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Abstract

We continue the study of the space BV*(R") of functions with bounded fractional
variation in R” of order o € (0, 1) introduced in our previous work (Comi and Stefani
in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of
certain results of Comi and Stefani (2019) which may be of some separated insterest,
we deal with the asymptotic behavior of the fractional operators involved as o — 17
We prove that the a-gradient of a W' -P-function converges in L? to the gradient for
all p € [1,+00) as @ — 1. Moreover, we prove that the fractional «-variation
converges to the standard De Giorgi’s variation both pointwise and in the I'-limit
sense as « — 1. Finally, we prove that the fractional 8-variation converges to the
fractional «-variation both pointwise and in the I'-limit sense as 8 — «~ for any
givena € (0, 1).
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1 Introduction
1.1 A distributional approach to fractional variation
In our previous work [27], we introduced the space BV“(R") of functions with

bounded fractional variation in R" of order « € (0, 1). Precisely, a function f €
L' (R™) belongs to the space BV*(R") if its fractional a-variation

|IDY fI(R") := sup{/R fdiviedx : 9 € CCR";R"), |l@llLom®s; rry < l} (L.1)
is finite. Here

divie(x) := ,L,w/ O=0 @O 00 4y w12
R |y — x|

is the fractional a-divergence of ¢ € C2°(R"; R"), where

(1.3)
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A distributional approach to fractional Sobolev spaces...

for any given o € (0, 1). The operator div® was introduced in [72] as the natural dual
operator of the much more studied fractional a-gradient

— D = f)

Iy — x| dy, xeR", (1.4)

Vaf(x) = Mn,oz/ (y
Rﬂ

defined for all f € CZ°(R"). For an account on the existing literature on the opera-
tor V¥, see [68, Section 1]. Here we only refer to [66—70, 72—74] for the articles tightly
connected to the present work and to [63, Section 15.2] for an agile presentation of
the fractional operators defined in (1.2) and in (1.4) and of some of their elementary
properties. According to [70, Section 1], it is interesting to notice that [42] seems to
be the earliest reference for the operator defined in (1.4).

The operators in (1.2) and in (1.4) are dual in the sense that

fdiv“godx:—/ -V fdx (1.5)
Rn n

forall f € C°(R") and ¢ € C°(R"; R"), see [72, Section 6] and [27, Lemma 2.5].
Moreover, both operators have good integrability properties when applied to test func-
tions, namely V* f € L?(R") and div¥¢ € L?(R"; R") for all p € [1, +o0] for any
given f € C°(R") and ¢ € C°(R"; R"), see [27, Corollary 2.3].

The integration-by-part formula (1.5) represents the starting point for the dis-
tributional approach to fractional Sobolev spaces and the fractional variation we
developed in [27]. In fact, similarly to the classical case, a function f € L'(R")
belongs to BV*(R") if and only if there exists a finite vector-valued Radon measure
D* f € . (R"; R") such that

fdivo‘(pdxz—/ ¢-dD* f (1.6)
Rn Rn

forall ¢ € C°(R"; R"), see [27, Theorem 3.2].

Motivated by (1.6) and similarly to the classical case, we can define the weak
fractional a-gradient of a function f € LP(R"), with p € [1, 400], as the function
V¢ f e Ll (R"; R") satisfying

/nfdivo‘(pdxz—/R” Vo f-eodx

for all ¢ € C°(R"; R"). For @ € (0,1) and p € [1, +00], we can thus define the
distributional fractional Sobolev space

SYPR") :={f e LP(R"):3VSf e LPR"; RN} (1.7)
naturally endowed with the norm

I fllser@ny == Il fllLe@ny + Vg fllLp@e. ey YVf € S¥P(R").  (1.8)
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It is interesting to compare the distributional fractional Sobolev spaces S* 7 (R")
with the well-known fractional Sobolev space WP (R"), that is, the space

WP (R") = {f e LP(R"):

» v
L lwer e = (// |f|iX)_ ﬂi' dx dy) < +0<>}

endowed with the norm

I fllwer@ny := Il fllLr@ey + [flwer@ny Y € WHP(R").

If p = +00, then W*°°(IR") naturally coincides with the space of bounded «-Holder
continuous functions endowed with the usual norm (see [32] for a detailed account on
the spaces W*7).

For the case p = 1, starting from the very definition of the fractional gradient V¢,
it is plain to see that W ! (R") c §%!(R") ¢ BV*(R") with both (strict) continuous
embeddings, see [27, Theorems 3.18 and 3.25].

For the case p € (1, +00), instead, it is known that S“7(R") D L*P(R") with
continuous embedding, where L% ? (R") is the Bessel potential space of parameters
a € (0,1) and p € (1, +00), see [27, Section 3.9] and the references therein. In the
subsequent paper [26], it will be proved that also the inclusion S 7 (R") C L% 7 (R")
holds continuously, so that the spaces S%”(R") and L% (R") coincide. In particular,
we get the following relations: S**&7(R") ¢ WP (R") C $*¢P(R") with contin-
uous embeddings for all @ € (0, 1), p € (1,4+00) and 0 < ¢ < min{e, 1 — o}, see
[69, Theorem 2.2]; S""Z(R”) = W“’Z(R") for all « € (0, 1), see [69, Theorem 2.2];
WP (R") C S*P(R") with continuous embedding for all @ € (0, 1) and p € (1, 2],
see [76, Chapter V, Section 5.3].

Inthe geometric regime p = 1, our distributional approach to the fractional variation
naturally provides a new definition of distributional fractional perimeter. Precisely, for
any open set Q C R”, the fractional Caccioppoli a-perimeter in Q2 of a measurable
set E C R" is the fractional a-variation of xg in Q, i.e.

ID* xe(Q) = Sup{/Edivawdx 1 € CP (2 RY), Nlolle@irry < 1}.

Thus, E is a set with finite fractional Caccioppoli a-perimeter in Q if |D* xg|(2) <
+o00.

Similarly to the aforementioned embedding W% ! (R") ¢ BV¥(R"), we have the
inequality

ID*XEI(Q) < tn,aPa(E; Q) (1.9)
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for any open set 2 C R”, see [27, Proposition 4.8], where

Py (E: ) _/ |XE|(X)_|i,(fofy)|d dy
Q X =y

+2// |xe(x) — XE()’)|dxdy (1.10)
n\Q

x — y|n+0{

is the standard fractional «-perimeter of a measurable set E C R” relative to the open
set 2 C R” (see [28] for an account on the fractional perimeter P,). Note that, by
definition, the fractional a-perimeter of E in R" is simply P,(E) := Py(E; R") =
[x E]Wa,l(Rn). We remark that inequality (1.9) is strict in most of the cases, as shown
in Sect. 2.6 below. This completely answers a question left open in our previous work
[27].

1.2 Asymptotics and I'-convergence in the standard fractional setting

The fractional Sobolev space W%”(R") can be understood as an ‘intermediate
space’ between the space L? (R") and the standard Sobolev space WwLP(R™). In fact,
WP (R") can be recovered as a suitable (real) interpolation space between the spaces
LP([R") and W17 (R™). We refer to [13, 78] for a general introduction on interpolation
spaces and to [54] for a more specific treatment of the interpolation space between
LP(R") and WP (R™).

One then naturally expects that, for a sufficiently regular function f, the frac-
tional Sobolev seminorm [ f Jwe.» rny, multiplied by a suitable renormalising constant,
should tend to || f|lLrrr) as @« — 07 and to ||V f|Lr@r) as « — 17. Indeed, for
p € [1, +00), it is known that

Jim o [f e ny = Anp 17120 @) (1.11)
forall f € Uae(o,l) WP (R"), while

im (1= ) [ Vo = B IV £ o (1.12)

forall f € WP (R"). Here Ay, p, By, p > 0 are two constants depending only onn, p.
The limit (1.11) was proved in [51, 52], while the limit (1.12) was established in [14].
As proved in [30], when p = 1 the limit (1.12) holds in the more general case of BV
functions, that is,

lim (1 — o) [flye1 ey = Bu1 IDfI(R") (1.13)
a—1
for all f € BV (R"). For a different approach to the limits in (1.11) and in (1.13)
based on interpolation techniques, see [54].
The limits (1.12) and (1.13) are special consequences of the celebrated Bourgain—
Brezis—Mironescu (BBM, for short) formula
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lim // 1f &) = fFI” f(y)lp o(lx — y[)dx dy

k—+o00 |)C -

(1.14)
Cui IDFIRY)  forp =1,

:{,wuvmuﬁwape(L+wx
where C, , > 0 is a constant depending only on n and p, and (0k)ren C
1OC([O +00)) is a sequence of non-negative radial mollifiers such that

+00
/ ok(Jx|)dx = 1forallk € N and lim / ox(r) r"~ldr =0foralls > 0.
R~ k—>+o00 Js

The BBM formula (1.14) has stimulated a profound development in the asymptotic
analysis in the fractional framework. On the one hand, the limit (1.14) played a cen-
tral role in several applications, such as Brezis’ analysis [18] on how to recognize
constant functions, innovative characterizations of Sobolev and BV functions and I'-
convergence results [6-8, 11, 16,48-50, 56-59, 63], approximation of Sobolev norms
and image processing [20, 22-24], and last but not least fractional Hardy and Poincaré
inequalities [15, 38, 61]. On the other hand, the BBM formula (1.14) has suggested
an alternative path to fractional asymptotic analysis by means of interpolation tech-
niques [54, 65]. Recently, the BBM formula in (1.14) has been revisited in terms of
a.e. pointwise convergence [21] and in connection with weak L? quasi-norms [25],
where the now-called Brezis—Van Schaftingen—Yung space

|f ) — fOI

- <+oo},
lx — y|» e

BSWW®%={f6h&mW:H

L (RnxRm)

defined for & € (0, 1] and p € [1, +00), has opened a very promising perspective in
the field [33].

The limits (1.11)—(1.14) have been connected to variational problems [10], gener-
alized to various function spaces, for example Besov spaces [43, 79], Orlicz spaces [2,
36, 37] and magnetic and anisotropic Sobolev spaces [45, 58—60, 75], and extended
to various ambient spaces, like compact connected Riemannian manifolds [44], the
flat torus [5], Carnot groups [12, 49] and complete doubling metric-measure spaces
supporting a local Poincaré inequality [31].

Concerning the fractional perimeter P, given in (1.10), one has some additional
information besides equations (1.11) and (1.13).

On the one hand, thanks to [64, Theorem 1.2], the fractional «-perimeter P,
enjoys the following fractional analogue of Gustin’s Boxing Inequality (see [41] and
[35, Corollary 4.5.4]): there exists a dimensional constant ¢, > 0 such that, for any
bounded open set E C R", one can find a covering

Ec By

keN
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of open balls such that

D T < cpa(l — o) Po(E). (1.15)
keN

Inequality (1.15) bridges the two limiting behaviors given by (1.11) and (1.13) and
provides a useful tool for recovering Gagliardo—Nirenberg—Sobolev and Poincaré—
Sobolev inequalities that remain stable as the exponent « € (0, 1) approaches the
endpoints.

On the other hand, by [3, Theorem 2], the fractional «-perimeter P, I'-converges
in LIIOC(R") to the standard De Giorgi’s perimeter P as @ — 17, thatis, if 2 C R" is
a bounded open set with Lipschitz boundary, then

T(LL.) - lim (1 = @) Po(E; Q) = 2001 P(E; Q) (1.16)

for all measurable sets E C R”", where w, is the volume of the unit ball in R" (it
should be noted that in [3] the authors use a slightly different definition of the frac-
tional «-perimeter, since they consider the functional 7, (E, 2) := %PQ(E , Q)). For
a complete account on I'-convergence, we refer the reader to the monographs [17, 29]
(throughout all the paper, with the symbol I'(X) -lim we denote the I"-convergence
in the ambient metric space X). The convergence in (1.16), besides giving a I'-
convergence analogue of the limit in (1.13), is tightly connected with the study of
the regularity properties of non-local minimal surfaces, that is, (local) minimisers of
the fractional o-perimeter P, .

1.3 Asymptotics and I'-convergence for the fractional a-variationasa — 1~

The main aim of the present work is to study the asymptotic behavior of the fractional

a-variation (1.1) as « — 17, both in the pointwise and in the I"-convergence sense.
We provide counterparts of the limits (1.12) and (1.13) for the fractional «-variation.

Indeed, we prove that, if f € WLP(R") for some p € [1, +00), then f € S%P(R")
for all @ € (0, 1) and, moreover,

lim [V f — Vo £l Lo e rry = 0. (1.17)
a—1"

In the geometric regime p = 1, we show that if f € BV (R") then f € BV*(R") for
all @ € (0, 1) and, in addition,

D® f—~Df in .# (R"; R") and|D* f|—|Df|in A4 (R") as « — 1~ (1.18)
and

Jim. ID* fIR") = |DfI(R"). (1.19)

@ Springer



G. E. Comi, G. Stefani

We are also able to treat the case p = +oo. In fact, we prove that if f € W1 (R")
then f € S*°°(R") for all « € (0, 1) and, moreover,

Vo f—=Vyf inL®RYRYasa — 17 (1.20)
and
Vi [l Loo@rr; Rry < lim illlf Vi f | oo R - (1.21)
o—>

We refer the reader to Theorem 4.9, Theorem 4.11 and Theorem 4.12 below for
the precise statements. We warn the reader that the symbol ‘— appearing in (1.18)
and (1.20) denotes the weak*-convergence, see Sect. 2.1 below for the notation.

Some of the above results were partially announced in [71]. In a similar perspective,
we also refer to the work [53], where the authors proved convergence results for non-
local gradient operators on BV functions defined on bounded open sets with smooth
boundary. The approach developed in [53] is however completely different from the
asymptotic analysis we presently perform for the fractional operator defined in (1.4),
since the boundedness of the domain of definition of the integral operators considered
in [53] plays a crucial role.

Notice that the renormalising factor (1 — oz)% is not needed in the limits (1.17)—
(1.21), contrarily to what happened for the limits (1.12) and (1.13). In fact, this
difference should not come as a surprise, since the constant y, o in (1.3), encoded in
the definition of the operator V¢, satisfies

l—«

wp

asa — 17, (1.22)

Mn,a ™~

and thus plays a similar role of the factor (1 — oc)% in the limit as « — 17. Thus,
differently from our previous work [27], the constant (i, o, appearing in the definition
of the operators V¢ and div* is of crucial importance in the asymptotic analysis
developed in the present paper.

Another relevant aspect of our approach is that convergence as « — 1~ holds true
not only for the total energies, but also at the level of differential operators, in the strong
sense when p € (1, +00) and in the weak* sense for p = 1 and p = +o0. In simpler
terms, the non-local fractional a-gradient V* converges to the local gradient V as
a — 17 in the most natural way every time the limit is well defined.

We also provide a counterpart of (1.16) for the fractional «-variation as ¢ — 17
Precisely, we prove that, if 2 C R” is a bounded open set with Lipschitz boundary,
then

[(Lie) - lim [Dxg|(R) = P(E; ) (1.23)

for all measurable set E C R”", see Theorem 4.16. In view of (1.9), one may ask
whether the T -lim sup inequality in (1.23) could be deduced from the I" - lim sup
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inequality in (1.16). In fact, by employing (1.9) together with (1.16) and (1.22), one
can estimate

1 . a 1 . 2wy,—1
['(Lioe) -limsup | D% xg|(€2) < T'(Lyoe) -lim sup pn o Po(E, 2) =

a—1- a—1- n

P(E, Q).

However, we have 2‘2’);1 > | foranyn > 2 andthusthe I" - lim sup inequality in (1.23)

follows from the I - lim sup inequality in (1.16) only in the case n = 1. In a similar
way, one sees that the I' - lim inf inequality in (1.23) implies the I" - lim inf inequality
in (1.16) only in the case n = 1.

Besides the counterpart of (1.16), our approach allows to prove that I'-convergence
holds true also at the level of functions. Indeed, if f € BV (R") and Q C R" is an
open set such that either €2 is bounded with Lipschitz boundary or Q@ = R”, then

rLh - lim |D*f1(€2) = |DfI(S). (1.24)

One can regard the limit (1.24) as an analogue of the I'-convergence results known
in the usual fractional setting, see [57, 62]. We refer the reader to Theorems 4.13,
4.14 and 4.17 for the (even more general) results in this direction. Again, as before
and thanks to the asymptotic behavior (1.22), the renormalising factor (1 — &) is not
needed in the limits (1.23) and (1.24).

Asabyproduct of the techniques developed for the asymptotic study of the fractional
«-variation as « — 17, we are also able to characterize the behavior of the fractional
B-variation as f — o, for any given @ € (0, 1). On the one hand, if f € BV*(R"),
then

DP f—~D%f in .#(R";R") and |D? f|—|D% f|in .#(R") as B — o~
and, moreover,

Jim_ D fIGR") = |D* fI(R"),

see Theorem 5.4. On the other hand, if f € BV*(R") and 2 C R” is an open set
such that either €2 is bounded and | D* f](92) = 0 or 2 = R”, then

L(LY - lim |DP £1(Q) = |D* f(),
B—a~
see Theorems 5.5 and 5.6.

1.4 Future developments: asymptotics for the fractional a-variationas @ — 0%

Having in mind the limit (1.11), it would be interesting to understand what happens
to the fractional a-variation (1.1) as « — 07. Note that
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. LT
i, M =T ()

= MUn,0, (1.25)

so there is no renormalization factor as @« — 0%, differently from (1.22).
At least formally, as o« — 0 the fractional o-gradient in (1.4) is converging to the
operator

— (O = f&)

y — x| y, xeR". (1.26)

VO£ () = o / 8l
Rn

The operator in (1.26) is well defined (in the principal value sense) forall f € C°(R")
and, actually, coincides with the well-known vector-valued Riesz transform Rf, see
[39, Section 5.1.4] and [76, Chapter 3]. Similarly, the fractional a-divergence in (1.2)
is formally converging to the operator

—x) - (p(y) — ()

|y—x|”+1

divPo(x) = ,Ln,of v dy, xeR',  (127)
Rﬂ

which is well defined (in the principal value sense) for all ¢ € C2°(R"; R").
In perfect analogy with what we did before, we can introduce the space BV (R")
as the space of functions f € L!(R") such that the quantity

D071 = sopf [ faipdx g e CERNRD, Nl < 1]

is finite. Surprisingly (and differently from the fractional «-variation, recall [27, Sec-
tion 3.10]), it turns out that |D? f| <« Z" for all f € BVO(R"). More precisely, one
can actually prove that BVO(R"”) = H'(R"), in the sense that f € BVO(R") if and
only if f € H'(R"), with D f = Rf.Z" in . (R"; R"). Here

H'(R") := {f e L'R") : Rf € LI(R";R")}

is the (real) Hardy space, see [77, Chapter III] for the precise definition. Thus, it would
be interesting to understand for which functions f € L!(R") the fractional a-gradient
V¢ f tends (in a suitable sense) to the Riesz transform Rf as « — 0T. Of course, if
Rf ¢ L! (R™; R™), thatis, f ¢ H 1 (R™), then one cannot expect strong convergence
in L' and, instead, may consider the asymptotic behavior of the rescaled fractional
gradient @ V¥ f as @ — 07, in analogy with the limit in (1.11). This line of research,
as well as the identifications BVY = H! and §%? = L%P mentioned above, it is the
subject of the subsequent paper [26].

1.5 Organization of the paper

The paper is organized as follows.
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In Sect. 2, after having briefly recalled the definitions and the main properties of
the operators V* and div®, we extend certain technical results of [27].

In Sect. 3, we prove several integrability properties of the fractional «-gradient
and two useful representation formulas for the fractional a-variation of functions
with bounded De Giorgi’s variation. We are also able to prove similar results for the
fractional S-gradient of functions with bounded fractional -variation, see Sect. 3.4.

In Sect. 4, we study the asymptotic behavior of the fractional a-variationaso — 1~
and prove pointwise-convergence and I"-convergence results, dealing separately with
the integrability exponents p = 1, p € (1, 4+00) and p = +o0.

In Sect. 5, we show that the fractional S-variation weakly converges and I'-
converges to the fractional ¢-variation as 8 — «~ for any « € (0, 1).

In Appendix A, for the reader’s convenience, we state and prove two known results
on the truncation and the approximation of BV functions and sets with finite perimeter
that are used in Sect. 3 and in Sect. 4.

2 Preliminaries
2.1 General notation

We start with a brief description of the main notation used in this paper. In order to
keep the exposition the most reader-friendly as possible, we retain the same notation
adopted in our previous work [27].

Given an open set 2, we say that a set E is compactly contained in €2, and we
write E € , if the E is compact and contained in 2. We denote by £ and .#*
the n-dimensional Lebesgue measure and the o-dimensional Hausdorff measure on
R" respectively, with @ > 0. Unless otherwise stated, a measurable set is a .Z"-
measurable set. We also use the notation |E| = " (E). All functions we consider in
this paper are Lebesgue measurable, unless otherwise stated. We denote by B, (x) the
standard open Euclidean ball with center x € R" andradius r > 0. Welet B, = B, (0).
Recall that w,, := |B)| = 72/T ("—*2'2) and "1 (9B)) = nw,, where T is Euler’s
Gamma function, see [9].

We let GL(n) D O(n) D SO(n) be the general linear group, the orthogonal group
and the special orthogonal group respectively. We tacitly identify GL(n) C R"* with
the space of invertible n x n-matrices and we endow it with the usual Euclidean
distance in R

For k € Nog U {400} and m € N, we denote by CZ?(Q; R™) and Lip,.(£2; R™) the
spaces of CX-regular and, respectively, Lipschitz-regular, m-vector-valued functions
defined on R” with compact support in €2.

For any exponent p € [1,+4oc], we denote by LP(2;R™) the space of m-
vector-valued Lebesgue p-integrable functions on 2. For p € [1, +00], we say that
(fi)ken C LP(2; R™) weakly converges to f € LP(2; R™), and we write fy— f in
L?(Q; R™) as k — 400, if

@ Springer



G. E. Comi, G. Stefani

k— 400

lim /fkwpdxsz-godx 2.1
Q Q

for all ¢ € L9(Q2; R™), with ¢ € [1, +o0] the conjugate exponent of p, that is,

L 4+ 1 — 1 (with the usual convention +%.o = 0). Note that in the case p = +00

we make a little abuse of terminology, since the limit in (2.1) actually defines the
weak*-convergence in L*°(2; R™).
We let

Wl’p(Q; Rm) = {M (S LP(Q, Rm) : [M]Wl,p(Q; Rm) = ||VM||LP(Q’ Rrmy < +OO}

be the space of m-vector-valued Sobolev functions on €2, see for instance [46, Chap-
ter 10] for its precise definition and main properties. We also let

Wl (@ R") = 1 € Lo (R R") : [l gy < oo
We let
BV (Q:R™) := [u € L' R™) : [ulpy g rm = |Dul(R) < +oo]

be the space of m-vector-valued functions of bounded variation on €2, see for instance
[4, Chapter 3] or [34, Chapter 5] for its precise definition and main properties. We also
let

bu(Q: R™) = [u e LL (@ R™) : [ulpya:mm) < +oo] .

Fora € (0, 1) and p € [1, +00), we let
WP (Q; R™) 1= {u e LP(Q; R™) :

_ P v
[M]Wd,p(Q;Rm) = </ de dy) < +OO}
QJQ

ey

be the space of m-vector-valued fractional Sobolev functions on €2, see [32] for its
precise definition and main properties. We also let

w®P (Q; R™) := [u € LIIOC(Q; R™) : [ulwer(g; rmy < +oo} .
For o € (0, 1) and p = 400, we simply let

WER(Q R™) := Ju € L°(Q;R™) :  sup lu@) —u@)| < 400!,
X,yEQ, xF#Yy |x — y|°‘
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so that W**°(Q; R™) = C,?’“(Q; R™), the space of m-vector-valued bounded o-
Holder continuous functions on 2.

We let . (2; R™) be the space of m-vector-valued Radon measures with finite
total variation, precisely

Il (§2) := Sup{/ﬁwdu L € CULR™), |lgllLosirmy < 1}

for w € A (2; R™). We say that (ug)ren C A (2; R™) weakly converges to . €
A (2; R™), and we write pup—u in Z (2; R™) as k — +o00, if

lim gp-dusz ¢-du (2.2)
Q Q

k— 00

for all ¢ € C?(Q; R™). Note that we make a little abuse of terminology, since the
limit in (2.2) actually defines the weak*-convergence in .4 (2; R™).

In order to avoid heavy notation, if the elements of a function space F(£2; R™) are
real-valued (i.e. m = 1), then we will drop the target space and simply write F (£2).

2.2 Basic properties of V? and div?

We recall the non-local operators V¥ and div® introduced by Silhavy in [72] (see also
our previous work [27]).
Leta € (0, 1) and set

We let

z2f(x +2)

a1 dz

VEf(x) = tno lim
£=0 Jijz1>e) 12

be the fractional a-gradient of f € Lip.(R") at x € R". We also let

7 p(x+72)

|Z|n+a+1 dz

div¥e(x) := pp o lim

e=0 J{jz|>¢)

be the fractional a-divergence of ¢ € Lip.(R"; R") at x € R". The non-local oper-
ators V¥ and div® are well defined in the sense that the involved integrals converge
and the limits exist, see [72, Section 7] and [27, Section 2]. Moreover, since
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Z
~/{|7>8} |z|na+t de=0. Ve=0.

it is immediate to check that V¥c = O for all ¢ € R and

Ve f(x) = ina lim U0y
=0 J{jy—x|>¢} |y — x|+
— 1ty lim =0 - f) dy
n,o e0 (xmyl=e) |y _ x|n+01+1
=00 - fx) n
= Un,a - |y—x|"+"‘+1 dy, Vx e R )
for all f € Lip.(R"). Analogously, we also have
. . (y—x)-9@)
div¥e(x) = pp o lim ———dy,
" 60 Jmylzey |y — x|rtet!

O —=x) - (@) — @) J

= MUn, lim )

"m0 {lx—y|>¢} ly _x|n+a+1
(y —x) - (p(y) —o(x)) "
= Mn,a - |y—x|”+°‘+1 dy, Vx € R”,
for all ¢ € Lip,.(R").
Given « € (0, n), we let
. Mnl-a u(y) n
lyu(x) := dy, x € R", 2.3)
n—a Jge|x —y["=

be the Riesz potential of order o« € (0, n) of a function u € C°(R"; R™). We recall
that, if o, B € (0, n) satisfy o+ < n, then we have the following semigroup property

Io(Igu) = Iospu @4)

for all u € C2°(R"; R™). In addition, if 1 < p < g < 400 satisfy

then there exists a constant Cy, o, , > 0 such that the operator in (2.3) satisfies

HgullLa@®n; ®m) < Cha,plltell e @e; ®m) (2.5

for all u € C°(R"; R™). As a consequence, the operator in (2.3) extends to a linear
continuous operator from L? (R"; R™) to LY(R"; R™), for which we retain the same
notation. For a proof of (2.4) and (2.5), we refer the reader to [76, Chapter V, Section 1]
and to [40, Section 1.2.1].

We can now recall the following result, see [27, Proposition 2.2 and Corollary 2.3].
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Proposition 2.1 Let € (0, 1). If f € Lip.(R"), then
Vef=L-oVf=VIi_of (2.6)
and V* f € LY(R"; R") N L®(R"; R"), with
IV FllLr e, mey < Mol f Twer @) (2.7)
and
IV fllLee®n; Rty < CraUlIV fllLoo e R (2.8)

for any bounded open set U C R" such that supp(f) C U, where

n+a—1
nin,« . l—a nwy n 1—a
C = d U + | — Ul |.
n,a,U d—an+a—1 (a)n iam(U) <n+a_]) U] )

(2.9)
Analogously, if ¢ € Lip.(R"; R") then
div¥e = I1_odivp = divl]_q¢ (2.10)
and divig € L' (R™) N L>®(R"), with
div¥ell 1@y < tn.al@lyer @ rry (2.11)
and
div*@|l oo @n) < Cp.a.vlldive]l Lo rry (2.12)

Sfor any bounded open set U C R" such that supp(¢) C U, where Cy, o,y is as in (2.9).

2.3 Extension of V? and div“ to Lip,-regular tests

In the following result, we extend the fractional «-divergence to Lip,-regular vector
fields.

Lemma 2.2 (Extension of div* to Lip,). Let o € (0, 1). The operator
div®: Lip,(R"; R") — L*(R")
given by

—X) - (p(y) —9))

|y _ x|n+a+1

divig(x) == un,a/ v dy, xeR", (2.13)
Rn
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for all ¢ € Lip,(R"; R"), is well defined, with
zlianwnﬂn,a

a(l — )

Idiv il ooy < Lip(@)® 101~ g g 2.14)

and satisfies

divio(x) = jine lim G —x) - — o) ,

e=0" J{ly—x|>¢} ly — x|n+ot+l (2.15)
— U lim (y —x) - p(y) )
— Mn,a
e—0T {ly—x|>¢} |y _x|n+a+1
forall x € R". Moreover, if in addition I,y |divy| € LIIOC(R”), then
div¥e(x) = I _gdive(x) (2.16)

fora.e x € R".

Proof We split the proof in two steps.
Step 1: proof of (2.13),(2.14) and (2.15). Givenx € R" andr > 0, we can estimate

/{.Iy—xlfr}
and
/{Iy—XI>r}

Hence the function in (2.13) is well defined for all x € R" and

O —=2x) - () —ox))
ly — x|ttt

,
dy < nwnLip(cp)/ 0 “do
0

y—x) - ((y) — o)) ‘

+o00
|y — xln-‘ra-‘r] dy < ann ”(p”LOO(Rn;Rn) / Q7(1+a) dQ

r

Li 2 0o (RH- RN
p(e) pla @l Loo(rn; R r‘“) ’

div¥ || comny < R
[1div¥ @ || Loo(mny < n(l_a ”

so that (2.14) follows by optimising the right-hand side in » > 0. Moreover, since

O —2x) - (@) — o(x))

X(e,4+00) (|y —xl)’

|y —xl’l"‘““
) xo,n(y —x[) X[, +00) (|y — x[) 1 n
< Lip(p) Ty — xprFaT + 2ll@ll oo mry Ty —xpte €L, (R

and

Z
————dy=0
/{|z>8} |Z|n+0[+1 Y
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for all ¢ > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get
the two equalities in (2.15) for all x € R".

Step 2: proof of (2.16). Assume that I1_y|dive| € L]OC(R"). Then
|dive (y)| |
W € Ly(Rn) 2.17)

for a.e. x € R". Hence, by Lebesgue’s Dominated Convergence Theorem, we can
write

. divp(y)
I _odive(x lim _
1-dive(x) = lp o 0t J{y—x|oe] ly — x|nte=1

fora.e.x € R".Now lete > 0 be fixed and let R > 0. Again by (2.17) and Lebesgue’s
Dominated Convergence Theorem, we have

lim

divp(y) . / dive(y)
R—>+00 J{R=|y—x|>¢} 1Y (ly=x|>¢} 1Y

_x|n+oz—1 _x|n+ot—l

for a.e. x € R". Moreover, integrating by parts, we get

dive(y) divye(y + x)
n+a—1 dy = n+a—1 dy
(R>|y—x|>¢} ly — x| {R>|y|>¢} [yl

Yy ¢y +x) —1
= T d " (y)
~/{‘|y=R} |yl [y|rte=!

/ y ey +x>d
- 1yl 1v|nfa—1
(lyl=} 1Y 1yI"

y oy +x)
[ e,
{R>|y|>¢} |y|"+°‘+1

forall R > 0 and for a.e. x € R". Since ¢ € L*°(R"; R"), by Lebesgue’s Dominated
Convergence Theorem we have

A" (y)

lim

dy
R—>+00 J{R>|y|>¢}

y-w(y+x)d _/ y ey +x)
|y|r+etl ly|=e) |y[rretd

for all ¢ > 0 and all x € R". We can also estimate

'/l Y ey +x) 4" ()

=Ry 1] Iyl et < no|plloer; Ry R™
{ly
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for all R > 0 and all x € R”. We thus have that

dive(y)
n+o—1 dy
{ly—x|>¢} ly — x|

Yy oy +x) Y ey +x) 1
Z/ nrarl 4y~ f T 4
{ly|>e} |)/| {lyl=¢} |Y| |Y|

forall ¢ > 0 and a.e. x € R". Since also

'[ Y ey +x) ;f"—l(y)‘ _ Y 9O+ Z ) 4y
{lyl=¢} |y| [ypre=t (lyl=¢} 1) |y|rte=l
< nwy, Lip(p) e' ™

for all ¢ > 0 and x € R", we conclude that

, dive(y) . O —x)-9()

lim ﬁdy = lim ﬁ

=07 {ly—x|>¢e} |y _x|n « e—0t {ly—x|>¢e} |y _x|n o
for a.e. x € R”, proving (2.16). O

We can also extend the fractional «-gradient to Lip,-regular functions. The proof
is very similar to the one of Lemma 2.2 and is left to the reader.

Lemma 2.3 (Extension of V¥ to Lip,). Let o € (0, 1). The operator
V¥ Lip,(R") — L*R"; R")

given by

Ve £ () _Mm/ (y—X) (f ) — f(x))dy, x €R".

|n+oz+l
for all f € Lip,(R"), is well defined, with

2170 Wn U,

Va oo (Rr: Ry <
IVEfllLoe e ey < o — o)

Lip(A) 11 1| =S

and satisfies

Vf(x) = pne lim V=0 (fO) = f&)

e—>0F {ly—x|>¢e} |y _)CVH—O(_H
— 1y lim (y—x)-f(y)d
n,o e 0+ {y—zx|>¢) |y _ x|n+o¢+l
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for all x € R"™. Moreover, if in addition I)—4|V f| € LIIOC(R”), then

VOf(x) =L_oVf(x)

fora.e. x € R".

2.4 Extended Leibniz’s rules for V? and div®

The following two results extend the validity of Leibniz’s rules proved in [27, Lem-
mas 2.6 and 2.7] to Lip,-regular functions and Lip,-regular vector fields. The proofs

are very similar to the ones given in [27] and to that of Lemma 2.2, and thus are left
to the reader.

Lemma 2.4 (Extended Leibniz’s rule for V¥). Let & € (0, 1). If f € Lip,(R") and
n € Lip,.(R"), then

VEMf) =0V f + f Vi + Vi (. f),

where

Ve (0, F)(x) = Mm/ G =x) (fO) = fFEG) —n&)

|y — xfrot]
for all x € R", with

2—

nwnﬂn all fllzee o0 (R") Li p(n)a

Va N oo (Rn- Ry < oo (RM)
VAL @, Pz @r; ey < o —a) Inll ;= ®")

and

IVRL @ Ol ey < 20,0l f oo @ []want gy

Lemma 2.5 (Extended Leibniz’s rule for div®). Let o« € (0, 1). If ¢ € Lip,(R"; R")
and n € Lip.(R"), then

div¥ (ng) = ndivie + ¢ - V¥ + divy, (1, @),
where

O =x) () — o)) — n(x))

divd: (n, ) (x) =
NL(’] (p)( ) /Ln,a R |y _x|n+a+1

forall x € R", with

2—

nwp fn,all@ll Lo ®e; R Lip(n)*

IdivRe (. @)l Loy < ol — o) 71l =Sy
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and
||diVOI<1L(’77 (P)”Ll(Rn) = 2Mn,a||(/’||L°C(R";R")[’?]Wavl(Rn)«
2.5 Extended integration-by-part formulas

We now recall the definition of the space of functions with bounded fractional o-
variation. Given o € (0, 1), we let

BV*(R") := {f e L'®R") : ID* fI(R") < +oo},
where
D fI(R") = sup{/R fdiviedx : ¢ € CCR";R"), |@|lpo®srry < 1}

is the fractional a-variation of f € LY(R"). We refer the reader to [27, Section 3] for
the basic properties of this function space. Here we just recall the following result, see
[27, Theorem 3.2 and Proposition 3.6] for the proof.

Theorem 2.6 (Structure theorem for BV® functions). Let a € (0, 1). If f € L'(R™),
then f € BV*(R") if and only if there exists a finite vector-valued Radon measure
D* f € 4 (R"; R") such that

/ fdivigdx = —f @-dD"f (2.18)
Rn RH

forall ¢ € Lip.(R"; R").

Thanks to Lemma 2.5, we can actually prove that a function in BV¥(IR") can be
tested against any Lip,-regular vector field.

Proposition 2.7 (Lip,-regular test for BV® functions). Let « € (0,1). If f €
BVY(R"), then (2.18) holds for all ¢ € Lip,(R"; R").

Proof We argue as in the proof of [27, Theorem 3.8]. Fix ¢ € Lip, (R"; R") and let
(Mr)r>0 C C°(R™) be a family of cut-off functions as in [27, Section 3.3]. On the
one hand, since

'/ fngdiv¥edx —/ fdiv¥edx
R~ R®

< 1ol [ 1510 =m0 ds
for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim / faniV“godx=/ fdiv¥edx.
R” R~

R—+o00
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On the other hand, by Lemma 2.5 we can write
[ fedvipar= [ fanomordi— [ fo-voneds
R» R~ R”
- /R £ dive (g, @) dx
for all R > 0. By [27, Proposition 3.6], we have
[ raviamprar == [ nag-anes
Rn Rll

for all R > 0. Since

[ nwo-apts— [ w-avy

< ||¢||Loo<Rn;Rn)f (1= nr)dID* f|
RI’

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the
finite measure | D* f|) we have

lim nre -dD* f = @-dD*f.
R—+00 R~ R

Finally, we can estimate

sun,a||go||Loo<Rn;Rn>/ f(x )|/ Mdydx

|n+a

V fo-Virdx
Rn

and, similarly,

‘ /R £ divéy (1. 9) dx

|(> @)l
szun,a||ga||mRn;Rn>/ fr >|/ IROD) = RN o

|n+a

By Lebesgue’s Dominated Convergence Theorem, we thus get that

R—+o00

lim ( f(p-V“anx—i—/ fdiV‘fﬁIL(nR,ga)dx) =0
R~ R”

and the conclusion follows. O

Thanks to Lemma 2.4, we can prove that a function in Lip, (R") can be tested against
any Lip_-regular vector field. The proof is very similar to the one of Proposition 2.7
and is thus left to the reader.

Proposition 2.8 (Integration by parts for Lip,-regular functions). Let « € (0, 1). If
f € Lip,(R"), then

fdivo‘(pdxz—/ @ -V*fdx
R’l Rn
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forall ¢ € Lip,.(R"; R").

2.6 Comparison between W% and BV? seminorms

In this section, we completely answer a question left open in [27, Section 1.4]. Given
a € (0,1) and an open set 2 C R", we want to study the equality cases in the
inequalities

IVE Fllp ge: mry < Mol f Twed ey, ID*XEN(2) < pn.a Pu(E; Q),

as long as f € W (R") and P, (E; ) < +00. The key idea to the solution of this
problem lies in the following simple result.

Lemma2.9 Let A C R" be a measurable set with L™ (A) > 0. If F € L'(A; R™),

then
‘/ F(x)dx 5/ \F (o)l dx,
A A

with equality if and only if F = fv a.e. in A for some constant direction v € S™~!
and some scalar function f € L'(A) with f > 0 a.e. in A.

Proof The inequality is well known and it is obvious that it is an equality if F = fv
a.e. in A for some constant direction v € S”~! and some scalar function f e L'(A)
with f > 0 a.e. in A. So let us assume that

/F(x)dx =/|F(x)|dx.
A A

If [, F(x)dx = 0, then also [, |F(x)|dx = 0. Thus F = 0 a.e. in A and there is
nothing to prove. If [ 4 F(x)dx # 0 instead, then we can write

/ |F(x)|— F(x)-vdx =0,
A

with

_ Ja F(x)dx m—1
=T Foodx ©F
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F(x)

Therefore, we obtain |F(x)] = F(x) - v for a.e. x € A, so that Fop Y = 1
for a.e. x € A such that |F(x)| # 0. This implies that F = fv a.e. in A with
f =|F| € L'(A) and the conclusion follows. O

As an immediate consequence of Lemma 2.9, we have the following result.

Corollary 2.10 Leta € (0, 1). If f € W*L(R"), then

”Vaf”Ll(Rn;Rn) < /J/n,a[f]wa.](Rn), (219)
with equality if and only if f = 0 a.e. in R".
Proof Inequality (2.19) was proved in [27, Theorem 3.18]. Note that, given f €
LY(RM), [flwe1gey = 0 if and only if f = 0 a.e. and thus, in this case, (2.19) is

trivially an equality. If (2.19) holds as an equality and f is not equivalent to the zero
function, then

L (v ren = [ 2L 0y )ax =0
R" re |y — x|

and thus

(f(y)—f(X))-(y—X)d =/ If(y)—f(X)Idy (2.20)
Rn ly — x|n+a+l n |y — x|nte

for all x € U, for some measurable set U C R” such that Z"(R" \ U) = 0. Now
let x € U be fixed. By Lemma 2.9 (applied with A = R"), (2.20) implies that the
(non-identically zero) vector field

ye (f)— fx)(y—x), yeR",

has constant direction for all y € V,, for some measurable set V, C R” such that
ZL(R™ \ V) = 0. Thus, given y, y’ € V,, the two vectors y — x and y’ — x are
linearly dependent, so that the three points x, y and y’ are collinear. If n > 2, then
this immediately gives .#"(V,) = 0, a contradiction, so that (2.19) must be strict. If
instead n = 1, then we know that

xelU = yr (f(y) — f(x)) (y — x) has constant sign for all y € V.. (2.21)
We claim that (2.21) implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f ¢ LY(R), in contrast with the fact that fe wel(R),

so that (2.19) must be strict and the proof is concluded. To prove the claim, we argue
as follows. Fix x € U and assume that

) =fGNy—x)>0 (2.22)
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forall y € V, withoutloss of generality. Now pick x’ € UNV, such that x’ > x. Then,
choosing y = x"in (2.22), we get (f (x")— f(x)) (x*'—x) > Oand thus f(x") > f(x).
Similarly, if x’ € U N V4 is such that x” < x, then f(x) < f(x). Hence

esssup,_, f(z) < f(x) <essinf ., f(2)

for all x € U (where esssup and essinf refer to the essential supremum and the
essential infimum respectively) and thus f must be equivalent to a (non-constant)
non-decreasing function. O

Given an open set 2 C R” and a measurable set £ C R”, we define

B, (E: Q) ::/ IXE(y)—icfofx)ldde/ |XE(y)_ffoEX)|dXdy'
eJao |y —x| rnQJo |y — x|

It is obvious to see that
Py(E; Q) < Py(E: Q) < 2Py (E; Q).

where P, is the fractional perimeter introduced in (1.10). Arguing as in the proof of
[27, Proposition 4.8]it is immediate to see that

IV XE N1 (@: mry < Mna Pal(E3 ), (2.23)

an inequality stronger than that in (1.9). In analogy with Corollary 2.10, we have the
following result.

Corollary 2.11~Let a € (0,1), 2 C R" be an open set and E C R" be a measurable
set such that P,(E; Q) < +00.

(i) Ifn > 2, L"(E) > 0and L"(R" \ E) > 0, then inequality (2.23) is strict.
(ii) If n = 1, then (2.23) is an equality if and only if the following hold:

(a) fora.e.x € QNE, L' ((—00,x) \ E) = 0vel L' ((x, +c0) \ E) = 0;
(b) forae. x € Q\ E, L' ((—o0,x) N E) =0vel £'((x, +00) N E) = 0.

Proof We prove the two statements separately.
Proof of (i). Assume n > 2. Since .£"(E) > 0, for a given x € Q \ E the map

yi— (y—x), foryekE,

does not have constant orientation. Similarly, since .Z"(R" \ E) > 0, for a given
x € QN E also the map

y> (y—x), foryeR'\E,

does not have constant orientation. Hence, by Lemma 2.9, we must have

dy
‘/E|y—x|"+“+1 y’</E|y—x|"+“’ forx € A E,
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and, similarly,

y—X dy
—dy‘<'/ Y forxeQNE.
/R"\E ly — x|ntetl r\E |y — x|

We thus get

(XEY) —xe(@) - (y —x)
|y — x|t

IV Xl 1 ) = o / dy ' dx
Q

/ / YT 4y ld
= —_— X
Hone o\E | JE |y —x"te Y
y—Xx
+u,/ / —dy‘dx
" Jane | Jrne Iy — x|t

/‘ / dydx
<u
" Jone JE ly — x[n+e

dydx ~
+ Un,a T inta Mn,aPa(E; Q),
Qne JRE |y — x|

Rn

proving (i).
Proof of (ii). Assume n = 1. We argue as in the proof of [27, Proposition 4.12].
Let

Xe(y) — xe(x)
ly — x|!+e

JE(y, x) == , forx,yeR, y#nx.

Then we can write

Po(E: sz>=/ f | f2 (. )] dy dx
QJR

o +00
:/Q(/ IfE(y,x)Iderf |fE(y7x)|dy) dx

and
IV¥xEN L1 @ r) =m,a/9’/RfE(y,x) sgn(y—x)dy‘dx

X +00
:m,afg‘f fE(y,x)dy—/ Fe(yx)dy | dx

Hence (2.23) is an equality if and only if

X +oo
‘/ SE(y, x)dy — fE(y,X)dy‘
X —+00
=/ IfE(y,x)Idy+/ | fE(y, x)|dy (2.24)
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for a.e. x € Q. Observing that

+00
fE(yvx)dy‘

+00
/ fE(y,x)d)"

X +oo
sf Uﬂwmw+/ fe (. )] dy

—00

X

=

for a.e. x € 2, we deduce that (2.23) is an equality if and only if

x +o00
'/ fE()’,x)dy_/ fE(y,x)dY'

X +o00

= ‘/ fE(y,X)dy'Jr fE(y,X)dy‘ (2.25)
X +00

=/ IfE(y,X)Idy+f [fE(y, x)|dy (2.26)

for a.e. x € Q. Now, on the one hand, squaring both sides of (2.25) and simplifying,
we get that (2.23) is an equality if and only if

X +00
(/ fEQ, X) dy)(/ fE(y,x)dy) =0 (2.27)

for a.e. x € Q. On the other hand, we can rewrite (2.26) as

05/|MWMMwﬂf ﬁmmw‘

+00

+00
fE(y,x)dy‘—/ [ fE(y, x)|dy

X

<0
for a.e. x € 2, so that we must have

’/ fE(y,X)dy’=/ | fE(y, x)|dy

and

+00

+o0
fE(y,X)dy‘=/ | fE(y, x)|dy

X
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for a.e. x € Q. Hence (2.27) can be equivalently rewritten as

X +0o0
</ IfE(y,X)Idy>(/ IfE(y,X)Idy> =0 (2.28)

for a.e. x € Q. Thus (2.23) is an equality if and only if at least one of the two
integrals in the left-hand side of (2.28) is zero, and the reader can check that (ii) readily
follows. O
Remark 2.12 (Half-lines in Corollary 2.11(ii)) In the case n = 1, it is worth to stress

that (2.23) is always an equality when the set £ C R is (equivalent to) an half-line,
ie.,

IV Xa, +00) 121 (2 ) = K10 Pa((@, +00); Q)
for any o € (0, 1), any a € R and any open set 2 C R such that Py ((a, +00); Q) <

+00. However, the equality cases in (2.23) are considerably richer. Indeed, on the one
side,

IV X(=5.=40(=1400) [ L1(0.17: B) = 1.0 Pa (=5, =4) U (=1, 400); (0, 1))

and, on the other side,

V% X(=5.~4)U(0.400) | L1 (- 1.1): By < Pla Pa (=5, =4) U (0, +00); (=1, 1))

for any o € (0, 1). We leave the simple computations to the interested reader.

3 Estimates and representation formulas for the fractional a-gradient
3.1 Integrability properties of the fractional a-gradient

We begin with the following technical local estimate on the W*!-seminorm of a
function in B Vjqc.

Lemma3.1 Leta € (0, 1) and let f € BVipc(R"). Then f € Wl‘z‘)’cl (R™) with

nwy (2R

= IDf|(B3R) 3.1)

Lflwet gy =

forall R > 0.

Proof Fix R > 0 and let f € BVj,(R") be such that f € Cl(B3g). We can
estimate
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(
Lf lwet(gg) = /B/B |f|yy)_x|f+(§)|dydx

:/ / wd”x
Br BRﬁ{y—x<2R} |y — x|

1
S/ —/ |f(x+h)— f(x)|dxdh.
{ Br

lh|<2Ry |h|"Te

Since
1
/ |f(x+h)—f(x)|dx§/ / |Vf(x+th)-h|ldtdx
Br Bg JO

1
§|h|// IVf(x+th)|dxdt
0 Bg

< |hl IVf(2)ldz

BR|n|
for all 7 € R", we have

1
[y s/ —/ IV £ ()] dz dh
WeL(BR) (h|<2R) |h|n+a—l Brom

Df|(B
5/ | fli ilf) dh
(lh|<2R} AT

_ nw,2R)'

- |Df|(B3R)

proving (3.1) forall f € BVioc RMNC(B3g). Now fix R > Oandlet f € BVjoc(R?).
By [34, Theorem 5.3], there exists (fi)ren C BV (Bzg) N C°(Bsg) such that
IDfx|(B3r) — |Df|(B3g) and fr — f a.e.in B3g as k — —+o00o. The conclusion
thus follows by a simple application of Fatou’s Lemma. O

In the following result, we collect several local integrability estimates involving the
fractional «-gradient of a function satisfying various regularity assumptions.

Proposition 3.2 The following statements hold.

(i) If f € BV(R"), then f € BV*(R") for all « € (0, 1) with D*f = V* f.£"
and

Vf =1_4Df ae inR". (3.2)
In addition, for any bounded open set U C R", we have
IV fllLrw: mey < Cna.u IDFIRY) (3.3)
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foralla € (0, 1), where Cp, o,y is as in (2.9). Finally, given an open set A C R",

we have
||Vaf||L1(A;R")
D A_ + 20 —1
< nwp na [ IDfI(A)) Fl-a + nrTex—? ||f||L1(R") r ¢ 3.4
n+oa—1 -«

forallr > 0and a € (0, 1), where A, = {x e R" : dist(x, A) < r}. In

particular, we have

nwy Mn,ot(n + 20 — 1)1—:1
a(l—a)n+a—1)

1V Fll e, ey < LA L Sy GB:5)

(ii) If f € LR N Wgcl (R™), then the weak fractional - gmdient D*f €
Mroe(R™; R™) exists and satisfies D* f = VY f.£L" with V¥ f € LI (R"; R")

and
[f(x) — fODI
Va - Rpn n,o d d
IV FllLt B ey = 1 /BR/" Ix — y|rte *EY (3.6)

< ttna ([ lwet gy + Pu(Br) | fllLoo@®n)

loc

forall R > 0and o € (0, 1).
(iii) If f € L®R"™) N BVioc(R"), then the weak fractional a- gradient D*f €

Moc(R"™; R™) exists and satisfies D* f = V* f.L" with V* [ € LIOC(R"; R™)
and
||Vaf||L1(BR;Rn)
nwn(zR)l—ot 2a+1(nwn)2Rn—a
Stna | ——— IDFIB3R) + ——————— I fllzewry ). (3.7)
l -« al'(1 —a)

forall R > 0and o € (0, 1).

Proof We prove the three statements separately.
Proof of (i). Thanks to [27, Theorem 3.18], we just need to prove (3.3) and (3.4).
We prove (3.3). By (3.2), by Tonelli’s Theorem and by [27, Lemma 2.4], we get

/ IV ] dx sf I_o|Df|dx < Coav IDFI(R),
U U

where C, o,y 1s defined as in (2.9).
We now prove (3.4) in two steps.
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Proof of (3.4), Step 1. Assume f € C°(R") and fix r > 0. We have

fhwﬁwx=/ﬂpﬂﬁwx

< Miﬂx (/ / [V f(x+h)l dhdx
n—+o— 1 {1h|<r} |h|ta— g1
\% h
I T )
AlJ{n=ry "

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

IV f(x+h) f / dh
dhdx = IV F(x + )| dx —22
/ f|h|<r} |h|nte=l (Ih<r) |h|nte=l

v / dh
1 . Rn
LI(Ar R™) (hl<r) |h|nte—]
-«

=non IV Fll 21 a7 ey -

IA

Concerning the second double integral, integrating by parts we get

/ —Vf(x+h)dh=(n+oz—1)/ hfae+m
{Thl>r) hi=r)

|h|n+a—1 |h|n+a+l

h f(x+h) »
- =TT g ()
/{m:r} |h| |h|rte=t

for all x € A. Hence, we can estimate

VIix+h |f x4+ )l
T dh‘d <(n+oz—1)//|hl>r} e dhd

e+l
dzt hd
‘//QJ}MWM 1 () dx

n+o—1
< nopll fllprgnyr™ (T + 1)

n+2a—1 -~
= nwy (T) Il ey ™

Thus (3.4) follows for all f € C°(R") and r > 0.

Proofof (3.4),Step2.Let f € BV(R")andfixr > 0.Combining [34, Theorem 5.3]
with a standard cut-off approximation argument, we find (fi)ren C C°(R") such
that fy — f in L'(R") and |Dfi|(R") — |Df|(R") as k — +o0. By Step 1, we
have that

{In>r}
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nwp [hn,a |ka|(A_r) 1— n+2a—1 B
v gy < : @ Y
l fk”Ll(A’R)_n—i—a—1< I — o ro+ I fill Ly ey 7
(3.8)
for all k € N. We claim that
Vi) L"—=(V ) L" ask — 4oo0. (3.9)

Indeed, if ¢ € Lip.(R"; R"), then div¥¢ € L°°(R") by (2.12) and thus

'/ (p-V“fkdx—/ - V*fdx
R7 R7

= '/ Sediv¥e dx —/ fdiv¥edx
R7 Rn
< div¥@llLoe®n; ®ry | fk — fllL1wn)

forall k € N, so that

lim go-V“fkdxzf @ -V*fdx.
k——+o00 Rn Rn

Now fix ¢ € C?(]R”;]R”). Let U C R"” be a bounded open set such that
suppe C U. For each ¢ > 0 sufficiently small, pick v, € Lip.(R"; R") such that
lo — VellLoorr, Ry < € and supp ¥, C U. Then

/ ¢~V“fkdx—/ -V fdx
R? R”
Ve Ve fidi— [ povefar
R’l Rn
+ Ve — @llLoo@n; rr) (||vafk||L1(U;Rn) + ||Vaf||Ll(U;Rn))
x/fs-vafkdx—f Ve - VO f dx
R~ R~

+ & Ca,u (IDfl R") + | DFIRM),

=

=

so that

lim
k— 400

<2 Cn,(x,U|Df|(Rn)-

/ <p-V°‘fkdx—/ - V¥ fdx
n Rn

Thus, (3.9) follows passing to the limit as ¢ — 0T. Thanks to (3.9), by [50, Proposi-
tion 4.29]we get that

v« ey < liminf | V¥ Ry -
IVEfllLicamey = bim inf IV fiellpra; mmy
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Since

IDfI(U) = 1kimJirnf|ka|(U)

for any open set U C R" by [34, Theorem 5.2], we can estimate

lim sup | Dfi|(A,) < hm IDfil (R") —hm1nf|ka|(R” \ Ar)

k— 400

=< IDfI(R") — [DfIR" \ Ay)
= |DfI(A)).

Thus, (3.4) follows taking limits as k — +o0 in (3.8). Finally, (3.5) is easily deduced
by optimising the right-hand side of (3.4) in the case A = R" with respect to r > 0.
Proof of (ii). Assume f € L*°(R") N Wl‘z‘)’c] (R™). Given R > 0, we can estimate

/IV“f(x)ldeMn,a/ [ e ey
Bgr n

lx—y

/ / If &) = fOl
= Un,a dxdy
Bg J Bg |x - |n+0{

+Mna/ / 1f ) = fFI dx dy
Br JR"\ By Cx —yprte

=< //Ln,a[f]WOt,l(BR) + 2,0 || f 1l Lo Rr)

1
X ——dxdy
n/BR/”\BR |x _}’|n+a

= /’Ln,a[f]wavl(BR) + /Ln,a”f”LOO(R”)Pa(BR)

and (3.6) follows. To prove that D% f = V% f.%£", we argue as in the proof of
[27, Proposition 4.8]. Let ¢ € Lip,(R"; R"). Since f € L°°(R"), we have

PN |f(x)|/ lo(y) — @(x)] dy € L'(R").

|n+oc

Hence, by the definition of div* on Lip,-regular vector fields (see [27, Section 2.2])
and by Lebesgue’s Dominated Convergence Theorem, we have

—Xx)-9(y)
fdiv¥pdx = hm f(x) / —dydx.
n R” {ly—x|>¢} ly — x|n+a+1
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Since

/' / 1fF eI dy dx
nJ{ly—x|>¢} |y—x|"+o‘

< ||f||Loo(Rn)/ |<p(y)|/ ly — x|~ dx dy
R" {ly—x|>¢}

A

nwy
= e 7 I ooyl @l e mny

A

for all & > 0, by Fubini’s Theorem we can compute

(y—2x) -9y
/”f(x /y —x|>e} |y—x|”+°‘+1 d dx

pIPAC))
/"¢( /|x y|>¢} |X —)’|"+"‘+1 dx dy

x =y (fx) = fO)
— dxd
/n o(y) /{Ix—y|>5} et xdy.

Since

|(p(y)|‘/ | }(x—y)(f(x)—f(y)) ‘_|()|/ If&) = fOl
x—y|>¢e

|x — y|rtet! = yprte

forall y € R" and ¢ > 0, and

|—>/ |f(x)_f(y)|dxeLlloc(R")

Ix_y|n+0(

by (3.6), again by Lebesgue’s Dominated Convergence Theorem we conclude that

/ fx)divie(x)dx = — hm oY) x =y (f0) = lf(y)) dxdy
R” {lx—y|>¢e} |x - )’|"+O‘+
_ x =)= )
= / ¢() lim A oyt dxdy

= —fnqo(y)'V“f(y)dy

for all ¢ € Lip.(R"; R"). Thus D*f € #oc(R"; R") is well defined and D f =
Ve ren,

Proof of (iii). Assume f € L®(R") N BVjoc(R"). By Lemma 3.1, we know that
f e LY®Y) N WEHRY) for all @ € (0,1), so that D* f € Moc(R"; R?) exists
by (ii). Hence, inserting (3.1) in (3.6), we find

nw, (2R)1 ¢

||V°‘f||L1(BR;Rn) = Mn,a ( 11—

|DfI(B3r) + Pu(B1) R"™ ||f||L°°(R")> .

@ Springer



G. E. Comi, G. Stefani

Since for all x € B; we have

/ dy _/ dz </ dz nwy
R\B, |y — x| R\By (—x) 121"F T Jrog_yy, 27T a(l = |xe’

being I" log-convex on (0, +00) (see [9]), we can estimate

dyd 2 d
P, (Bl)_Z/ / ydx < nwn/ X
B "\ B |y - x|n+0{ o B (1 - |x|)a

B 2(nw,,)2/1 1 g 2(nwy)? T() T (1 — &)
T« o =" o Thm+1-—a)
_ 2a+1(nwn)2

'l —oa),
so that
IV FllLt (Bg: Rr) < Hna (WlDleme) + W ||f||L°°(R”)> ;
proving (3.7). O

Note that Proposition 3.2(i), in particular, applies to any f € W1 (R"). In the
following result, we prove that a similar result holds also for any f € W7 (R") with
p € (1, +00).

Proposition 3.3 (W!1?(R") ¢ S*P(R") for p € (1,400)) Let @ € (0, 1) and p €
(1, 400). If f € WHP(R™), then f € S%P(R") with

nw Vw fllp s e
IV Flliron mn < nuna( wllLr@ R 1o

n+o—1 l—«

n—+2a—1 _
+T I fllLe@eyr “) (3.10)

forany r > 0 and any open set A C R", where A, := {x e R" : dist(x, A) < r}. In

particular, we have

(n+ 20 — 1)1 “ nwpUn,a
n +a _1 a(l ) ”vwf”LP(Rn Rn)”f”Lp(R"

(3.11)

Ve fllLr ®e: Ry <

then

In addition, if p € (l, lfa) and g =

np
n—(1-a)p’
Vef=1_o4Vyf ae inR" (3.12)

and Vi, f € L1(R"; R").
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Proof We argue as in the proof of Proposition 3.2(i).

Proof of (3.10). The proof of (3.10) for all f € CZ°(R") is very similar to that
of (3.4) and is thus left to the reader. Now let f € W17 (R") and fix an openset A C R”
and r > 0. Combining [34, Theorem 4.2] with a standard cut-off approximation
argument, we find (fy)ken C CS°(R") such that fy — f in WLP(R") as k — +o00.
We thus have that

v Ry =
l fk||LP(A,R)—n+a_1 l -«

n—+2a—1
+—

nwy Un,o (”ka”Lp(A,; R") rl_a

IIfklle(Rn)r“> (3.13)

for all k € N. Hence, choosing A = R”", we get that the sequence (V* fi)reN is
uniformly bounded in L” (R"; R™). Up to pass to a subsequence (which we do not
relabel for simplicity), there exists g € L? (R"; R") such that V¥ fy—gin L? (R"; R")
as k — +o00. Given ¢ € C2°(R"; R"), we have

/ Sedivieodx = —/ @ -V frdx
Rn Rl‘l
for all k € N. Passing to the limit as k — +o00, by Proposition 2.1 we get that
fdiv¥pdx = —/ @-gdx
Rn R}l

for any ¢ € C°(R"; R"), so that g = V& f and hence f € S“P(R") according to
[27, Definition 3.19]. We thus have that

Ve fllLeca; gy < liminf [V fill L a; m)
k—~400

for any open set A C R", since

lim @V frdx
k—4o00 Jpn

lell 2.
Lpr—

| o-visax
Rn

IA

lim inf ||V® CRn
(4 oy i Inf IVE fillLe ca: rey
for all ¢ € C2°(A; R"). Therefore, (3.10) follows by taking limits as k — 400
in (3.13).
Proof of (3.11). Inequality (3.11) follows by applying (3.10) with A = R" and
minimising the right-hand side with respect to » > 0.

Proof of (3.12). Now assume p € (1, 1’_—’a) and let ¢ = .Let g €

n—(lluia)p
49
C(R"; R") be fixed. Recalling inequality (2.5), since ¢ € LT (R"; R") we have
that
ol Lol fl € L'R"), || Ii |V f] € L'(R").
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In particular, Fubini’s Theorem implies that

fhi-gp € L"\RRY), L1_qp-Vy,f e L'R").

P

Since div¥g € L»-T(R") by Proposition 2.1, we also get that
fdivli_gp = fdivig € L'(RY).

Therefore, observing that /1_,¢ € Lip,(R";R") because VIi_q¢ = V% €

L (R"; an) again by Proposition 2.1 and performing a standard cut-off approxi-
mation argument, we can integrate by parts and obtain

/w-ll_avwfdm/ Iag -V f dx

— fdivli_qpdx = — fdiv¥edx.
R7 R7
Therefore
f @ -1V fdx = —/ fdiv¥e dx
R» R»

forall ¢ € C°(R"; R"), proving (3.12). In particular, notice that V2 f € LY (R"; R")
by inequality (2.5). The proof is complete. O

For the case p = 400, we have the following immediate consequence of Lemma
2.4 and Proposition 2.8.

Corollary 3.4 (WL (R") c S“®([R")) Let o € (0,1). If f € WLRX(RM), then
f € S“(R™) with

nwn Mn,« l—a

IV fll Lo @ ey < 27 ol —a) IV fllT o @n; gy Lf Il foogny- — (3-14)

3.2 Two representation formulas for the a-variation

In this section, we prove two useful representation formulas for the «-variation.

We begin with the following weak representation formula for the fractional o-
variation of functions in B Vjoc(R") N L°°(R™). Here and in the following, we denote
by f* the precise representative of f € L} (R"), see (A.1) for the definition.

loc

Proposition3.5 Let « € (0,1) and f € BVic(R") N L*®°MR"). Then V*f €
LIIOC(R"; R™) and

/ ¢-V*fdx = lim ¢ - h-a(xp, Df)dx (3.15)
Rn R—+o00 R?
for all ¢ € Lip.(R"; R").
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Proof By Proposition 3.2(iii), we know that V¥ f € LIIOC(R”; R"™) for all « € (0, 1).
By Theorem A.1, we also know that f xp, € BV (R") N L°°(R") with D(xp, f) =
X5, Df + f*Dyxsy forall R > 0. Now fix ¢ € Lip.(R"; R") and take R > 0 such
that supp ¢ C Bg/2. By [27, Theorem 3.18], we have that

fl;XBRfdiVa(pdxz_A@'va(XBRf)dxz_‘/R(p'll—o{D(XBRf)dx-

Moreover, we can split the last integral as

/]R (p'Il—aD(XBRf)dx

:/H; (p-ll—a(XERDf)dx‘f‘A; @ L_o(f*Dxpy) dx. (3.16)

For all x € Bg/2, we can estimate

Li—a(f*Dxpg)(x)

/3 f*» oy djf”l(y)‘

B 1X — ylmtely]

_ 1 S*(Ry) n—1
= /ag. e )
Y—R
nwy
< - AT I f 1l oo ey
re(1-%)
2n+a—1nwn
S ——7— Ifll=@n

R

and so, since supp ¢ C Bg,2, we get that

n+a—1nwn

TS el L1 wesrey L f oo ey, (3.17)

f ¢ h-o(f*Dypg) dx

Therefore, by (2.11), Lebesgue’s Dominated Convergence Theorem, (3.16) and (3.17),
we get that

fdivvodx = lim xBg fdivi@dx = lim / ¢ L—o(xp,Df)dx
R? R— R—+o0 Rn

—+o0 R?
and the conclusion follows. O
In the following result, we show that for all functions in bv(R") N L>°(R") one

can actually pass to the limit as R — 400 inside the integral in the right-hand side
of (3.15).
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Corollary 3.6 If either f € BV(R") or f € bu(R") N L>®°(R"), then

VOf =1_4Df ae inR". (3.18)
Proof If f € BV (R"), then (3.18) coincides with (3.2) and there is nothing to prove.
So let us assume that f € bv(R") N L°(R"). Writing Df = v¢|Df| withvy € sl

|Df|-a.e. in R", for all x € R" we have

ve(y)  vr(y)
ly — x|n+a—1 - ly — x|n+a—1

li . for |Df| -a.e. )
R;rilwaR(y) or [Df|-ae.y #x

Moreover, for all x € R”, we have

vr(y)
|y —x|rte=t] = |y — xjrto-t

X5 () € Ly(R",[Df]) VR >0,

because I _|Df| € Ll _(R") by [27, Lemma 2.4]. Therefore, by Lebesgue’s Domi-

loc
nated Convergence Theorem (applied with respect to the finite measure |Df|), we get

that
REIEOO Il—a(X;}RDf)(X) = (I1—_¢Df)(x) forae.x € R".
Now let ¢ € Lip.(R"; R"). Since
0 Ii—a(X3, D) < ol oI Df| € L'(R") VR >0,

again by Lebesgue’s Dominated Convergence Theorem we get that

lim <p~11_a(X§RDf)dx=/ o-I_oDf dx. (3.19)
R— 400 R? Rn
The conclusion thus follows by combining (3.15) with (3.19). O

3.3 Relation between BV? and BV®P for 8 < @and p > 1

Let us recall the following result, see [27, Lemma 3.28].

Lemma 3.7 Let«a € (0, 1). The following properties hold.

(i) If f € BVY(R"), thenu := I1—o f € bv(R") with Du = D* f in 4 (R"; R").
(ii) Ifu € BV(R"), then f := (—A)FTau € BV*(R") with

I fllLiwny < cnallullpy@ny and D f = Du in .4 ([R"; R").
As a consequence, the operator (—A)FT& : BV(R") — BVY(R") is continuous.
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We can thus relate functions with bounded «-variation and functions with bounded
variation via Riesz potential and the fractional Laplacian. We would like to prove a
similar result between functions with bounded «-variation and functions with bounded
B-variation, for any couple of exponents 0 < f < o < 1.

However, although the standard variation of a function f € L lloc (R™) is well defined,
it is not clear whether the functional

1) r—>/ fdiv¥edx (3.20)
Rﬂ

is well posed for all ¢ € C°(R"; R"), since div¥g does not have compact support.
Nevertheless, thanks to Proposition 2.1, the functional in (3.20) is well defined as soon
as f € LP(R") for some p € [1, +00]. Hence, it seems natural to define the space

BV®PR") :={f € LP(R") : [ID* fI(R") < oo} (3.21)

foranyo € (0, 1) and p € [1, 400]. In particular, BVAL(RY) = BV“(R™). Similarly,
we let

BV'P(R") :={f € LP(R") : IDf|(R") < +oo}

for all p € [1, +oc]. In particular, BV L-1(R") = BV (R").
A further justification for the definition of these new spaces comes from the follow-
ing fractional version of the Gagliardo—Nirenberg—Sobolev embedding: if n > 2 and

a € (0, 1), then BV*(R") is continuously embedded in L? (R") forall p € [1 L]

’n—a
see [27, Theorem 3.9]. Hence, thanks to (3.21), we can equivalently write

BVY(R") C BV“P(R")

with continuous embedding foralln > 2, « € (0, 1) and p € [1 L]

’n—a
Incidentally, we remark that the continuous embedding BV*(R") C Lia (R™)
forn > 2 and a € (0, 1) can be improved using the main result of the recent work
[73] (see also [74]). Indeed, if n > 2, o € (0, 1) and f € C°(R"), then, by taking
F = V¥ fin [73, Theorem 1.1], we have that

10 gy = TV LU gy = VSl ey

thanks to the boundedness of the Riesz transform R : Li-a"! R"y - L = (R™; R™),
where ¢ 4, ¢, , > 0 are two constants depending only on n and e, and L wal R") is
the Lorentz space of exponents # 1 (we refer to [39, 40] for an account on Lorentz
spaces and on the properties of Riesz transform). Thus, recalling [27, Theorem 3.8],
we readily deduce the continuous embedding BV (R") C Lﬁ’l(R”) forn > 2
and o € (0, 1) by [39, Exercise 1.1.1(b)] and Fatou’s Lemma. This suggests that the
spaces defined in (3.21) may be further enlarged by considering functions belonging
to some Lorentz space, but we do not need this level of generality here.
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In the case n = 1, the space BV*(R) does not embed in Lﬁ (R) with continu-
ity, see [27, Remark 3.10]. However, somehow completing the picture provided by
[73], we can prove that the space BV (R) continuously embeds in the Lorentz space

1
LT=a">°(R). Although this result is truly interesting only for n = 1, we prove it below
in all dimensions for the sake of completeness.

Theorem 3.8 (Weak Gagliardo—Nirenberg—Sobolev inequality). Let o € (0, 1). There
exists a constant ¢, o > 0 such that

110, 120 o0 ny < Cnal D FIGRT) (3.22)

for all f € BV*(R"). As a consequence, BV*(R") is continuously embedded in
LIR") forany q € [1

i)

Proof Let f € C2°(R"). By [72, Theorem 3.5] (see also [27, Section 3.6]), we have

- (y—x)-V*f(y) n
f(x) = —div V¥ f(x) = — / y|y_x|n+1fay dy, x eR",
so that
Ve () - )
|f(x)|fﬂn,—a/1; &_%d =:—l(n—a)la|vaf|(x), x eR".

Since I,: L'(R") — Lﬁ"’o(R”) is a continuous operator by Hardy-Littlewood—
Sobolev inequality (see [76, Theorem 1, Chapter V] or [39, Theorem 1.2.3]), we can
estimate

A1

||1 Al

=< Cn,otl”v L @ny = cna IDY FIRY),

Ln Ot (R”) - Hn Ln Ot (R”)

where ¢, , > Oisaconstantdepending only on# and «. Thus, inequality (3.22) follows
for all f € C°(R"). Now let f € BV*(R"). By [27, Theorem 3.8], there exists
(f)keny € CP(R") such that fy — f a.e.in R” and | D fi|(R") — |D* f|(R") as
k — +o00. By [39, Exercise 1.1.1(b)] and Fatou’s Lemma, we thus get

(WAl

< liminf n_
< iminf || il .

L" a (]R") @ % (Rn)

< Cna kLiIJIrloo ID* fi(R") = cp.o| D* fIR")

and so (3.22) readily follows. Finally, thanks to [39, Proposition 1 1.14], we obtain
the continuous embedding of BV*(R") in L7(R") forall g € [1, ) O
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Remark 3.9 (The embedding BV*(R) C Lﬁ’oo(R) is sharp) Let o € (0, 1). The
1
continuous embedding BV*(R) C LT=""°(R) is sharp at the level of Lorentz spaces,
1
in the sense that BV*(R") \ LT-"9(R) # & for any ¢ € [1, +00). Indeed, if we let

fax) = |x =11 Tsgn(x — 1) — |x|* 'sgn(x), xeR\{0, 1},

then fy, € BV*(R) by [27, Theorem 3.26], and it is not difficult to prove that f, €
1
LT=°°(R). However, we can find a constant ¢, > 0 such that

|fa<x>|zca|x|°’—1x< 1)(x>::ga(x>, x e R\ {0, 1},

_1
el

&

so that dy, > d,,, where dy, and d,,, are the distribution functions of f, and go. A
simple calculation shows that

if0 <5 < cual™@

1
dg,(s) = 2 o\ T
2 (T> if s> ca41_°‘,

so that, by [39, Proposition 1.4.9], we obtain

I farll? > gall’ - / " g ] 9 s
o - o —_ ~”
LT ®) tret®) l—aldy HF

2q(1—a)  p+o0
> 1 / s 9597 ds = +o00
— Ca417°‘

and thus f, ¢ Lﬁ’q(R) forany g € [1, +00).

We collect the above continuous embeddings in the following statement.

Corollary 3.10 (The embedding BVY C BV®?) Leta € (0, 1) and p € [1, nﬁa).

We have BV*(R™) C BV*P(R") with continuous embedding. In addition, if n > 2,
then also BV¥(R") C BV% -« (R") with continuous embedding.

With Corollary 3.10 at hands, we are finally ready to investigate the relation between
«-variation and S-variation for0 < 8 <« < 1.

Lemma3.11 Let 0 < B8 < o < 1. The following hold.
(i) If f € BVPQRY), thenu = lo—pf € BVEP@R") forany p € (=25, 75 )
(including p = -2 ifn > 2), with D*u = DP f in .4 (R"; R™).

n—o
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(ii) Ifu € BVE(R"), then f := (—A)“ T u € BVFR") with

Iy < cnap lullpyeny and DP f = D*u in 4 (R™; R").

As a consequence, the operator (— A) ot : BVY(R") — BV (R") is continuous.

Proof We begin with the following observation. Let ¢ € C°(R"; R") andlet U C R”
be a bounded open set such that supp ¢ C U. By Proposition 2.1 and the semigroup
property (2.4) of the Riesz potential, we can write

divPp = L_pdivp = I,_gl_odivp = I,_gdiv¥e.
Similarly, we also have
Iy gldivi| = Iy _glI1_odivp| < Iy gl —|dive| = I1_g|dive],
so that I,_g|div¥¢| € L*(R") with

[ 1o —gldiv¥ @l Lo ®ny < [11—gldivelllLe@n) < Cp p,ulldive|l oo wn)

by [27, Lemma 2.4] We now prove the two statements separately.
Proof of (i). Let f € BVF(R") and ¢ € C(R"; R™). Thanks to Corollary 3.10,
ifn > 2, then f € BVAIR") for any ¢q € [I, = ﬁ] and so Iy_gf € LP(R") for

any p € (n po T a] by (2.5). If instead n = 1, then f € BVA4(R) for any

qgell, = ﬂ)andsola ﬁfeL"(R)foranype(1 . R a) Since f € L'(R")

and I,—g|div¥g| € L°°(R"), by Fubini’s Theorem we have
/ FdivPpdx = f flo—pdiv¥odx = / udive dx, (3.23)
n Rl’l n

proving that u = Iy_gf € BV*P(R") for any p € (

p = ifn>2), with D = D f in .4 (R"; R").
Proof of (ii). Let u € BV*(R"). By [27, Theorem 3.32] we know that
woe WORI@RY, so that £ = (=8)7w € LR with [l <

Cn,a,p Il Bye®ny, see [27, Section 3.10] Then, arguing as before, for any ¢ ;
CP(R"; R") we get (3.23), since we have Io_g f = u in L'(R™) (see [27, Section

3.10]). The proof is complete. O

m P O[) (including

3.4 The inclusion BV® c WP for B < a: a representation formula

In [27, Theorem 3.32], we proved that the inclusion BV C w#-1 is continuous
for B < «. In the following result we prove a useful representation formula for
the fractional B-gradient of any f € BV*(R"), extending the formula obtained in
Corollary 3.6.
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Proposition 3.12 Ler o € (0, 1). If f € BVY(R"), then f € WY R") for all B €
(0, ) with

VAf =1, 4D*f ae inR" (3.24)
In addition, for any bounded open set U C R”", we have
VP fllLiw:mey < Cot1—aspyv 1D FIRY) (3.25)

Sforall B € (0, ), where Cyy o v is as in (2.9). Finally, given an open set A C R", we
have

_ D f|(A,
IV Fll 1 p oy < AliBa (“’”’1' 1A L ap

n+pg—o a—p
Wna(n+28 —a) _
4 7 Il ey P (3.26)
forall r > 0 and all B € (0,a), where wp o = V% I11@®rRA), @n1 =

IDxp, |(R") = nw,, and, as above, A, = {x e R” : dist(x, A) < r}. In par-
ticular, we have
IV £l o ey

BB 1_8
aﬂn,l—ﬁ—ﬂ—aw;]wn,aa n+2—a) "«

<
- Bn+p —a)a—p)

-2 8
||f||L1(‘ﬁ§n) [D* fI(R")«. (3.27)

Proof Fix B € (0, ®). By [27, Theorem 3.32] we already know that f € WA IR,
with DP f = VP f.%" according to [27, Theorem 3.18]. We thus just need to
prove (3.24), (3.25) and (3.26).
We prove (3.24). Let ¢ € C°(R"; R"). Note that I,_ge € Lip,(R"; R") is such
that divl,_gyp = I,_gdive, so that
L_odivly_gp = I _oly_pdivp = I1_gdivp = divﬁw

by the semigroup property (2.4) of the Riesz potential. Moreover, in a similar way, we
have

I—aldive—s| = 1o Tu—pdive| < I1_qTu—pldive] = I_gldive| € L. (R").

By Lemma 2.2, we thus have that div¥*l, g = div#¢. Consequently, by Proposition
2.7, we get

fdivPodx =f fdivil,_gpdx = —/ ly—pp -dDf.
R? R® R”
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Since |D* f|(R") < +o0, we have I,_g|D*f]| € LIIOC(R”) and thus, by Fubini’s
Theorem, we get that

f Ia_ﬁ(p-dD"‘f:/ ¢ -Io_pgD” fdx.
R" R
We conclude that
fdivPpdx = —/ ¢ ly_gD* f dx
R” R"

for any ¢ € C°(R"; R"), proving (3.24).
We prove (3.25). By (3.24), by Tonelli’s Theorem and by [27, Lemma 2.4], we get

/ VP fldx < / lo—g|D* fldx < Cp (1—a+p),ulD” fIR")
U U

where C,, o v is as in (2.9).
We now prove (3.26) in two steps. We argue as in the proof of (3.4).
Proof of (3.26), Step 1. Assume f € C°(R") and fix r > 0. We have

J 1915 = [ 1hap5e i
A
o
Sﬂnlﬂﬁot(/[ |Vf(x+h)|dhdx
ntp—o (hl<r)  |h|"TPe

fx +h)

{In|=r}

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

IV f(x + h)l / / dh
dhdx = IV f(x +h)|dx ———
//|h<r} |h|ntp—e {Ihl<r} || B

dh
| D F1(A, )/

{|h|<r} |h|n+ﬁ o
_ 1o DU SI(AY) o p
oa—p

IA

Concerning the second double integral, we apply [1, Lemma 3.1.1(c)] to each com-
ponent of the measure D* f € .#Z (R"; R") and get

o +00 o o
/ v f(x+h) — +ﬁ_a)/ D f(Bg(x))d D® f (B (x))
{lhl=r}

|h|n+ﬂ o Qn+ﬂfot+l e~ Fntp—a
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forall x € A. Since
D F(Bo) = [, 0) V S5+ ) dy
- fRn f&+y) V%8B, () dy
=—0""" | flx+ey) Vxs (y)dy,

R)‘l

we can compute

+00 o o
(n+ﬂ—a)/ D f(Bg(x))d D® f (B, (x))

o HB—atl S Fntp—a
+o0 1
=—-(n+p—-a) —— | fG&x+0y) VB () dydo
r Qﬂ—H R®

1
+r—/ F&x+71y) V%8 (y) dy
+o00
:/n<f(x+ry) (ntf— a)/ f(z);fy)d@)V“XBl(y)dy

for all x € A. Hence, we have

v h
Mdh‘dxif

{h|=r) |R]"TA—

// T 15, ()1 dixdy

+00
(n—l—ﬂ—a)/n/ f 'f(’;ﬁtfy” IV x3, ()] dx do dy

_ Wna (n+28—
B B

Thus (3.4) follows for all f € C°(R") and r > 0.

Proof of (3.4), Step 2. Let f € BV*(R") and fix r > 0. By [27, Theorem 3.8], we
find (fi)ken C C°(R™) suchthat fr — fin LY(R") and | D¥ f|(R") — | D% f|(R")
as k — +o0. By Step 1, we have that

o h
f Vifath l dx
(h|=ry  |R|PHP=

||f||L1(R") r?

_ DY A
”Vﬁfk”L'(A;Rn) < M, 1+B—a (flwn| Ffl(A)) L

n+p—«o oa—p
Onalr */'32’3 — il gy rﬂ> (3.28)
for all k € N. We have that
(VP f) L'~ (VP ) " ask — +oo. (3.29)
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This can be proved arguing as in the proof of (3.9) using (3.25). At this point the proof
goes like that of Proposition 3.2(i) and we thus leave the details to the reader. O

4 Asymptotic behavior of fractional a-variationasa — 1~
4.1 Convergenceof V¥ anddiv’asa — 1~

We begin with the following simple result about the asymptotic behavior of the constant
Unaasoa — 17,

Lemma4.1 Letn € N. We have

s ~T(241
Mn,a <73 6% =:C, Ya € (0, 1) “4.1)
l—« r (7)
and
lim Mn,a _ a)n_l' (42)

a—l1-1—«

Proof SinceI'(1) = land"'(1+x) = x I'(x) forx > 0 (see[9]), we have I'(x) ~ x~!
asx — 07. Thus as @ — 1~ we find

r (n-i-%t-i-l)

r (%%

and (4.2) follows. Since I' is log-convex on (0, +00) (see [9]), for all x > 0 and
a € (0, 1) we have

fono = 297 ~n—%(1—a)r(%+1) o '(1-a)

Fx4+a)=T(1—a)x+ax+1) <Tx)'" T+ 1% =xT(x).
Forx = 5 anda = “‘Zi, we can estimate

1

() = 3) () w1 (3) o (2) =ar (1)

foralln > 1.Forx =1+ 1%"‘ and a = 5, we can estimate
P2 < (1a e %r Lo <\/§1—ar -«
2) 2 2 -vV2 2 2 '
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We thus get
n r ntodtl n 2r n 1
Mn,oz(l_a)_l :20[_1]'[_2% <7 2 % 1—(~2§+ )
( 2 + ) (2)
and (4.1) follows. O

In the following technical result, we show that the constant C,, ¢y defined in (2.9)
is uniformly bounded as @ — 17 in terms of the volume and the diameter of the
bounded open set U C R”.

Lemma 4.2 (Uniform upper bound on Cp, o,y asa — 17). Letn € Nand o € (%, ).
Let U C R" be bounded open set. If Cy, o.u is as in (2.9), then

1
C Ull"
Crav < NOnSn n ) max{l, u} +max{1,\/diam(U)} =!I KnU,

-1 (-1 :

“4.3)
where C, is as in (4.1).
Proof By (4.1), forall @ € (%, 1) we have
nWUn,a < nCy < nCy '
n+a—-Dl-a) " n+ta—-1"pn-1
Since t17¢ < max{1, /1} for anyt > Oand o € (%, 1), we have
wn(diam(U))' ™% < w, max{ 1, ,/diam(U)}
and
nta—1 1-o
nwy " |U|1fa _ noy [Uln+ao—1)\ »
n+a-—1 T n4a-—1 nwy,
Uln
< nL"l max{ 1, u} .
R R
Combining these inequalities, we get the conclusion. O

As consequence of Proposition 2.1 and Lemma 4.2, we prove that V* and div®
converge pointwise to V and div respectively as o — 1.

Proposition 4.3 If f € CC1 (R™), then for all x € R" we have

lingi Iy f(x) = f(x). (4.4)
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As a consequence, if [ € CCZ(R") and ¢ € CCZ(R”; R™), then for all x € R" we have

linll, V*f(x) =V f(x), 1i11117 div¥e(x) = dive(x). 4.5)

Proof Let [ € CLI. (R™) and fix x € R". Writing (2.6) in spherical coordinates, we
find

Mn,1—a
n—auo 8%0

+0o0
I f () = /M / 0~ f (x + ov) dod A" ().

Since f € C g (R™), for each fixed v € 9 B1 we can integrate by parts in the variable o
and get

a i|g—>+00

+00 | 0 1 +00
/ o T f(x +ov)do = [*f(erQv) —*f 0% 3 (f (x +ov))do
) o aJs

0=4
o

8 1t
=—*f(X+5v)—*/ 0" 9 (f (x + ¢v)) do.
o o Js

Clearly, we have

lim 8¢ fx+8v)d#" " (v) =0.
§—071 3B,

Thus, by Fubini’s Theorem, we conclude that

/’Lnl —a
a(n —a)

Iof(x) = — / / 0% (f(x +ov))d#" ' (v)do. (4.6

Since f has compact support and recalling (4.2), we can pass to the limit in (4.6) and
get

lim I f(xr) = — / [ 00(f (x + ov)) do d. A" (v) = f(x),
a—0t 3B, JO

nwy

proving (4.4). The pointwise limits in (4.5) immediately follows by Proposition
2.1. O

In the following crucial result, we improve the pointwise convergence obtained in
Proposition 4.3 to strong convergence in L” (R") for all p € [1, 400].

Proposition 4.4 Let p € [1, +oc]. If f € C2(R") and ¢ € C2(R"; R"), then

lim ||Vaf — Vf”LP(R”;]R") = O, lim ||diVa(p — diV(p”Lp(Rn) = O
a—1" a—>1"
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Proof Let f € C2(R"). Since

/ dy /1 do nwy
—— = nw — =
B, |y|n+a—l n 0 0% 1—a

for all x € R" we can write

nwpUn,a Vf(x) _

Mo / Vf(x)
(l1—a)n+a—1) T nda—1Jp

|y|n+a—l Y-
1

Therefore, by (2.6), we have

nwpn,a

VIO - e VW
_ Mna </ Vik+y) -Vf) dy+/ Vix+y) dy>
B BB,

T Ta—1 |y|n+a71 |y|n+a71

for all x € R". We now distinguish two cases.
Case 1: p € [1, 400). Using the elementary inequality |[v + w|? < 2P~!(Jv|? +
|w|?) valid for all v, w € R”", we have

)4
nwn n,o
v — * v d
/n T i mta—n |
2ﬂ—lun,a/ /Vf(x+y)—Vf(X) p
< — dy
n+o— 1 Rn B |y|n+a71
2p—1 v p
P2 e [ [T
n+a—1Jg|Jrop [y

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, as in the proof of Proposition 4.3, we pass in spherical
coordinates to get

/ Vilx+y) —Vfkx) dy
By

|y|n+a—l

1
/3 ] /0 0 (Vf(x +ov) — Vf(x) dod " (v)
1

/ (Vf(x +v) = V) da" ()
dB

l -«

1 11—«
- / / d 3(Vf(x +ov))dod """ (v) 4.7
9B Jo 11—«
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for all x € R". Hence, by (4.2), we find

. Mn,o
lim
as1- (1 —a)(n+a—1) Jyp,

_ ! / (VF(x+v) = V@) dA" )
JdB

(Vf(x+v) = V) da" ()

nwy

and

1
. Mn,a l—« n—1
allf?f d—onta_D /BB]/O 0 Y p(Vf(x+ov)dodH" (v)

1
_ ! / / 3 (Vf(x 4+ ov)dod #" ' (v)
nwy JyB, Jo
= / (Vf(x+v) = V) da" ()
nwy JyB,

for all x € R”". Therefore, we get

Mn,a / Vf(x+y)_vf(x)d
B

|y|n+a—l

lim

=0
a—>1*n+oz—1 Y

for all x € R”. Recalling (4.1), we also observe that

Vix+y) =V
Une |IVf(x+y)—Vfx)l <C‘ S +y) f(x)

n+a—1 |y|rte=1 - Ly

for all « € (0,1), x € R"” and y € Bj. Moreover, letting R > 0 be such that
supp f C Bpg, we can estimate

‘Vf(x +y) =Vl

B Iyl dy < nwy Hvzf”LOC(]Rn.an) XBgyt (X)
1 i)

for all x € R”, so that

p
‘Vf(x +y) = Vf(X)'

X / dy | € L'(RM.
B |y|n

In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

. Mn,a / P
lim ————
a>l-n+aoa—1 Jpn

dx =0.

dy

/ Vix+y) —Vfx)
B

|y|n+ot—1
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For the second double integral, note that

/ Vf()C-FY)d :/ V(f(x+y)—f(x))dy
R\ B, R\ B,

|y|n+a71 |y|n+a71

for all x € R". Now let R > 0. Integrating by parts, we have that

y(fx+y) = f(x)

|y|n+a+1

dy=mn+a—1)
Br\ B

1 .
t jrra—1 /aBR(f(" +3) = f)dA" ()

|y|n+a—1 dy

/ V(f(x+y)— f(x))
Br\Bi

-/ (fx+y) = f)dx"""(y)
1

for all x € R”. Since

/ |f(x+y)—f(x)|d
R™\Bg

Wp
e Y=o I 1l oo ey

and

2nwy,
R L Nl ooy

1 .
F./as FG+3) = fldrm () <

for all R > 0, we conclude that

Vfix+y) . Vix+y)
n+a—1 dy = lim n+a—1 dy
rR\B; |Vl R—>+00 Jp\B, |V

y(fx+y) - f(0)

:(}’l+a_1) |y|n+oz+l

dy (4.8)
R7\ B,

— | (fa+y) = f)dA" ()
d B

for all x € R". Hence, by Minkowski’s Integral Inequality (see [76, Section A.1], for
example), we can estimate

Vi(t+y)
e 4y
r\B, |y["T*

§(n+oz—1)’

/ |f('+y)—f(')|d
y
R™\B)

|y|n+a

LP(R"; RN LP(R")

)
+ H /33 G4 3) = FOLA" ()
n+2a—1
S P —
o

LP (R

2nap || fliLe@e)-
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Thus, by (4.2), we get that

\v4 P
lim M_/ / VTG D) 4 1 g =,
a—1-n+o — 1 R |JR"\ By |y|”+a_
Case 2: p = +o0o. We have
nwnpMUn,«
sup |V¥f(x) — L V f(x)
o T—a)nt+a—1)

/Vf(X+y) Vfx) y'

< A(Sup
Tnta—1 \ e ly|rte= !
+ su

p/ Vf(X+y)dyD
r\g |y|iTe!

xeR"

Again we estimate the two integrals appearing in the right-hand side separately. We
note that

/ (VF(x +v) = V) dA" ()
0B
1
- / f 0 3, (V f (x + ou)) do d A" (v)
0B JO

1
= [ [a-ease+emdedn w.
dB; JO
so that we can rewrite (4.7) as

/ Vilx+y) - Vf(x)
B

|y|rte=l

1_a/ /(1— T 0o(V f(x + o)) do d A" (v).

Hence, we can estimate

/ Vix+y) -Vik)

|y|rte=t

sup
xeRn

dy‘

< / / (1= 0" sup [8,(V f(x +ov))|dod "' (v)
l—« By

xeR?

2
< 5 nenlV fIILOO<R,,;R,lz),
so that
li Mn,o Vf(x+y)—Vf(x)d -0
m 1 sup n+a—1 yi=>u
as1-n+a—1  cpn Iyl
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For the second integral, by (4.8) we can estimate

\Y
/ fx+y) dy‘dx
R"\ B

Sup |y|n+a—1

xeR”

<(m+aoa—1) sup

xeR?

|y|n+oz

f |f(x+y)—f(x)|d ‘
y
R™\ By

+ sup / |f(x+y) — f(x)ld%””‘l(y)’
xeR? dBy
n—+22o0—1
S _—

2nwy || f 1l Loo (rr).
Thus, by (4.2), we get that

. Mn,o
lim —————— sup
asl-n+o—1 cgn

[ Vf(x+y)dy' .
R"\By '

|y|n+a—l
We can now conclude the proof. Again recalling (4.2), we thus find that

lim |V f — V £l Lo@em
a—1-

< lim |vef— ke g
a—1- (1 —Ol)(n—l—ot — 1) LP(R";R™)
. nwy n,o
+ V n.pn hm . —1 =0
IVFllzr@emr Lim ‘ A—a)n+a—1)

for all p € [1, 4+o00] and the conclusion follows. The L?-convergence of div¥¢y to
divp asa — 17 for all p € [1, 4o0] follows by a similar argument and is left to the
reader. O

Remark 4.5 Note that the conclusion of Proposition 4.4 still holds if instead one
assumes that f € S(R") and ¢ € S (R"*; R"), where . (R"; R™) is the space
of m-vector-valued Schwartz functions. We leave the proof of this assertion to the
reader.

4.2 Weak convergence of a-variationasa — 1~

In Theorem 4.7 below, we prove that the fractional «-variation weakly converges to
the standard variation as « — 1~ for functions either in BV (R") or in B Vjo.(R") N
L% (R™). In the proof of Theorem 4.7, we are going to use the following technical
result.

Lemma 4.6 There exists a dimensional constant ¢, > 0 with the following property.
If f € L®°[R") N BVioc (R"), then
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19 L1y < e (R IDFIBs0) + R | flimn)  (49)

forall R > Oanda € (3, 1).

Proof Since I'(x) ~ x~'asx — 0% (see [9]), inequality (4.9) follows immediately

combining (3.7) with Lemma 4.1. O

Theorem 4.7 [f either f € BV(R") or f € BVioc(R") N L*(R™), then
D*f—~Df asa — 1.

Proof We divide the proof in two steps.
Step 1. Assume f € BV (R"). By [27, Theorem 3.18], we have

/ w-V“fdx:—/ fdiv¥edx
R7 R7

for all ¢ € Lip.(R"; R"). Thus, given ¢ € CC2 (R"; R"), recalling Proposition 4.3 and
the estimates (2.12) and (4.3), by Lebesgue’s Dominated Convergence Theorem we
get that

lim - V¥fdx

a—1" JRrn

= — lim fdiviedx = — fdiV(pdxzf ¢ -dDf.
a—1- Rn R Rn

To achieve the same limit for any ¢ € C ? (R™; R™), one just need to exploit (3.3) and
the uniform estimate (4.3) in Lemma 4.2, and argue as in Step 2 of the proof of (3.4).
We leave the details to the reader.

Step 2. Assume f € BVjoc(R") N L°°(R"). By Proposition 3.2(iii), we know that
D% f = V*f. 2" with V¢ f € L _(R"; R"). By Proposition 4.4, we get that

loc

/.ngo-v"‘fdx—/ﬂéngo-de‘

< 1fllLeeny lim [|div*e — divel| 1 e, gny = 0
a—>1-

lim
a—1-

for all p € CC2 (R™; R™). To achieve the same limit for any ¢ € C? (R*; R™), one just
need to exploit (4.9) and argue as in Step 1. We leave the details to the reader. O

We are now going to improve the weak convergence of the fractional a-variation
obtained in Theorem 4.7 by establishing the weak convergence also of the total frac-
tional a-variation as « — 17, see Theorem 4.9 below. To do so, we need the following
preliminary result.

Lemma4.8 Let i € 4 (R"; R™). We have (Iop)L"—p asa — 0.
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Proof Since Riesz potential is a linear operator and thanks to Hahn—Banach Decom-
position Theorem, without loss of generality we can assume that p is a nonnegative
finite Radon measure.

Letnow ¢ € C Cl (R") andlet U C R” be a bounded open set such that supp¢ C U.
We have that || I |@|l| Loo@®n) < kn,u @]l Loo@®n) for all @ € (0, %) by [27, Lemma 2.4]
and Lemma 4.2. Thus, by (4.4), Fubini’s Theorem and Lebesgue’s Dominated Con-
vergence Theorem, we get that

lim @ lypdx = lim Iacpduz'/ pdu.
R R7 R7

a—0t a—0t

To achieve the same limit forany ¢ € C? (R™), one just need to exploit [27, Lemma 2.4]
and (4.3) and argue as in Step 2 of the proof of (3.4). We leave the details to the reader.

O
Theorem 4.9 If cither f € BV (R") or f € bv(R") N L°(R"), then
DY f|—~|Df| asa — 1. (4.10)
Moreover, if f € BV(R"), then also
aliﬁll_ |D* fI(R") = |DfI(R"). (4.11)

Proof We prove (4.10) and (4.11) separately.
Proof of (4.10). By Theorem 4.7, we know that D* f—~Df as « — 17. By
[50, Proposition 4.29], we thus have that

IDfI(A) = lim inf |D* f1(A) (4.12)

for any open set A C R". Now let K C R” be a compact set. By the representation
formula (3.18) in Corollary 3.6, we can estimate

ID* FICK) = IV fllpik; mey < 1=l D [l k) = (T1—al DI ZL)(K).

Since |Df|(R") < 400, by Lemma 4.8 and [50, Proposition 4.26] we can conclude
that

limsup |[D* f|(K) < limsup(l1—«|Df| L") (K) < |DfI(K),

a—1- a—>1-

and so (4.10) follows, thanks again to [50, Proposition 4.26].
Proof of (4.11). Now assume f € BV (R"). By (3.4) applied with A = R” and
r =1, we have

|D® fI(R") <

l—«

nwp Un,a [Df|(R") + n+2a—1
n+oa—1

||f”L1(]R")> .
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By (4.2), we thus get that

limsup |D* f|(R") < |Df|(R"). (4.13)
a—1-
Thus (4.11) follows by combining (4.12) for A = R" with (4.13). |

Remark 4.10 We notice that Theorems 4.7 and 4.9, inthecase f = xg € BV (R") with
E C R" bounded, and Theorem 4.11, were already announced in [71, Theorems 16
and 17].

Note that Theorems 4.7 and 4.9 in particular apply to any f € W1 (R"). In the
following result, by exploiting Proposition 3.3, we prove that a stronger property holds
forany f € WP (R") with p € [1, +00).

Theorem 4.11 Let p € [1, +00). If f € WIP(R"), then
lif?_ IV f — Vu flle@n; rry = 0. (4.14)
a—>

Proof By Proposition 3.3 we know that f € S*P(R") for any o € (0, 1). We now
assume p € (1, 400) and divide the proof in two steps.
Step 1. We claim that

lim ||V fller@e, ey = IV fllLr @2, me). (4.15)
a—1"

Indeed, on the one hand, by Proposition 4.4, we have

/ @ Vyfdx =— fdivpdx = — lim fdiviedx
n R a—17 JRn

= lim @ -V fdx (4.16)

a—17 JRn

for all ¢ € C°(R"; R"), so that

* V d < 1. i f Va P n. n
/n<p wfdx < ||¢||Lﬁ(Rn;Rn) iminf ||V, fll e @e: )
for all ¢ € C2°(R"; R"). We thus get that
Ve fllLp®e; Ry < lim ilnf Vi f Il Lp e R2) - (4.17)
oa—>1"

On the other hand, applying (3.10) with A = R" and r = 1, we have

Ve fllLr ®e: mry <

l—«

nwp Un,a ”wa”Lp(]Rn; R") n n-+2a —
n+oa—1

1
||f||LP(R")) .
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By (4.2), we conclude that

limsup |Vy, fllLr @ ®ry < [V f |l Lr @2 R - (4.18)

a—>1-

Thus, (4.15) follows by combining (4.17) and (4.18).
Step 2. We now claim that

Vo f—=Vyf inLP(R";R")asa — 1. (4.19)

Indeed, let ¢ € L% (R"; R"). For each ¢ > 0, let ¢, € C>°(R"; R") be such that

— p < £.By (4.16) and (4.15), we can estimate
1 = 01, 21 gy < & BY (416 and (4.15)

[ovirar—[ o-vusax
]er Rll

t/fs-VZifdx—/ Ve - Vo f dx
R R

lim sup
a—1"

< limsup
a—1"

[ o= velivisiar + [ o=l (91

<e < lim ||Vy fllzr@e mey + ||wa||LP(R";R")>
a—>1-
= 2¢ |V fllLr (rr; &)

so that (4.19) follows passing to the limit as & — 0.

Since L?(R"; R") is uniformly convex (see [19, Section 4.3] for example), the limit
in (4.14) follows from (4.15) and (4.19) by [19, Proposition 3.32], and the proof in
the case p € (1, +00) is complete.

For the case p = 1, we argue as follows (we thank Mattia Calzi for this simple
argument). Without loss of generality, it is enough to prove the limit in (4.15) with
p = 1 for any given sequence (ot )keN such that o — 17 as k — +o00. By (4.11),
the sequence (|[V* f1l 11 gn. gr))keN is bounded for any [ € WL (R?) and thus,
by Banach—Steinhaus Theorem, the linear operators V% : wll R") — L! (R™; R™),
k € N, are uniformly bounded (in the operator norm). The conclusion hence follows
by exploiting the density of C2°(R") in W!!(R") and Proposition 4.4. O

For the case p = 400, we have the following result. The proof is very similar to
the one of Theorem 4.11 and is thus left to the reader.

Theorem 4.12 If f € WL (R"), then

Vo f—=Vyf in LR RN asa — 17 (4.20)
and
Vi f Il Loo (R, Ry < lim ilrlf Vi f | oo R - (4.21)
o—>
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4.3 '-convergence of a-variationasa — 1~

In this section, we study the I"'-convergence of the fractional «-variation to the standard
variationas o — 17
We begin with the I' - lim inf inequality.

Theorem 4.13 (I" - lim inf inequalities as « — 17) Let Q@ C R” be an open set.

(i) If (f)ac.1) C Lipo(R") satisfies supyc o1y || foll L@y < +o00 and fo — f in
IOC(]R”) asa — 17, then

[DfI(2) = lim i111f |D® ful (S2). (4.22)

(i) If (fou)aec©,1) C L'(R") satisfies fy — f in L'\(R") as @ — 17, then (4.22)
holds.

Proof We prove the two statements separately.
Proof of (i). Let ¢ € C2°(2; R") be such that ||¢||p=q;r") < 1. Since we can
estimate

fadiv¥edx — / fdivpdx
R}l Rn

S/nfa— dx+/”|fa|

dx

d

divep

div¥ e — dive

< ||diV</’||L°°(R";R")/ So — f‘ dx
supp ¢
+( sup [l falloo@n) I1divee — dive |l 1 gn).,

ae(0,1)

by Proposition 4.4 we get that

/ fdivpdx = lim Sadiviedx < 11m mf D f1(R2)

a—17 JRrn

and the conclusion follows.
Proof of (ii). Let ¢ € C°(R2; R") be such that |||z =q;r") < 1. Since we can
estimate

fadiviedx — / fdivpdx

/n dx+/ [ fal

< IdivgllLeo@n | fa = fllpiwey + 1div¥e — divell oo | fall L1 rny

Rn

divep | [div¥e — dive|dx

.
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by Proposition 4.4 we get that

/ fdivpdx = lim fodiv¥@dx < lim ilnf | D% fo|(£2)
n Rn a—1-

a—>1"

and the conclusion follows. O
We now pass to the I - lim sup inequality.

Theorem 4.14 (T -lim sup inequalities as « — 17) Let Q C R”" be an open set.
(i) If f € BV(R") and either Q2 is bounded or Q = R", then

limsup | D* f1() < |DfI(). (4.23)

a—1-

(ii) If f € BVioc(R™) and Q2 is bounded, then

[(Liy) -limsup |[D* () < [DfI(Q).

a—>1"

In addition, if f = xg, then the recovering sequences (fo)ac(0,1) in (i) and (ii) can
be taken such that fy = xg, for some measurable sets (Eq)ae(0,1)-

Proof Assume f € BV (R"). By Theorem 4.9, we know that |D* f|—~|Df| as ¢ —
17. Thus, by [50, Proposition 4.26], we get that

limsup | D () < lim sup [D* f1(22) < |Df|() (4.24)

a—1- a—1-

for any bounded open set 2 C R". If Q = R", then (4.23) follows immediately
from (4.11). This concludes the proof of (i).

Now assume that f € BVjo.(R") and Q2 is bounded. Let (Ry)reny C (0, +00)
be a sequence such that Ry — 400 as k — 400 and set f; = fXBRk for all
k € N. By Theorem A.1, we can choose the sequence (Ry)en such that, in addition,
fi € BV(R") with Dfj = Xng Df+f*DXBRk forall k£ € N. Consequently, fr — f

in Llloc(R”) as k — 400 and, moreover, since 2 is bounded, |Df|(2) = |Df|(2)
and | Df|(02) = |Df](0€2) for all k € N sufficiently large. By (4.24), we have that

lim sup | D* fi| () < |Dfi|(2) (4.25)

a—>1-

for all k € N sufficiently large. Hence, by [17, Proposition 1.28], by [29, Proposi-
tion 8.1(c)] and by (4.25), we get that

[(L},) -limsup | DY f|(R) < lim inf (T (Ljye) -lim sup | D* f¢(2))
—+00

a—1- a—1-

< lim |Dfi|(RQ) = |DfI(Q).
k— 00
This concludes the proof of (ii).
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Finally, if f = xg, then we can repeat the above argument verbatim in the metric
spaces {xr € L'(R") : F ¢ R"} for (i) and {xr € L. _(R") : F c R"} for (ii)

loc
endowed with their natural distances. O

Remark 4.15 Thanks to (4.23), a recovery sequence in Theorem 4.14(i) is the constant
sequence (also in the special case f = xg).

Combining Theorems 4.13(i) and 4.14(ii), we can prove that the fractional Cac-
cioppoli a-perimeter I"-converges to De Giorgi’s perimeter as « — 17 in LIIOC(R”).
We refer to [3] for the same result on the classical fractional perimeter.

Theorem 4.16 (F(Llloc) -lim of perimeters as « — 17) Let @ C R" be a bounded
open set with Lipschitz boundary. For every measurable set E C R", we have

F(Lige) - lim_ [D*xe|(@) = P(E; Q).

Proof By Theorem 4.13(i), we already know that

[(LL,) -liminf | D% x£|(R) > P(E; Q),
a—1-

so we just need to prove the F(Llloc) - lim sup inequality. Without loss of generality,
we can assume P(E; Q) < 400. Now let (Ey)ken be given by Theorem A.4. Since
XE, € BVioc(R") and P(Ey; 0R2) = 0 for all k € N, by Theorem 4.14(ii) we know
that

[(Ly) -limsup |D® x, [(R2) < P(Ey; )

a—>1"

forall k € N. Since xg, — xg in Ll (R")and P(Ey; Q) — P(E; Q) as k — +oo0,

loc

by [17, Proposition 1.28] we get that

a—1 a—1

T(LL,) -limsup | D¥xg|(Q) < }(121 +u£ (T(L},e) -limsup | D* x| ()

< lim P(Ex;2) = P(E; Q)

k—+00
and the proof is complete. O

Finally, by combining Theorems 4.13(ii) and 4.14, we can prove that the fractional
a-variation I'-converges to De Giorgi’s variation as « — 1~ in L' (R").

Theorem 4.17 (I'(L') -1lim of variations as @« — 17) Let Q C R" be an open set such
that either Q2 is bounded with Lipschitz boundary or Q = R". Forevery f € BV (R"),
we have

rLh - lim [D*f1(2) = IDfI().
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Proof The case 2 = R” follows immediately by [29, Proposition 8.1(c)] combining
Theorem 4.13(ii) with Theorem 4.14(i). We can thus assume that €2 is a bounded open
set with Lipschitz boundary and argue as in the proof of Theorem 4.16. By Theorem
4.13(ii), we already know that

rLh -liminf | D% £1(2) = IDf (),

so we just need to prove the I'(L') - lim sup inequality. Without loss of generality, we
can assume |Df[(R2) < 400. Now let (fi)ren C BV (R") be given by Theorem A.6.
Since | Dfi|(02) = 0 for all k € N, by Theorem 4.14 we know that

T(L') -limsup |D® fi[(2) < |Dfi|(R) = |Dfil(Q)

a—>1-

for all k € N. Since fi — f in L'(R") and | D f;|(2) — |D* f|(2) as k — +o0,
by [17, Proposition 1.28] we get that

T'(L") -lim sup | D® f|(Q) < lim inf (T(L") -limsup | D ()
—+00

a—>1- a—>1-

= lim |Dfi|(§2) = |DfI(SD)
—+00

and the proof is complete. O

Remark 4.18 Thanks to Theorem 4.17, we can slightly improve Theorem 4.16. Indeed,
if xg € BV (R™), then we also have

T - linll_ ID*xe|() = [Dxel(Q)

for any open set 2 C R” such that either 2 is bounded with Lipschitz boundary
or Q =R".

5 Asymptotic behavior of fractional B-variationas § — a~

5.1 Convergence of VA and div® as 8 — a

We begin with the following simple result about the L'-convergence of the opera-
tors V# and div® as B — awitha € (0, 1).

Lemma5.1 Leta € (0, 1). If f € WL (R?) and ¢ € W% (R"; R"), then

lim [V f —Vflligngny =0,  lim [[divPe —div¥e] 1 = 0.
B—a~ ’ B—a~
5.1
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Proof Given 8 € (0, @), we can estimate

/R" VP f(x) = VO f @) dx < g — tnal [f et gn)

- 1 1
Mnﬁ/ / If )~ f@) - dvds.
g Jre ly—x" |ly—xIF |y —x®

Since the I function is continuous (see [9]), we clearly have

lim I,un,,g — Mn,ol| [f]W"‘*](R") =0.
B—a~

Now write

/ / [f(y) — fO 1 B 1
nJre oy —xit o fly—xlf |y —x|®
_/ / |f(y)—f(x)|’ 1 _ 1
Crede ly—xI" ly—xIF |y —x|®

/ / If(y)—f(X)l' 1 1
+ i
nJjn |y —xlm ly —x|f |y —x|®

On the one hand, since f € W*!(R"), we have

dydx

xo,n(y —x))dydx

X[l 4o00)(ly —xD) dydx.

[f(y) — f() ‘ 1
ly—x"  [ly—xIF |y —=x[
G = f&)] 1 1
T ly—x (W—xW_Wy—xW>MMKW_xD
_ 10 = f)

ly — x|nte

xo,n(y —x[)

xon(ly —x]) € L} (R
and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

//If(y)—f(x)l‘ L
ﬂ»a wJre ly—x" |ly—=xIF |y —x|®

On the other hand, since one has

|f(x +h) — f(0)l
U wo ) = / /{|h|<1} |h|"+F dhdx

[f(x +h) — f(x)]
dhd
+/”/{|h>l} |h|n+p !

xo,)(ly —x)dydx = 0.
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1
= [flwer @ + -/{hlzl} T /Rn |f (e +m)|+[f(x)|dxdh

2nw,
= [flwargn) + Tn (WA VY1)

for all B8 € (0, o), we can estimate

If(y)—f(X)I‘ L L ey —xD
y—xl [y =xlf Ty — x|
SO SO (L LY sotls — D)
ly — x| ly— x|y —xfe )
[f(y) — f)l
< WL]:(Z)' Xt ro0) (1Y = X1) € Ly, (R
ly —x|""2

forall B (%, a) and thus, by Lebesgue’s Dominated Convergence Theorem, we get
that

— 1 1
lim / / EASD ﬂx)" 5~ —| X1, 4+00)([y —x)dydx =0
n n |y_x| |y_x|

p—a~ ly — x|"

and the first limit in (5.1) follows. The second limit in (5.1) follows similarly and we
leave the proof to the reader. O

Remark5.2 Let o € (0,1). If f € W (R") and ¢ € Wete1(R") for some
¢ € (0,1 — @), then, arguing as in the proof of Lemma 5.1, one can also prove that

lim V8 f — Vv no oy = 0, lim ||divPy — div® o = 0.
,3—>a+” f Fllp e, mey ﬂ_)a+|| ® el we

We leave the details of proof of this result to the interested reader.

If one deals with more regular functions, then Lemma 5.1 can be improved as
follows.

Lemma5.3 Leta € (0,1)and p € [1, +o0]. If f € Lip.(R") and ¢ € Lip.(R"; R"),
then

lim [[VAf —Vfllpp@ern =0,  lim ||divPg —div¥e|Lr@n = 0. (5.2)
B—a~ B—a~

Proof Since clearly f € W (R") for any o € (0, 1), the first limit in (5.2) for the
case p = 1 follows from Lemma 5.1. Hence, we just need to prove the validity of
the same limit for the case p = 400, since then the conclusion simply follows by an
interpolation argument.
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Let B € (0, ) and x € R". We have

[V f(x) — Vﬁf(x” < tnpg — Mn,otl/ Mdy
re|x —yl
o / [f(x)— fDI 1
Hnp |, |x — y|" x —ylf  |x—yl®
|f(x+2)— fx)]
|Mnﬁ — Mn,al dz

|Z|n+a

+Mn’ﬂ/w If(x+z)—f(X)|

|z]"

dy

1 1

lzIf |z|®

Z-

Since

/ If(x+z)—f(X)|dZ</ Lip(f) dz+/ 2||f||L°°(R")d
n — {lzl>1)

|z|"te 1<1y lzfnte! |z|"te

< neo (Llp(f) n 2||f||L°°(R"))
— o
and
/ fa+-f@I| 1 1 <f Lip(f) (7_L)d
" |z|" 218 Jzle ] T Jyg=ny 2P0 \zle o Jz)f

2 oo (RN 1 1
+/ M(7 _ 7) dz
{lzI>1) |z] |z] |z

~ Lip(f) 201 f llzoe @y
< (a ﬁ)nwn<(1_a)(1_/3) + of )7

forall B € (%, a) we obtain

IV f = VP fllLe @ mr) < Cno max{Lip(f), | fllze@n)} (1tn.p = tnal + (@ = B)),
for some constant ¢, , > 0 depending only on n and «. Thus the conclusion follows

since Wy, —> Mn,o as B — o . The second limit in (5.2) follows similarly and we
leave the proof to the reader. O

5.2 Weak convergence of B-variationas § — a~
In Theorem 5.4 below, we prove the weak convergence of the §-variationas § — o~

The proof is very similar to those of Theorem 4.7 and Theorem 4.9 and is thus left to
the reader.

Theorem 5.4 Leta € (0,1). If f € BV¥(R"), then
DPf—~D%f and |DPf|—~|D*f| asB — .
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Moreover, we have

ﬂl_i)rgf |DP fI(R") = | D* fI(R"). (5.3)

5.3 I-convergence of B-variationas § — a~

In this section, we study the I"-convergence of the fractional S-variation as f§ — o,
partially extending the results obtained in Sect. 4.3.
We begin with the I' - lim inf inequality.

Theorem 5.5 (I" - liminf inequality for § — a~) Let « € (0, 1) and let 2 C R" be
an open set. If (f8) ge(0,0) C L' (R") satisfies fg— fin L'R") as B — a~, then

ID¥f1(82) < 1}5m111f|D’3f,5|(9)- (5.4

Proof We argue as in the proof of Theorem 4.13(ii). Let ¢ € C2°(€2; R") be such
that [|@|lzo:r?) < 1. Let U C R" be a bounded open set such that suppp C U.
By (2.12), we can estimate

‘/ fpdivPpdx —/ £ div¥edx
R7 R”

< /R ‘fﬁ - f‘ |div’ o] dx +/R | £11divP e — divp| dx

< Cp p.ulldivel Lo, myll fg — fllL1 @®e) +/R | £]1divP o — div¥e| dx

for all B € (0, «). Since divPyp — div¥¢ in L°(R") as B — o~ by (5.2), we easily
obtain

lim | £ 1divP e — div¥e|dx = 0.
B—a~ JRrn
Hence, we get

/ fdiv¥gdx = lim fpdivPpdx < liminf |DP f5]()

n B—a~ JRrn B—a~

and the conclusion follows. O
We now pass to the I - lim sup inequality.

Theorem 5.6 (I" - lim sup inequality for 8 — a~) Let o« € (0, 1) and let @ C R" be

an open set. If f € BV*(R") and either Q2 is bounded or Q2 = R", then

lim sup | DP £|(Q2) < |D* £ (). (5.5)

B—a~
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Proof We argue as in the proof of Theorem 4.14. By Theorem 5.4, we know that
|DP f|—~|D% f| as B — «~. Thus, by [50, Proposition 4.26] and (5.3), we get that

limsup |DF £() < limsup |Df £1(@) < |D* £I(Q) (5.6)
B—a~ B—a~
for any open set 2 C R” such that either €2 is bounded or 2 = R”. O

Corollary 5.7 (I'(L') -lim of variations in R” as 8 — a~) Let a € (0, 1). For every
f € BV*(R"), we have

rLh - fim |DP fI(R") = |D* f|(R).

In particular, the constant sequence is a recovery sequence.
Proof The result follows easily by combining (5.4) and (5.5) in the case @ = R". 0O

Remark 5.8 We recall that, by [27, Theorem 3.25], f € BV*(R") satisfies | D* f| <
" if and only if f € S%!(R"). Therefore, if f € S*!(R"), then | D% f|(32) = 0
for any bounded open set 2 C R” such that " (d2) = 0 (for instance, Q with
Lipschitz boundary). Thus, we can actually obtain the I"-convergence of the fractional
B-variation as § — «~ on bounded open sets with Lipschitz boundary for any f €
S%1(R") too. Indeed, it is enough to combine (5.4) and (5.5) and then exploit the fact
that | D* f](0€2) = 0 to get

r(Lh -ﬂlgg_ IDP £1(Q) = |D* fI()

for any f € S%1(R™).

We were not able to find a reference for the analogue of Corollary 5.7 for the usual
fractional Sobolev seminorms. For the sake of completeness, we state and prove it
below for all p € [1, 400) on a general open set.

Theorem 5.9 (I'(L?) -lim of W#?-seminorm as 8 — «~) Let @ C R" be a non-
empty open set, a € (0, 1) and p € [1, +00). For every f € WP (Q), we have

F(Lp) 'ﬁl_i)mi[f]wﬂ-p(gz) = [f]WD‘vl’(Q)-

In particular, the constant sequence is a recovery sequence.

Proof Let (fg)ge0,a) C LP(2) be such that fg — fin LP(Q2) as B — . Let
(Br) C (0, @) be such that 8y — « as k — 400 and

1}igfgi511f[f/3]wﬂ~l’(sz;R"l) = Jm Usdweerg;mm:
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Up to extract a further subsequence, we can assume that fg, (x) — f(x)ask — +o0
for a.e. x € Q. Then we can estimate

lim // | fa () — S ODIP dxdyz//hminf'fﬂk(x)_fﬁk(y)'p dx dy
QJQ QJQ

k— 400 |x — y|rtrhk k—+o0  |x — y|rtrhk

>/ [f(x) = fNIP
“Jala

|x — y|rrpe

dxdy

by Fatou’s Lemma. We thus get that
I'(L?) _l,iem inf [ flwsr @ = [flwer@)-
—a

Since

. Lf () = fnI? : |f ) = fOI?
I P dxdy = V) = S dxd
/3—1:2_/;2 Q |x—yl"trP e ﬂ—lgxl— ola |x—ynterp Xllx—yl<1) X &Y
- Lf ) = fFI?
+51_1)I2_/;) meuxﬂpudxdy
Lf ) = fI?
= P dxd
/sz o fx—ypree Y

by the Monotone Convergence Theorem, we also have that

C(LP) -limsup [ flws.rq) < [flwer)

B—a~

and the conclusion immediately follows. O
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Appendix A. Truncation and approximation of BV functions

In this appendix, we deal with two results on BV functions and sets with locally finite
perimeter. These results are well known to experts, but we decided to state and prove
them here because either we were not able to find them formulated in the exact form
we needed or the results available in the literature were not proved in full correctness
(see Remark A.5 below).

A.1 Truncation of BV functions

Following [4, Section 3.6] and [34, Section 5.9], given f € LI]OC(R”), we define its
precise representative f*: R" — [—o00, 400] as

f*(x) := lim

r—0t w,r" B, (x)

fndy, xeR", (A.1)

if the limit exists, otherwise we let f*(x) = 0 by convention.

Theorem A.1 (Truncation of BV functions) If f € BVioc(R"), then
fxs. € BVR"), with D(f xs,) = x5, Df + f*Dxs,, (A.2)

for L'-a.e. r > 0. If, in addition, f € L>®(R"), then (A.2) holds for all r > 0.

Proof Fix ¢ € C°(R";R") and let U C R” be a bounded open set such that
supp(e) C U.Let(0¢)e>0 C C°(R") be afamily of standard mollifiers as in [27, Sec-
tion 3.3] and set f. := f * o, for all ¢ > 0. Note that supp (Qg * (XB,go)) C U and
supp (¢ * (xp,dive)) C U for all ¢ > 0 sufficiently small and for all r > 0. Given
r > 0, by Leibniz’s rule and Fubini’s Theorem, we have

/ fexs, divwde/ XB,diV(fqu)dx—/ XB,¢ -V fedx
R® R R® (A3)

= —/R few - dDxs, —/R 0e * (xB,¢) - dDf.

Since f; — f ae.inR" ase¢ — 0" and

| £10¢ * (xB,divel) < | flxulldivell =g € L' (R")

for all € > 0, by Lebesgue’s Dominated Convergence Theorem we have

e—071

lim Sfexp, divpdx = / S xB, divp dx
R~ R
for all r > 0. Thus, since o, * (xB, @) — XE,‘P pointwise in R” as ¢ — 0T and

loe * (xB,9)| < l@llLo@n: ryxv € L'(R", |Df])
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forall e > O sufficiently small, again by Lebesgue’s Dominated Convergence Theorem
we have

lim 0s * (xB,¢) -dDf =/ Xp,®-dDf
1 Rn

e—0t JRr
for all r > 0. Now, by [4, Theorem 3.78 and Corollary 3.80], we know that f, — f*

#"!.ae.inR"ase — 0T. Asaconsequence, givenany r > 0, we getthat f; — f*
|[Dyp,|-a.e.in R" as e — 0T. Thus, if f € L®(R"), then

| feol < Il fllzoorm gl € LY(R", Dy, )

for all ¢ > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

im [ fip- dDxs = fR f*o- dDys,

e—0" JRn

for all » > 0. Therefore, if f € L°(R"), then we can pass to the limit as ¢ — 0T
in (A.3) and get

fxs, divpdx = —/ f*¢- dDyxp, —/ X5, ¢ -dDf
Rn R~? R®

for all ¢ € C°(R"; R") and for all » > 0. Since || f*[|zoorny < ||l fllLoown), this
proves (A.2) for all r > 0.

If f is not necessarily bounded, then we argue as follows. We start by observing
that, since

R
/ / |f*|d%ﬂ”71di’=/ If*ldxzf | fldx < 400,
0 JdB, Bg Br

the set
W= {r > o:/ | f*1d#" " dr < +oo}
JdB;,

satisfies .21 ((0, +-00)\ W) = 0. Without loss of generality, assume that || ¢ | Loo(R: R)
< 1. Hence, for all r € W, we can estimate

'/ fg<o~deB,—/ f*o- dDys, sf e — Al (ad)
RA R7 9B,
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Given any R > 0, by Fatou’s Lemma we thus get that

R
/ lim inf few - dDyp, —/ f*¢-dDyxp,|dr
0 &0t |Jrn R”
R
5/ hminf/ \fe — [l dr
0 &0t Jyp,
R
gliminf/ / | fo — f*1d" " dr
e—~0*t Jo JaB,
= lim |fe — f*ldx =0.
e—0" Jpg
Hence, the set
7 = {r >0: liminf/ | fo — fr1do" " = o} (A.5)
e=0" JaB,

satisfies . Z1((0, +00) \ Z) = 0 and clearly does not depend on the choice of ¢. Now
fixr € ZN W and let (gx)ken be any sequence realising the lim inf in (A.5). By (A.4),
we thus get

i [ uo-dDun = [ o by
R~ R~

k—+o00

uniformly for all ¢ satisfying ||¢||zco@mn: Ry < 1. Passing to the limit along the
sequence (&x)keN as k — 400 in (A.3), we get that

/ f 6, divpdx = — / o dDys, - / x5 ¢ dDf
Rn Rn Rn

forallp € C°(R"; R") with [|¢|| poc(rr; Ry < 1. Thus (A.2) follows forallr € WNZ
and the proof is concluded. O

A.2 Approximation by sets with polyhedral boundary

In this section we state and prove standard approximation results for sets with finite
perimeter or, more generally, B Vi,.(R") functions, in a sufficiently regular bounded
open set.

We need the following two preliminary lemmas.

LemmaA.2 Let V, W C "} with V finite and W at most countable. For any ¢ > 0,
there exists R € SO(n) with |R — I| < &, where T is the identity matrix, such that
RVYNW = @.

Proof Let N € Nbesuchthat V = {v,- eSS l.i=1, ...,N}.Wedividetheproof

in two steps.
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Step 1. Assume that W is finite and set A; := {R € SO(n) : R(v;) ¢ W} for all

i =1,...,N. We now claim that A; of SO(n) foralli = 1,..., N. Indeed, given
any i = 1,..., N, since W is finite, the set Af = SO(n) \ A; is closed in SO(n).
Moreover, we claim that int(Af) = . Indeed, by contradiction, let us assume that
int(AY) # @. Then there exist ¢ > 0 and R € A{ such that any S € SO(n) with
|S — R| < e satisfies S € A{. Now let

cos ¥ —sin
0y = sin? cos? € SO(n)
O In—Z

and define Sy := Qy R € SO(n) for all ¥ € [0, 27r). Since
1Sp —RI=1(Qp —I)RI<1Qs —I|IR| <¢

for all ¢+ € [0, §] for some § > O depending only on & and R, we get that Sy € Af
for all ¥ € [0, §]. Therefore Sy (v;) € W for all ¥ € [0, §], in contrast with the fact
that W is finite. Thus, A; is an open and dense subset of SO(n) foralli =1,..., N,
and so also the set

N
AV = A ={R eSOMm) : R(vj) ¢ WVi=1,....N)
i=1

is an open and dense subset of SO(n). The result is thus proved for any finite set W.

Step 2. Now assume that W is countable, W = {wy € S*!' : k € N}. For all
M € N, set Wy := {wr € W : k < M}. By Step 1, we know that AWM ig an open
and dense subset of SO(n) for all M € N. Since SO(n) C R" is compact, by Baire’s
Theorem A := (), eN AWM is a dense subset of SO(n). This concludes the proof. O

Since det: GL(n) — R is a continuous map, there exists a dimensional constant
8, € (0, 1) such that det R > % for all R € GL(n) with |[R — Z| < §,.

LemmaA.3 Let ¢ € (0,8,) and let E C R" be a bounded set with P(E) < +o0. If
R € SO(n) satisfies |R —Z| < ¢, then

IR(E) A E| <2¢erg P(E),

where rg :=sup{r > 0:|E\ B,| > 0}.

Proof We divide the proof in two steps.
Step 1. Letr > 0 and let f € C°(R"). Setting R; := (1 — )Z + tR for all
t € [0, 1], we can estimate
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1
/ 1R = peolar = / fo VF(Ri(6)) - (R(x) — x)dit| dx

r

1
<iR-2ir [ [ 19/ Rl dra,
0 B,

Since |R; — Z| = t|/R — Z| < te < &, for all t+ € [0, 1], R, is invertible with
det(R, l) < 2forall ¢t € [0, 1]. Hence we can estimate

/ IV f(Ri(x)dx 2/ IVF)Idet(R; Hldy < 2/ IVfldy,
Br 7Zr(E’r) R"
so that

. |f(R(x)) = f)ldx < 2er||V fllL1ge,rn)- (A.6)

Step 2. Since xg € BV (R"), by combining [34, Theorem 5.3] with a standard
cut-off approximation argument, we find (fi)ren C CS°(R") such that fy — xg

pointwise a.e. in R” and |V f¢|(R") — P(E) ask — +o00. Given any r > 0, by (A.6)
in Step 1 we have

/B | fe(R(x)) — fu()ldx < 2er|[V fill L1 gn.rry

for all k € N. Passing to the limit as k — +o00, by Fatou’s Lemma we get that
[(R(E) A E)N B,| <2¢r P(E).

Since E C B, up to " -negligible sets, also R(E) C B, up to .£"-negligible sets.
Thus we can choose r = rg and the proof is complete. O

We are now ready to prove the main approximation result, see also [3, Proposi-
tion 15].

Theorem A4 Let Q C R" be a bounded open set with Lipschitz boundary and let
E C R" be a measurable set such that P(E; Q) < +oo. There exists a sequence
(Er)ken of bounded open sets with polyhedral boundary such that
P(Er;02) =0 (A7)
forall k € N and
XE, = XE in LIIOC(R”) and P(E; Q) — P(E; Q) (A.8)

as k — 4o0.
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Proof We divide the proof in four steps. .
Step 1: cut-off. Since €2 is bounded, we find Ry > 0 such that Q C Bg,. Let us
define Ry = Ro + k and

1
Cy = {x € Q° : dist(x, 0Q) < %}

for all £k € N. We set E,i :=ENBg, N C,ﬁ for all k € N. Note that E,i is a bounded
measurable set such that

Xg! = XE in LIIOC(R”) ask — 400
and
P(E}; Q) = P(E; Q) forall k € N.

Step 2: extension. Let us define

1
Ay = {x e R" : dist(x, Q) < E}

for all k € N. Since XEln € BV(Q) for all k € N, by [4, Definition 3.20 and
Proposition 3.21] there exists a sequence (vi)reny C BV (R™) such that

v =0ae. in Af, v = XE! inQ, |Dv|(02) =0
for all £k € N. Let us define F,ﬁ = {vx > t}forallt € (0, 1). Given k € N, by the

coarea formula [4, Theorem 3.40], for a.e. t € (0, 1) the set F,ﬁ has finite perimeter
in R" and satisfies

FlC A, FNQ=E NQ, PF;Q)=0

forall k € N. We choose any such #; € (0, 1) foreachk € Nand define E,f = E,l UF,?‘
for all k € N. Note that E,% is a bounded set with finite perimeter in R” such that

Xg2 = XE in LIIOC(R") ask — +o0
and
P(EZ; Q)= P(E; Q) and P(Ef;3Q) =0 forallk e N.

Step 3: approximation. Let us define

1 3
Dy = Q¢ @ dist(x, 9Q - =
k {x € ist(x ) € [4k 4ki|}
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forall k € N. First arguing as in the first part of the proof of [50, Theorem 13.8] taking
[50, Remark 13.13] into account, and then performing a standard diagonal argument,
we find a sequence of bounded open sets (E ,?) keN With polyhedral boundary such that

E} c D{ forallk € N
and

XE£—>XEinL110C(R”), P(E}; Q) — P(E; Q) and P(E}; Q) — 0

as k — 4-o0. If there exists a subsequence (E,fj)jeN such that P(E3j; d0$2) = 0 for
all j € N, then we can set E; := Ey; forall j € N and the proof is concluded. If this
is not the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [3, Proposition 15].
Fix k € N and assume P (E3; 9Q2) > 0. Since E ,f has polyhedral boundary, we have
A" (OEL N 9Q) > 0if and only if there exist v € "~ and U C .#Q such that
A" N(U) > 0,vq(x) = vforallx € Uand U C dH for some (affine) half-space H
satisfying vy = v. Since P(Q2) = "1 (3Q) < 400, the set

Wi=eS ' (x €dQ:vakx)=1}) >0}

- U{v e s BB > e ((x €09 1 vg(x) = v)) > %‘?)}
heN

is at most countable. Since Eg has polyhedral boundary, the set
Viim(ves™ o (v € 0E) vy (1) = v}) > 0)

is finite. By Lemma A.2, given ¢; > 0, there exists Ry € SO(n) with |Ry — Z| < &
suchthat R (Vi)NW = &. Hence theset EY := Rk(E,g) must satisfy P(E,f; 0Q2) =0.
By Lemma A.3, we can choose & > 0 sufficiently small in order to ensure that
|E{ A E}| < 1. Now choose nx € (0, 5) such that P(E}; Qx) < 2P(E}; 9Q),
where

O = {x € R" : dist(x, 02) < ny}.

Since €2 is bounded, possibly choosing ; > 0 even smaller, we can also ensure that
QARNQ) C Q. Hence we can estimate

|P(EL Q) — P(ES; Q)| = |2 T OQE} N R (Q) — 2" DE; N Q)|
< A" QEL N (QART(Q))
<"V E; N Qp).

We can thus set Ej 1= E,‘: for all k € N and the proof is complete. O
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Remark A.5 (A minor gap in the proof of [3, Proposition 15]) We warn the reader that
the cut-off and the extension steps presented above were not mentioned in the proof
of [3, Proposition 15], although they are unavoidable for the correct implementation
of the rotation argument in the last step. Indeed, in general, one cannot expect the
existence of a rotation R € SO(n) arbitrarily close to the identity map such that
P(R(E); 92) = 0 and, at the same time, the difference between P(R(E); 2) and
P(E; Q) is small. For example, one can consider n = 2,

Q = {(x1, x2) eA:x%—i—x% < 25}
and
E = {(x1, x2) eA:l<x%+x% <4}U{(x1,x2)€AC:9<x12+x% < 16},

where A = {(x1, x2) € R2: x; > 0, xp > 0}. In this case, for any rotation R € SO(2)
arbitrarily close to the identity map, we have P(R(E); Q) > 2 4+ P(E; 2).

We conclude this section with the following result, establishing an approximation
of BV functions similar to that given in Theorem A.4.

Theorem A.6 Let Q C R" be a bounded open set with Lipschitz boundary and let
f € BVioc(R™). There exists (fi)reny C BV (R™) such that

|Dfil(3€2) =0
forall k € N and
fe = fin L (R") and |Dfi(Q) — |DfI(RQ)

as k — +oo. If, in addition, f € L'(R"), then fy — f in L'(R") as k — +o0.

Proof We argue as in the proof of Theorem A.4, in two steps.

Step 1: cut-off at infinity. Since Q is bounded, we find Ry > 0 such that Q@ C
Bg,. Given (Ry)r C (Rp, +00), we set g = fXBRk for all k € N. By Theorem
A.1, we have g € BV (R") for a suitable choice of the sequence (Rj)ien, With
|Dgi|(2) = |Df|(2) for all k € N and g — f in L}OC(R”) as k — 4oo. If, in
addition, f € L'(R"), then gx — f in L' (R") as k — +o00.

Step 2: extension and cut-off near 2. Let us define

1
Ap = {x e R" : dist(x, Q) < E}

for all k € N. Since grxo € BV (R2) with |Dgi|(2) = |Df|(2) for all k € N, by
[4, Definition 3.20 and Proposition 3.21] there exists a sequence (hx)xeny C BV (R")
such that

supp hy C Agk,  hp = g in K2, |[Dhy[(9€2) =0
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forall k € N and

lim |hr|dx =0
k—+4o00 A \Q

(the latter property easily follows from the construction performed in the proof of
(4, Proposition 3.21] Now let (vi)reny C CZ°(R") be such that suppvy C Aj and
0 <wv <1forallk € Nand vy — ot pointwise in R" as k — +o00. We can thus
set fr := hg + vr gy for all k € N. By [4, Propositon 3.2(b)], we have vy gx € BV (R")
for all k € N, so that f; € BV (R") for all k € N. Since we can estimate

[fik — fI < lhe — fxal +lve — xacl lgel + lgx — flxae
= il xay\@ + vk — xoel 18kl + gk — f1 xqc

forall k € N, we have f; — fin Ll (R") as k — 400 (because 9L is Lipschitz, so

loc
LM0Q) = 0), with f — fin L' (R") ask — +ooif f € L1(R"). By construction,
we also have

IDfil(€2) = [Dhi|(2) and |Dfi[(3€2) = [Dhi|(9€2) =0

for all kK € N. The proof is complete. O
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