.
Precisely, we prove that, if � ⊂ R

n is a bounded open set with Lipschitz boundary,
then

�(L1
loc) - lim

α→1− |DαχE |(�) = P(E;�) (1.23)

for all measurable set E ⊂ R
n , see Theorem 4.16. In view of (1.9), one may ask

whether the � - lim sup inequality in (1.23) could be deduced from the � - lim sup
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inequality in (1.16). In fact, by employing (1.9) together with (1.16) and (1.22), one
can estimate

�(L1
loc) - lim sup

α→1−
|DαχE |(�) ≤ �(L1

loc) - lim sup
α→1−

μn,αPα(E,�) = 2ωn−1

ωn
P(E,�).

However, we have 2ωn−1
ωn

> 1 for any n ≥ 2 and thus the� - lim sup inequality in (1.23)
follows from the � - lim sup inequality in (1.16) only in the case n = 1. In a similar
way, one sees that the � - lim inf inequality in (1.23) implies the � - lim inf inequality
in (1.16) only in the case n = 1.

Besides the counterpart of (1.16), our approach allows to prove that �-convergence
holds true also at the level of functions. Indeed, if f ∈ BV (Rn) and � ⊂ R

n is an
open set such that either � is bounded with Lipschitz boundary or � = R

n , then

�(L1) - lim
α→1− |Dα f |(�) = |Df |(�). (1.24)

One can regard the limit (1.24) as an analogue of the �-convergence results known
in the usual fractional setting, see [57, 62]. We refer the reader to Theorems 4.13,
4.14 and 4.17 for the (even more general) results in this direction. Again, as before
and thanks to the asymptotic behavior (1.22), the renormalising factor (1 − α) is not
needed in the limits (1.23) and (1.24).

As a byproduct of the techniques developed for the asymptotic studyof the fractional
α-variation as α → 1−, we are also able to characterize the behavior of the fractional
β-variation as β → α−, for any given α ∈ (0, 1). On the one hand, if f ∈ BV α(Rn),
then

Dβ f ⇀Dα f inM (Rn; R
n) and |Dβ f |⇀|Dα f | inM (Rn) as β → α−

and, moreover,

lim
β→α− |Dβ f |(Rn) = |Dα f |(Rn),

see Theorem 5.4. On the other hand, if f ∈ BV α(Rn) and � ⊂ R
n is an open set

such that either � is bounded and |Dα f |(∂�) = 0 or � = R
n , then

�(L1) - lim
β→α− |Dβ f |(�) = |Dα f |(�),

see Theorems 5.5 and 5.6.

1.4 Future developments: asymptotics for the fractional˛-variation as˛ → 0+

Having in mind the limit (1.11), it would be interesting to understand what happens
to the fractional α-variation (1.1) as α → 0+. Note that
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lim
α→0+ μn,α = π− n

2
�

( n+1
2

)
�

( 1
2

) =: μn,0, (1.25)

so there is no renormalization factor as α → 0+, differently from (1.22).
At least formally, as α → 0+ the fractional α-gradient in (1.4) is converging to the

operator

∇0 f (x) := μn,0

∫
Rn

(y − x)( f (y) − f (x))

|y − x |n+1 dy, x ∈ R
n . (1.26)

The operator in (1.26) is well defined (in the principal value sense) for all f ∈ C∞
c (Rn)

and, actually, coincides with the well-known vector-valued Riesz transform R f , see
[39, Section 5.1.4] and [76, Chapter 3]. Similarly, the fractional α-divergence in (1.2)
is formally converging to the operator

div0ϕ(x) := μn,0

∫
Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+1 dy, x ∈ R
n, (1.27)

which is well defined (in the principal value sense) for all ϕ ∈ C∞
c (Rn; R

n).
In perfect analogy with what we did before, we can introduce the space BV 0(Rn)

as the space of functions f ∈ L1(Rn) such that the quantity

|D0 f |(Rn) := sup

{∫
Rn

f div0ϕ dx : ϕ ∈ C∞
c (Rn; R

n), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}

is finite. Surprisingly (and differently from the fractional α-variation, recall [27, Sec-
tion 3.10]), it turns out that |D0 f | � L n for all f ∈ BV 0(Rn). More precisely, one
can actually prove that BV 0(Rn) = H1(Rn), in the sense that f ∈ BV 0(Rn) if and
only if f ∈ H1(Rn), with D0 f = R fL n inM (Rn; R

n). Here

H1(Rn) :=
{
f ∈ L1(Rn) : R f ∈ L1(Rn; R

n)

}

is the (real)Hardy space, see [77, Chapter III] for the precise definition. Thus, it would
be interesting to understand for which functions f ∈ L1(Rn) the fractional α-gradient
∇α f tends (in a suitable sense) to the Riesz transform R f as α → 0+. Of course, if
R f /∈ L1(Rn; R

n), that is, f /∈ H1(Rn), then one cannot expect strong convergence
in L1 and, instead, may consider the asymptotic behavior of the rescaled fractional
gradient α ∇α f as α → 0+, in analogy with the limit in (1.11). This line of research,
as well as the identifications BV 0 = H1 and Sα,p = Lα,p mentioned above, it is the
subject of the subsequent paper [26].

1.5 Organization of the paper

The paper is organized as follows.
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In Sect. 2, after having briefly recalled the definitions and the main properties of
the operators ∇α and divα , we extend certain technical results of [27].

In Sect. 3, we prove several integrability properties of the fractional α-gradient
and two useful representation formulas for the fractional α-variation of functions
with bounded De Giorgi’s variation. We are also able to prove similar results for the
fractional β-gradient of functions with bounded fractional α-variation, see Sect. 3.4.

In Sect. 4, we study the asymptotic behavior of the fractionalα-variation asα → 1−
and prove pointwise-convergence and �-convergence results, dealing separately with
the integrability exponents p = 1, p ∈ (1,+∞) and p = +∞.

In Sect. 5, we show that the fractional β-variation weakly converges and �-
converges to the fractional α-variation as β → α− for any α ∈ (0, 1).

In Appendix A, for the reader’s convenience, we state and prove two known results
on the truncation and the approximation of BV functions and sets with finite perimeter
that are used in Sect. 3 and in Sect. 4.

2 Preliminaries

2.1 General notation

We start with a brief description of the main notation used in this paper. In order to
keep the exposition the most reader-friendly as possible, we retain the same notation
adopted in our previous work [27].

Given an open set �, we say that a set E is compactly contained in �, and we
write E � �, if the E is compact and contained in �. We denote by L n and H α

the n-dimensional Lebesgue measure and the α-dimensional Hausdorff measure on
R
n respectively, with α ≥ 0. Unless otherwise stated, a measurable set is a L n-

measurable set. We also use the notation |E | = L n(E). All functions we consider in
this paper are Lebesgue measurable, unless otherwise stated. We denote by Br (x) the
standard open Euclidean ball with center x ∈ R

n and radius r > 0.We let Br = Br (0).
Recall that ωn := |B1| = π

n
2 /�

( n+2
2

)
and H n−1(∂B1) = nωn , where � is Euler’s

Gamma function, see [9].
We let GL(n) ⊃ O(n) ⊃ SO(n) be the general linear group, the orthogonal group

and the special orthogonal group respectively. We tacitly identify GL(n) ⊂ R
n2 with

the space of invertible n × n -matrices and we endow it with the usual Euclidean
distance in R

n2 .
For k ∈ N0 ∪ {+∞} and m ∈ N, we denote by Ck

c (�; R
m) and Lipc(�; R

m) the
spaces of Ck-regular and, respectively, Lipschitz-regular, m-vector-valued functions
defined on R

n with compact support in �.
For any exponent p ∈ [1,+∞], we denote by L p(�; R

m) the space of m-
vector-valued Lebesgue p-integrable functions on �. For p ∈ [1,+∞], we say that
( fk)k∈N ⊂ L p(�; R

m) weakly converges to f ∈ L p(�; R
m), and we write fk⇀ f in

L p(�; R
m) as k → +∞, if
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lim
k→+∞

∫
�

fk · ϕ dx =
∫

�

f · ϕ dx (2.1)

for all ϕ ∈ Lq(�; R
m), with q ∈ [1,+∞] the conjugate exponent of p, that is,

1
p + 1

q = 1 (with the usual convention 1
+∞ = 0). Note that in the case p = +∞

we make a little abuse of terminology, since the limit in (2.1) actually defines the
weak*-convergence in L∞(�; R

m).
We let

W 1,p(�; R
m) :=

{
u ∈ L p(�; R

m) : [u]W 1,p(�;Rm ) := ‖∇u‖L p(�;Rnm) < +∞
}

be the space of m-vector-valued Sobolev functions on �, see for instance [46, Chap-
ter 10] for its precise definition and main properties. We also let

w1,p(�; R
m) :=

{
u ∈ L1

loc(�; R
m) : [u]W 1,p(�;Rm ) < +∞

}
.

We let

BV (�; R
m) :=

{
u ∈ L1(�; R

m) : [u]BV (�;Rm) := |Du|(�) < +∞
}

be the space ofm-vector-valued functions of bounded variation on �, see for instance
[4, Chapter 3] or [34, Chapter 5] for its precise definition and main properties. We also
let

bv(�; R
m) :=

{
u ∈ L1

loc(�; R
m) : [u]BV (�;Rm) < +∞

}
.

For α ∈ (0, 1) and p ∈ [1,+∞), we let

Wα,p(�; R
m) :=

{
u ∈ L p(�; R

m) :

[u]Wα,p(�;Rm) :=
(∫

�

∫
�

|u(x) − u(y)|p
|x − y|n+pα

dx dy

) 1
p

< +∞
}

be the space of m-vector-valued fractional Sobolev functions on �, see [32] for its
precise definition and main properties. We also let

wα,p(�; R
m) :=

{
u ∈ L1

loc(�; R
m) : [u]Wα,p(�;Rm) < +∞

}
.

For α ∈ (0, 1) and p = +∞, we simply let

Wα,∞(�; R
m) :=

{
u ∈ L∞(�; R

m) : sup
x,y∈�, x �=y

|u(x) − u(y)|
|x − y|α < +∞

}
,
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so that Wα,∞(�; R
m) = C0,α

b (�; R
m), the space of m-vector-valued bounded α-

Hölder continuous functions on �.
We let M (�; R

m) be the space of m-vector-valued Radon measures with finite
total variation, precisely

|μ|(�) := sup

{∫
�

ϕ · dμ : ϕ ∈ C0
c (�; R

m), ‖ϕ‖L∞(�;Rm ) ≤ 1

}

for μ ∈ M (�; R
m). We say that (μk)k∈N ⊂ M (�; R

m) weakly converges to μ ∈
M (�; R

m), and we write μk⇀μ inM (�; R
m) as k → +∞, if

lim
k→+∞

∫
�

ϕ · dμk =
∫

�

ϕ · dμ (2.2)

for all ϕ ∈ C0
c (�; R

m). Note that we make a little abuse of terminology, since the
limit in (2.2) actually defines the weak*-convergence inM (�; R

m).
In order to avoid heavy notation, if the elements of a function space F(�; R

m) are
real-valued (i.e. m = 1), then we will drop the target space and simply write F(�).

2.2 Basic properties of∇˛ and div˛

We recall the non-local operators ∇α and divα introduced by Šilhavý in [72] (see also
our previous work [27]).

Let α ∈ (0, 1) and set

μn,α := 2απ− n
2
�

( n+α+1
2

)
�

( 1−α
2

) .

We let

∇α f (x) := μn,α lim
ε→0

∫
{|z|>ε}

z f (x + z)

|z|n+α+1 dz

be the fractional α-gradient of f ∈ Lipc(R
n) at x ∈ R

n . We also let

divαϕ(x) := μn,α lim
ε→0

∫
{|z|>ε}

z · ϕ(x + z)

|z|n+α+1 dz

be the fractional α-divergence of ϕ ∈ Lipc(R
n; R

n) at x ∈ R
n . The non-local oper-

ators ∇α and divα are well defined in the sense that the involved integrals converge
and the limits exist, see [72, Section 7] and [27, Section 2]. Moreover, since
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∫
{|z|>ε}

z

|z|n+α+1 dz = 0, ∀ε > 0,

it is immediate to check that ∇αc = 0 for all c ∈ R and

∇α f (x) = μn,α lim
ε→0

∫
{|y−x |>ε}

(y − x)

|y − x |n+α+1 f (y) dy

= μn,α lim
ε→0

∫
{|x−y|>ε}

(y − x)( f (y) − f (x))

|y − x |n+α+1 dy

= μn,α

∫
Rn

(y − x)( f (y) − f (x))

|y − x |n+α+1 dy, ∀x ∈ R
n,

for all f ∈ Lipc(R
n). Analogously, we also have

divαϕ(x) = μn,α lim
ε→0

∫
{|x−y|>ε}

(y − x) · ϕ(y)

|y − x |n+α+1 dy,

= μn,α lim
ε→0

∫
{|x−y|>ε}

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy,

= μn,α

∫
Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy, ∀x ∈ R
n,

for all ϕ ∈ Lipc(R
n).

Given α ∈ (0, n), we let

Iαu(x) := μn,1−α

n − α

∫
Rn

u(y)

|x − y|n−α
dy, x ∈ R

n, (2.3)

be the Riesz potential of order α ∈ (0, n) of a function u ∈ C∞
c (Rn; R

m). We recall
that, ifα, β ∈ (0, n) satisfyα+β < n, thenwe have the following semigroup property

Iα(Iβu) = Iα+βu (2.4)

for all u ∈ C∞
c (Rn; R

m). In addition, if 1 < p < q < +∞ satisfy

1

q
= 1

p
− α

n
,

then there exists a constant Cn,α,p > 0 such that the operator in (2.3) satisfies

‖Iαu‖Lq (Rn;Rm ) ≤ Cn,α,p‖u‖L p(Rn;Rm ) (2.5)

for all u ∈ C∞
c (Rn; R

m). As a consequence, the operator in (2.3) extends to a linear
continuous operator from L p(Rn; R

m) to Lq(Rn; R
m), for which we retain the same

notation. For a proof of (2.4) and (2.5), we refer the reader to [76, Chapter V, Section 1]
and to [40, Section 1.2.1].

We can now recall the following result, see [27, Proposition 2.2 and Corollary 2.3].
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Proposition 2.1 Let α ∈ (0, 1). If f ∈ Lipc(R
n), then

∇α f = I1−α∇ f = ∇ I1−α f (2.6)

and ∇α f ∈ L1(Rn; R
n) ∩ L∞(Rn; R

n), with

‖∇α f ‖L1(Rn;Rn) ≤ μn,α[ f ]Wα,1(Rn) (2.7)

and

‖∇α f ‖L∞(Rn;Rn) ≤ Cn,α,U‖∇ f ‖L∞(Rn;Rn) (2.8)

for any bounded open set U ⊂ R
n such that supp( f ) ⊂ U, where

Cn,α,U := nμn,α

(1 − α)(n + α − 1)

(
ωn diam(U )1−α +

(
nωn

n + α − 1

) n+α−1
n |U | 1−α

n

)
.

(2.9)

Analogously, if ϕ ∈ Lipc(R
n; R

n) then

divαϕ = I1−αdivϕ = divI1−αϕ (2.10)

and divαϕ ∈ L1(Rn) ∩ L∞(Rn), with

‖divαϕ‖L1(Rn) ≤ μn,α[ϕ]Wα,1(Rn;Rn) (2.11)

and

‖divαϕ‖L∞(Rn) ≤ Cn,α,U‖divϕ‖L∞(Rn) (2.12)

for any bounded open set U ⊂ R
n such that supp(ϕ) ⊂ U, where Cn,α,U is as in (2.9).

2.3 Extension of∇˛ and div˛ to Lipb-regular tests

In the following result, we extend the fractional α-divergence to Lipb-regular vector
fields.

Lemma 2.2 (Extension of divα to Lipb). Let α ∈ (0, 1). The operator

divα : Lipb(R
n; R

n) → L∞(Rn)

given by

divαϕ(x) := μn,α

∫
Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy, x ∈ R
n, (2.13)
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for all ϕ ∈ Lipb(R
n; R

n), is well defined, with

‖divαϕ‖L∞(Rn) ≤ 21−αnωnμn,α

α(1 − α)
Lip(ϕ)α‖ϕ‖1−α

L∞(Rn;Rn)
, (2.14)

and satisfies

divαϕ(x) = μn,α lim
ε→0+

∫
{|y−x |>ε}

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy

= μn,α lim
ε→0+

∫
{|y−x |>ε}

(y − x) · ϕ(y)

|y − x |n+α+1 dy
(2.15)

for all x ∈ R
n. Moreover, if in addition I1−α|divϕ| ∈ L1

loc(R
n), then

divαϕ(x) = I1−αdivϕ(x) (2.16)

for a.e. x ∈ R
n.

Proof We split the proof in two steps.
Step 1: proof of (2.13), (2.14) and (2.15). Given x ∈ R

n and r > 0, we can estimate

∫
{|y−x |≤r}

∣∣∣∣ (y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1

∣∣∣∣ dy ≤ nωnLip(ϕ)

∫ r

0

−α d


and

∫
{|y−x |>r}

∣∣∣∣ (y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1

∣∣∣∣ dy ≤ 2nωn‖ϕ‖L∞(Rn;Rn)

∫ +∞

r

−(1+α) d
.

Hence the function in (2.13) is well defined for all x ∈ R
n and

‖divαϕ‖L∞(Rn) ≤ nωn

(
Lip(ϕ)

1 − α
r1−α + 2‖ϕ‖L∞(Rn;Rn)

α
r−α

)
,

so that (2.14) follows by optimising the right-hand side in r > 0. Moreover, since

∣∣∣∣ (y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 χ(ε,+∞)(|y − x |)
∣∣∣∣

≤ Lip(ϕ)
χ(0,1)(|y − x |)
|y − x |n+α−1 + 2‖ϕ‖L∞(Rn;Rn)

χ[1,+∞)(|y − x |)
|y − x |n+α

∈ L1
x,y(R

n)

and
∫

{|z|>ε}
z

|z|n+α+1 dy = 0

123



A distributional approach to fractional Sobolev spaces…

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get
the two equalities in (2.15) for all x ∈ R

n .
Step 2: proof of (2.16). Assume that I1−α|divϕ| ∈ L1

loc(R
n). Then

|divϕ(y)|
|y − x |n+α−1 ∈ L1

y(R
n) (2.17)

for a.e. x ∈ R
n . Hence, by Lebesgue’s Dominated Convergence Theorem, we can

write

I1−αdivϕ(x) = μn,α lim
ε→0+

∫
{|y−x |>ε}

divϕ(y)

|y − x |n+α−1 dy

for a.e. x ∈ R
n . Now let ε > 0 be fixed and let R > 0. Again by (2.17) and Lebesgue’s

Dominated Convergence Theorem, we have

lim
R→+∞

∫
{R>|y−x |>ε}

divϕ(y)

|y − x |n+α−1 dy =
∫

{|y−x |>ε}
divϕ(y)

|y − x |n+α−1 dy

for a.e. x ∈ R
n . Moreover, integrating by parts, we get

∫
{R>|y−x |>ε}

divϕ(y)

|y − x |n+α−1 dy =
∫

{R>|y|>ε}
divyϕ(y + x)

|y|n+α−1 dy

=
∫

{|y|=R}
y

|y|
ϕ(y + x)

|y|n+α−1 dH n−1(y)

−
∫

{|y|=ε}
y

|y|
ϕ(y + x)

|y|n+α−1 dH n−1(y)

+
∫

{R>|y|>ε}
y · ϕ(y + x)

|y|n+α+1 dy

for all R > 0 and for a.e. x ∈ R
n . Since ϕ ∈ L∞(Rn; R

n), by Lebesgue’s Dominated
Convergence Theorem we have

lim
R→+∞

∫
{R>|y|>ε}

y · ϕ(y + x)

|y|n+α+1 dy =
∫

{|y|>ε}
y · ϕ(y + x)

|y|n+α+1 dy

for all ε > 0 and all x ∈ R
n . We can also estimate

∣∣∣∣
∫

{|y|=R}
y

|y|
ϕ(y + x)

|y|n+α−1 dH n−1(y)

∣∣∣∣ ≤ nωn‖ϕ‖L∞(Rn;Rn)R
−α
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for all R > 0 and all x ∈ R
n . We thus have that

∫
{|y−x |>ε}

divϕ(y)

|y − x |n+α−1 dy

=
∫

{|y|>ε}
y · ϕ(y + x)

|y|n+α+1 dy −
∫

{|y|=ε}
y

|y|
ϕ(y + x)

|y|n+α−1 dH n−1(y)

for all ε > 0 and a.e. x ∈ R
n . Since also

∣∣∣∣
∫

{|y|=ε}
y

|y|
ϕ(y + x)

|y|n+α−1 dH n−1(y)

∣∣∣∣ =
∣∣∣∣
∫

{|y|=ε}
y

|y|
ϕ(y + x) − ϕ(x)

|y|n+α−1 dH n−1(y)

∣∣∣∣
≤ nωn Lip(ϕ) ε1−α

for all ε > 0 and x ∈ R
n , we conclude that

lim
ε→0+

∫
{|y−x |>ε}

divϕ(y)

|y − x |n+α−1 dy = lim
ε→0+

∫
{|y−x |>ε}

(y − x) · ϕ(y)

|y − x |n+α+1 dy

for a.e. x ∈ R
n , proving (2.16). ��

We can also extend the fractional α-gradient to Lipb-regular functions. The proof
is very similar to the one of Lemma 2.2 and is left to the reader.

Lemma 2.3 (Extension of ∇α to Lipb). Let α ∈ (0, 1). The operator

∇α : Lipb(R
n) → L∞(Rn; R

n)

given by

∇α f (x) := μn,α

∫
Rn

(y − x) · ( f (y) − f (x))

|y − x |n+α+1 dy, x ∈ R
n,

for all f ∈ Lipb(R
n), is well defined, with

‖∇α f ‖L∞(Rn;Rn) ≤ 21−αnωnμn,α

α(1 − α)
Lip( f )α‖ f ‖1−α

L∞(Rn)
,

and satisfies

∇α f (x) = μn,α lim
ε→0+

∫
{|y−x |>ε}

(y − x) · ( f (y) − f (x))

|y − x |n+α+1 dy

= μn,α lim
ε→0+

∫
{|y−x |>ε}

(y − x) · f (y)

|y − x |n+α+1 dy
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for all x ∈ R
n. Moreover, if in addition I1−α|∇ f | ∈ L1

loc(R
n), then

∇α f (x) = I1−α∇ f (x)

for a.e. x ∈ R
n.

2.4 Extended Leibniz’s rules for∇˛ and div˛

The following two results extend the validity of Leibniz’s rules proved in [27, Lem-
mas 2.6 and 2.7] to Lipb-regular functions and Lipb-regular vector fields. The proofs
are very similar to the ones given in [27] and to that of Lemma 2.2, and thus are left
to the reader.

Lemma 2.4 (Extended Leibniz’s rule for ∇α). Let α ∈ (0, 1). If f ∈ Lipb(R
n) and

η ∈ Lipc(R
n), then

∇α(η f ) = η ∇α f + f ∇αη + ∇α
NL(η, f ),

where

∇α
NL(η, f )(x) = μn,α

∫
Rn

(y − x) · ( f (y) − f (x))(η(y) − η(x))

|y − x |n+α+1 dy

for all x ∈ R
n, with

‖∇α
NL(η, f )‖L∞(Rn;Rn) ≤ 22−αnωnμn,α‖ f ‖L∞(Rn)

α(1 − α)
Lip(η)α‖η‖1−α

L∞(Rn)

and

‖∇α
NL(η, f )‖L1(Rn;Rn) ≤ 2μn,α‖ f ‖L∞(Rn)[η]Wα,1(Rn).

Lemma 2.5 (Extended Leibniz’s rule for divα). Let α ∈ (0, 1). If ϕ ∈ Lipb(R
n; R

n)

and η ∈ Lipc(R
n), then

divα(ηϕ) = η divαϕ + ϕ · ∇αη + divα
NL(η, ϕ),

where

divα
NL(η, ϕ)(x) = μn,α

∫
Rn

(y − x) · (ϕ(y) − ϕ(x))(η(y) − η(x))

|y − x |n+α+1 dy

for all x ∈ R
n, with

‖divα
NL(η, ϕ)‖L∞(Rn) ≤ 22−αnωnμn,α‖ϕ‖L∞(Rn;Rn)

α(1 − α)
Lip(η)α‖η‖1−α

L∞(Rn)
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and

‖divα
NL(η, ϕ)‖L1(Rn) ≤ 2μn,α‖ϕ‖L∞(Rn;Rn)[η]Wα,1(Rn).

2.5 Extended integration-by-part formulas

We now recall the definition of the space of functions with bounded fractional α-
variation. Given α ∈ (0, 1), we let

BV α(Rn) :=
{
f ∈ L1(Rn) : |Dα f |(Rn) < +∞

}
,

where

|Dα f |(Rn) = sup

{∫
Rn

f divαϕ dx : ϕ ∈ C∞
c (Rn; R

n), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}

is the fractional α-variation of f ∈ L1(Rn). We refer the reader to [27, Section 3] for
the basic properties of this function space. Here we just recall the following result, see
[27, Theorem 3.2 and Proposition 3.6] for the proof.

Theorem 2.6 (Structure theorem for BV α functions). Let α ∈ (0, 1). If f ∈ L1(Rn),
then f ∈ BV α(Rn) if and only if there exists a finite vector-valued Radon measure
Dα f ∈ M (Rn; R

n) such that

∫
Rn

f divαϕ dx = −
∫
Rn

ϕ · dDα f (2.18)

for all ϕ ∈ Lipc(R
n; R

n).

Thanks to Lemma 2.5, we can actually prove that a function in BV α(Rn) can be
tested against any Lipb-regular vector field.

Proposition 2.7 (Lipb-regular test for BV α functions). Let α ∈ (0, 1). If f ∈
BV α(Rn), then (2.18) holds for all ϕ ∈ Lipb(R

n; R
n).

Proof We argue as in the proof of [27, Theorem 3.8]. Fix ϕ ∈ Lipb(R
n; R

n) and let
(ηR)R>0 ⊂ C∞

c (Rn) be a family of cut-off functions as in [27, Section 3.3]. On the
one hand, since

∣∣∣∣
∫
Rn

f ηR div
αϕ dx −

∫
Rn

f divαϕ dx

∣∣∣∣ ≤ ‖divαϕ‖L∞(Rn)

∫
Rn

| f | (1 − ηR) dx

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
R→+∞

∫
Rn

f ηR div
αϕ dx =

∫
Rn

f divαϕ dx .
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On the other hand, by Lemma 2.5 we can write

∫
Rn

f ηR div
αϕ dx =

∫
Rn

f divα(ηRϕ) dx −
∫
Rn

f ϕ · ∇αηR dx

−
∫
Rn

f divα
NL(ηR, ϕ) dx

for all R > 0. By [27, Proposition 3.6], we have

∫
Rn

f divα(ηRϕ) dx = −
∫
Rn

ηRϕ · dDα f

for all R > 0. Since
∣∣∣∣
∫
Rn

ηRϕ · dDα f −
∫
Rn

ϕ · dDα f

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)

∫
Rn

(1 − ηR) d|Dα f |

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the
finite measure |Dα f |) we have

lim
R→+∞

∫
Rn

ηRϕ · dDα f =
∫
Rn

ϕ · dDα f .

Finally, we can estimate

∣∣∣∣
∫
Rn

f ϕ · ∇αηR dx

∣∣∣∣ ≤ μn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn

| f (x)|
∫
Rn

|ηR(y) − ηR(x)|
|y − x |n+α

dy dx

and, similarly,

∣∣∣∣
∫
Rn

f divα
NL(ηR, ϕ) dx

∣∣∣∣ ≤ 2μn,α‖ϕ‖L∞(Rn;Rn)

∫
Rn

| f (x)|
∫
Rn

|ηR(y) − ηR(x)|
|y − x |n+α

dy dx .

By Lebesgue’s Dominated Convergence Theorem, we thus get that

lim
R→+∞

(∫
Rn

f ϕ · ∇αηR dx +
∫
Rn

f divα
NL(ηR, ϕ) dx

)
= 0

and the conclusion follows. ��
Thanks toLemma2.4,we can prove that a function inLipb(R

n) can be tested against
any Lipc-regular vector field. The proof is very similar to the one of Proposition 2.7
and is thus left to the reader.

Proposition 2.8 (Integration by parts for Lipb-regular functions). Let α ∈ (0, 1). If
f ∈ Lipb(R

n), then

∫
Rn

f divαϕ dx = −
∫
Rn

ϕ · ∇α f dx
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for all ϕ ∈ Lipc(R
n; R

n).

2.6 Comparison betweenW˛,1 and BV˛ seminorms

In this section, we completely answer a question left open in [27, Section 1.4]. Given
α ∈ (0, 1) and an open set � ⊂ R

n , we want to study the equality cases in the
inequalities

‖∇α f ‖L1(Rn;Rn) ≤ μn,α[ f ]Wα,1(Rn), |DαχE |(�) ≤ μn,αPα(E;�),

as long as f ∈ Wα,1(Rn) and Pα(E;�) < +∞. The key idea to the solution of this
problem lies in the following simple result.

Lemma 2.9 Let A ⊂ R
n be a measurable set with L n(A) > 0. If F ∈ L1(A; R

m),
then

∣∣∣∣
∫
A
F(x) dx

∣∣∣∣ ≤
∫
A

|F(x)| dx,

with equality if and only if F = f ν a.e. in A for some constant direction ν ∈ S
m−1

and some scalar function f ∈ L1(A) with f ≥ 0 a.e. in A.

Proof The inequality is well known and it is obvious that it is an equality if F = f ν
a.e. in A for some constant direction ν ∈ S

m−1 and some scalar function f ∈ L1(A)

with f ≥ 0 a.e. in A. So let us assume that

∣∣∣∣
∫
A
F(x) dx

∣∣∣∣ =
∫
A

|F(x)| dx .

If
∫
A F(x) dx = 0, then also

∫
A |F(x)| dx = 0. Thus F = 0 a.e. in A and there is

nothing to prove. If
∫
A F(x) dx �= 0 instead, then we can write

∫
A

|F(x)| − F(x) · ν dx = 0,

with

ν =
∫
A F(x) dx

| ∫A F(x) dx | ∈ S
m−1.
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Therefore, we obtain |F(x)| = F(x) · ν for a.e. x ∈ A, so that F(x)
|F(x)| · ν = 1

for a.e. x ∈ A such that |F(x)| �= 0. This implies that F = f ν a.e. in A with
f = |F | ∈ L1(A) and the conclusion follows. ��
As an immediate consequence of Lemma 2.9, we have the following result.

Corollary 2.10 Let α ∈ (0, 1). If f ∈ Wα,1(Rn), then

‖∇α f ‖L1(Rn;Rn) ≤ μn,α[ f ]Wα,1(Rn), (2.19)

with equality if and only if f = 0 a.e. in R
n.

Proof Inequality (2.19) was proved in [27, Theorem 3.18]. Note that, given f ∈
L1(Rn), [ f ]Wα,1(Rn) = 0 if and only if f = 0 a.e. and thus, in this case, (2.19) is
trivially an equality. If (2.19) holds as an equality and f is not equivalent to the zero
function, then

∫
Rn

(
|∇α f (x)| − μn,α

∫
Rn

| f (y) − f (x)|
|y − x |n+α

dy

)
dx = 0

and thus

∣∣∣∣
∫
Rn

( f (y) − f (x)) · (y − x)

|y − x |n+α+1 dy

∣∣∣∣ =
∫
Rn

| f (y) − f (x)|
|y − x |n+α

dy (2.20)

for all x ∈ U , for some measurable set U ⊂ R
n such that L n(Rn \ U ) = 0. Now

let x ∈ U be fixed. By Lemma 2.9 (applied with A = R
n), (2.20) implies that the

(non-identically zero) vector field

y �→ ( f (y) − f (x)) (y − x), y ∈ R
n,

has constant direction for all y ∈ Vx , for some measurable set Vx ⊂ R
n such that

L n(Rn \ Vx ) = 0. Thus, given y, y′ ∈ Vx , the two vectors y − x and y′ − x are
linearly dependent, so that the three points x , y and y′ are collinear. If n ≥ 2, then
this immediately gives L n(Vx ) = 0, a contradiction, so that (2.19) must be strict. If
instead n = 1, then we know that

x ∈ U �⇒ y �→ ( f (y) − f (x)) (y − x) has constant sign for all y ∈ Vx . (2.21)

We claim that (2.21) implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f /∈ L1(R), in contrast with the fact that f ∈ Wα,1(R),
so that (2.19) must be strict and the proof is concluded. To prove the claim, we argue
as follows. Fix x ∈ U and assume that

( f (y) − f (x)) (y − x) > 0 (2.22)
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for all y ∈ Vx without loss of generality. Now pick x ′ ∈ U∩Vx such that x ′ > x . Then,
choosing y = x ′ in (2.22), we get ( f (x ′)− f (x)) (x ′−x) > 0 and thus f (x ′) > f (x).
Similarly, if x ′ ∈ U ∩ Vx is such that x ′ < x , then f (x ′) < f (x). Hence

ess supz<x f (z) ≤ f (x) ≤ ess inf z>x f (z)

for all x ∈ U (where ess sup and ess inf refer to the essential supremum and the
essential infimum respectively) and thus f must be equivalent to a (non-constant)
non-decreasing function. ��

Given an open set � ⊂ R
n and a measurable set E ⊂ R

n , we define

P̃α(E;�) :=
∫

�

∫
�

|χE (y) − χE (x)|
|y − x |n+α

dx dy +
∫
Rn\�

∫
�

|χE (y) − χE (x)|
|y − x |n+α

dx dy.

It is obvious to see that

P̃α(E;�) ≤ Pα(E;�) ≤ 2 P̃α(E;�),

where Pα is the fractional perimeter introduced in (1.10). Arguing as in the proof of
[27, Proposition 4.8]it is immediate to see that

‖∇αχE‖L1(�;Rn) ≤ μn,α P̃α(E;�), (2.23)

an inequality stronger than that in (1.9). In analogy with Corollary 2.10, we have the
following result.

Corollary 2.11 Let α ∈ (0, 1), � ⊂ R
n be an open set and E ⊂ R

n be a measurable
set such that P̃α(E;�) < +∞.

(i) If n ≥ 2,L n(E) > 0 and L n(Rn \ E) > 0, then inequality (2.23) is strict.
(ii) If n = 1, then (2.23) is an equality if and only if the following hold:

(a) for a.e. x ∈ � ∩ E, L 1((−∞, x) \ E) = 0 vel L 1((x,+∞) \ E) = 0;
(b) for a.e. x ∈ � \ E, L 1((−∞, x) ∩ E) = 0 vel L 1((x,+∞) ∩ E) = 0.

Proof We prove the two statements separately.
Proof of (i). Assume n ≥ 2. Since L n(E) > 0, for a given x ∈ � \ E the map

y �→ (y − x), for y ∈ E,

does not have constant orientation. Similarly, since L n(Rn \ E) > 0, for a given
x ∈ � ∩ E also the map

y �→ (y − x), for y ∈ R
n \ E,

does not have constant orientation. Hence, by Lemma 2.9, we must have

∣∣∣∣
∫
E

y − x

|y − x |n+α+1 dy

∣∣∣∣ <

∫
E

dy

|y − x |n+α
, for x ∈ � \ E,
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and, similarly,

∣∣∣∣
∫
Rn\E

y − x

|y − x |n+α+1 dy

∣∣∣∣ <

∫
Rn\E

dy

|y − x |n+α
, for x ∈ � ∩ E .

We thus get

‖∇αχE‖L1(�;Rn) = μn,α

∫
�

∣∣∣∣
∫
Rn

(χE (y) − χE (x)) · (y − x)

|y − x |n+α+1 dy

∣∣∣∣ dx
= μn,α

∫
�\E

∣∣∣∣
∫
E

y − x

|y − x |n+α
dy

∣∣∣∣ dx
+ μn,α

∫
�∩E

∣∣∣∣
∫
Rn\E

y − x

|y − x |n+α
dy

∣∣∣∣ dx
< μn,α

∫
�\E

∫
E

dy dx

|y − x |n+α

+ μn,α

∫
�∩E

∫
Rn\E

dy dx

|y − x |n+α
= μn,α P̃α(E;�),

proving (i).
Proof of (ii). Assume n = 1. We argue as in the proof of [27, Proposition 4.12].

Let

fE (y, x) := χE (y) − χE (x)

|y − x |1+α
, for x, y ∈ R, y �= x .

Then we can write

P̃α(E;�) =
∫

�

∫
R

| fE (y, x)| dy dx

=
∫

�

(∫ x

−∞
| fE (y, x)| dy +

∫ +∞

x
| fE (y, x)| dy

)
dx

and

‖∇αχE‖L1(�;R) = μ1,α

∫
�

∣∣∣∣
∫
R

fE (y, x) sgn(y − x) dy

∣∣∣∣ dx
= μ1,α

∫
�

∣∣∣∣
∫ x

−∞
fE (y, x) dy −

∫ +∞

x
fE (y, x) dy

∣∣∣∣ dx .
Hence (2.23) is an equality if and only if

∣∣∣∣
∫ x

−∞
fE (y, x) dy −

∫ +∞

x
fE (y, x) dy

∣∣∣∣
=

∫ x

−∞
| fE (y, x)| dy +

∫ +∞

x
| fE (y, x)| dy (2.24)
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for a.e. x ∈ �. Observing that

∣∣∣∣
∫ x

−∞
fE (y, x) dy −

∫ +∞

x
fE (y, x) dy

∣∣∣∣
≤

∣∣∣∣
∫ x

−∞
fE (y, x) dy

∣∣∣∣ +
∣∣∣∣
∫ +∞

x
fE (y, x) dy

∣∣∣∣
≤

∫ x

−∞
| fE (y, x)| dy +

∫ +∞

x
| fE (y, x)| dy

for a.e. x ∈ �, we deduce that (2.23) is an equality if and only if

∣∣∣∣
∫ x

−∞
fE (y, x) dy −

∫ +∞

x
fE (y, x) dy

∣∣∣∣
=

∣∣∣∣
∫ x

−∞
fE (y, x) dy

∣∣∣∣ +
∣∣∣∣
∫ +∞

x
fE (y, x) dy

∣∣∣∣ (2.25)

=
∫ x

−∞
| fE (y, x)| dy +

∫ +∞

x
| fE (y, x)| dy (2.26)

for a.e. x ∈ �. Now, on the one hand, squaring both sides of (2.25) and simplifying,
we get that (2.23) is an equality if and only if

(∫ x

−∞
fE (y, x) dy

)(∫ +∞

x
fE (y, x) dy

)
= 0 (2.27)

for a.e. x ∈ �. On the other hand, we can rewrite (2.26) as

0 ≤
∫ x

−∞
| fE (y, x)| dy −

∣∣∣∣
∫ x

−∞
fE (y, x) dy

∣∣∣∣
=

∣∣∣∣
∫ +∞

x
fE (y, x) dy

∣∣∣∣ −
∫ +∞

x
| fE (y, x)| dy

≤ 0

for a.e. x ∈ �, so that we must have

∣∣∣∣
∫ x

−∞
fE (y, x) dy

∣∣∣∣ =
∫ x

−∞
| fE (y, x)| dy

and

∣∣∣∣
∫ +∞

x
fE (y, x) dy

∣∣∣∣ =
∫ +∞

x
| fE (y, x)| dy
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for a.e. x ∈ �. Hence (2.27) can be equivalently rewritten as

(∫ x

−∞
| fE (y, x)| dy

)(∫ +∞

x
| fE (y, x)| dy

)
= 0 (2.28)

for a.e. x ∈ �. Thus (2.23) is an equality if and only if at least one of the two
integrals in the left-hand side of (2.28) is zero, and the reader can check that (ii) readily
follows. ��

Remark 2.12 (Half-lines in Corollary 2.11(ii)) In the case n = 1, it is worth to stress
that (2.23) is always an equality when the set E ⊂ R is (equivalent to) an half-line,
i.e.,

‖∇αχ(a,+∞)‖L1(�;R) = μ1,α P̃α((a,+∞);�)

for any α ∈ (0, 1), any a ∈ R and any open set � ⊂ R such that P̃α((a,+∞);�) <

+∞. However, the equality cases in (2.23) are considerably richer. Indeed, on the one
side,

‖∇αχ(−5,−4)∪(−1,+∞)‖L1((0,1);R) = μ1,α P̃α((−5,−4) ∪ (−1,+∞); (0, 1))

and, on the other side,

‖∇αχ(−5,−4)∪(0,+∞)‖L1((−1,1);R) < μ1,α P̃α((−5,−4) ∪ (0,+∞); (−1, 1))

for any α ∈ (0, 1). We leave the simple computations to the interested reader.

3 Estimates and representation formulas for the fractional˛-gradient

3.1 Integrability properties of the fractional˛-gradient

We begin with the following technical local estimate on the Wα,1-seminorm of a
function in BVloc.

Lemma 3.1 Let α ∈ (0, 1) and let f ∈ BVloc(Rn). Then f ∈ Wα,1
loc (Rn) with

[ f ]Wα,1(BR) ≤ nωn(2R)1−α

1 − α
|Df |(B3R) (3.1)

for all R > 0.

Proof Fix R > 0 and let f ∈ BVloc(Rn) be such that f ∈ C1(B3R). We can
estimate
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[ f ]Wα,1(BR) =
∫
BR

∫
BR

| f (y) − f (x)|
|y − x |n+α

dy dx

=
∫
BR

∫
BR∩

{
|y−x |<2R

} | f (y) − f (x)|
|y − x |n+α

dy dx

≤
∫

{|h|<2R}
1

|h|n+α

∫
BR

| f (x + h) − f (x)| dx dh.

Since

∫
BR

| f (x + h) − f (x)| dx ≤
∫
BR

∫ 1

0
|∇ f (x + th) · h| dt dx

≤ |h|
∫ 1

0

∫
BR

|∇ f (x + th)| dx dt

≤ |h|
∫
BR+|h|

|∇ f (z)| dz

for all h ∈ R
n , we have

[ f ]Wα,1(BR) ≤
∫

{|h|<2R}
1

|h|n+α−1

∫
BR+|h|

|∇ f (z)| dz dh

≤
∫

{|h|<2R}
|Df |(B3R)

|h|n+α−1 dh

= nωn(2R)1−α

1 − α
|Df |(B3R)

proving (3.1) for all f ∈ BVloc(Rn)∩C1(B3R). Nowfix R > 0 and let f ∈ BVloc(Rn).
By [34, Theorem 5.3], there exists ( fk)k∈N ⊂ BV (B3R) ∩ C∞(B3R) such that
|Dfk |(B3R) → |Df |(B3R) and fk → f a.e. in B3R as k → +∞. The conclusion
thus follows by a simple application of Fatou’s Lemma. ��

In the following result, we collect several local integrability estimates involving the
fractional α-gradient of a function satisfying various regularity assumptions.

Proposition 3.2 The following statements hold.

(i) If f ∈ BV (Rn), then f ∈ BV α(Rn) for all α ∈ (0, 1) with Dα f = ∇α fL n

and

∇α f = I1−αDf a.e. in R
n . (3.2)

In addition, for any bounded open set U ⊂ R
n, we have

‖∇α f ‖L1(U ;Rn) ≤ Cn,α,U |Df |(Rn) (3.3)
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for all α ∈ (0, 1), where Cn,α,U is as in (2.9). Finally, given an open set A ⊂ R
n,

we have

‖∇α f ‖L1(A;Rn)

≤ nωn μn,α

n + α − 1

(
|Df |(Ar )

1 − α
r1−α + n + 2α − 1

α
‖ f ‖L1(Rn) r

−α

)
(3.4)

for all r > 0 and α ∈ (0, 1), where Ar :=
{
x ∈ R

n : dist(x, A) < r

}
. In

particular, we have

‖∇α f ‖L1(Rn;Rn) ≤ nωn μn,α(n + 2α − 1)1−α

α(1 − α)(n + α − 1)
‖ f ‖1−α

L1(Rn)
[ f ]αBV (Rn). (3.5)

(ii) If f ∈ L∞(Rn) ∩ Wα,1
loc (Rn), then the weak fractional α-gradient Dα f ∈

Mloc(R
n; R

n) exists and satisfies Dα f = ∇α fL n with ∇α f ∈ L1
loc(R

n; R
n)

and

‖∇α f ‖L1(BR;Rn) ≤ μn,α

∫
BR

∫
Rn

| f (x) − f (y)|
|x − y|n+α

dx dy

≤ μn,α

([ f ]Wα,1(BR) + Pα(BR) ‖ f ‖L∞(Rn)

) (3.6)

for all R > 0 and α ∈ (0, 1).
(iii) If f ∈ L∞(Rn) ∩ BVloc(Rn), then the weak fractional α-gradient Dα f ∈

Mloc(R
n; R

n) exists and satisfies Dα f = ∇α fL n with ∇α f ∈ L1
loc(R

n; R
n)

and

‖∇α f ‖L1(BR;Rn)

≤ μn,α

(
nωn(2R)1−α

1 − α
|Df |(B3R) + 2α+1(nωn)

2Rn−α

α �(1 − α)−1 ‖ f ‖L∞(Rn)

)
. (3.7)

for all R > 0 and α ∈ (0, 1).

Proof We prove the three statements separately.
Proof of (i). Thanks to [27, Theorem 3.18], we just need to prove (3.3) and (3.4).
We prove (3.3). By (3.2), by Tonelli’s Theorem and by [27, Lemma 2.4], we get

∫
U

|∇α f | dx ≤
∫
U
I1−α|Df | dx ≤ Cn,α,U |Df |(Rn),

where Cn,α,U is defined as in (2.9).
We now prove (3.4) in two steps.
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Proof of (3.4), Step 1. Assume f ∈ C∞
c (Rn) and fix r > 0. We have

∫
A

|∇α f | dx =
∫
A

|I1−α∇ f | dx

≤ μn,α

n + α − 1

(∫
A

∫
{|h|≤r}

|∇ f (x + h)|
|h|n+α−1 dh dx

+
∫
A

∣∣∣∣
∫

{|h|>r}
∇ f (x + h)

|h|n+α−1 dh

∣∣∣∣ dx
)

.

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

∫
A

∫
{|h|≤r}

|∇ f (x + h)|
|h|n+α−1 dh dx =

∫
{|h|≤r}

∫
A

|∇ f (x + h)| dx dh

|h|n+α−1

≤ ‖∇ f ‖L1(Ar ;Rn)

∫
{|h|≤r}

dh

|h|n+α−1

= nωn
r1−α

1 − α
‖∇ f ‖L1(Ar ;Rn).

Concerning the second double integral, integrating by parts we get

∫
{|h|>r}

∇ f (x + h)

|h|n+α−1 dh = (n + α − 1)
∫

{|h|>r}
h f (x + h)

|h|n+α+1 dh

−
∫

{|h|=r}
h

|h|
f (x + h)

|h|n+α−1 dH n−1(h)

for all x ∈ A. Hence, we can estimate

∫
A

∣∣∣∣
∫

{|h|>r}
∇ f (x + h)

|h|n+α−1 dh

∣∣∣∣ dx ≤ (n + α − 1)
∫
A

∫
{|h|>r}

| f (x + h)|
|h|n+α

dh dx

+
∫
A

∫
{|h|=r}

| f (x + h)|
|h|n+α−1 dH n−1(h) dx

≤ nωn‖ f ‖L1(Rn) r
−α

(
n + α − 1

α
+ 1

)

= nωn

(
n + 2α − 1

α

)
‖ f ‖L1(Rn) r

−α.

Thus (3.4) follows for all f ∈ C∞
c (Rn) and r > 0.

Proof of (3.4),Step2. Let f ∈ BV (Rn) andfix r > 0.Combining [34,Theorem5.3]
with a standard cut-off approximation argument, we find ( fk)k∈N ⊂ C∞

c (Rn) such
that fk → f in L1(Rn) and |Dfk |(Rn) → |Df |(Rn) as k → +∞. By Step 1, we
have that
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‖∇α fk‖L1(A;Rn) ≤ nωn μn,α

n + α − 1

(
|Dfk |(Ar )

1 − α
r1−α + n + 2α − 1

α
‖ fk‖L1(Rn) r

−α

)

(3.8)

for all k ∈ N. We claim that

(∇α fk)L
n⇀(∇α f )L n as k → +∞. (3.9)

Indeed, if ϕ ∈ Lipc(R
n; R

n), then divαϕ ∈ L∞(Rn) by (2.12) and thus

∣∣∣∣
∫
Rn

ϕ · ∇α fk dx −
∫
Rn

ϕ · ∇α f dx

∣∣∣∣ =
∣∣∣∣
∫
Rn

fk div
αϕ dx −

∫
Rn

f divαϕ dx

∣∣∣∣
≤ ‖divαϕ‖L∞(Rn;Rn) ‖ fk − f ‖L1(Rn)

for all k ∈ N, so that

lim
k→+∞

∫
Rn

ϕ · ∇α fk dx =
∫
Rn

ϕ · ∇α f dx .

Now fix ϕ ∈ C0
c (R

n; R
n). Let U ⊂ R

n be a bounded open set such that
suppϕ ⊂ U . For each ε > 0 sufficiently small, pick ψε ∈ Lipc(R

n; R
n) such that

‖ϕ − ψε‖L∞(Rn;Rn) < ε and suppψε ⊂ U . Then

∣∣∣∣
∫
Rn

ϕ · ∇α fk dx −
∫
Rn

ϕ · ∇α f dx

∣∣∣∣
≤

∣∣∣∣
∫
Rn

ψε · ∇α fk dx −
∫
Rn

ψε · ∇α f dx

∣∣∣∣
+ ‖ψε − ϕ‖L∞(Rn;Rn)

(‖∇α fk‖L1(U ;Rn) + ‖∇α f ‖L1(U ;Rn)

)

≤
∣∣∣∣
∫
Rn

ψε · ∇α fk dx −
∫
Rn

ψε · ∇α f dx

∣∣∣∣
+ εCn,α,U

(|Dfk |(Rn) + |Df |(Rn)
)
,

so that

lim
k→+∞

∣∣∣∣
∫
Rn

ϕ · ∇α fk dx −
∫
Rn

ϕ · ∇α f dx

∣∣∣∣ ≤ 2εCn,α,U |Df |(Rn).

Thus, (3.9) follows passing to the limit as ε → 0+. Thanks to (3.9), by [50, Proposi-
tion 4.29]we get that

‖∇α f ‖L1(A;Rn) ≤ lim inf
k→+∞ ‖∇α fk‖L1(A;Rn).
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Since

|Df |(U ) ≤ lim inf
k→+∞ |Dfk |(U )

for any open set U ⊂ R
n by [34, Theorem 5.2], we can estimate

lim sup
k→+∞

|Dfk |(Ar ) ≤ lim
k→+∞ |Dfk |(Rn) − lim inf

k→+∞ |Dfk |(Rn \ Ar )

≤ |Df |(Rn) − |Df |(Rn \ Ar )

= |Df |(Ar ).

Thus, (3.4) follows taking limits as k → +∞ in (3.8). Finally, (3.5) is easily deduced
by optimising the right-hand side of (3.4) in the case A = R

n with respect to r > 0.
Proof of (ii). Assume f ∈ L∞(Rn) ∩ Wα,1

loc (Rn). Given R > 0, we can estimate

∫
BR

|∇α f (x)| dx ≤ μn,α

∫
BR

∫
Rn

| f (x) − f (y)|
|x − y|n+α

dx dy

= μn,α

∫
BR

∫
BR

| f (x) − f (y)|
|x − y|n+α

dx dy

+ μn,α

∫
BR

∫
Rn\BR

| f (x) − f (y)|
|x − y|n+α

dx dy

≤ μn,α[ f ]Wα,1(BR) + 2μn,α‖ f ‖L∞(Rn)

×
∫
BR

∫
Rn\BR

1

|x − y|n+α
dx dy

= μn,α[ f ]Wα,1(BR) + μn,α‖ f ‖L∞(Rn)Pα(BR)

and (3.6) follows. To prove that Dα f = ∇α fL n , we argue as in the proof of
[27, Proposition 4.8]. Let ϕ ∈ Lipc(R

n; R
n). Since f ∈ L∞(Rn), we have

x �→ | f (x)|
∫
Rn

|ϕ(y) − ϕ(x)|
|y − x |n+α

dy ∈ L1(Rn).

Hence, by the definition of divα on Lipc-regular vector fields (see [27, Section 2.2])
and by Lebesgue’s Dominated Convergence Theorem, we have

∫
Rn

f divαϕ dx = lim
ε→0+

∫
Rn

f (x)
∫

{|y−x |>ε}
(y − x) · ϕ(y)

|y − x |n+α+1 dy dx .
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Since
∫
Rn

∫
{|y−x |>ε}

| f (x)| |ϕ(y)|
|y − x |n+α

dy dx

≤ ‖ f ‖L∞(Rn)

∫
Rn

|ϕ(y)|
∫

{|y−x |>ε}
|y − x |−n−α dx dy

≤ nωn

αεα
‖ f ‖L∞(Rn)‖ϕ‖L1(Rn;Rn)

for all ε > 0, by Fubini’s Theorem we can compute

∫
Rn

f (x)
∫

{|y−x |>ε}
(y − x) · ϕ(y)

|y − x |n+α+1 dy dx

= −
∫
Rn

ϕ(y)
∫

{|x−y|>ε}
(x − y) f (x)

|x − y|n+α+1 dx dy

= −
∫
Rn

ϕ(y)
∫

{|x−y|>ε}
(x − y) ( f (x) − f (y))

|x − y|n+α+1 dx dy.

Since

|ϕ(y)|
∣∣∣∣
∫

{|x−y|>ε}
(x − y) ( f (x) − f (y))

|x − y|n+α+1 dx

∣∣∣∣ ≤ |ϕ(y)|
∫
Rn

| f (x) − f (y)|
|x − y|n+α

dx

for all y ∈ R
n and ε > 0, and

y �→
∫
Rn

| f (x) − f (y)|
|x − y|n+α

dx ∈ L1
loc(R

n)

by (3.6), again by Lebesgue’s Dominated Convergence Theorem we conclude that

∫
Rn

f (x) divαϕ(x) dx = − lim
ε→0

∫
Rn

ϕ(y)
∫

{|x−y|>ε}
(x − y) ( f (x) − f (y))

|x − y|n+α+1 dx dy

= −
∫
Rn

ϕ(y) lim
ε→0

∫
{|x−y|>ε}

(x − y) ( f (x) − f (y))

|x − y|n+α+1 dx dy

= −
∫
Rn

ϕ(y) · ∇α f (y) dy

for all ϕ ∈ Lipc(R
n; R

n). Thus Dα f ∈ Mloc(R
n; R

n) is well defined and Dα f =
∇α fL n .

Proof of (iii). Assume f ∈ L∞(Rn) ∩ BVloc(Rn). By Lemma 3.1, we know that
f ∈ L∞(Rn) ∩ Wα,1

loc (Rn) for all α ∈ (0, 1), so that Dα f ∈ Mloc(R
n; R

n) exists
by (ii). Hence, inserting (3.1) in (3.6), we find

‖∇α f ‖L1(BR;Rn) ≤ μn,α

(
nωn(2R)1−α

1 − α
|Df |(B3R) + Pα(B1) R

n−α ‖ f ‖L∞(Rn)

)
.
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Since for all x ∈ B1 we have

∫
Rn\B1

dy

|y − x |n+α
=

∫
Rn\B1(−x)

dz

|z|n+α
≤

∫
Rn\B1−|x |

dz

|z|n+α
= nωn

α(1 − |x |)α ,

being � log-convex on (0,+∞) (see [9]), we can estimate

Pα(B1) = 2
∫
B1

∫
Rn\B1

dy dx

|y − x |n+α
≤ 2nωn

α

∫
B1

dx

(1 − |x |)α

= 2(nωn)
2

α

∫ 1

0

tn−1

(1 − t)α
dt = 2(nωn)

2

α

�(n) �(1 − α)

�(n + 1 − α)

≤ 2α+1(nωn)
2

α
�(1 − α),

so that

‖∇α f ‖L1(BR ;Rn) ≤μn,α

(
nωn(2R)1−α

1 − α
|Df |BV (B3R) + 2α+1(nωn)

2Rn−α

α �(1 − α)−1 ‖ f ‖L∞(Rn)

)
,

proving (3.7). ��
Note that Proposition 3.2(i), in particular, applies to any f ∈ W 1,1(Rn). In the

following result, we prove that a similar result holds also for any f ∈ W 1,p(Rn) with
p ∈ (1,+∞).

Proposition 3.3 (W 1,p(Rn) ⊂ Sα,p(Rn) for p ∈ (1,+∞)) Let α ∈ (0, 1) and p ∈
(1,+∞). If f ∈ W 1,p(Rn), then f ∈ Sα,p(Rn) with

‖∇α
w f ‖L p(A;Rn) ≤ nωnμn,α

n + α − 1

(‖∇w f ‖L p(Ar ;Rn)

1 − α
r1−α

+n + 2α − 1

α
‖ f ‖L p(Rn) r

−α

)
(3.10)

for any r > 0 and any open set A ⊂ R
n, where Ar :=

{
x ∈ R

n : dist(x, A) < r

}
. In

particular, we have

‖∇α
w f ‖L p(Rn;Rn) ≤ (n + 2α − 1)1−α

n + α − 1

nωnμn,α

α(1 − α)
‖∇w f ‖α

L p(Rn;Rn)‖ f ‖1−α
L p(Rn)

.

(3.11)

In addition, if p ∈ (
1, n

1−α

)
and q = np

n−(1−α)p , then

∇α
w f = I1−α∇w f a.e. in R

n (3.12)

and ∇α
w f ∈ Lq(Rn; R

n).
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Proof We argue as in the proof of Proposition 3.2(i).
Proof of (3.10). The proof of (3.10) for all f ∈ C∞

c (Rn) is very similar to that
of (3.4) and is thus left to the reader.Now let f ∈ W 1,p(Rn) andfix an open set A ⊂ R

n

and r > 0. Combining [34, Theorem 4.2] with a standard cut-off approximation
argument, we find ( fk)k∈N ⊂ C∞

c (Rn) such that fk → f in W 1,p(Rn) as k → +∞.
We thus have that

‖∇α fk‖L p(A;Rn) ≤ nωn μn,α

n + α − 1

(‖∇ fk‖L p(Ar ;Rn)

1 − α
r1−α

+n + 2α − 1

α
‖ fk‖L p(Rn) r

−α

)
(3.13)

for all k ∈ N. Hence, choosing A = R
n , we get that the sequence (∇α fk)k∈N is

uniformly bounded in L p(Rn; R
n). Up to pass to a subsequence (which we do not

relabel for simplicity), there exists g ∈ L p(Rn; R
n) such that∇α fk⇀g in L p(Rn; R

n)

as k → +∞. Given ϕ ∈ C∞
c (Rn; R

n), we have

∫
Rn

fk div
αϕ dx = −

∫
Rn

ϕ · ∇α fk dx

for all k ∈ N. Passing to the limit as k → +∞, by Proposition 2.1 we get that

∫
Rn

f divαϕ dx = −
∫
Rn

ϕ · g dx

for any ϕ ∈ C∞
c (Rn; R

n), so that g = ∇α
w f and hence f ∈ Sα,p(Rn) according to

[27, Definition 3.19]. We thus have that

‖∇α
w f ‖L p(A;Rn) ≤ lim inf

k→+∞ ‖∇α fk‖L p(A;Rn)

for any open set A ⊂ R
n , since

∫
Rn

ϕ · ∇α
w f dx = lim

k→+∞

∫
Rn

ϕ · ∇α fk dx

≤ ‖ϕ‖
L

p
p−1 (A;Rn)

lim inf
k→+∞ ‖∇α fk‖L p(A;Rn)

for all ϕ ∈ C∞
c (A; R

n). Therefore, (3.10) follows by taking limits as k → +∞
in (3.13).

Proof of (3.11). Inequality (3.11) follows by applying (3.10) with A = R
n and

minimising the right-hand side with respect to r > 0.
Proof of (3.12). Now assume p ∈ (

1, n
1−α

)
and let q = np

n−(1−α)p . Let ϕ ∈
C∞
c (Rn; R

n) be fixed. Recalling inequality (2.5), since ϕ ∈ L
q

q−1 (Rn; R
n) we have

that

|ϕ| I1−α| f | ∈ L1(Rn), |ϕ| I1−α|∇w f | ∈ L1(Rn).
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In particular, Fubini’s Theorem implies that

f I1−αϕ ∈ L1(Rn; R
n), I1−αϕ · ∇w f ∈ L1(Rn).

Since divαϕ ∈ L
p

p−1 (Rn) by Proposition 2.1, we also get that

f divI1−αϕ = f divαϕ ∈ L1(Rn).

Therefore, observing that I1−αϕ ∈ Lipb(R
n; R

n) because ∇ I1−αϕ = ∇αϕ ∈
L∞(Rn; R

n2) again by Proposition 2.1 and performing a standard cut-off approxi-
mation argument, we can integrate by parts and obtain

∫
Rn

ϕ · I1−α∇w f dx =
∫
Rn

I1−αϕ · ∇w f dx

= −
∫
Rn

f divI1−αϕ dx = −
∫
Rn

f divαϕ dx .

Therefore
∫
Rn

ϕ · I1−α∇w f dx = −
∫
Rn

f divαϕ dx

for all ϕ ∈ C∞
c (Rn; R

n), proving (3.12). In particular, notice that∇α
w f ∈ Lq(Rn; R

n)

by inequality (2.5). The proof is complete. ��
For the case p = +∞, we have the following immediate consequence of Lemma

2.4 and Proposition 2.8.

Corollary 3.4 (W 1,∞(Rn) ⊂ Sα,∞(Rn)) Let α ∈ (0, 1). If f ∈ W 1,∞(Rn), then
f ∈ Sα,∞(Rn) with

‖∇α f ‖L∞(Rn;Rn) ≤ 21−α nωnμn,α

α(1 − α)
‖∇w f ‖α

L∞(Rn;Rn)‖ f ‖1−α
L∞(Rn)

. (3.14)

3.2 Two representation formulas for the˛-variation

In this section, we prove two useful representation formulas for the α-variation.
We begin with the following weak representation formula for the fractional α-

variation of functions in BVloc(Rn) ∩ L∞(Rn). Here and in the following, we denote
by f � the precise representative of f ∈ L1

loc(R
n), see (A.1) for the definition.

Proposition 3.5 Let α ∈ (0, 1) and f ∈ BVloc(Rn) ∩ L∞(Rn). Then ∇α f ∈
L1
loc(R

n; R
n) and

∫
Rn

ϕ · ∇α f dx = lim
R→+∞

∫
Rn

ϕ · I1−α(χ�
BR

D f ) dx (3.15)

for all ϕ ∈ Lipc(R
n; R

n).
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Proof By Proposition 3.2(iii), we know that ∇α f ∈ L1
loc(R

n; R
n) for all α ∈ (0, 1).

By Theorem A.1, we also know that f χBR ∈ BV (Rn) ∩ L∞(Rn) with D(χBR f ) =
χ�
BR

D f + f �DχBR for all R > 0. Now fix ϕ ∈ Lipc(R
n; R

n) and take R > 0 such
that suppϕ ⊂ BR/2. By [27, Theorem 3.18], we have that

∫
Rn

χBR f divαϕ dx = −
∫
Rn

ϕ · ∇α(χBR f ) dx = −
∫
Rn

ϕ · I1−αD(χBR f ) dx .

Moreover, we can split the last integral as

∫
Rn

ϕ · I1−αD(χBR f ) dx

=
∫
Rn

ϕ · I1−α(χ�
BR

D f ) dx +
∫
Rn

ϕ · I1−α( f �DχBR ) dx . (3.16)

For all x ∈ BR/2, we can estimate

∣∣∣∣I1−α( f �DχBR )(x)

∣∣∣∣ =
∣∣∣∣
∫

∂BR

f �(y)

|x − y|n+α−1

y

|y| dH
n−1(y)

∣∣∣∣
= 1

Rα

∣∣∣∣∣
∫

∂B1

f �(Ry)∣∣y − x
R

∣∣n+α−1

y

|y| dH
n−1(y)

∣∣∣∣∣
≤ nωn

Rα
(
1 − |x |

R

)n+α−1 ‖ f ‖L∞(Rn)

≤ 2n+α−1nωn

Rα
‖ f ‖L∞(Rn)

and so, since suppϕ ⊂ BR/2, we get that

∣∣∣∣
∫
Rn

ϕ · I1−α( f �DχBR ) dx

∣∣∣∣ ≤ 2n+α−1nωn

Rα
‖ϕ‖L1(Rn;Rn) ‖ f ‖L∞(Rn). (3.17)

Therefore, by (2.11), Lebesgue’sDominatedConvergence Theorem, (3.16) and (3.17),
we get that

∫
Rn

f divαϕ dx = lim
R→+∞

∫
Rn

χBR f divαϕ dx = lim
R→+∞

∫
Rn

ϕ · I1−α(χ�
BR

D f ) dx

and the conclusion follows. ��

In the following result, we show that for all functions in bv(Rn) ∩ L∞(Rn) one
can actually pass to the limit as R → +∞ inside the integral in the right-hand side
of (3.15).
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Corollary 3.6 If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then

∇α f = I1−αDf a.e. in R
n . (3.18)

Proof If f ∈ BV (Rn), then (3.18) coincides with (3.2) and there is nothing to prove.
So let us assume that f ∈ bv(Rn)∩ L∞(Rn). Writing Df = ν f |Df | with ν f ∈ S

n−1

|Df |-a.e. in R
n , for all x ∈ R

n we have

lim
R→+∞ χ�

BR
(y)

ν f (y)

|y − x |n+α−1 = ν f (y)

|y − x |n+α−1 for |Df | -a.e. y �= x .

Moreover, for all x ∈ R
n , we have

∣∣∣∣χ�
BR

(y)
ν f (y)

|y − x |n+α−1

∣∣∣∣ ≤ 1

|y − x |n+α−1 ∈ L1
y(R

n, |Df |) ∀R > 0,

because I1−α|Df | ∈ L1
loc(R

n) by [27, Lemma 2.4]. Therefore, by Lebesgue’s Domi-
nated Convergence Theorem (applied with respect to the finite measure |Df |), we get
that

lim
R→+∞ I1−α(χ�

BR
D f )(x) = (I1−αDf )(x) for a.e. x ∈ R

n .

Now let ϕ ∈ Lipc(R
n; R

n). Since

|ϕ · I1−α(χ�
BR

D f )| ≤ |ϕ| I1−α|Df | ∈ L1(Rn) ∀R > 0,

again by Lebesgue’s Dominated Convergence Theorem we get that

lim
R→+∞

∫
Rn

ϕ · I1−α(χ�
BR

D f ) dx =
∫
Rn

ϕ · I1−αDf dx . (3.19)

The conclusion thus follows by combining (3.15) with (3.19). ��

3.3 Relation between BVˇ and BV˛,p forˇ < ˛ and p > 1

Let us recall the following result, see [27, Lemma 3.28].

Lemma 3.7 Let α ∈ (0, 1). The following properties hold.

(i) If f ∈ BV α(Rn), then u := I1−α f ∈ bv(Rn) with Du = Dα f inM (Rn; R
n).

(ii) If u ∈ BV (Rn), then f := (−�)
1−α
2 u ∈ BV α(Rn) with

‖ f ‖L1(Rn) ≤ cn,α‖u‖BV (Rn) and Dα f = Du inM (Rn; R
n).

As a consequence, the operator (−�)
1−α
2 : BV (Rn) → BV α(Rn) is continuous.
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We can thus relate functions with bounded α-variation and functions with bounded
variation via Riesz potential and the fractional Laplacian. We would like to prove a
similar result between functions with bounded α-variation and functions with bounded
β-variation, for any couple of exponents 0 < β < α < 1.

However, although the standard variation of a function f ∈ L1
loc(R

n) iswell defined,
it is not clear whether the functional

ϕ �→
∫
Rn

f divαϕ dx (3.20)

is well posed for all ϕ ∈ C∞
c (Rn; R

n), since divαϕ does not have compact support.
Nevertheless, thanks to Proposition 2.1, the functional in (3.20) is well defined as soon
as f ∈ L p(Rn) for some p ∈ [1,+∞]. Hence, it seems natural to define the space

BV α,p(Rn) := {
f ∈ L p(Rn) : |Dα f |(Rn) < ∞}

(3.21)

for anyα ∈ (0, 1) and p ∈ [1,+∞]. In particular, BV α,1(Rn) = BV α(Rn). Similarly,
we let

BV 1,p(Rn) := {
f ∈ L p(Rn) : |Df |(Rn) < +∞}

for all p ∈ [1,+∞]. In particular, BV 1,1(Rn) = BV (Rn).
A further justification for the definition of these new spaces comes from the follow-

ing fractional version of the Gagliardo–Nirenberg–Sobolev embedding: if n ≥ 2 and

α ∈ (0, 1), then BV α(Rn) is continuously embedded in L p(Rn) for all p ∈
[
1, n

n−α

]
,

see [27, Theorem 3.9]. Hence, thanks to (3.21), we can equivalently write

BV α(Rn) ⊂ BV α,p(Rn)

with continuous embedding for all n ≥ 2, α ∈ (0, 1) and p ∈
[
1, n

n−α

]
.

Incidentally, we remark that the continuous embedding BV α(Rn) ⊂ L
n

n−α (Rn)

for n ≥ 2 and α ∈ (0, 1) can be improved using the main result of the recent work
[73] (see also [74]). Indeed, if n ≥ 2, α ∈ (0, 1) and f ∈ C∞

c (Rn), then, by taking
F = ∇α f in [73, Theorem 1.1], we have that

‖ f ‖
L

n
n−α ,1

(Rn)
≤ cn,α‖Iα∇α f ‖

L
n

n−α ,1
(Rn;Rn)

≤ c′
n,α‖∇α f ‖L1(Rn;Rn)

thanks to the boundedness of the Riesz transform R : L n
n−α

,1(Rn) → L
n

n−α
,1(Rn; R

n),
where cn,α, c′

n,α > 0 are two constants depending only on n and α, and L
n

n−α
,1(Rn) is

the Lorentz space of exponents n
n−α

, 1 (we refer to [39, 40] for an account on Lorentz
spaces and on the properties of Riesz transform). Thus, recalling [27, Theorem 3.8],
we readily deduce the continuous embedding BV α(Rn) ⊂ L

n
n−α

,1(Rn) for n ≥ 2
and α ∈ (0, 1) by [39, Exercise 1.1.1(b)] and Fatou’s Lemma. This suggests that the
spaces defined in (3.21) may be further enlarged by considering functions belonging
to some Lorentz space, but we do not need this level of generality here.
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In the case n = 1, the space BV α(R) does not embed in L
1

1−α (R) with continu-
ity, see [27, Remark 3.10]. However, somehow completing the picture provided by
[73], we can prove that the space BV α(R) continuously embeds in the Lorentz space

L
1

1−α
,∞(R). Although this result is truly interesting only for n = 1, we prove it below

in all dimensions for the sake of completeness.

Theorem 3.8 (Weak Gagliardo–Nirenberg–Sobolev inequality). Let α ∈ (0, 1). There
exists a constant cn,α > 0 such that

‖ f ‖
L

n
n−α ,∞

(Rn)
≤ cn,α|Dα f |(Rn) (3.22)

for all f ∈ BV α(Rn). As a consequence, BV α(Rn) is continuously embedded in
Lq(Rn) for any q ∈ [1, n

n−α
).

Proof Let f ∈ C∞
c (Rn). By [72, Theorem 3.5] (see also [27, Section 3.6]), we have

f (x) = −div−α∇α f (x) = −μn,−α

∫
Rn

(y − x) · ∇α f (y)

|y − x |n+1−α
dy, x ∈ R

n,

so that

| f (x)| ≤ μn,−α

∫
Rn

|∇α f (y)|
|y − x |n−α

dy = μn,−α

μn,1−α

(n − α) Iα|∇α f |(x), x ∈ R
n .

Since Iα : L1(Rn) → L
n

n−α
,∞(Rn) is a continuous operator by Hardy–Littlewood–

Sobolev inequality (see [76, Theorem 1, Chapter V] or [39, Theorem 1.2.3]), we can
estimate

‖ f ‖
L

n
n−α ,∞

(Rn)
≤ n μn,−α

μn,1−α

‖Iα|∇α f |‖
L

n
n−α ,∞

(Rn)

≤ cn,α‖|∇α f |‖L1(Rn) = cn,α |Dα f |(Rn),

where cn,α > 0 is a constant depending only onn andα. Thus, inequality (3.22) follows
for all f ∈ C∞

c (Rn). Now let f ∈ BV α(Rn). By [27, Theorem 3.8], there exists
( fk)k∈N ⊂ C∞

c (Rn) such that fk → f a.e. in R
n and |Dα fk |(Rn) → |Dα f |(Rn) as

k → +∞. By [39, Exercise 1.1.1(b)] and Fatou’s Lemma, we thus get

‖ f ‖
L

n
n−α ,∞

(Rn)
≤ lim inf

k→+∞ ‖ fk‖L n
n−α ,∞

(Rn)

≤ cn,α lim
k→+∞ |Dα fk |(Rn) = cn,α|Dα f |(Rn)

and so (3.22) readily follows. Finally, thanks to [39, Proposition 1.1.14], we obtain
the continuous embedding of BV α(Rn) in Lq(Rn) for all q ∈ [1, n

n−α
). ��

123



A distributional approach to fractional Sobolev spaces…

Remark 3.9 (The embedding BV α(R) ⊂ L
1

1−α
,∞(R) is sharp) Let α ∈ (0, 1). The

continuous embedding BV α(R) ⊂ L
1

1−α
,∞(R) is sharp at the level of Lorentz spaces,

in the sense that BV α(Rn) \ L
1

1−α
,q(R) �= ∅ for any q ∈ [1,+∞). Indeed, if we let

fα(x) = |x − 1|α−1 sgn(x − 1) − |x |α−1 sgn(x), x ∈ R \ {0, 1},

then fα ∈ BV α(R) by [27, Theorem 3.26], and it is not difficult to prove that fα ∈
L

1
1−α

,∞(R). However, we can find a constant cα > 0 such that

| fα(x)| ≥ cα|x |α−1χ(
− 1

4 , 14

)(x) =: gα(x), x ∈ R \ {0, 1},

so that d fα ≥ dgα , where d fα and dgα are the distribution functions of fα and gα . A
simple calculation shows that

dgα (s) =

⎧⎪⎨
⎪⎩
1

2
if 0 < s ≤ cα41−α

2
(cα

t

) 1
1−α

if s > cα41−α,

so that, by [39, Proposition 1.4.9], we obtain

‖ fα‖q
L

1
1−α

,q
(R)

≥ ‖gα‖q
L

1
1−α

,q
(R)

= 1

1 − α

∫ +∞

0

[
dgα (s)

]q(1−α)
sq−1 ds

≥ 2q(1−α)

1 − α

∫ +∞

cα41−α

s−qsq−1 ds = +∞

and thus fα /∈ L
1

1−α
,q(R) for any q ∈ [1,+∞).

We collect the above continuous embeddings in the following statement.

Corollary 3.10 (The embedding BV α ⊂ BV α,p) Let α ∈ (0, 1) and p ∈
[
1, n

n−α

)
.

We have BV α(Rn) ⊂ BV α,p(Rn) with continuous embedding. In addition, if n ≥ 2,
then also BV α(Rn) ⊂ BV α, n

n−α (Rn) with continuous embedding.

WithCorollary 3.10 at hands,we are finally ready to investigate the relation between
α-variation and β-variation for 0 < β < α < 1.

Lemma 3.11 Let 0 < β < α < 1. The following hold.

(i) If f ∈ BV β(Rn), then u := Iα−β f ∈ BV α,p(Rn) for any p ∈
(

n
n−α+β

, n
n−α

)
(including p = n

n−α
if n ≥ 2), with Dαu = Dβ f inM (Rn; R

n).
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(ii) If u ∈ BV α(Rn), then f := (−�)
α−β
2 u ∈ BV β(Rn) with

‖ f ‖L1(Rn) ≤ cn,α,β ‖u‖BV α(Rn) and Dβ f = Dαu inM (Rn; R
n).

As a consequence, the operator (−�)
α−β
2 : BV α(Rn) → BV β(Rn) is continuous.

Proof We begin with the following observation. Let ϕ ∈ C∞
c (Rn; R

n) and letU ⊂ R
n

be a bounded open set such that suppϕ ⊂ U . By Proposition 2.1 and the semigroup
property (2.4) of the Riesz potential, we can write

divβϕ = I1−βdivϕ = Iα−β I1−αdivϕ = Iα−βdiv
αϕ.

Similarly, we also have

Iα−β |divαϕ| = Iα−β |I1−αdivϕ| ≤ Iα−β I1−α|divϕ| = I1−β |divϕ|,

so that Iα−β |divαϕ| ∈ L∞(Rn) with

‖Iα−β |divαϕ|‖L∞(Rn) ≤ ‖I1−β |divϕ|‖L∞(Rn) ≤ Cn,β,U‖divϕ‖L∞(Rn)

by [27, Lemma 2.4] We now prove the two statements separately.
Proof of (i). Let f ∈ BV β(Rn) and ϕ ∈ C∞

c (Rn; R
n). Thanks to Corollary 3.10,

if n ≥ 2, then f ∈ BV β,q(Rn) for any q ∈ [1, n
n−β

] and so Iα−β f ∈ L p(Rn) for

any p ∈
(

n
n−α+β

, n
n−α

]
by (2.5). If instead n = 1, then f ∈ BV β,q(R) for any

q ∈ [1, 1
1−β

) and so Iα−β f ∈ L p(R) for any p ∈
(

1
1−α+β

, 1
1−α

)
. Since f ∈ L1(Rn)

and Iα−β |divαϕ| ∈ L∞(Rn), by Fubini’s Theorem we have

∫
Rn

f divβϕ dx =
∫
Rn

f Iα−βdiv
αϕ dx =

∫
Rn

u divαϕ dx, (3.23)

proving that u := Iα−β f ∈ BV α,p(Rn) for any p ∈
(

n
n−α+β

, n
n−α

)
(including

p = n
n−α

if n ≥ 2), with Dαu = Dβ f inM (Rn; R
n).

Proof of (ii). Let u ∈ BV α(Rn). By [27, Theorem 3.32] we know that

u ∈ Wα−β,1(Rn), so that f := (−�)
α−β
2 u ∈ L1(Rn) with ‖ f ‖L1(Rn) ≤

cn,α,β ‖u‖BV α(Rn), see [27, Section 3.10] Then, arguing as before, for any ϕ ∈
C∞
c (Rn; R

n) we get (3.23), since we have Iα−β f = u in L1(Rn) (see [27, Section
3.10]). The proof is complete. ��

3.4 The inclusion BV˛ ⊂ Wˇ,1 forˇ < ˛: a representation formula

In [27, Theorem 3.32], we proved that the inclusion BV α ⊂ Wβ,1 is continuous
for β < α. In the following result we prove a useful representation formula for
the fractional β-gradient of any f ∈ BV α(Rn), extending the formula obtained in
Corollary 3.6.
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Proposition 3.12 Let α ∈ (0, 1). If f ∈ BV α(Rn), then f ∈ Wβ,1(Rn) for all β ∈
(0, α) with

∇β f = Iα−βD
α f a.e. in R

n . (3.24)

In addition, for any bounded open set U ⊂ R
n, we have

‖∇β f ‖L1(U ;Rn) ≤ Cn,(1−α+β),U |Dα f |(Rn) (3.25)

for all β ∈ (0, α), where Cn,α,U is as in (2.9). Finally, given an open set A ⊂ R
n, we

have

‖∇β f ‖L1(A;Rn) ≤ μn,1+β−α

n + β − α

(
ωn,1|Dα f |(Ar )

α − β
rα−β

+ωn,α(n + 2β − α)

β
‖ f ‖L1(Rn) r

−β

)
(3.26)

for all r > 0 and all β ∈ (0, α), where ωn,α := ‖∇αχB1‖L1(Rn;Rn), ωn,1 :=
|DχB1 |(Rn) = nωn, and, as above, Ar :=

{
x ∈ R

n : dist(x, A) < r

}
. In par-

ticular, we have

‖∇β f ‖L1(Rn;Rn)

≤ αμn,1+β−αω
β
α

n,1ω
1− β

α
n,α (n + 2β − α)1−

β
α

β(n + β − α)(α − β)
‖ f ‖1−

β
α

L1(Rn)
|Dα f |(Rn)

β
α . (3.27)

Proof Fix β ∈ (0, α). By [27, Theorem 3.32] we already know that f ∈ Wβ,1(Rn),
with Dβ f = ∇β fL n according to [27, Theorem 3.18]. We thus just need to
prove (3.24), (3.25) and (3.26).

We prove (3.24). Let ϕ ∈ C∞
c (Rn; R

n). Note that Iα−βϕ ∈ Lipb(R
n; R

n) is such
that divIα−βϕ = Iα−βdivϕ, so that

I1−αdivIα−βϕ = I1−α Iα−βdivϕ = I1−βdivϕ = divβϕ

by the semigroup property (2.4) of the Riesz potential. Moreover, in a similar way, we
have

I1−α|divIα−βϕ| = I1−α|Iα−βdivϕ| ≤ I1−α Iα−β |divϕ| = I1−β |divϕ| ∈ L1
loc(R

n).

By Lemma 2.2, we thus have that divα Iα−βϕ = divβϕ. Consequently, by Proposition
2.7, we get

∫
Rn

f divβϕ dx =
∫
Rn

f divα Iα−βϕ dx = −
∫
Rn

Iα−βϕ · dDα f .
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Since |Dα f |(Rn) < +∞, we have Iα−β |Dα f | ∈ L1
loc(R

n) and thus, by Fubini’s
Theorem, we get that

∫
Rn

Iα−βϕ · dDα f =
∫
Rn

ϕ · Iα−βD
α f dx .

We conclude that

∫
Rn

f divβϕ dx = −
∫
Rn

ϕ · Iα−βD
α f dx

for any ϕ ∈ C∞
c (Rn; R

n), proving (3.24).
We prove (3.25). By (3.24), by Tonelli’s Theorem and by [27, Lemma 2.4], we get

∫
U

|∇β f | dx ≤
∫
U
Iα−β |Dα f | dx ≤ Cn,(1−α+β),U |Dα f |(Rn)

where Cn,α,U is as in (2.9).
We now prove (3.26) in two steps. We argue as in the proof of (3.4).
Proof of (3.26), Step 1. Assume f ∈ C∞

c (Rn) and fix r > 0. We have

∫
A

|∇β f |dx =
∫
A

|Iα−β∇α f | dx

≤ μn,1+β−α

n + β − α

(∫
A

∫
{|h|<r}

|∇α f (x + h)|
|h|n+β−α

dhdx

+
∫
A

∣∣∣∣
∫

{|h|≥r}
∇α f (x + h)

|h|n+β−α
dh

∣∣∣∣dx
)

.

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

∫
A

∫
{|h|<r}

|∇α f (x + h)|
|h|n+β−α

dh dx =
∫

{|h|<r}

∫
A

|∇α f (x + h)| dx dh

|h|n+β−α

≤ |Dα f |(Ar )

∫
{|h|<r}

dh

|h|n+β−α

= nωn |Dα f |(Ar )

α − β
rα−β.

Concerning the second double integral, we apply [1, Lemma 3.1.1(c)] to each com-
ponent of the measure Dα f ∈ M (Rn; R

n) and get

∫
{|h|≥r}

∇α f (x + h)

|h|n+β−α
dh = (n + β − α)

∫ +∞

r

Dα f (B
(x))


n+β−α+1 d
 − Dα f (Br (x))

rn+β−α

123



A distributional approach to fractional Sobolev spaces…

for all x ∈ A. Since

Dα f (B
(x)) =
∫
Rn

χB
 (y)∇α f (x + y) dy

= −
∫
Rn

f (x + y)∇αχB
 (y) dy

= −
n−α

∫
Rn

f (x + 
y)∇αχB1(y) dy,

we can compute

(n + β − α)

∫ +∞

r

Dα f (B
(x))


n+β−α+1 d
 − Dα f (Br (x))

rn+β−α

= −(n + β − α)

∫ +∞

r

1


β+1

∫
Rn

f (x + 
y)∇αχB1(y) dy d


+ 1

rβ

∫
Rn

f (x + r y)∇αχB1(y) dy

=
∫
Rn

(
f (x + r y)

rβ
− (n + β − α)

∫ +∞

r

f (x + 
y)


β+1 d


)
∇αχB1(y) dy

for all x ∈ A. Hence, we have

∫
A

∣∣∣∣
∫

{|h|>r}
∇α f (x + h)

|h|n+β−α
dh

∣∣∣∣ dx ≤
∫
Rn

∣∣∣∣
∫

{|h|>r}
∇α f (x + h)

|h|n+β−α
dh

∣∣∣∣ dx
≤

∫
Rn

∫
Rn

| f (x + r y)|
rβ

|∇αχB1(y)| dx dy

+ (n + β − α)

∫
Rn

∫ +∞

r

∫
Rn

| f (x + 
y)|

β+1 |∇αχB1(y)| dx d
 dy

= ωn,α(n + 2β − α)

β
‖ f ‖L1(Rn) r

−β.

Thus (3.4) follows for all f ∈ C∞
c (Rn) and r > 0.

Proof of (3.4), Step 2. Let f ∈ BV α(Rn) and fix r > 0. By [27, Theorem 3.8], we
find ( fk)k∈N ⊂ C∞

c (Rn) such that fk → f in L1(Rn) and |Dα fk |(Rn) → |Dα f |(Rn)

as k → +∞. By Step 1, we have that

‖∇β fk‖L1(A;Rn) ≤ μn,1+β−α

n + β − α

(
nωn|Dα fk |(Ar )

α − β
rα−β

+ωn,α(n + 2β − α)

β
‖ fk‖L1(Rn) r

−β

)
(3.28)

for all k ∈ N. We have that

(∇β fk)L
n⇀(∇β f )L n as k → +∞. (3.29)
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This can be proved arguing as in the proof of (3.9) using (3.25). At this point the proof
goes like that of Proposition 3.2(i) and we thus leave the details to the reader. ��

4 Asymptotic behavior of fractional˛-variation as˛ → 1−

4.1 Convergence of∇˛ and div˛ as˛ → 1−

Webeginwith the following simple result about the asymptotic behavior of the constant
μn,α as α → 1−.

Lemma 4.1 Let n ∈ N. We have

μn,α

1 − α
≤ π− n

2
√
6

�
( n
2 + 1

)
�

( 3
2

) =: Cn ∀α ∈ (0, 1) (4.1)

and

lim
α→1−

μn,α

1 − α
= ω−1

n . (4.2)

Proof Since�(1) = 1 and�(1+x) = x �(x) for x > 0 (see [9]), we have�(x) ∼ x−1

as x → 0+. Thus as α → 1− we find

μn,α = 2απ− n
2
�

( n+α+1
2

)
�

( 1−α
2

) ∼ π− n
2 (1 − α)�

(n
2

+ 1
)

= ω−1
n (1 − α)

and (4.2) follows. Since � is log-convex on (0,+∞) (see [9]), for all x > 0 and
a ∈ (0, 1) we have

�(x + a) = �((1 − a)x + a(x + 1)) ≤ �(x)1−a �(x + 1)a = xa �(x).

For x = n
2 and a = α+1

2 , we can estimate

�

(
n + α + 1

2

)
≤

(n
2

) α+1
2

�
(n
2

)
≤ max

{n
2
, 1

}
�

(n
2

)
≤ n�

(n
2

)
= 2�

(n
2

+ 1
)

for all n ≥ 1. For x = 1 + 1−α
2 and a = α

2 , we can estimate

�

(
3

2

)
≤

(
1 + 1 − α

2

) α
2

�

(
1 + 1 − α

2

)
≤

√
3

2

1 − α

2
�

(
1 − α

2

)
.
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We thus get

μn,α(1 − α)−1 = 2α−1 π− n
2

�
( n+α+1

2

)
�

( 1−α
2 + 1

) ≤ π− n
2

√
3

2

2�
( n
2 + 1

)
�

( 3
2

)

and (4.1) follows. ��
In the following technical result, we show that the constant Cn,α,U defined in (2.9)

is uniformly bounded as α → 1− in terms of the volume and the diameter of the
bounded open set U ⊂ R

n .

Lemma 4.2 (Uniform upper bound on Cn,α,U as α → 1−). Let n ∈ N and α ∈ ( 12 , 1).
Let U ⊂ R

n be bounded open set. If Cn,α,U is as in (2.9), then

Cn,α,U ≤ nωnCn(
n − 1

2

)
⎛
⎝ n(

n − 1
2

) max

{
1,

|U |
ωn

} 1
n

+ max

{
1,

√
diam(U )

}⎞
⎠ =: κn,U ,

(4.3)

where Cn is as in (4.1).

Proof By (4.1), for all α ∈ ( 12 , 1) we have

n μn,α

(n + α − 1)(1 − α)
≤ n Cn

n + α − 1
≤ n Cn

n − 1
2

.

Since t1−α ≤ max{1,√t} for any t ≥ 0 and α ∈ ( 12 , 1), we have

ωn(diam(U ))1−α ≤ ωn max

{
1,

√
diam(U )

}

and

(
nωn

n + α − 1

) n+α−1
n |U | 1−α

n = nωn

n + α − 1

( |U |(n + α − 1)

nωn

) 1−α
n

≤ nωn(
n − 1

2

) max

{
1,

|U |
ωn

} 1
n

.

Combining these inequalities, we get the conclusion. ��
As consequence of Proposition 2.1 and Lemma 4.2, we prove that ∇α and divα

converge pointwise to ∇ and div respectively as α → 1−.

Proposition 4.3 If f ∈ C1
c (R

n), then for all x ∈ R
n we have

lim
α→0− Iα f (x) = f (x). (4.4)

123



G. E. Comi, G. Stefani

As a consequence, if f ∈ C2
c (R

n) and ϕ ∈ C2
c (R

n; R
n), then for all x ∈ R

n we have

lim
α→1− ∇α f (x) = ∇ f (x), lim

α→1− divαϕ(x) = divϕ(x). (4.5)

Proof Let f ∈ C1
c (R

n) and fix x ∈ R
n . Writing (2.6) in spherical coordinates, we

find

Iα f (x) = μn,1−α

n − α
lim
δ→0

∫
∂B1

∫ +∞

δ


−1+α f (x + 
v) d
 dH n−1(v).

Since f ∈ C1
c (R

n), for each fixed v ∈ ∂B1 we can integrate by parts in the variable 


and get

∫ +∞

δ


−1+α f (x + 
v) d
 =
[


α

α
f (x + 
v)

]
→+∞


=δ

− 1

α

∫ +∞

δ


α ∂
( f (x + 
v)) d


= −δα

α
f (x + δv) − 1

α

∫ +∞

δ


α ∂
( f (x + 
v)) d
.

Clearly, we have

lim
δ→0+ δα

∫
∂B1

f (x + δv) dH n−1(v) = 0.

Thus, by Fubini’s Theorem, we conclude that

Iα f (x) = − μn,1−α

α(n − α)

∫ ∞

0

∫
∂B1


α ∂
( f (x + 
v)) dH n−1(v) d
. (4.6)

Since f has compact support and recalling (4.2), we can pass to the limit in (4.6) and
get

lim
α→0+ Iα f (x) = − 1

nωn

∫
∂B1

∫ ∞

0
∂
( f (x + 
v)) d
 dH n−1(v) = f (x),

proving (4.4). The pointwise limits in (4.5) immediately follows by Proposition
2.1. ��

In the following crucial result, we improve the pointwise convergence obtained in
Proposition 4.3 to strong convergence in L p(Rn) for all p ∈ [1,+∞].
Proposition 4.4 Let p ∈ [1,+∞]. If f ∈ C2

c (R
n) and ϕ ∈ C2

c (R
n; R

n), then

lim
α→1− ‖∇α f − ∇ f ‖L p(Rn;Rn) = 0, lim

α→1− ‖divαϕ − divϕ‖L p(Rn) = 0.
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Proof Let f ∈ C2
c (R

n). Since

∫
B1

dy

|y|n+α−1 = nωn

∫ 1

0

d



α
= nωn

1 − α
,

for all x ∈ R
n we can write

nωnμn,α

(1 − α)(n + α − 1)
∇ f (x) = μn,α

n + α − 1

∫
B1

∇ f (x)

|y|n+α−1 dy.

Therefore, by (2.6), we have

∇α f (x) − nωnμn,α

(1 − α)(n + α − 1)
∇ f (x)

= μn,α

n + α − 1

(∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy +
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

)

for all x ∈ R
n . We now distinguish two cases.

Case 1: p ∈ [1,+∞). Using the elementary inequality |v + w|p ≤ 2p−1(|v|p +
|w|p) valid for all v,w ∈ R

n , we have

∫
Rn

∣∣∣∣∇α f (x) − nωnμn,α

(1 − α)(n + α − 1)
∇ f (x)

∣∣∣∣
p

dx

≤ 2p−1μn,α

n + α − 1

∫
Rn

∣∣∣∣
∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

∣∣∣∣
p

dx

+ 2p−1μn,α

n + α − 1

∫
Rn

∣∣∣∣
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

∣∣∣∣
p

dx .

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, as in the proof of Proposition 4.3, we pass in spherical

coordinates to get

∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

=
∫

∂B1

∫ 1

0

−α (∇ f (x + 
v) − ∇ f (x)) d
 dH n−1(v)

= 1

1 − α

∫
∂B1

(∇ f (x + v) − ∇ f (x)) dH n−1(v)

−
∫

∂B1

∫ 1

0


1−α

1 − α
∂
(∇ f (x + 
v)) d
 dH n−1(v) (4.7)
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for all x ∈ R
n . Hence, by (4.2), we find

lim
α→1−

μn,α

(1 − α)(n + α − 1)

∫
∂B1

(∇ f (x + v) − ∇ f (x)) dH n−1(v)

= 1

nωn

∫
∂B1

(∇ f (x + v) − ∇ f (x)) dH n−1(v)

and

lim
α→1−

μn,α

(1 − α)(n + α − 1)

∫
∂B1

∫ 1

0

1−α ∂
(∇ f (x + 
v)) d
 dH n−1(v)

= 1

nωn

∫
∂B1

∫ 1

0
∂
(∇ f (x + 
v)) d
 dH n−1(v)

= 1

nωn

∫
∂B1

(∇ f (x + v) − ∇ f (x)) dH n−1(v)

for all x ∈ R
n . Therefore, we get

lim
α→1−

μn,α

n + α − 1

∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy = 0

for all x ∈ R
n . Recalling (4.1), we also observe that

μn,α

n + α − 1

|∇ f (x + y) − ∇ f (x)|
|y|n+α−1 ≤ Cn

∣∣∣∣∇ f (x + y) − ∇ f (x)

∣∣∣∣
|y|n

for all α ∈ (0, 1), x ∈ R
n and y ∈ B1. Moreover, letting R > 0 be such that

supp f ⊂ BR , we can estimate

∫
B1

∣∣∣∣∇ f (x + y) − ∇ f (x)

∣∣∣∣
|y|n dy ≤ nωn ‖∇2 f ‖

L∞
(
Rn;Rn2

) χBR+1(x)

for all x ∈ R
n , so that

x �→

⎛
⎜⎜⎜⎝

∫
B1

∣∣∣∣∇ f (x + y) − ∇ f (x)

∣∣∣∣
|y|n dy

⎞
⎟⎟⎟⎠

p

∈ L1(Rn).

In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

lim
α→1−

μn,α

n + α − 1

∫
Rn

∣∣∣∣
∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

∣∣∣∣
p

dx = 0.
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For the second double integral, note that

∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy =
∫
Rn\B1

∇( f (x + y) − f (x))

|y|n+α−1 dy

for all x ∈ R
n . Now let R > 0. Integrating by parts, we have that

∫
BR\B1

∇( f (x + y) − f (x))

|y|n+α−1 dy = (n + α − 1)
∫
BR\B1

y ( f (x + y) − f (x))

|y|n+α+1 dy

+ 1

Rn+α−1

∫
∂BR

( f (x + y) − f (x)) dH n−1(y)

−
∫

∂B1
( f (x + y) − f (x)) dH n−1(y)

for all x ∈ R
n . Since

∫
Rn\BR

| f (x + y) − f (x)|
|y|n+α

dy ≤ 2nωn

αRα
‖ f ‖L∞(Rn)

and

1

Rn+α−1

∫
∂BR

| f (x + y) − f (x)| dH n−1(y) ≤ 2nωn

Rα
‖ f ‖L∞(Rn)

for all R > 0, we conclude that

∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy = lim
R→+∞

∫
BR\B1

∇ f (x + y)

|y|n+α−1 dy

= (n + α − 1)
∫
Rn\B1

y ( f (x + y) − f (x))

|y|n+α+1 dy

−
∫

∂B1
( f (x + y) − f (x)) dH n−1(y)

(4.8)

for all x ∈ R
n . Hence, by Minkowski’s Integral Inequality (see [76, Section A.1], for

example), we can estimate

∥∥∥∥
∫
Rn\B1

∇ f (· + y)

|y|n+α−1 dy

∥∥∥∥
L p(Rn;Rn)

≤ (n + α − 1)

∥∥∥∥
∫
Rn\B1

| f (· + y) − f (·)|
|y|n+α

dy

∥∥∥∥
L p(Rn)

+
∥∥∥∥
∫

∂B1
| f (· + y) − f (·)| dH n−1(y)

∥∥∥∥
L p(Rn)

≤ n + 2α − 1

α
2nωn‖ f ‖L p(Rn).
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Thus, by (4.2), we get that

lim
α→1−

μn,α

n + α − 1

∫
Rn

∣∣∣∣
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

∣∣∣∣
p

dx = 0.

Case 2: p = +∞. We have

sup
x∈Rn

∣∣∣∣∇α f (x) − nωnμn,α

(1 − α)(n + α − 1)
∇ f (x)

∣∣∣∣
≤ μn,α

n + α − 1

(
sup
x∈Rn

∣∣∣∣
∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

∣∣∣∣
+ sup

x∈Rn

∣∣∣∣
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

∣∣∣∣
)

.

Again we estimate the two integrals appearing in the right-hand side separately. We
note that

∫
∂B1

(∇ f (x + v) − ∇ f (x)) dH n−1(v)

−
∫

∂B1

∫ 1

0

1−α ∂
(∇ f (x + 
v)) d
 dH n−1(v)

=
∫

∂B1

∫ 1

0
(1 − 
1−α) ∂
(∇ f (x + 
v)) d
 dH n−1(v),

so that we can rewrite (4.7) as

∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

= 1

1 − α

∫
∂B1

∫ 1

0
(1 − 
1−α) ∂
(∇ f (x + 
v)) d
 dH n−1(v).

Hence, we can estimate

sup
x∈Rn

∣∣∣∣
∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

∣∣∣∣
≤ 1

1 − α

∫
∂B1

∫ 1

0
(1 − 
1−α) sup

x∈Rn
|∂
(∇ f (x + 
v))| d
 dH n−1(v)

≤ 1

2 − α
nωn ‖∇2 f ‖

L∞
(
Rn;Rn2

),

so that

lim
α→1−

μn,α

n + α − 1
sup
x∈Rn

∣∣∣∣
∫
B1

∇ f (x + y) − ∇ f (x)

|y|n+α−1 dy

∣∣∣∣ = 0.
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For the second integral, by (4.8) we can estimate

sup
x∈Rn

∣∣∣∣
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

∣∣∣∣ dx
≤ (n + α − 1) sup

x∈Rn

∣∣∣∣
∫
Rn\B1

| f (x + y) − f (x)|
|y|n+α

dy

∣∣∣∣
+ sup

x∈Rn

∣∣∣∣
∫

∂B1
| f (x + y) − f (x)| dH n−1(y)

∣∣∣∣
≤ n + 2α − 1

α
2nωn‖ f ‖L∞(Rn).

Thus, by (4.2), we get that

lim
α→1−

μn,α

n + α − 1
sup
x∈Rn

∣∣∣∣
∫
Rn\B1

∇ f (x + y)

|y|n+α−1 dy

∣∣∣∣ = 0.

We can now conclude the proof. Again recalling (4.2), we thus find that

lim
α→1− ‖∇α f − ∇ f ‖L p(Rn;Rn)

≤ lim
α→1−

∥∥∥∥∇α f − nωnμn,α

(1 − α)(n + α − 1)
∇ f

∥∥∥∥
L p(Rn;Rn)

+ ‖∇ f ‖L p(Rn;Rn) lim
α→1−

∣∣∣∣ nωnμn,α

(1 − α)(n + α − 1)
− 1

∣∣∣∣ = 0

for all p ∈ [1,+∞] and the conclusion follows. The L p-convergence of divαϕ to
divϕ as α → 1− for all p ∈ [1,+∞] follows by a similar argument and is left to the
reader. ��

Remark 4.5 Note that the conclusion of Proposition 4.4 still holds if instead one
assumes that f ∈ S (Rn) and ϕ ∈ S (Rn; R

n), where S (Rn; R
m) is the space

of m-vector-valued Schwartz functions. We leave the proof of this assertion to the
reader.

4.2 Weak convergence of˛-variation as˛ → 1−

In Theorem 4.7 below, we prove that the fractional α-variation weakly converges to
the standard variation as α → 1− for functions either in BV (Rn) or in BVloc(Rn) ∩
L∞(Rn). In the proof of Theorem 4.7, we are going to use the following technical
result.

Lemma 4.6 There exists a dimensional constant cn > 0 with the following property.
If f ∈ L∞(Rn) ∩ BVloc(Rn), then
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‖∇α f ‖L1(BR;Rn) ≤ cn
(
R1−α|Df |(B3R) + Rn−α ‖ f ‖L∞(Rn)

)
(4.9)

for all R > 0 and α ∈ ( 12 , 1).

Proof Since �(x) ∼ x−1 as x → 0+ (see [9]), inequality (4.9) follows immediately
combining (3.7) with Lemma 4.1. ��
Theorem 4.7 If either f ∈ BV (Rn) or f ∈ BVloc(Rn) ∩ L∞(Rn), then

Dα f ⇀Df as α → 1−.

Proof We divide the proof in two steps.
Step 1. Assume f ∈ BV (Rn). By [27, Theorem 3.18], we have

∫
Rn

ϕ · ∇α f dx = −
∫
Rn

f divαϕ dx

for all ϕ ∈ Lipc(R
n; R

n). Thus, given ϕ ∈ C2
c (R

n; R
n), recalling Proposition 4.3 and

the estimates (2.12) and (4.3), by Lebesgue’s Dominated Convergence Theorem we
get that

lim
α→1−

∫
Rn

ϕ · ∇α f dx

= − lim
α→1−

∫
Rn

f divαϕ dx = −
∫
Rn

f divϕ dx =
∫
Rn

ϕ · dD f .

To achieve the same limit for any ϕ ∈ C0
c (R

n; R
n), one just need to exploit (3.3) and

the uniform estimate (4.3) in Lemma 4.2, and argue as in Step 2 of the proof of (3.4).
We leave the details to the reader.

Step 2. Assume f ∈ BVloc(Rn) ∩ L∞(Rn). By Proposition 3.2(iii), we know that
Dα f = ∇α fL n with ∇α f ∈ L1

loc(R
n; R

n). By Proposition 4.4, we get that

lim
α→1−

∣∣∣∣
∫
Rn

ϕ · ∇α f dx −
∫
Rn

ϕ · dD f

∣∣∣∣
≤ ‖ f ‖L∞(Rn) lim

α→1− ‖divαϕ − divϕ‖L1(Rn;Rn) = 0

for all ϕ ∈ C2
c (R

n; R
n). To achieve the same limit for any ϕ ∈ C0

c (R
n; R

n), one just
need to exploit (4.9) and argue as in Step 1. We leave the details to the reader. ��

We are now going to improve the weak convergence of the fractional α-variation
obtained in Theorem 4.7 by establishing the weak convergence also of the total frac-
tional α-variation as α → 1−, see Theorem 4.9 below. To do so, we need the following
preliminary result.

Lemma 4.8 Let μ ∈ M (Rn; R
m). We have (Iαμ)L n⇀μ as α → 0+.
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Proof Since Riesz potential is a linear operator and thanks to Hahn–Banach Decom-
position Theorem, without loss of generality we can assume that μ is a nonnegative
finite Radon measure.

Let now ϕ ∈ C1
c (R

n) and letU ⊂ R
n be a bounded open set such that suppϕ ⊂ U .

We have that ‖Iα|ϕ|‖L∞(Rn) ≤ κn,U‖ϕ‖L∞(Rn) for all α ∈ (0, 1
2 ) by [27, Lemma 2.4]

and Lemma 4.2. Thus, by (4.4), Fubini’s Theorem and Lebesgue’s Dominated Con-
vergence Theorem, we get that

lim
α→0+

∫
Rn

ϕ Iαμ dx = lim
α→0+

∫
Rn

Iαϕ dμ =
∫
Rn

ϕ dμ.

To achieve the same limit for anyϕ ∈ C0
c (R

n), one just need to exploit [27, Lemma2.4]
and (4.3) and argue as in Step 2 of the proof of (3.4). We leave the details to the reader.

��
Theorem 4.9 If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then

|Dα f |⇀|Df | as α → 1−. (4.10)

Moreover, if f ∈ BV (Rn), then also

lim
α→1− |Dα f |(Rn) = |Df |(Rn). (4.11)

Proof We prove (4.10) and (4.11) separately.
Proof of (4.10). By Theorem 4.7, we know that Dα f ⇀Df as α → 1−. By

[50, Proposition 4.29], we thus have that

|Df |(A) ≤ lim inf
α→1− |Dα f |(A) (4.12)

for any open set A ⊂ R
n . Now let K ⊂ R

n be a compact set. By the representation
formula (3.18) in Corollary 3.6, we can estimate

|Dα f |(K ) = ‖∇α f ‖L1(K ;Rn) ≤ ‖I1−α|Df |‖L1(K ) = (I1−α|Df |L n)(K ).

Since |Df |(Rn) < +∞, by Lemma 4.8 and [50, Proposition 4.26] we can conclude
that

lim sup
α→1−

|Dα f |(K ) ≤ lim sup
α→1−

(I1−α|Df |L n)(K ) ≤ |Df |(K ),

and so (4.10) follows, thanks again to [50, Proposition 4.26].
Proof of (4.11). Now assume f ∈ BV (Rn). By (3.4) applied with A = R

n and
r = 1, we have

|Dα f |(Rn) ≤ nωn μn,α

n + α − 1

( |Df |(Rn)

1 − α
+ n + 2α − 1

α
‖ f ‖L1(Rn)

)
.
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By (4.2), we thus get that

lim sup
α→1−

|Dα f |(Rn) ≤ |Df |(Rn). (4.13)

Thus (4.11) follows by combining (4.12) for A = R
n with (4.13). ��

Remark 4.10 Wenotice that Theorems4.7 and4.9, in the case f = χE ∈ BV (Rn)with
E ⊂ R

n bounded, and Theorem 4.11, were already announced in [71, Theorems 16
and 17].

Note that Theorems 4.7 and 4.9 in particular apply to any f ∈ W 1,1(Rn). In the
following result, by exploiting Proposition 3.3, we prove that a stronger property holds
for any f ∈ W 1,p(Rn) with p ∈ [1,+∞).

Theorem 4.11 Let p ∈ [1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1− ‖∇α

w f − ∇w f ‖L p(Rn;Rn) = 0. (4.14)

Proof By Proposition 3.3 we know that f ∈ Sα,p(Rn) for any α ∈ (0, 1). We now
assume p ∈ (1,+∞) and divide the proof in two steps.

Step 1. We claim that

lim
α→1− ‖∇α

w f ‖L p(Rn;Rn) = ‖∇w f ‖L p(Rn;Rn). (4.15)

Indeed, on the one hand, by Proposition 4.4, we have

∫
Rn

ϕ · ∇w f dx = −
∫
Rn

f divϕ dx = − lim
α→1−

∫
Rn

f divαϕ dx

= lim
α→1−

∫
Rn

ϕ · ∇α
w f dx (4.16)

for all ϕ ∈ C∞
c (Rn; R

n), so that

∫
Rn

ϕ · ∇w f dx ≤ ‖ϕ‖
L

p
p−1 (Rn;Rn)

lim inf
α→1− ‖∇α

w f ‖L p(Rn;Rn)

for all ϕ ∈ C∞
c (Rn; R

n). We thus get that

‖∇w f ‖L p(Rn;Rn) ≤ lim inf
α→1− ‖∇α

w f ‖L p(Rn;Rn). (4.17)

On the other hand, applying (3.10) with A = R
n and r = 1, we have

‖∇α
w f ‖L p(Rn;Rn) ≤ nωn μn,α

n + α − 1

(‖∇w f ‖L p(Rn;Rn)

1 − α
+ n + 2α − 1

α
‖ f ‖L p(Rn)

)
.
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By (4.2), we conclude that

lim sup
α→1−

‖∇α
w f ‖L p(Rn;Rn) ≤ ‖∇w f ‖L p(Rn;Rn). (4.18)

Thus, (4.15) follows by combining (4.17) and (4.18).
Step 2. We now claim that

∇α
w f ⇀∇w f in L p(Rn; R

n) as α → 1−. (4.19)

Indeed, let ϕ ∈ L
p

p−1 (Rn; R
n). For each ε > 0, let ψε ∈ C∞

c (Rn; R
n) be such that

‖ψε − ϕ‖
L

p
p−1 (Rn;Rn)

< ε. By (4.16) and (4.15), we can estimate

lim sup
α→1−

∣∣∣∣
∫
Rn

ϕ · ∇α
w f dx −

∫
Rn

ϕ · ∇w f dx

∣∣∣∣
≤ lim sup

α→1−

∣∣∣∣
∫
Rn

ψε · ∇α
w f dx −

∫
Rn

ψε · ∇w f dx

∣∣∣∣
+

∫
Rn

|ϕ − ψε| |∇α
w f | dx +

∫
Rn

|ϕ − ψε| |∇w f | dx

≤ ε

(
lim

α→1− ‖∇α
w f ‖L p(Rn;Rn) + ‖∇w f ‖L p(Rn;Rn)

)

= 2ε ‖∇w f ‖L p(Rn;Rn)

so that (4.19) follows passing to the limit as ε → 0+.
Since L p(Rn; R

n) is uniformly convex (see [19, Section 4.3] for example), the limit
in (4.14) follows from (4.15) and (4.19) by [19, Proposition 3.32], and the proof in
the case p ∈ (1,+∞) is complete.

For the case p = 1, we argue as follows (we thank Mattia Calzi for this simple
argument). Without loss of generality, it is enough to prove the limit in (4.15) with
p = 1 for any given sequence (αk)k∈N such that αk → 1− as k → +∞. By (4.11),
the sequence (‖∇αk f ‖L1(Rn;Rn))k∈N is bounded for any f ∈ W 1,1(Rn) and thus,
by Banach–Steinhaus Theorem, the linear operators ∇αk : W 1,1(Rn) → L1(Rn; R

n),
k ∈ N, are uniformly bounded (in the operator norm). The conclusion hence follows
by exploiting the density of C∞

c (Rn) in W 1,1(Rn) and Proposition 4.4. ��
For the case p = +∞, we have the following result. The proof is very similar to

the one of Theorem 4.11 and is thus left to the reader.

Theorem 4.12 If f ∈ W 1,∞(Rn), then

∇α
w f ⇀∇w f in L∞(Rn; R

n) as α → 1− (4.20)

and

‖∇w f ‖L∞(Rn;Rn) ≤ lim inf
α→1− ‖∇α

w f ‖L∞(Rn;Rn). (4.21)
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4.3 0-convergence of˛-variation as˛ → 1−

In this section, we study the�-convergence of the fractional α-variation to the standard
variation as α → 1−.

We begin with the � - lim inf inequality.

Theorem 4.13 (� - lim inf inequalities as α → 1−) Let � ⊂ R
n be an open set.

(i) If ( fα)α∈(0,1) ⊂ L1
loc(R

n) satisfies supα∈(0,1) ‖ fα‖L∞(Rn) < +∞ and fα → f in
L1
loc(R

n) as α → 1−, then

|Df |(�) ≤ lim inf
α→1− |Dα fα|(�). (4.22)

(ii) If ( fα)α∈(0,1) ⊂ L1(Rn) satisfies fα → f in L1(Rn) as α → 1−, then (4.22)
holds.

Proof We prove the two statements separately.
Proof of (i). Let ϕ ∈ C∞

c (�; R
n) be such that ‖ϕ‖L∞(�;Rn) ≤ 1. Since we can

estimate

∣∣∣∣
∫
Rn

fα div
αϕ dx −

∫
Rn

f divϕ dx

∣∣∣∣
≤

∫
Rn

∣∣∣∣ fα − f

∣∣∣∣
∣∣∣∣divϕ

∣∣∣∣ dx +
∫
Rn

| fα|
∣∣∣∣divαϕ − divϕ

∣∣∣∣ dx
≤ ‖divϕ‖L∞(Rn;Rn)

∫
suppϕ

∣∣∣∣ fα − f

∣∣∣∣ dx
+ (

sup
α∈(0,1)

‖ fα‖L∞(Rn)

) ‖divαϕ − divϕ‖L1(Rn),

by Proposition 4.4 we get that

∫
Rn

f divϕ dx = lim
α→1−

∫
Rn

fα div
αϕ dx ≤ lim inf

α→1− |Dα f |(�)

and the conclusion follows.
Proof of (ii). Let ϕ ∈ C∞

c (�; R
n) be such that ‖ϕ‖L∞(�;Rn) ≤ 1. Since we can

estimate

∣∣∣∣
∫
Rn

fα div
αϕ dx −

∫
Rn

f divϕ dx

∣∣∣∣
≤

∫
Rn

∣∣∣∣ fα − f

∣∣∣∣
∣∣∣∣divϕ

∣∣∣∣ dx +
∫
Rn

| fα|
∣∣∣∣divαϕ − divϕ

∣∣∣∣ dx
≤ ‖divϕ‖L∞(Rn)‖ fα − f ‖L1(Rn) + ‖divαϕ − divϕ‖L∞(Rn)‖ fα‖L1(Rn),
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by Proposition 4.4 we get that

∫
Rn

f divϕ dx = lim
α→1−

∫
Rn

fα div
αϕ dx ≤ lim inf

α→1− |Dα fα|(�)

and the conclusion follows. ��
We now pass to the � - lim sup inequality.

Theorem 4.14 (� - lim sup inequalities as α → 1−) Let � ⊂ R
n be an open set.

(i) If f ∈ BV (Rn) and either � is bounded or � = R
n, then

lim sup
α→1−

|Dα f |(�) ≤ |Df |(�). (4.23)

(ii) If f ∈ BVloc(Rn) and � is bounded, then

�(L1
loc) - lim sup

α→1−
|Dα f |(�) ≤ |Df |(�).

In addition, if f = χE , then the recovering sequences ( fα)α∈(0,1) in (i) and (ii) can
be taken such that fα = χEα for some measurable sets (Eα)α∈(0,1).

Proof Assume f ∈ BV (Rn). By Theorem 4.9, we know that |Dα f |⇀|Df | as α →
1−. Thus, by [50, Proposition 4.26], we get that

lim sup
α→1−

|Dα f |(�) ≤ lim sup
α→1−

|Dα f |(�) ≤ |Df |(�) (4.24)

for any bounded open set � ⊂ R
n . If � = R

n , then (4.23) follows immediately
from (4.11). This concludes the proof of (i).

Now assume that f ∈ BVloc(Rn) and � is bounded. Let (Rk)k∈N ⊂ (0,+∞)

be a sequence such that Rk → +∞ as k → +∞ and set fk := f χBRk
for all

k ∈ N. By Theorem A.1, we can choose the sequence (Rk)k∈N such that, in addition,
fk ∈ BV (Rn)with Dfk = χ�

BRk
D f + f �DχBRk

for all k ∈ N. Consequently, fk → f

in L1
loc(R

n) as k → +∞ and, moreover, since � is bounded, |Dfk |(�) = |Df |(�)

and |Dfk |(∂�) = |Df |(∂�) for all k ∈ N sufficiently large. By (4.24), we have that

lim sup
α→1−

|Dα fk |(�) ≤ |Dfk |(�) (4.25)

for all k ∈ N sufficiently large. Hence, by [17, Proposition 1.28], by [29, Proposi-
tion 8.1(c)] and by (4.25), we get that

�(L1
loc) - lim sup

α→1−
|Dα f |(�) ≤ lim inf

k→+∞
(
�(L1

loc) - lim sup
α→1−

|Dα fk |(�)
)

≤ lim
k→+∞ |Dfk |(�) = |Df |(�).

This concludes the proof of (ii).
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Finally, if f = χE , then we can repeat the above argument verbatim in the metric
spaces {χF ∈ L1(Rn) : F ⊂ R

n} for (i) and {χF ∈ L1
loc(R

n) : F ⊂ R
n} for (ii)

endowed with their natural distances. ��
Remark 4.15 Thanks to (4.23), a recovery sequence in Theorem 4.14(i) is the constant
sequence (also in the special case f = χE ).

Combining Theorems 4.13(i) and 4.14(ii), we can prove that the fractional Cac-
cioppoli α-perimeter �-converges to De Giorgi’s perimeter as α → 1− in L1

loc(R
n).

We refer to [3] for the same result on the classical fractional perimeter.

Theorem 4.16 (�(L1
loc) - lim of perimeters as α → 1−) Let � ⊂ R

n be a bounded
open set with Lipschitz boundary. For every measurable set E ⊂ R

n, we have

�(L1
loc) - lim

α→1− |DαχE |(�) = P(E;�).

Proof By Theorem 4.13(i), we already know that

�(L1
loc) - lim inf

α→1− |DαχE |(�) ≥ P(E;�),

so we just need to prove the �(L1
loc) - lim sup inequality. Without loss of generality,

we can assume P(E;�) < +∞. Now let (Ek)k∈N be given by Theorem A.4. Since
χEk ∈ BVloc(Rn) and P(Ek; ∂�) = 0 for all k ∈ N, by Theorem 4.14(ii) we know
that

�(L1
loc) - lim sup

α→1−
|DαχEk |(�) ≤ P(Ek;�)

for all k ∈ N. Since χEk → χE in L1
loc(R

n) and P(Ek;�) → P(E;�) as k → +∞,
by [17, Proposition 1.28] we get that

�(L1
loc) - lim sup

α→1−
|DαχE |(�) ≤ lim inf

k→+∞
(
�(L1

loc) - lim sup
α→1−

|DαχEk |(�)
)

≤ lim
k→+∞ P(Ek;�) = P(E;�)

and the proof is complete. ��
Finally, by combining Theorems 4.13(ii) and 4.14, we can prove that the fractional

α-variation �-converges to De Giorgi’s variation as α → 1− in L1(Rn).

Theorem 4.17 (�(L1) - lim of variations as α → 1−) Let� ⊂ R
n be an open set such

that either� is bounded with Lipschitz boundary or� = R
n. For every f ∈ BV (Rn),

we have

�(L1) - lim
α→1− |Dα f |(�) = |Df |(�).
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Proof The case � = R
n follows immediately by [29, Proposition 8.1(c)] combining

Theorem 4.13(ii) with Theorem 4.14(i). We can thus assume that� is a bounded open
set with Lipschitz boundary and argue as in the proof of Theorem 4.16. By Theorem
4.13(ii), we already know that

�(L1) - lim inf
α→1− |Dα f |(�) ≥ |Df |(�),

so we just need to prove the �(L1) - lim sup inequality. Without loss of generality, we
can assume |Df |(�) < +∞. Now let ( fk)k∈N ⊂ BV (Rn) be given by Theorem A.6.
Since |Dfk |(∂�) = 0 for all k ∈ N, by Theorem 4.14 we know that

�(L1) - lim sup
α→1−

|Dα fk |(�) ≤ |Dfk |(�) = |Dfk |(�)

for all k ∈ N. Since fk → f in L1(Rn) and |Dα fk |(�) → |Dα f |(�) as k → +∞,
by [17, Proposition 1.28] we get that

�(L1) - lim sup
α→1−

|Dα f |(�) ≤ lim inf
k→+∞

(
�(L1) - lim sup

α→1−
|Dα fk |(�)

)

≤ lim
k→+∞ |Dfk |(�) = |Df |(�)

and the proof is complete. ��
Remark 4.18 Thanks to Theorem 4.17, we can slightly improve Theorem 4.16. Indeed,
if χE ∈ BV (Rn), then we also have

�(L1) - lim
α→1− |DαχE |(�) = |DχE |(�)

for any open set � ⊂ R
n such that either � is bounded with Lipschitz boundary

or � = R
n .

5 Asymptotic behavior of fractionalˇ-variation asˇ → ˛−

5.1 Convergence of∇ˇ and divˇ asˇ → ˛

We begin with the following simple result about the L1-convergence of the opera-
tors ∇β and divβ as β → α with α ∈ (0, 1).

Lemma 5.1 Let α ∈ (0, 1). If f ∈ Wα,1(Rn) and ϕ ∈ Wα,1(Rn; R
n), then

lim
β→α− ‖∇β f − ∇α f ‖L1(Rn;Rn) = 0, lim

β→α− ‖divβϕ − divαϕ‖L1(Rn) = 0.

(5.1)

123



G. E. Comi, G. Stefani

Proof Given β ∈ (0, α), we can estimate

∫
Rn

|∇β f (x) − ∇α f (x)| dx ≤ |μn,β − μn,α| [ f ]Wα,1(Rn)

+ μn,β

∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣ dy dx .

Since the � function is continuous (see [9]), we clearly have

lim
β→α− |μn,β − μn,α| [ f ]Wα,1(Rn) = 0.

Now write

∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣ dy dx

=
∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ(0,1)(|y − x |) dy dx

+
∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ[1,+∞)(|y − x |) dy dx .

On the one hand, since f ∈ Wα,1(Rn), we have

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ(0,1)(|y − x |)

= | f (y) − f (x)|
|y − x |n

(
1

|y − x |α − 1

|y − x |β
)

χ(0,1)(|y − x |)

≤ | f (y) − f (x)|
|y − x |n+α

χ(0,1)(|y − x |) ∈ L1
x,y(R

2n)

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

lim
β→α−

∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ(0,1)(|y − x |) dy dx = 0.

On the other hand, since one has

[ f ]Wβ,1(Rn) =
∫
Rn

∫
{|h|<1}

| f (x + h) − f (x)|
|h|n+β

dh dx

+
∫
Rn

∫
{|h|≥1}

| f (x + h) − f (x)|
|h|n+β

dh dx
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≤ [ f ]Wα,1(Rn) +
∫

{|h|≥1}
1

|h|n+β

∫
Rn

| f (x + h)| + | f (x)| dx dh

= [ f ]Wα,1(Rn) + 2nωn

β
‖ f ‖L1(Rn)

for all β ∈ (0, α), we can estimate

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ[1,+∞)(|y − x |)

= | f (y) − f (x)|
|y − x |n

(
1

|y − x |β − 1

|y − x |α
)

χ[1,+∞)(|y − x |)

≤ | f (y) − f (x)|
|y − x |n+β

χ[1,+∞)(|y − x |)

≤ | f (y) − f (x)|
|y − x |n+ α

2
χ[1,+∞)(|y − x |) ∈ L1

x,y(R
2n)

for all β ∈ (
α
2 , α

)
and thus, by Lebesgue’s Dominated Convergence Theorem, we get

that

lim
β→α−

∫
Rn

∫
Rn

| f (y) − f (x)|
|y − x |n

∣∣∣∣ 1

|y − x |β − 1

|y − x |α
∣∣∣∣χ[1,+∞)(|y − x |) dy dx = 0

and the first limit in (5.1) follows. The second limit in (5.1) follows similarly and we
leave the proof to the reader. ��
Remark 5.2 Let α ∈ (0, 1). If f ∈ Wα+ε,1(Rn) and ϕ ∈ Wα+ε,1(Rn) for some
ε ∈ (0, 1 − α), then, arguing as in the proof of Lemma 5.1, one can also prove that

lim
β→α+ ‖∇β f − ∇α f ‖L1(Rn;Rn) = 0, lim

β→α+ ‖divβϕ − divαϕ‖L1(Rn) = 0.

We leave the details of proof of this result to the interested reader.

If one deals with more regular functions, then Lemma 5.1 can be improved as
follows.

Lemma 5.3 Let α ∈ (0, 1) and p ∈ [1,+∞]. If f ∈ Lipc(R
n) and ϕ ∈ Lipc(R

n; R
n),

then

lim
β→α− ‖∇β f − ∇α f ‖L p(Rn;Rn) = 0, lim

β→α− ‖divβϕ − divαϕ‖L p(Rn) = 0. (5.2)

Proof Since clearly f ∈ Wα,1(Rn) for any α ∈ (0, 1), the first limit in (5.2) for the
case p = 1 follows from Lemma 5.1. Hence, we just need to prove the validity of
the same limit for the case p = +∞, since then the conclusion simply follows by an
interpolation argument.
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Let β ∈ (0, α) and x ∈ R
n . We have

|∇α f (x) − ∇β f (x)| ≤ |μn,β − μn,α|
∫
Rn

| f (x) − f (y)|
|x − y|n+α

dy

+ μn,β

∫
Rn

| f (x) − f (y)|
|x − y|n

∣∣∣∣ 1

|x − y|β − 1

|x − y|α
∣∣∣∣ dy

= |μn,β − μn,α|
∫
Rn

| f (x + z) − f (x)|
|z|n+α

dz

+ μn,β

∫
Rn

| f (x + z) − f (x)|
|z|n

∣∣∣∣ 1

|z|β − 1

|z|α
∣∣∣∣ dz.

Since

∫
Rn

| f (x + z) − f (x)|
|z|n+α

dz ≤
∫

{|z|≤1}
Lip( f )

|z|n+α−1 dz +
∫

{|z|>1}
2‖ f ‖L∞(Rn)

|z|n+α
dz

≤ nωn

(
Lip( f )

1 − α
+ 2‖ f ‖L∞(Rn)

α

)

and

∫
Rn

| f (x + z) − f (z)|
|z|n

∣∣∣∣ 1

|z|β − 1

|z|α
∣∣∣∣ dz ≤

∫
{|z|≤1}

Lip( f )

|z|n−1

(
1

|z|α − 1

|z|β
)
dz

+
∫

{|z|>1}
2‖ f ‖L∞(Rn)

|z|n
(

1

|z|β − 1

|z|α
)
dz

≤ (α − β)nωn

(
Lip( f )

(1 − α)(1 − β)
+ 2‖ f ‖L∞(Rn)

αβ

)
,

for all β ∈ (
α
2 , α

)
we obtain

‖∇α f − ∇β f ‖L∞(Rn;Rn) ≤ cn,α max{Lip( f ), ‖ f ‖L∞(Rn)}
(|μn,β − μn,α| + (α − β)

)
,

for some constant cn,α > 0 depending only on n and α. Thus the conclusion follows
since μn,β → μn,α as β → α−. The second limit in (5.2) follows similarly and we
leave the proof to the reader. ��

5.2 Weak convergence ofˇ-variation asˇ → ˛−

In Theorem 5.4 below, we prove the weak convergence of the β-variation as β → α−.
The proof is very similar to those of Theorem 4.7 and Theorem 4.9 and is thus left to
the reader.

Theorem 5.4 Let α ∈ (0, 1). If f ∈ BV α(Rn), then

Dβ f ⇀Dα f and |Dβ f |⇀|Dα f | as β → α−.
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Moreover, we have

lim
β→α− |Dβ f |(Rn) = |Dα f |(Rn). (5.3)

5.3 0-convergence ofˇ-variation asˇ → ˛−

In this section, we study the �-convergence of the fractional β-variation as β → α−,
partially extending the results obtained in Sect. 4.3.

We begin with the � - lim inf inequality.

Theorem 5.5 (� - lim inf inequality for β → α−) Let α ∈ (0, 1) and let � ⊂ R
n be

an open set. If ( fβ)β∈(0,α) ⊂ L1(Rn) satisfies fβ → f in L1(Rn) as β → α−, then

|Dα f |(�) ≤ lim inf
β→α− |Dβ fβ |(�). (5.4)

Proof We argue as in the proof of Theorem 4.13(ii). Let ϕ ∈ C∞
c (�; R

n) be such
that ‖ϕ‖L∞(�;Rn) ≤ 1. Let U ⊂ R

n be a bounded open set such that suppϕ ⊂ U .
By (2.12), we can estimate

∣∣∣∣
∫
Rn

fβ divβϕ dx −
∫
Rn

f divαϕ dx

∣∣∣∣
≤

∫
Rn

∣∣∣∣ fβ − f

∣∣∣∣ |divβϕ| dx +
∫
Rn

| f | |divβϕ − divαϕ| dx

≤ Cn,β,U‖divϕ‖L∞(Rn;Rn)‖ fβ − f ‖L1(Rn) +
∫
Rn

| f | |divβϕ − divαϕ| dx

for all β ∈ (0, α). Since divβϕ → divαϕ in L∞(Rn) as β → α− by (5.2), we easily
obtain

lim
β→α−

∫
Rn

| f | |divβϕ − divαϕ| dx = 0.

Hence, we get

∫
Rn

f divαϕ dx = lim
β→α−

∫
Rn

fβ divβϕ dx ≤ lim inf
β→α− |Dβ fβ |(�)

and the conclusion follows. ��
We now pass to the � - lim sup inequality.

Theorem 5.6 (� - lim sup inequality for β → α−) Let α ∈ (0, 1) and let � ⊂ R
n be

an open set. If f ∈ BV α(Rn) and either � is bounded or � = R
n, then

lim sup
β→α−

|Dβ f |(�) ≤ |Dα f |(�). (5.5)
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Proof We argue as in the proof of Theorem 4.14. By Theorem 5.4, we know that
|Dβ f |⇀|Dα f | as β → α−. Thus, by [50, Proposition 4.26] and (5.3), we get that

lim sup
β→α−

|Dβ f |(�) ≤ lim sup
β→α−

|Dβ f |(�) ≤ |Dα f |(�) (5.6)

for any open set � ⊂ R
n such that either � is bounded or � = R

n . ��
Corollary 5.7 (�(L1) - lim of variations in R

n as β → α−) Let α ∈ (0, 1). For every
f ∈ BV α(Rn), we have

�(L1) - lim
β→α− |Dβ f |(Rn) = |Dα f |(Rn).

In particular, the constant sequence is a recovery sequence.

Proof The result follows easily by combining (5.4) and (5.5) in the case � = R
n . ��

Remark 5.8 We recall that, by [27, Theorem 3.25], f ∈ BV α(Rn) satisfies |Dα f | �
L n if and only if f ∈ Sα,1(Rn). Therefore, if f ∈ Sα,1(Rn), then |Dα f |(∂�) = 0
for any bounded open set � ⊂ R

n such that L n(∂�) = 0 (for instance, � with
Lipschitz boundary). Thus, we can actually obtain the �-convergence of the fractional
β-variation as β → α− on bounded open sets with Lipschitz boundary for any f ∈
Sα,1(Rn) too. Indeed, it is enough to combine (5.4) and (5.5) and then exploit the fact
that |Dα f |(∂�) = 0 to get

�(L1) - lim
β→α− |Dβ f |(�) = |Dα f |(�)

for any f ∈ Sα,1(Rn).

We were not able to find a reference for the analogue of Corollary 5.7 for the usual
fractional Sobolev seminorms. For the sake of completeness, we state and prove it
below for all p ∈ [1,+∞) on a general open set.

Theorem 5.9 (�(L p) - lim of Wβ,p-seminorm as β → α−) Let � ⊂ R
n be a non-

empty open set, α ∈ (0, 1) and p ∈ [1,+∞). For every f ∈ Wα,p(�), we have

�(L p) - lim
β→α−[ f ]Wβ,p(�) = [ f ]Wα,p(�).

In particular, the constant sequence is a recovery sequence.

Proof Let ( fβ)β∈(0,α) ⊂ L p(�) be such that fβ → f in L p(�) as β → α−. Let
(βk) ⊂ (0, α) be such that βk → α as k → +∞ and

lim inf
β→α− [ fβ ]Wβ,p(�;Rm ) = lim

k→+∞[ fβk ]Wβk ,p(�;Rm ).
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Up to extract a further subsequence, we can assume that fβk (x) → f (x) as k → +∞
for a.e. x ∈ �. Then we can estimate

lim
k→+∞

∫
�

∫
�

| fβk (x) − fβk (y)|p
|x − y|n+pβk

dx dy ≥
∫

�

∫
�

lim inf
k→+∞

| fβk (x) − fβk (y)|p
|x − y|n+pβk

dx dy

≥
∫

�

∫
�

| f (x) − f (y)|p
|x − y|n+pα

dx dy

by Fatou’s Lemma. We thus get that

�(L p) - lim inf
β→α− [ f ]Wβ,p(�) ≥ [ f ]Wα,p(�).

Since

lim
β→α−

∫
�

∫
�

| f (x) − f (y)|p
|x − y|n+pβ

dx dy = lim
β→α−

∫
�

∫
�

| f (x) − f (y)|p
|x − y|n+pβ

χ{|x−y|<1} dx dy

+ lim
β→α−

∫
�

∫
�

| f (x) − f (y)|p
|x − y|n+pβ

χ{|x−y|>1} dx dy

=
∫

�

∫
�

| f (x) − f (y)|p
|x − y|n+pα

dx dy

by the Monotone Convergence Theorem, we also have that

�(L p) - lim sup
β→α−

[ f ]Wβ,p(�) ≤ [ f ]Wα,p(�)

and the conclusion immediately follows. ��
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Appendix A. Truncation and approximation of BV functions

In this appendix, we deal with two results on BV functions and sets with locally finite
perimeter. These results are well known to experts, but we decided to state and prove
them here because either we were not able to find them formulated in the exact form
we needed or the results available in the literature were not proved in full correctness
(see Remark A.5 below).

A.1 Truncation of BV functions

Following [4, Section 3.6] and [34, Section 5.9], given f ∈ L1
loc(R

n), we define its
precise representative f � : R

n → [−∞,+∞] as

f �(x) := lim
r→0+

1

ωnrn

∫
Br (x)

f (y) dy, x ∈ R
n, (A.1)

if the limit exists, otherwise we let f �(x) = 0 by convention.

Theorem A.1 (Truncation of BV functions) If f ∈ BVloc(Rn), then

f χBr ∈ BV (Rn), with D( f χBr ) = χ�
Br D f + f �DχBr , (A.2)

forL 1-a.e. r > 0. If, in addition, f ∈ L∞(Rn), then (A.2) holds for all r > 0.

Proof Fix ϕ ∈ C∞
c (Rn; R

n) and let U ⊂ R
n be a bounded open set such that

supp(ϕ) ⊂ U . Let (
ε)ε>0 ⊂ C∞
c (Rn) be a family of standardmollifiers as in [27, Sec-

tion 3.3] and set fε := f ∗ 
ε for all ε > 0. Note that supp
(

ε ∗ (χBr ϕ)

) ⊂ U and
supp

(

ε ∗ (χBr divϕ)

) ⊂ U for all ε > 0 sufficiently small and for all r > 0. Given
r > 0, by Leibniz’s rule and Fubini’s Theorem, we have

∫
Rn

fεχBr divϕ dx =
∫
Rn

χBr div( fεϕ) dx −
∫
Rn

χBr ϕ · ∇ fε dx

= −
∫
Rn

fεϕ · dDχBr −
∫
Rn


ε ∗ (χBr ϕ) · dD f .
(A.3)

Since fε → f a.e. in R
n as ε → 0+ and

| f | 
ε ∗ (χBr |divϕ|) ≤ | f |χU‖divϕ‖L∞(Rn) ∈ L1(Rn)

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
ε→0+

∫
Rn

fεχBr divϕ dx =
∫
Rn

f χBr divϕ dx

for all r > 0. Thus, since 
ε ∗ (χBr ϕ) → χ�
Br

ϕ pointwise in R
n as ε → 0+ and

|
ε ∗ (χBr ϕ)| ≤ ‖ϕ‖L∞(Rn;Rn)χU ∈ L1(Rn, |Df |)
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for all ε > 0 sufficiently small, again byLebesgue’sDominatedConvergenceTheorem
we have

lim
ε→0+

∫
Rn


ε ∗ (χBr ϕ) · dD f =
∫
Rn

χ�
Br ϕ · dD f

for all r > 0. Now, by [4, Theorem 3.78 and Corollary 3.80], we know that fε → f �

H n−1-a.e. inR
n as ε → 0+. As a consequence, given any r > 0, we get that fε → f �

|DχBr |-a.e. in R
n as ε → 0+. Thus, if f ∈ L∞(Rn), then

| fεϕ| ≤ ‖ f ‖L∞(Rn)|ϕ| ∈ L1(Rn, |DχBr |)

for all ε > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

lim
ε→0+

∫
Rn

fεϕ · dDχBr =
∫
Rn

f �ϕ · dDχBr

for all r > 0. Therefore, if f ∈ L∞(Rn), then we can pass to the limit as ε → 0+
in (A.3) and get

∫
Rn

f χBr divϕ dx = −
∫
Rn

f �ϕ · dDχBr −
∫
Rn

χ�
Br ϕ · dD f

for all ϕ ∈ C∞
c (Rn; R

n) and for all r > 0. Since ‖ f �‖L∞(Rn) ≤ ‖ f ‖L∞(Rn), this
proves (A.2) for all r > 0.

If f is not necessarily bounded, then we argue as follows. We start by observing
that, since

∫ R

0

∫
∂Br

| f �| dH n−1 dr =
∫
BR

| f �| dx =
∫
BR

| f | dx < +∞,

the set

W :=
{
r > 0 :

∫
∂Br

| f �| dH n−1 dr < +∞
}

satisfiesL 1((0,+∞)\W ) = 0.Without loss of generality, assume that ‖ϕ‖L∞(Rn;Rn)

≤ 1. Hence, for all r ∈ W , we can estimate

∣∣∣∣
∫
Rn

fεϕ · dDχBr −
∫
Rn

f �ϕ · dDχBr

∣∣∣∣ ≤
∫

∂Br
| fε − f �| dH n−1. (A.4)

123



G. E. Comi, G. Stefani

Given any R > 0, by Fatou’s Lemma we thus get that

∫ R

0
lim inf
ε→0+

∣∣∣∣
∫
Rn

fεϕ · dDχBr −
∫
Rn

f �ϕ · dDχBr

∣∣∣∣ dr

≤
∫ R

0
lim inf
ε→0+

∫
∂Br

| fε − f �| dH n−1 dr

≤ lim inf
ε→0+

∫ R

0

∫
∂Br

| fε − f �| dH n−1 dr

= lim
ε→0+

∫
BR

| fε − f �| dx = 0.

Hence, the set

Z :=
{
r > 0 : lim inf

ε→0+

∫
∂Br

| fε − f �| dH n−1 = 0

}
(A.5)

satisfiesL 1((0,+∞) \ Z) = 0 and clearly does not depend on the choice of ϕ. Now
fix r ∈ Z ∩W and let (εk)k∈N be any sequence realising the lim inf in (A.5). By (A.4),
we thus get

lim
k→+∞

∫
Rn

fεkϕ · dDχBr =
∫
Rn

f �ϕ · dDχBr

uniformly for all ϕ satisfying ‖ϕ‖L∞(Rn;Rn) ≤ 1. Passing to the limit along the
sequence (εk)k∈N as k → +∞ in (A.3), we get that

∫
Rn

f χBr divϕ dx = −
∫
Rn

f �ϕ · dDχBr −
∫
Rn

χ�
Br ϕ · dD f

for all ϕ ∈ C∞
c (Rn; R

n)with ‖ϕ‖L∞(Rn;Rn) ≤ 1. Thus (A.2) follows for all r ∈ W∩Z
and the proof is concluded. ��

A.2 Approximation by sets with polyhedral boundary

In this section we state and prove standard approximation results for sets with finite
perimeter or, more generally, BVloc(Rn) functions, in a sufficiently regular bounded
open set.

We need the following two preliminary lemmas.

Lemma A.2 Let V ,W ⊂ S
n−1, with V finite and W at most countable. For any ε > 0,

there exists R ∈ SO(n) with |R − I| < ε, where I is the identity matrix, such that
R(V ) ∩ W = ∅.

Proof Let N ∈ N be such that V =
{
vi ∈ S

n−1 : i = 1, . . . , N

}
. We divide the proof

in two steps.
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Step 1. Assume that W is finite and set Ai :=
{
R ∈ SO(n) : R(vi ) /∈ W

}
for all

i = 1, . . . , N . We now claim that Ai of SO(n) for all i = 1, . . . , N . Indeed, given
any i = 1, . . . , N , since W is finite, the set Ac

i = SO(n) \ Ai is closed in SO(n).
Moreover, we claim that int(Ac

i ) = ∅. Indeed, by contradiction, let us assume that
int(Ac

i ) �= ∅. Then there exist ε > 0 and R ∈ Ac
i such that any S ∈ SO(n) with

|S − R| < ε satisfies S ∈ Ac
i . Now let

Qϑ :=
⎛
⎜⎝
cosϑ − sin ϑ

sin ϑ cosϑ
0

0 In−2

⎞
⎟⎠ ∈ SO(n)

and define Sϑ := Qϑ R ∈ SO(n) for all ϑ ∈ [0, 2π). Since

|Sϑ − R| = |(Qϑ − I)R| ≤ |Qϑ − I| |R| < ε

for all ϑ ∈ [0, δ] for some δ > 0 depending only on ε and R, we get that Sϑ ∈ Ac
i

for all ϑ ∈ [0, δ]. Therefore Sϑ(vi ) ∈ W for all ϑ ∈ [0, δ], in contrast with the fact
that W is finite. Thus, Ai is an open and dense subset of SO(n) for all i = 1, . . . , N ,
and so also the set

AW :=
N⋂
i=1

Ai = {R ∈ SO(n) : R(vi ) /∈ W ∀i = 1, . . . , N }

is an open and dense subset of SO(n). The result is thus proved for any finite set W .
Step 2. Now assume that W is countable, W = {wk ∈ S

n−1 : k ∈ N}. For all
M ∈ N, set WM := {wk ∈ W : k ≤ M}. By Step 1, we know that AWM is an open
and dense subset of SO(n) for all M ∈ N. Since SO(n) ⊂ R

n2 is compact, by Baire’s
Theorem A := ⋂

M∈N AWM is a dense subset of SO(n). This concludes the proof. ��
Since det : GL(n) → R is a continuous map, there exists a dimensional constant

δn ∈ (0, 1) such that detR ≥ 1
2 for allR ∈ GL(n) with |R − I| < δn .

Lemma A.3 Let ε ∈ (0, δn) and let E ⊂ R
n be a bounded set with P(E) < +∞. If

R ∈ SO(n) satisfies |R − I| < ε, then

|R(E) � E | ≤ 2εrE P(E),

where rE := sup{r > 0 : |E \ Br | > 0}.
Proof We divide the proof in two steps.

Step 1. Let r > 0 and let f ∈ C∞
c (Rn). Setting Rt := (1 − t)I + tR for all

t ∈ [0, 1], we can estimate
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∫
Br

∫
Br

| f (R(x)) − f (x)| dx =
∫
Br

∣∣∣∣
∫ 1

0
∇ f (Rt (x)) · (R(x) − x) dt

∣∣∣∣ dx

≤ |R − I| r
∫ 1

0

∫
Br

|∇ f (Rt (x))| dx dt .

Since |Rt − I| = t |R − I| < tε < δn for all t ∈ [0, 1], Rt is invertible with
det(R−1

t ) ≤ 2 for all t ∈ [0, 1]. Hence we can estimate

∫
Br

|∇ f (Rt (x))| dx =
∫
Rt (Br )

|∇ f (y)| | det(R−1
t )| dy ≤ 2

∫
Rn

|∇ f (y)| dy,

so that

∫
Br

| f (R(x)) − f (x)| dx ≤ 2εr‖∇ f ‖L1(Rn;Rn). (A.6)

Step 2. Since χE ∈ BV (Rn), by combining [34, Theorem 5.3] with a standard
cut-off approximation argument, we find ( fk)k∈N ⊂ C∞

c (Rn) such that fk → χE

pointwise a.e. inR
n and |∇ fk |(Rn) → P(E) as k → +∞. Given any r > 0, by (A.6)

in Step 1 we have

∫
Br

| fk(R(x)) − fk(x)| dx ≤ 2εr‖∇ fk‖L1(Rn;Rn)

for all k ∈ N. Passing to the limit as k → +∞, by Fatou’s Lemma we get that

|(R(E) � E) ∩ Br | ≤ 2εr P(E).

Since E ⊂ BrE up toL n-negligible sets, alsoR(E) ⊂ BrE up toL n-negligible sets.
Thus we can choose r = rE and the proof is complete. ��

We are now ready to prove the main approximation result, see also [3, Proposi-
tion 15].

Theorem A.4 Let � ⊂ R
n be a bounded open set with Lipschitz boundary and let

E ⊂ R
n be a measurable set such that P(E;�) < +∞. There exists a sequence

(Ek)k∈N of bounded open sets with polyhedral boundary such that

P(Ek; ∂�) = 0 (A.7)

for all k ∈ N and

χEk → χE in L1
loc(R

n) and P(Ek;�) → P(E;�) (A.8)

as k → +∞.
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Proof We divide the proof in four steps.
Step 1: cut-off. Since � is bounded, we find R0 > 0 such that � ⊂ BR0 . Let us

define Rk = R0 + k and

Ck :=
{
x ∈ �c : dist(x, ∂�) ≤ 1

k

}

for all k ∈ N. We set E1
k := E ∩ BRk ∩ Cc

k for all k ∈ N. Note that E1
k is a bounded

measurable set such that

χE1
k

→ χE in L1
loc(R

n) as k → +∞

and

P(E1
k ;�) = P(E;�) for all k ∈ N.

Step 2: extension. Let us define

Ak :=
{
x ∈ R

n : dist(x,�) <
1

4k

}

for all k ∈ N. Since χE1
k∩� ∈ BV (�) for all k ∈ N, by [4, Definition 3.20 and

Proposition 3.21] there exists a sequence (vk)k∈N ⊂ BV (Rn) such that

vk = 0 a.e. in Ac
k, vk = χE1

k
in �, |Dvk |(∂�) = 0

for all k ∈ N. Let us define Ft
k := {vk > t} for all t ∈ (0, 1). Given k ∈ N, by the

coarea formula [4, Theorem 3.40], for a.e. t ∈ (0, 1) the set Ft
k has finite perimeter

in R
n and satisfies

Ft
k ⊂ Ak, Ft

k ∩ � = E1
k ∩ �, P(Ft

k ; ∂�) = 0

for all k ∈ N.We choose any such tk ∈ (0, 1) for each k ∈ N and define E2
k := E1

k ∪Ftk
k

for all k ∈ N. Note that E2
k is a bounded set with finite perimeter in R

n such that

χE2
k

→ χE in L1
loc(R

n) as k → +∞

and

P(E2
k ;�) = P(E;�) and P(E2

k ; ∂�) = 0 for all k ∈ N.

Step 3: approximation. Let us define

Dk :=
{
x ∈ �c : dist(x, ∂�) ∈

[
1

4k
,
3

4k

]}
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for all k ∈ N. First arguing as in the first part of the proof of [50, Theorem 13.8] taking
[50, Remark 13.13] into account, and then performing a standard diagonal argument,
we find a sequence of bounded open sets (E3

k )k∈N with polyhedral boundary such that

E3
k ⊂ Dc

k for all k ∈ N

and

χE3
k

→ χE in L1
loc(R

n), P(E3
k ;�) → P(E;�) and P(E3

k ; ∂�) → 0

as k → +∞. If there exists a subsequence (E3
k j

) j∈N such that P(E3
k j

; ∂�) = 0 for
all j ∈ N, then we can set E j := Ek j for all j ∈ N and the proof is concluded. If this
is not the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [3, Proposition 15].
Fix k ∈ N and assume P(E3

k ; ∂�) > 0. Since E3
k has polyhedral boundary, we have

H n−1(∂E3
k ∩ ∂�) > 0 if and only if there exist ν ∈ S

n−1 and U ⊂ F� such that
H n−1(U ) > 0, ν�(x) = ν for all x ∈ U andU ⊂ ∂H for some (affine) half-space H
satisfying νH = ν. Since P(�) = H n−1(∂�) < +∞, the set

W := {ν ∈ S
n−1 : H n−1 ({x ∈ ∂� : ν�(x) = ν}) > 0}

=
⋃
h∈N

{
ν ∈ S

n−1 : P(�)
h ≥ H n−1 ({x ∈ ∂� : ν�(x) = ν}) >

P(�)
h+1 )

}

is at most countable. Since E3
k has polyhedral boundary, the set

Vk := {ν ∈ S
n−1 : H n−1

(
{x ∈ ∂E3

k : νE3
k
(x) = ν}

)
> 0}

is finite. By Lemma A.2, given εk > 0, there exists Rk ∈ SO(n) with |Rk − I| < εk
such thatRk(Vk)∩W = ∅.Hence the set E4

k := Rk(E3
k )must satisfy P(E4

k ; ∂�) = 0.
By Lemma A.3, we can choose εk > 0 sufficiently small in order to ensure that
|E4

k � E3
k | < 1

k . Now choose ηk ∈ (
0, 1

2k

)
such that P(E3

k ; Qk) ≤ 2P(E3
k ; ∂�),

where

Qk := {x ∈ R
n : dist(x, ∂�) < ηk}.

Since � is bounded, possibly choosing εk > 0 even smaller, we can also ensure that
� � R−1(�) ⊂ Qk . Hence we can estimate

|P(E4
k ;�) − P(E3

k ;�)| = |H n−1(∂E3
k ∩ R−1(�)) − H n−1(∂E3

k ∩ �)|
≤ H n−1(∂E3

k ∩ (� � R−1(�))
)

≤ H n−1(∂E3
k ∩ Qk).

We can thus set Ek := E4
k for all k ∈ N and the proof is complete. ��
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Remark A.5 (A minor gap in the proof of [3, Proposition 15])We warn the reader that
the cut-off and the extension steps presented above were not mentioned in the proof
of [3, Proposition 15], although they are unavoidable for the correct implementation
of the rotation argument in the last step. Indeed, in general, one cannot expect the
existence of a rotation R ∈ SO(n) arbitrarily close to the identity map such that
P(R(E); ∂�) = 0 and, at the same time, the difference between P(R(E);�) and
P(E;�) is small. For example, one can consider n = 2,

� = {(x1, x2) ∈ A : x21 + x22 < 25}

and

E = {(x1, x2) ∈ A : 1 < x21 + x22 < 4} ∪ {(x1, x2) ∈ Ac : 9 < x21 + x22 < 16},

where A = {(x1, x2) ∈ R
2 : x1 > 0, x2 > 0}. In this case, for any rotationR ∈ SO(2)

arbitrarily close to the identity map, we have P(R(E);�) > 2 + P(E;�).

We conclude this section with the following result, establishing an approximation
of BVloc functions similar to that given in Theorem A.4.

Theorem A.6 Let � ⊂ R
n be a bounded open set with Lipschitz boundary and let

f ∈ BVloc(Rn). There exists ( fk)k∈N ⊂ BV (Rn) such that

|Dfk |(∂�) = 0

for all k ∈ N and

fk → f in L1
loc(R

n) and |Dfk |(�) → |Df |(�)

as k → +∞. If, in addition, f ∈ L1(Rn), then fk → f in L1(Rn) as k → +∞.

Proof We argue as in the proof of Theorem A.4, in two steps.
Step 1: cut-off at infinity. Since � is bounded, we find R0 > 0 such that � ⊂

BR0 . Given (Rk)k ⊂ (R0,+∞), we set gk := f χBRk
for all k ∈ N. By Theorem

A.1, we have gk ∈ BV (Rn) for a suitable choice of the sequence (Rk)k∈N, with
|Dgk |(�) = |Df |(�) for all k ∈ N and gk → f in L1

loc(R
n) as k → +∞. If, in

addition, f ∈ L1(Rn), then gk → f in L1(Rn) as k → +∞.
Step 2: extension and cut-off near �. Let us define

Ak :=
{
x ∈ R

n : dist(x,�) <
1

k

}

for all k ∈ N. Since gkχ� ∈ BV (�) with |Dgk |(�) = |Df |(�) for all k ∈ N, by
[4, Definition 3.20 and Proposition 3.21] there exists a sequence (hk)k∈N ⊂ BV (Rn)

such that

supp hk ⊂ A2k, hk = gk in �, |Dhk |(∂�) = 0
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for all k ∈ N and

lim
k→+∞

∫
A2k\�

|hk | dx = 0

(the latter property easily follows from the construction performed in the proof of
[4, Proposition 3.21] Now let (vk)k∈N ⊂ C∞

c (Rn) be such that supp vk ⊂ Ac
k and

0 ≤ vk ≤ 1 for all k ∈ N and vk → χ
�
c pointwise in R

n as k → +∞. We can thus
set fk := hk +vkgk for all k ∈ N. By [4, Propositon 3.2(b)], we have vkgk ∈ BV (Rn)

for all k ∈ N, so that fk ∈ BV (Rn) for all k ∈ N. Since we can estimate

| fk − f | ≤ |hk − f χ�| + |vk − χ�c | |gk | + |gk − f | χ�c

= |hk | χA2k\� + |vk − χ�c | |gk | + |gk − f | χ�c

for all k ∈ N, we have fk → f in L1
loc(R

n) as k → +∞ (because ∂� is Lipschitz, so
L n(∂�) = 0), with fk → f in L1(Rn) as k → +∞ if f ∈ L1(Rn). By construction,
we also have

|Dfk |(�) = |Dhk |(�) and |Dfk |(∂�) = |Dhk |(∂�) = 0

for all k ∈ N. The proof is complete. ��
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