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Abstract

Depth data contains vital information for understanding the geometry of objects and
placing them in the 3D world. To this aim, several sensors have been developed to
retrieve depth images, each with its own strength and weaknesses. In this thesis we
will cover Time-of-Flight cameras (ToF), a particular kind of sensor which computes
the distance information based on the time of flight of a light impulse.

We will mainly focus on indirect ToF cameras, which are commercially available
devices working at interactive frame rates with until 1 Megapixel resolution. These
devices are affected by Multi-Path Interference (MPI), a key challenge causing distor-
tion in the depth estimation process. Common data-driven approaches tend to focus
on a direct estimation of the output depth values, ignoring the underlying transient
propagation of the light in the scene. In this Ph.D. thesis instead, we propose some
very compact deep learning architectures for transient data estimation, the first one
exploiting a two-peaks encoding of the transient, the second one leveraging on the
direct-global subdivision of transient information.

Afterwards, we will instead deal with ToF sensors in a power-constrained environ-
ment, such as that of mobile devices. In this setting, we will propose a quantized neural
network for depth completion, which reaches competitive performance while keeping
its size limited. Finally, we switch to hyperspectral images and see a work on learning
architectures for spectrum reconstruction with limited amounts of ground truth data.
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Sommario

L’informazione relativa alla profondita ¢ vitale per comprendere la geometria degli
oggetti e inserirli in uno spazio 3D. Per questa ragione sono stati introdotti numerosi
sensori che producono immagini di profondita, ciascuno con i suoi punti di forza e
di debolezza. In questa tesi ci concentreremo su telecamere a tempo di volo, un tipo
particolare di sensore che calcola I’'informazione relativa alla distanza basandosi sul
tempo di volo di un impulso luminoso.

Ci concentreremo in primo luogo su telecamere a tempo di volo indirette, che sono
dispositivi in commercio con frequenze di cattura sufficientemente elevate e risoluzio-
ne sino a 1 Megapixel. Le immagini prodotte da questi apparecchi soffrono di una di-
storsione chiamata Multi-Path Interference (MPI), un problema di primo piano legato a
questa tecnologia. Gli approcci piu comuni per risolvere questa distorsione cercano di
stimare direttamente 1 valori corretti di profondita, ignorando la propagazione tempora-
le della luce nella scena. In questa tesi di dottorato invece, proponiamo alcuni metodi
molto compatti basati su deep learning per la stima del comportamento transitorio della
luce; il primo sfrutta una codifica a due picchi di questa funzione, mentre il secondo
introduce una suddivisione tra informazione diretta e globale.

In seguito, considereremo sensori a tempo di volo in condizioni dove la potenza
a disposizione ¢ limitata, come ad esempio per dispositivi mobile. In questo caso,
proponiamo una rete neurale quantizzata per depth completion, che raggiunge presta-
zioni competitive mantenendo comunque dimensioni ridotte. Infine, cambieremo tema
introducendo le immagini iperspettrali € vedremo un lavoro sulla ricostruzione di in-
formazione iperspettrale nel caso in cui i dati per I’allenamento scarseggino.
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1 Introduction

The demand for more accurate and reliable range imaging devices has seen a constant
rise over the years. Their applications are widespread ranging from autonomous driv-
ing [8, 9] to augmented reality [10], 3D reconstruction [11, 12] and even landing on
planetary bodies [13]. The working principles are different for the various types of
sensors, but the main objective remains the same: retrieving the distance information
between the camera and the target object. Some of the most common technologies are
stereo imaging [14], where the depth information is retrieved from a couple of RGB
cameras at a fixed distance, Time-of-Flight (ToF) based devices [15], e.g. LIDARSs [16]
or matrix ToF sensors, and structured light scanners [17], that rely on light patterns.

In this thesis we will focus our attention on ToF based technologies, more specific-
ally on indirect Time-of-Flight (iToF) cameras. A direct Time-of-Flight (dToF) device
sends an impulse of light towards the scene, measures the travel time of the impulse
and computes the depth information from that. An iToF camera instead sends a modu-
lated light signal and correlates the reflected signal with the sensor modulation signal;
from these measures the distance is retrieved. iToF-based cameras are quite accurate,
have a good spatial resolution and are nowadays sold at consumer level in some of the
most recent mobile phones [18]. This technology however comes with its disadvant-
ages, with the top spot taken by Multi-Path Interference (MPI). This error source is
intrinsic to the technology and produces an overestimation of the depth strictly linked
to the scene geometry which has been widely studied in the literature [19, 20, 21, 22].
Another downside is linked to energy consumption; while common RGB cameras can
rely on natural illumination, ToF sensors need an active illuminator, which can have a
toll on the limited power budget of a mobile device. In this thesis, we will investigate
the limitations of iToF devices and propose some techniques to alleviate them while at
the same time keeping a low network complexity. A major focus will be devoted to the

tasks of MPI correction and transient reconstruction, two problems that, as we will see,
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are very closely related.

The final part of this thesis will cover instead hypespectral sensors. As we will
see, these devices have issues related to their cost and the acquisition/processing time.
We will cover the topic of spectrum reconstruction and introduce a few techniques for
training deep learning architectures with limited ground truth.

The results and methods included in this thesis comprehend the work done during
the three years of my Ph.D.. My studies have been funded by Sony Europe B.V., and
I also spent one year at their research centre in Stuttgart, where I had the occasion of
working together with experts on the topic and with the sensors themselves.

The rest of this thesis will be structured as follows. Chapter 2 will provide a thor-
ough description of Time-of-Flight sensors, starting from their operating principle, and
concluding with the main error sources. Chapter 3 will define the tasks of Multi-Path
Interference correction and transient reconstruction and the relationship between the
two. In Chapter 4 we will instead see the employed datasets, both iToF and transi-
ent, with a focus on the Walls dataset which was developed during my first year of
Ph.D.. After that, in Chapter 5 we will explain the approaches we propose for the two
mentioned tasks. We will start with [22], a deep learning approach exploiting a rough
encoding of transient information. Afterwards, we will introduce [23], a more refined
version of [22], which reaches state of the art performance while keeping and extremely
low network complexity. At the end of the chapter we will show a thorough compar-
ison with the best performing approaches from the literature and draw our conclusions
for this part. In Chapter 6 instead, we will talk about depth completion, we will in-
troduce the surrounding literature and conclude the chapter by describing the datasets
for the task. The main approach [24] and related results for depth completion will be
instead introduced in Chapter 7. Then, Chapter 8 will be devoted to the approach [25]
that we propose for the task of spectrum reconstruction. Finally, in Chapter 9 we will

draw our conclusions.



2 Time-of-Flight Sensors

In this chapter we will give an introduction to Time-of-Flight sensors, a widely used
technology for retrieving depth information. We will start with direct Time-of-Flight
sensors, and then continue with indirect Time-of-Flight sensors, which are the main
focus of this Ph.D. thesis. We will then describe the limitations of iToF devices, with a
particular interest for Multi-Path Interference, an error source inherently linked to their

operating principle.

2.1 Direct Time-of-Flight

The operating principle behind direct Time-of-Flight sensors is quite simple. Since the
speed of light c is fixed, we can think of sending a very narrow impulse of light towards
a scene, compute the round trip time At at the sensor side, and then from it retrieve the

depth d with the following relation:
d=—, (2.1)

where the % factor is due the fact that light travelled to the object and came back.
While at a first glance this may appear straightforward, it poses several complex
challenges from a hardware perspective linked to the high value of c. To give a practical
example, if we aim for a depth sensitivity of d,.,, = 1 cm, we are going to need a sensor
with a temporal sensitivity of ty., = 2% = 3;9621%1 = 6.67 - 107! s which are 66.7

ps. In practice, it was only at the beginning of the 2000s that these tight requirements

could be met for the acquisition of a scene with a single pulse, with the use of Single-
Photon Avalanche Diodes (SPAD) arrays [28, 29]. A SPAD array consists of a set
of diodes working in Geiger mode, a state where the arrival of a single photon can
cause an avalanche effect [30]. The avalanche happens in an extremely narrow time-

frame and allows to precisely trace the original time of arrival of the incoming photon.
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DToF cameras based on SPAD arrays can reach a time sensitivity of 12 ps [31] and
have recently crossed the 1 Megapixel resolution [32]. One of the main limitations of
SPAD arrays is their limited fill factor, which is the ratio between the light sensitive
area of a pixel and the total size of the pixel. In practice, SPAD arrays need a high
degree of parallelism and timing circuitry can cover a good chunk of the pixel space
[33]. Another phenomenon constraining the fill factor is crosstalk between pixels, a
phenomenon where an avalanche event triggered at a pixel, spreads to neighbouring

ones causing false detections [34].

2.2 Indirect Time-of-Flight

[ sensor h< — 4
s(t)

Figure 2.1: Common setup for indirect ToF cameras

X
AR R R R R R R R R R R R R R R R

Indirect Time-of-Flight sensors follow the same high level idea, but put it in practice
in a different manner. An iToF camera is composed of a light source emitting a mod-
ulated signal and an active sensor. Figure 2.1 shows an example of a common setup.
Usually, the modulated light source of the emitter is a sine wave in the frequency of
10 — 100 MHz, while the sensor sensitivity function consists of a square wave at the
same frequency. This combination of sine and square wave at the same modulation
frequency is particularly useful from a theoretical perspective as it allows for a closed
form solution for the reconstruction of the distance. In the remainder of this section,
first the operating principles of iToF cameras will be reviewed, and then the main noise

sources with a focus on Multi-Path Interference will be described.
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2.2.1 Operating Principle

The emitter of an iToF camera sends towards the scene a sinusoidal signal i(t) of the
form:
i(t) =g + asin(2mw fut), (2.2)

where 7 is the intensity of the signal, a its amplitude and f,,, the employed modulation
frequency. The sensor sensitivity function s(t) is expressed as the Heavyside step

function of the sinusoidal signal i(¢) — i¢:
s(t) = H(sin(27 fiut)). (2.3)

The sensor will then receive the reflected signal r(¢) which consists of a delayed version

of i(t) scaled by the optical response of the scene p:
r(t) =p-i(t — At) = p- (ig + asin(2n f,,(t — At))) (2.4)

with At the time delay. The same delay can also be seen as a phase shift ¢ = 27 f,,,,q At
in the frequency domain. At the sensor side, the returning signal and the sensor func-

tion are integrated, leading to the camera measurements my:

Tint H
— =]+ A- 2.
me /o r(t)s(t + 27rfm>dt + A-cos(p +0), (2.5)

with T,,; the integration time and 6 an internal phase displacement applied to the sensor
sensitivity. The quantities /, A and ¢, respectively intensity, amplitude and phase delay
of the recovered ToF signal, are three unknowns which we can estimate by sampling

equation (2.5) a total of 4 times using 4 different values of . Commonly, the chosen

T

values are 6 € |0, 5, 37”] which give us the following relations:

1
A= 5 Jlmo = me) + (myz —ms)?, (2.6)
@ = arctan2 <m37n —mz,mo — mw> , (2.7)
mo + mz + My + M3x
I = 2 7 2 (2.8)



where the arctan2 is a variation of the arctan which has output values in the interval
(—m,]. Finally, from the value of ¢ we can directly retrieve the depth value d as

follows:
_ ¢ ¥
A S,

Moreover, following the work of Gupta er al. [35], it is convenient to represent the

(2.9)

camera measurements in phasor notation. In practice, we can see my — m, as the real
component of a phasor and m sz —mz as its imaginary part. This leads to the following
2

expression:
v = Ae'? = AePmImBt ¢ C, (2.10)

where A and ¢ are respectively the amplitude and phase of the original sinusoidal
function.

Note that since the whole theory behind this technology is based on periodic signals,
there is an inherent limitation to its maximum range. In practice, the ambiguity range

of an iToF camera, consists of

c-2m

Admar = ——- 2.11
I 1, (2.11)

For example, in the case of a modulation frequency of 10MHz, the ambiguity range
amounts to 15m. Even though there are ways to extend the ambiguity range when
working with multiple frequencies [36], iToF sensors are mostly suited for short-range,

indoor environments.

2.2.2 Multi-Path Interference

We have considered the case in which the ToF signal is reflected only once inside the
scene. However, in real scenarios it is highly likely for the light to be reflected multiple
times, causing numerous light rays to arrive at the same pixel. This effect is called
Multi-Path Interference. A common case of MPI can be seen in Figure 2.2, where the
correct distance of the measured pixel (in orange) will be overestimated due to light
bouncing on a second surface (in red). In this case, it is possible to generalize the above
description by assuming that the resulting ToF signal is the summation of the different
interfering signals, each one described as a phasor. Recall that sinusoidal signals with

the same frequency, as well as their phasor representation, are closed under summation
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Figure 2.2: Image acquisition affected by Multi-Path Interference. The path in orange is the
one delivering the correct depth value. The interfering rays (in red) bounce on a second surface,
then hit the main surface and come back to the camera. Since they follow a longer trajectory,
the final measurement will be overestimated.

s(t)

[35]. As a consequence, a ToF measurement originated by MPI can be described as

tma..r
v = / x(t)e?mImtdt, (2.12)
t

where t,,,4, is the maximum time of flight of the considered interfering rays and x(t) is
a function describing the strength of the interfering rays coming back to the sensor at
time ¢. This function describes the behaviour of light through time and for this reason,
as we will see later on, it is known as transient image in its discrete version. In Fig-
ure 2.3 we can see an example of a transient pixel, where the strong first reflection
indicating the correct depth value corresponds to the first peak, while all the remain-
ing components correspond to the secondary light bounces. The MPI phenomenon
described above is a non-zero mean error in ToF depth measurements, usually leading
to an overestimation of depth. A key aspect of MPI distortion is its dependency on the
geometry of the considered scene, which heavily influences the light transient function

x(t). An example can be seen in Figure 2.4, where we can see the error due to MPI on
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Figure 2.3: A transient pixel showing the incoming light radiance at each time step.

a scene composed of three walls. The green parts of the image correspond to a correct
depth estimation, while the ones in red mean an overestimation due to MPI. As we
can see, this kind of distortion is particularly strong close to the corners between walls,
and gradually decrease in intensity farther away from them, due to the inverse relation-
ship between light intensity and path length. Another interesting property of MPI is
the fact that the error pattern changes with the modulation frequency and in particular,
the higher the frequency, the lower the error due to MPI. The reason behind this, is
linked to the integral from Equation (2.12), where we are correlating the transient pixel
in Figure 2.3 with a sinusoidal function. If the modulation frequency of the periodic
function is high the components of the secondary light bounces tend to partially cancel
out as they are spread through the time dimension leading to a lower depth error. In the
case instead of a lower modulation frequency these tend to be all weighted more or less
in the same manner and the end result is a higher MPI-related distortion. In general
however, it is not possible to simply choose a high value for f,, to reduce as much
as possible the MPI since, as we have seen in Equation 2.11, modulation frequency
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Figure 2.4: Error caused by MPI. Values correctly estimated are in green, while the red parts
show an overestimation of the correct depth.

and ambiguity range are inversely proportional. For example, setting f,,, to 200 MHz
would indeed yield a very low MPI error, but would also reduce the maximum range
to 0.75m. In conclusion, while the problem of MPI correction has been widely studied
in the literature [20, 37, 38, 39], it is still challenging.

2.2.3 Photon Shot Noise

The accuracy of the depth measurements is strictly related to the intensity of the reflec-
ted light. In scenarios where the returning illumination is quite high, the measurement
is going to be quite accurate, while the opposite is true for poor light conditions. This
noise source, commonly called photon shot noise or, in short, shot noise, is associated
with the particle nature of light and arises from the photon to electron conversion. It
can be modelled as a Poisson random variable whose mean (1,,) and variance (ag) are
both equal to the number of incoming photons. For this reason, the SNR (5—;) is going

to increase with the square root of the number of arriving photons.
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2.2.4 System Noise

System noise comprises the noise directly related to the electronics involved in the
measurement process. In particular, it is comprised of reset noise, as the reset values
of pixels are affected by small variations, and of read noise, which is generated by
electronics as the charge present in the pixels is transferred to the camera. Note that
differently from shot noise, system noise is pure noise, completely independent of the

measurement value.

2.2.5 Wiggling Error

All the theory behind iToF cameras introduced in Section 2.2.1 requires an ideal sinus-
oidal signal at the emitter side, and an ideal square wave at the sensor side. In practice
however, this is not the case for common iToF cameras, where instead signal i(¢) con-
sists of something in between a sinusoid and a rectangular wave. This means that in
this non-ideal scenario sampling 4 values would not be enough for a complete recon-
struction of the signal and would lead to aliasing effects. The result is the so called
cyclic or wiggling error, a distortion easily noticeable over flat surfaces, where instead
the measured signal shows some periodic bumps. The most effective and employed

solution is to use a look-up table approach as proposed by Lindner et al. [40].
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3 MPI Correction and Transient Reconstruction

In this chapter, we will introduce the two main topics of this Ph.D. work, which are MPI
correction and transient reconstruction, and then proceed to illustrate the surrounding
literature for both topics.

3.1 Multi-Path Interference Correction

As introduced in Chapter 2, one of the main limitations of iToF cameras is Multi-Path
Interference. This phenomenon, which causes an overestimation of the depth due to
secondary bounces of light, is highly challenging as it depends on the structure of the
scene and on the properties of reflecting materials. The objective of MPI correction is
to retrieve clean depth measurements given single or multi-frequency i1ToF information,

either in their raw measurements form, or in the form of depth amplitude images.

3.2 Transient Reconstruction

The task of transient reconstruction is strongly intertwined with that of MPI correction,
which can be seen as a by-product of it. In practice, given some multi-frequency iToF
acquisitions, the objective is to retrieve the temporal information of light coming into
the sensor. Referring to Equation (2.12), we have the iToF measurements v, and we
want to invert the integral to obtain z(t).

Equation (2.12) has an integral formulation, which however is not practical as all the
measurements we are dealing with are discrete. For this reason, we consider the dis-
crete version of this equation by sampling the time interval of integration into N time

steps. This allows to rewrite the integral as a summation:
N
v=>Y el e C, (3.1)
j=1

11



which can be expressed as an inner product between two vectors

Zo
v = |ei?"fmto = ei2mfmin_1 : =Pz, (3.2)

ITN-1

the first vecto & € C*¥ corresponding to the measurement model and the second
also known as transient or backscattering vector x € RV*! to the scene impulse re-
sponse. In Figure 3.1, we can see an example of a transient vector, where it is also
possible to see the clear difference between the main reflection (in red), corresponding
to the first peak, and all the other rays which bounced at least twice inside the scene
(in green), corresponding to all the other non-zero bins. From now onwards, we will
refer to the first peak as the direct component, and to all other reflections as the global

component.

0.005
—— global component

— direct component
0.004 -

0.003 A

0.002 A

Radiance/bin

0.001 A

0.000

0 5 10 15 20 25 30 35
Travel time [ns]

Figure 3.1: Transient vector where the direct and global components have been highlighted
respectively in red and green.
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Up to now, all the considerations have been made for a single frequency setup. It is use-
ful to extend this to a set of acquisitions made at M different modulation frequencies.
The reason behind this is that, as we mentioned in Chapter 2, the distortion pattern due
to MPI changes with the frequency f,,, providing additional information; at the same
time, this can also help getting a longer unambiguous range while keeping the same
accuracy in the depth domain [36].

A quite straightforward generalization of Equation (3.2) to M input frequencies leads
to the following expression:

Vo eiQWfoto . ei27rf0tN71 2o

v=| ! | = : : | =%2, (33

e2mfm—1to ... oi27fm-1tN-1

Unr—1 TN-1

where v € CM*! is the stack of the raw camera measurements in the complex domain
at different modulation frequencies, while ® € CM*V,

Based on this discrete formulation, the problem of transient reconstruction is the fol-
lowing: given the raw measurements v and matrix ®, we want to recover the transient
vector x. The hereby presented problem is heavily under-constrained as N > M, and
has an infinite amount of solutions. A visualization of the problem can be seen in Fig-
ure 3.2.

Note, that while transient reconstruction can be seen as an iToF to dToF translation
task, this is true only with some approximation. The transient that we aim to recover
is an ideal version of the common output of a dToF camera, without any external noise

source or limitation regarding the resolution in the time domain.

3.3 Related Works

The approaches that tackle MPI correction can be generally divided into two groups,
single-frequency and multi-frequency ones. Those belonging to the first group such
as [41, 42] and [43] exploit a reflection model together with the spatial information
provided by the MPI-corrupted image for their solution. Jimenez et al [43] for ex-
ample, proposed an iterative optimization algorithm based on the assumption that all
scene surfaces are perfectly Lambertian. Early multi-frequency approaches show sim-

ilar constraints. In [19], Freedman et al. introduced the relationship between iToF
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Figure 3.2: Transient reconstruction from iToF for 3 frequencies at 20, 50 and 60 MHz. Given
multi-frequency iToF measurements v and matrix ®, we want to reconstruct transient vector x

measurements and the transient behaviour of light extending the problem to the case
of K interfering rays. They then proposed an algorithm for MPI correction treating it
as an L; optimization problem. Bhandari et al. [44], adopted similar assumptions but

offered instead a non-iterative solution using Vandermonde matrices.

The restrictions of these models and the unrealistic amount of input frequencies
required for the solutions lead to a rapid rise in popularity of deep learning based
approaches. Marco et al. [38] proposed an encoder-decoder architecture with a split
training approach: the encoder was trained on unlabelled real data, and the decoder on
the synthetic dataset they introduced. Su et al. [20] proposed a multi-scale network
working in combination with a discriminator module. The network has been trained
combining three losses, one regarding the reconstruction performance, one enforcing
a smoothness constraint, and an adversarial one. The architecture has then been tested
on the synthetic dataset they introduced. Another dataset was introduced by Guo et al
[45], together with a deep learning model able to tackle both MPI and shot noise, and
that is able to handle dynamic scenes too. Their model consists of an encoder-decoder
architecture combined with a kernel prediction network used to tackle the shot noise.
Agresti et al. [21] observed that the information regarding the structure of the scene is
particularly important for MPI correction and, in order to have a simple network with
about 150k parameters, they built it with two branches, one capturing the details and the
other focusing on the high level geometry of the image. A similar idea was employed
in [46] where a pyramid network observes the MPI structure at multiple resolutions,

putting then the information together for the final prediction. In [39] the authors aimed
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at filling the gap between prediction on synthetic and real data, using an unsupervised
domain adaptation approach. They took the model from [21] and trained it as a GAN
on unlabelled real data, clearly outperforming the original approach. The idea was
later expanded by the same authors in [47], where they examined the possibility of
performing domain adaptation also at input and feature level.

The use of the transient light model in Equation (3.3) as a prior for MPI correction
is quite new in the literature. Barragan et al. [1] worked on the Fourier domain, using
a U-Net architecture that takes a two-frequency input and predicts MPI corrupted data
at several frequencies. They then compute the inverse Fourier transform on the output
data, perform some filtering and get the depth prediction using a peak finding algorithm.
The method shows good shot noise and MPI denoising capabilities but is quite heavy,
with around 1.8 M/ parameters.

Works directly targeted at the task of transient reconstruction from iToF information
are very few, all using strong simplifying assumption for their solutions. Heide et
al. [48] used an iToF camera to recover the depth information of a scene using the
light reflected by a diffuse surface. They treated transient recovery as an optimization
problem, constrained their solution both regarding spatial gradients and height field and
introduced an algorithm in order to solve it. Lin et al. [49], showed that the information
recovered from a multi-frequency iToF camera corresponds to the Fourier transform
of a transient image. They then proposed an algorithm for transient reconstruction
from a high number of iToF modulation frequencies. On a different note, Liang et al.
[50] devised a deep learning model for the compression of rendered transient data, an
important task due to the high volume of the data and the large amount of rendering
noise.

In the next chapter we will introduce the datasets employed for training and testing

our approaches, focusing in particular on the transient dataset that we have built.
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4 Datasets

In this chapter we present the main datasets employed for the training and evaluation
of the methods that we will propose. We employ both depth and transient datasets,
due to the close relation between the two topics and the lack of datasets of the second
kind. In particular, we introduce the Walls dataset: a novel synthetic transient data-
set based on simple structures which has been used for training and evaluating the

Transient Reconstruction Module.

4.1 iToF Datasets

Regarding the iToF data, we will mainly focus on the synthetic and real datasets intro-
duced in [21, 39]. These datasets come with amplitude and phase information at three
different modulation frequencies: 20, 50 and 60 MHz; the scenes depicted are simple
indoor scenes, with a maximum distance smaller than 7.5 m (the ambiguity range of
the 20 MHz component) and high amounts of MPI. In particular, the synthetic dataset
S is composed of 54 scenes (40 for training and 14 for testing), has a high degree of
shot noise and a spatial resolution of 240 x 320, while S3, Sy and S are all real datasets
with 8 images each, a limited amount of shot noise and a spatial resolution of 239 x 320.
Dataset S; will be employed for training, S3 for validation and S, and S5 will be the
main test sets for benchmarking the MPI correction capabilities of our network. A few
examples from each dataset can be found in Figure 4.1. The iToF2dToF dataset [1]
will instead be used for some additional studies regarding the resilience to shot noise
and MPI correction. The dataset is composed of a total of 5000 images with a spatial
resolution of 120 x 160 and with all iToF measurements ranging from 20 to 600 MHz
with a step of 20. The dataset presents an extremely high amount of shot noise (around

80% of the total noise) and will be used as a stress test for our architecture. The scenes

https://Ittm.dei.unipd.it/paper_data/transientMPI/
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Dataset # of Image Noise Ground

images type type truth
St [21] 54 Synthetic Shot Depth
S3 [39] 8 Real Real Depth
Sy [21] 8 Real Real Depth
S5 [39] 8 Real Real Depth
iToF2dToF [1] 5000  Synthetic Shot,read  Depth*
FLAT [45] 2000  Synthetic Shot Transient
Walls 222 Synthetic None Transient

Table 4.1: Comparison between the employed datasets.
(*) transient available only for a small amount of data. Examples are shown in Figures 4.1 and
4.2.

from the iToF2dToF dataset are complex indoor scenes, and a couple of examples can
be seen on the far right column of Figure 4.1.

4.2 Transient Datasets

The task of transient reconstruction is quite new in the literature and this is also due to
the difficulties in acquiring a reliable transient dataset for the task. No real transient
datasets are available and only few synthetic ones are freely accessible such as the
FLAT dataset [45] and the Zaragoza [51] one. The iToF2dToF dataset [1] has both
depth and transient ground truth, but the latter has been released only for a few images.

4.2.1 The Walls Transient Dataset

We introduce the Walls dataset: a synthetic transient dataset based on simple geomet-
ries. The dataset has been simulated using the Microsoft ToF Tracer [52] with a max-
imum depth set to 5 m. The simulated scenes consist of one to three walls with vary-
ing angles between them. The dataset has been built as a template case for MPI. The
scenes, while very simple, still capture some of the most common MPI scenarios where
the overestimation is due to at maximum a couple of reflecting surfaces. This assump-
tion may not be true in general, but it is a good approximation for most practical cases,
as the light intensity is inversely proportional to the square of the travelled distance,

making the contributions of longer paths mostly negligible. In total, the dataset is com-
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Figure 4.1: Sample images from the employed datasets.
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Figure 4.2: Depth images from our transient dataset.

posed of 222 images, 53 with a single wall, 95 with two, and 74 with three. A couple
of samples can be seen in Figure 4.2.

The spatial resolution of our images has been set to of 480 x 640, to match that of
some of the most recent ToF cameras, while the temporal dimension has been divided
into 2000 bins; keeping into account that the maximum depth is 5 m, this means that
the depth quantization step consists of 2.5 mm, a desirable property for indoor settings.
The dataset has no noise sources other than MPI and rendering noise.

As the maximum depth of the Walls dataset amounts to 5 meters, while the one of
S1 gets to 7.5 meters, we decided to perform some data augmentation on the Walls
dataset in order to cover the wider range. In practice, we added a shift to each of the
transient vectors, randomly picking it from a uniform distribution in the [0, 5]m range

and from these we then recomputed the iToF measurements. The dataset can be found
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at https://Ittm.dei.unipd.it/paper_data/transientMPL/.
In the next chapter we will introduce a couple the methods for MPI correction
and transient reconstruction and then provide a thorough evaluation against other ap-

proaches from the literature.
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5 Methods for MPI Correction and Transient Reconstruc-
tion

In this chapter we present a few works on MPI correction and transient reconstruction.
The common trend in the literature, that we introduced in Chapter 3, is to try and
capture the high-level structure of the scene since it is strongly related to MPI. This is
usually done either by using a wide receptive field for the network, or by employing
multiple networks, each focusing on the scene at a different resolution level. The works
that we introduce here instead, have the peculiarity of having a receptive field extremely
small. The main source of information that we exploit is the change in MPI at different
modulation frequencies. As we show in the results section, this information is enough
to reach state of the art performance and allows at the same time a huge reduction in
the number of network parameters, making our architectures extremely light.

As follows, we first give an initial introduction to the high-level structure, which is
common to all approaches, and then we explain the Two-Peaks Network, our first ap-
proach for MPI correction. Afterwards, we show the architecture of the Direct-Global
Separation Network, explain the improvements w.r.t. the first one and finally show
some results for both methods for MPI correction and transient reconstruction. We

then draw our conclusions for these two topics.

5.1 Network Structure

Deep neural networks can have issues when handling high-dimensional data [53, 54],
and this is exactly the case of transient information; a backscattering vector can eas-
ily have a few thousand entries in the temporal direction against a handful of iToF
measurements, as introduced in Chapter 3, a problem that can make the training of the
architecture hard if not impossible. In order to solve this issue, we decided to split

the backscattering estimation task in two parts as shown in Figure 5.1. On one side
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we have the Backscattering model, which takes care of the dimensionality reduction,
while on the other we can see the Predictive model, the true deep learning backbone of
the approach. The learnable predictive model maps the iToF measurements into a low
dimensional space that is then expanded into the transient information by the Backs-
cattering model. This allows to greatly reduce the dimensionality of the deep network
output space making the training of the model feasible. As follows, we will describe

the two components.

Predictive model Backscattering model

Po Be

v =P

Figure 5.1: Structure of the proposed approach

5.1.1 Backscattering model

The main task of the backscattering model is to compact the high dimensional transient
information into a representation that is easier to handle. Basically, the task of this

module B is to map a latent variable z into the respective backscattering vector x:

B:: RY— D, CRY, (5.1)
z = x = Be(z), (5.2)

where L. < N, £ are in principle some trainable parameters and D, is the domain
of all possible backscattering vectors. In more general settings, B, could be for ex-
ample a parametric model or an Autoencoder offering a precise mapping between a

low-dimensional domain and the transient data.

5.1.2 Predictive model

The predictive model takes in input the matrix of raw iToF measurements at different
modulation frequencies and outputs the corresponding values in the latent domain Z.

In practice, the predictive model is a highly non-linear function Pg(-), with parameters
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Figure 5.2: Predictive model working at local level

0, that takes in input the vector v and produces an estimation of the corresponding
vector z, that we will call 2.

In order to better exploit the spatial information for the prediction on each pixel, we
consider a local neighbourhood around the pixel itself of size (2P + 1) x (2P + 1) as
in Figure 5.2, with P a small value (i.e. for most of our trainings P is set to either 1 or
5, giving us a receptive field of respectively 3 x 3 and 11 x 11).

5.2 Two-Peaks Network

The first method that we introduce is the Two-Peaks Network, the first model in the
literature employing transient information inside the training pipeline. We will now
describe the two components of the approach: first the Backscattering model, which in
this case is a simple yet effective deterministic mapping, then the Predictive model, the

deep learning backbone.

5.2.1 Backscattering model

For this method implementation, we decided to use a simple model for the backscat-
tering vector, where just the two-rays interfering case is taken in consideration. This
choice is motivated by the practical consideration that in real scenarios the first and
second order reflections are the ones containing the main part of the energy of the
backscattering vector [56]. For this reason, we used as backscattering model a determ-
inistic mapping from a 4-dimensional z vector (z € R*) to a compressed version of
the backscattering information. More in detail, the 4 values of the z representation are
the amplitudes and the path lengths of the first and the second interfering rays. The
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backscattering model has the task of converting these 4 values to the approximated
backscattering vector that will be equal to zero on each entry apart from two peaks

related to the first and the second interfering rays.

5.2.2 Predictive model

In Figure 5.3, we show the shape of the proposed network. We employ a Convolutional
Neural Network whose first layer combines a weight kernel which retrieves informa-
tion from each pixel, and another small (2P + 1) x (2P + 1) kernel centred around the
pixel itself which takes care of the local information. The rationale behind this model is
that even though local spatial information is quite important, at the same time it is cru-
cial to give a great importance to the data carried by the central pixel itself. As we will
show in Section 5.4, the spatial information ensures a slightly better performance, but
the central pixel itself conveys already a degree of information which is sufficient for an
accurate prediction. We want to bring to the attention of the reader that the strength of

Figure 5.3: Predictive model structure

the approach does not rely for the most part on the quite reduced local information we
provide (the kernels we employed are only 3 x 3) but on the global information that is
inherently carried by each pixel. Other works in the literature relied on quite complex
training structures in order to consider this critical piece of information as for example
in [21], where a coarse network was proposed that considers the global structure of
the scene, or in [46], where a pyramid structure tries to predict MPI at different resol-

ution levels. The approach we propose does not need any complex addition, since the
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global information is already present in the form of transient data and already conveys
the information regarding the scene structure. Even if the two-peaks representation we
consider may seem quite rough, it is still enough for an accurate depth estimation as

we will prove in Section 5.4.

5.2.3 Training the Architecture

The training has been performed using a combination of two losses: a standard super-
vised loss and a soft constraint which made sure the predictions were consistent with
the model defined in Equation (3.3). The latter, called measurement loss, ensures that
our prediction makes sense according to the raw iToF measurement we gave in input.
Since the matrix ® is known, for any predicted backscattering vector &, we can com-
pute the corresponding vector ¥, which must be equal to the one we had in input for

the prediction to make any sense. In other words we can write:

Lon(v,®3) = v — @2 = ||v— 3. (5.3)

This loss of course only ensures a soft constraint since as mentioned the problem of
Equation (3.3) is quite ill-conditioned. In order to get a meaningful result we therefore
make use of a reconstruction loss, which simply ensures that our prediction £ matches
with the ground truth . While being a simple supervised loss, it still presents a non
trivial challenge as it is not that straightforward to define a suitable distance measure
between sparse, high-dimensional vectors. Some common choices like the MSE or
MAE quickly fail as we only have two meaningful values along a plateau of null entries.
We need to define a loss function which amplifies the error in the case predicted and
true peaks have different time and intensity components, and that at the same time
keeps in lower consideration the null entries.

The main idea is to treat the two backscattering vectors as two different Probability
Mass Functions (PMFs) and measure their statistical distance. The two distributions

are defined as follows:

P

Tn
Xsum

Pae(n) = pz(n) = where Xoum = Tp, (5.4)

XSUT)’L

i
o

where we normalize for the ground truth values in order to avoid divisions by zero

issues when we have all-zero predicted vectors. The distance between the two is then
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computed using a modified version of the Earth Mover Distance (EMD) which, unlike
some other divergence measures such as the Kullback-Leibler or Jensen-Shannon ones,
does not require the two PMFs to have a common support. The standard EMD is

defined as follows:

N-1

EMD(pg,pz) = Y |Pu(n) — Ps(n)], (5.5)

n=0
where P,(n) and Pz(n) are the cumulative mass functions of the original distribu-
tions. Starting from the previous expression, we define the reconstruction loss between
original and predicted backscattering vector according to a weighted Earth Mover Dis-
tance (KM D,,) as below:

N-1

. L 1 :
Lo, 8) = o EMDy(pa,pa) = 50— D _Walea =l (5.6)
sum sum n=0

with ¢, and ¢, the cumulative functions of our backscattering vectors:

n n
Cp = E Ty Cn = E ‘%n’y (5.7)
n’'=0 n'=0

while the weights w,, are computed as:

W —

[y

1
n = Tyr n— _A'rL— ; 5.8
W = 757 |Cn—k — Crnt (5.8)
k=0

with IV a suitably sized window that in our experiments was set to 100. The reason for
this modification is due to the fact that it is quite hard for the network to distinguish
between direct and global component when the two peaks are very close one to the
other; what tends to happen is that the first peak obscures the other, leading to pre-
dicting a single peak. The solution proposed in Equation (5.8) consists in giving more
importance to elements which are preceded by other non-zero samples, thus balancing
out the importance given to direct and global component.

5.2.4 Bilateral Filtering

To further improve performances, an additional step is included in the pipeline in order

to deal with zero-mean error sources. In practice, the predicted depth goes through
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a bilateral filter thus giving us the final prediction. The parameters of the filter were
experimentally set to 04 = 0.05 and o, = 10, where the first value corresponds to the

kernel in the depth domain, and the second to the spatial one instead.

5.2.5 Training and Test Datasets

For the supervised optimization of the proposed approach we need a training set con-
taining raw ToF data together with the corresponding ground truth transient data. Note
that from geometrical considerations it is clear that the true depth value is always as-
sociated to the shortest returned path that corresponds to the direct component, and
therefore depth information can be easily extracted from the transient scene. The ac-
quisition of a real dataset with transient ground truth however is a quite complex and
time consuming task; since no publicly available datasets of the kind exist, we had to
rely on synthetic data.

For the training of the approach we relied on the FLAT synthetic dataset introduced
in [45], which contains transient data. At first, we applied a depth equalization proced-
ure, in order to obtain a final distribution that is as uniform as possible. Then, the data
was processed as discussed in Section 5.1.1 with the addition of a clipping operation
for the intensity of the second peak, whose maximum value could be hy < 0.8h, with
hy and h the intensity of the two peaks. Finally, the input iToF values were computed
from the compressed transient information using the measurement model described
in Equation (3.3) with modulation frequencies of 20,50 and 60 MHz. After the pro-
cessing the data was then split into a training and a validation set, made of 211200 and
2064 3 x 3 patches respectively. Note that no test set was built at this phase since the
testing will be performed on real images.

The final performance in the depth estimation provided by the proposed approach is
evaluated on real-world scenes where no transient data is given. Since our objective
is MPI denoising, transient data is not required at the testing phase, all that is needed
are the raw measurements at the desired modulation frequencies and the corresponding
ground truth depth maps. From the predictions of our dataset, we can focus on the first
peak and use that to estimate the depth value of each pixel. The real-world datasets on
which we carry out our analysis are the three real ToF datasets S3, Sy, S5 provided by
Agresti et al. in the works [21, 39]. All three datasets have been captured in a laboratory

environment without external illumination using the SoftKinetic ToF camera DS541
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at multiple modulation frequencies. For each scene they provide unwrapped phase,
amplitude and intensity, as well as depth ground truth. The datasets are in the depth
range between 58 and 203 cm.

In Table 5.1 we can see the resolution, number of and acquired modulation frequencies
of the three datasets. In particular, dataset S5 will be used for validation while S, and

Dataset  Type Depth GT Trans. GT No. Scenes Spatial Res. Modulation frequencies

Ss Real yes no 8 320 x 239 10,20,30,40,50 and 60 MHz
Sy Real yes no 8 320 x 239 20,50 and 60 MHz
S5 (box) Real yes no 8 320 x 239 10,20,30,40,50 and 60 MHz

Table 5.1: Properties of the real-world datasets S5, .S, and S5.

S5 will be our test sets.

5.3 Direct-Global Subdivision Network

The second method is made of a light and modular architecture. It exploits the subdivi-
sion between direct and global components of transient vectors to reach state-of-the-art
performance both for MPI removal and transient reconstruction. We start by describ-
ing the idea behind it and then go in detail through each of the three components of the
architecture: the Spatial Feature Extractor, the Direct Phasor Estimator and the Transi-
ent Reconstruction Module. Referring to Figure 5.1, the first two models correspond to
the Predictive model, while the Backscattering model is the Transient Reconstruction
Model. In the end of the section, we introduce the losses employed for training.

5.3.1 Direct-Global Subdivision

Let’s begin by considering the structure of a common transient vector (see the example
in Figure 3.1); it is quite clear that it is composed of two quite distinct parts: one cor-
responding to the first peak, the other instead incorporating all the other incoming light
rays. From now on we will denote the direct component composed by the first peak
alone, as the vector x4, while the global component, made of all the other reflections,

will be denoted by x,. We can now consider Equation (3.3) and write
v=0x = ®(xq+ x4) = vg + vy, (5.9)
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where we exploited the linearity of the model to extract the v4 and v, vectors. What
follows from this derivation is that the subdivision of the transient vector into direct and
global components can be translated also onto the iToF domain. In practice, we now
have a vector vy which corresponds to ideal iToF measurements, the ones that would
be produced by the direct peak alone, while v, are the measurements corresponding to

all reflections but the first.

( O ANNANA ) Transient Reconstruction Module (T)
OSpqtiégl Direct Phasor
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Figure 5.4: High level structure of our training architecture

5.3.2 Deep Learning Architecture

The different modules of our network are shown in Figure 5.4. As input the model
takes in the real and imaginary components of the raw iToF measurements v at differ-
ent modulation frequencies. First, they go through the Spatial Feature Extractor, which
exploits the spatial information to produce an intermediate representation of the data
(it proved to be very useful for handling zero-mean noise). Its output is then processed
by the Direct Phasor Estimator, that predicts the iToF measurements corresponding
to the direct component, which, subtracted from the original input, gives us also the
iToF measurements corresponding to the global component. The two predictions are in
the end fed to the Transient Reconstruction Module that has the task of reconstructing
the whole transient vector. As we will see, this module is further split into the Dir-
ect Model which is a deterministic function computing the direct component, and the

Global Model that instead consists of a deep learning architecture predicting the global
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Figure 5.5: Representation of the Spatial Feature Extractor module for 3 input frequencies
and an input patch size of 11 x 11. The number of feature maps ny, is equal to 32 for all
experiments.
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Figure 5.6: Representation of the Direct Phasor Estimator module (upper part) for 3 input
frequencies. The number of feature maps n;, is equal to 8 when both the S and D models are
used, and to 32 when the D model is employed alone.

component. For the construction of the learning model we used as a starting point
the network introduced in [22], where the raw iToF input was directly mapped into
an oversimplified encoded version of a transient vector, consisting of two peaks. We
kept a narrow receptive field claiming that the information in the transient dimension
is enough for MPI correction, but differently from [22], we introduce an intermediate
training target between the input v and the transient prediction X (i.e., the subdivision
into direct and global components). Moreover, we introduce a more complex and real-
istic model for the backscattering vector itself.

SPATIAL FEATURE EXTRACTOR (S)

The main task of this module is providing an encoded version of spatial information to
the following stages. As we will see, the Direct Phasor Estimator has a very narrow
receptive field (i.e. 3 x 3), which limits its capability of managing noise sources such

as shot noise. The Spatial Feature Extractor is a fully convolutional architecture with
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a 9 x 9 receptive field. It consists of 4 layers, each with n;, = 32 feature maps and
a residual connection links the central 3 x 3 part of the input to the output. A visual

representation of this network can be found in Figure 5.5.

DIRECT PHASOR ESTIMATOR (D)

This module estimates vq, the direct component of the raw phasor. The raw measure-
ments coming from the Spatial Feature Extractor are fed to two branches with recept-
ive field 3 x 3 and 1 x 1 respectively, whose outputs are then concatenated and used
for the prediction of v4. More in detail, as depicted in Figure 5.6, it takes in input
both a 3 x 3 patch and its central pixel; they go through a convolutional layer with an
output of size 1 X 1 and are then concatenated. The information is then processed by
two other convolutional layers before producing the v4 prediction. Each convolutional
layer has ny, feature maps and there is a residual connection between input and out-
put. From the prediction of v4 we then compute the corresponding depth for each of
the modulation frequencies, using the smallest frequency for solving ambiguity range
uncertainty on the higher ones. The output depth maps are then passed through a bilat-
eral filter and the final depth prediction will be the pixel-wise minimum of the output
depths. The reason for this is that the MPI, that is the major cause of error, leads to an
overestimation of the distance. Considering Equation (5.9) we can then retrieve also
the 1ToF measurements corresponding to the global component by simply subtracting
the direct component, i.e., ¥4 = v — V4. Notice that this module is tackling the MPI
removal task, as if the direct-global subdivision is successful, we are able to recover an
MPI-free estimate of our input from the ¥4 component. The number of feature maps is
set to ny, = 8 when the S and D models are used together and to ny, = 32 when the

D model is used alone.

TRANSIENT RECONSTRUCTION MODULE (T)

Retrieving the transient information from iToF leads to some serious challenges, not
only linked to the difficulty of the task itself, but also to the dimensionality of our
output. As remarked in Chapter 3, we want to map the raw iToF measurements, that
correspond to a handful of values, into a vector with thousands of entries. The com-
plexity of the matter makes an encoding of the ground truth a necessity. Since the one

proposed in [22] is way too simplistic, and the one by Liang et al. [57] computationally
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heavy, we propose a novel approximation of the transient vector x, with just 6 para-
meters, 2 needed for the direct component, and the other 4 for the global. Therefore,
the Transient Reconstruction Module is further split into two components, the Direct
Model that takes care of the reconstruction of the direct component and the Global

Model, which instead predicts the global component.

DIRECT MODEL Similarly to [22], each direct component x4 gets encoded by its
magnitude F,; and time position 4. As a matter of fact, no learnable parameters are
needed for the prediction of the direct component x4, since the time position ¢4 is dir-
ectly proportional to the phase ¢, through Equation (2.9), and can be retrieved directly
from v4. At the same time, the magnitude of the first peak F is strictly related to the
amplitude of the raw iToF measurements of the direct component; this is true since
in the case of a single peak, the magnitude is the value of the peak itself, while the

amplitude A, can be written as follows,

1
Ay = SV Va,r> + Va,s°
T 2 T 2
(Z qm,ta;t) + (Z %,ta;t) = (5.10)
t=0

t=0

DO | —

1
- 5\/(¢§R7tdxtd)2 + ((I)Sﬂfdxtdf =
1 1

—F
9 ds

= —xtd =

2

where we used the Pythagorean identity and with the fact that only one element of the
sum is non-zero (the one at time index t4). vq % and vq4,s are the real and imaginary

components following the phasor notation in Equation (2.10).

GLOBAL MODEL For the encoding of &, we chose instead the following parametric
function &4(t) inspired by the Weibull distribution [58]

k
Z,(t) =a(t —b)* 'exp (—?) ) (5.11)

where ¢ ranges from 0 to 7' (the maximum acceptable travel time), a takes care of the
scale, b of the shift, and k and A of the shape. For the choice of this function we took
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Figure 5.7: Representation of the Global Model. The number of feature maps ny, has been
set to 32 for all experiments.

inspiration from the topic of multipath interference related to radio signals, where dis-
tributions such as the Rayleigh or the Weibull are usually employed [58]. In the end we
decided to employ the Weibull distribution since it is a generalization of the Rayleigh
and shows a good resemblance with common shapes of transient vectors. Predicting
the parameters of the global component &, expressed in Equation (5.11) from v, and
Vg 1s a quite complex task, which is handled by an additional deep learning architec-
ture. The Global Model is composed of 4 parallel branches with a 1 x 1 receptive
field, each predicting one of the 4 parameters of the parametric function. Each branch
is composed of a stack of 2 convolutional layers with a total of 32 feature maps. It
takes v, and v4 in input, estimates from it the 4 parameters of the function described
in Equation (5.11), and finally compares it to the ground truth 4. The Global Model
can be seen in Figure 5.7. The proposed model for global prediction is a clear improve-
ment w.r.t. the competitors as the Weibull function provides a much better fitting of a
distribution such as the one in Figure 3.1 than the single peak prediction of [22], which
compacts all the information in a single bin. Combining together the outputs of the
Direct Model and of the Global Model, we obtain an estimate of the transient vector.

Notice that while the proposed reconstruction of the global component of light is more
advanced than the ones of previous works, still it only estimates a single Weibull func-
tion and therefore assumes any secondary reflection to come from a single surface.

While this is a quite coarse simplification, it can still provide a sufficiently good recon-
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struction for simple tasks such as tracking NLOS objects or material estimation.

5.3.3 Training Targets

The losses used for training our architecture are the Mean Absolute Error (MAE), and
the Earth Mover’s Distance (EMD) [59]. The Direct Phasor Estimator uses as guid-
ance a simple MAE on the target values, while the EMD guides the training of the
Global Model. The ground truth v, can only be retrieved from the transient informa-
tion and for this reason it is not available when using common iToF datasets. For this

reason, we employed two different training methodologies according to the input data:

1. When the transient data is available we can directly compute the loss between
the ground truth v, and our prediction v4 as

Lyiag,, = El||lva — vall,]- (5.12)

2. When instead the dataset only offers the depth ground truth, we are unable to
recover vq4, but we are able to compute the ground truth phase delay ¢4 follow-
ing Equation (2.9). From the network prediction v4 we can thus compute the
predicted ¢4 through an arctangent operation, and finally compute the loss as:

Larar,, = Ellled— Gl (5.13)

Furthermore, if the training dataset instead contains not only the depth ground truth,
but also images both with and without zero-mean noise, it is possible to extend the in-
terpretability of the architecture, by pinning the output of the Spatial Feature Extractor
with an additional loss. The Spatial Feature Extractor would therefore be dealing only
with zero-mean noise, while the Direct Phasor Estimator would take care exclusively
of MPI. The output of the Global model is guided instead by the EMD, which we had
already employed in [22], and is defined as

Leyp =E [HXQ - X4

J , (5.14)

where X, and X'g are the cumulative sums of x, and x, respectively. What this
distance measure captures is the dissimilarity between the two distributions, i.e., the

minimum amount of work needed to convert one into the other [59].
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The performance of the different losses and the modularity of the approach will be
thoroughly investigated in Section 5.4.

5.4 Results

In this Section we are going to present some experimental results regarding the two
previously introduced approaches. We will compare the two against the previous state-
of-the-art and against each other, and finally show some ablation studies specific to

each approach.

5.4.1 Training Details

The Two-Peaks Network was trained on the FLAT dataset processed as described in
Section 5.2.5 using the Adam optimization algorithm. The entire dataset was divided
into batches of 1024 samples each, and the gradient at each iteration was computed on
a single batch. We run the training for a total number of £ = 2000 epochs on a Nvidia
GeForce GTX 1060 GPU. The overall time required was around 6 hours. To account
for the noise always present in any real-world ToF measurements, at each iteration
a gaussian zero-mean random noise is added to the real and imaginary parts of the
simulated raw ToF data:

v=®x+n n ~ N(0,02) (5.15)

The noise is independent and identically distributed across all the pixels in the image
and across all the acquired phasors at different modulation frequencies. Changing the
noise at each iteration helps avoiding overfitting and acts as a form of regularization.
The network never sees the same exact input data more than once. Moreover, it helps
the network in learning to denoise the input data, giving more importance to the more
stable relationships between the acquired phasors and less to small fluctuations around
the average. In Section 5.4.4 we will show this more in detail; for all other experiments,
unless otherwise stated, we will use noise with a standard deviation ¢, = 0.02. The
choice of this value was performed as mentioned in Section 5.4.4.

The best set of weights are chosen according to the network performance on the real
dataset S35, which we employ as a realistic validation set. The testing is then carried

out from a qualitative and quantitative point of view on the two real datasets S; and
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S5 provided by Agresti et al. [21, 39]. As anticipated in Section 5.2.5, the evaluations
focus on the degree of MPI correction, while a few comparisons concerning the recon-
struction of the transient component are reported in Section 5.4.4. The metric used to
quantify the error in the depth domain is the Mean Absolute Error (MAE): the lower
the better.

The Direct-Global Separation Network has been trained using the S; and Walls data-
sets. From the first one we took the original training set of 40 images, while from the
Walls dataset we randomly picked 134 images. The validation set consists instead of
the 8 images from the real dataset Ss. In particular, the training data has been cut in
patches of size 11 x 11, randomly chosen inside the images, while the validation set
has been kept at full resolution. The models have been developed in Tensorflow 2.1,
the trainings of our architecture have been performed on an NVIDIA 2080 Ti GPU,
with ADAM as optimizer with a learning rate of 10~* and a batch size of 2048. We
will focus our evaluation for MPI correction on two models: the first one comprised
of the first two modules introduced in Section 5.3 which we will abbreviate with SD,
and the second a lighter architecture without the Spatial Feature Extractor. In this case
the number of feature maps of the Direct Phasor Estimator was changed from 8 to 32
to provide the network with additional learning parameters. We will abbreviate this
second model with D. In all cases, each input patch has been normalized by the mean

amplitude of its 20 MHz component to help generalizing on real data.

5.4.2 Results on MPI Correction

We will now compare the two approaches with some of the best performing MPI correc-
tion methods. The comparison will be made with SRA [19], an algorithmic approach,
with DeepToF [38], one of the first deep learning approaches for MPI correction, and
with the approach from Agresti et al. [21], together with the subsequent domain adapt-
ation approaches in-DA, feat-DA and out-DA proposed in [47].

In Table 5.2 we show the overall comparison between the cited approaches and the
two proposed architectures. The first two columns show the MAE on the two real data-
sets Sy and S5, while the last one shows the network complexity of each approach; SRA
has no entry as it isn’t deep learning based. Regarding our approaches, the parameters
of the Transient Reconstruction Network were not included in the total amount as it

is not needed for MPI correction. Moreover, note that while the SD model has been
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Figure 5.8: Network prediction for selected pixels in an image. The dashed lines correspond to
the depth ground truth values while the red plots indicate the predicted backscattering vectors.
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Figure 5.9: Qualitative comparison between some of the best approaches for MPI correction.
The first two images come from the S, dataset, while the other two from S;. All the images
display the reconstruction error w.r.t. the ground truth, where green means good reconstruction
and red an overestimation.
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Approach Sy Ss # of
MAE Relative MAE Relative param.

[em|  error  [cm]  error
Input (60 MHz) 5.43 - 3.62 - -
Input (20 MHz) 7.98 - 5.06 - -
SRA [55] 5.11 94.1% 3.37  93.1% -
DeepToF [38] 513  70.5%* 6.68  132%* 330k
+ calibration 5.46  75%*  3.36  66.4%* 330k
Agresti et al. [21] 3.19  58.7% 222 60.5% 150k
+in-DA [47] 2.40 44 .2% 1.74  48.1% 150k
+feat-DA [47] 2.37  43.6% 1.66  45.8% 150k
+output-DA [47] 2.31 42 5% 1.64 45.3% 150k
Two-Peaks Network [22]
3 x 3 receptive field 279  514% 227  62.7% 22k
+ bilateral filtering 2.60 47.9% 2.12  58.6% 22k
1 x 1 receptive field 3.43  632% 252  69.6% 14k
+ bilateral filtering 299 55.0% 188 51.9% 14k
Direct-Global Network [23]
D (Walls) 2.46 45.3% 1.98 54.7% 3k
D (Walls) 2.40 44 2% 1.88 51.9% 25k
SD (Walls+S1) 206 379% 1.87 51.7% 23k

Table 5.2: Quantitative comparison between several state-of-the-art MPI correction algorithms
on the real datasets S, and S5. The evaluation metrics are the MAE and the relative error
compared to the highest input frequency. * is compared to the 20 MHz input as it is single
frequency. The best performing methods are highlighted in bold, while the best results for
each of the two proposed architectures are underlined. The complexity of each method is also
displayed.

trained on both the .S; and Walls datasets, D has been trained on Walls alone, since as
we will see it is not able to deal with shot noise due to its very narrow receptive field.
The real datasets present a clear challenge due to the domain shift between synthetic
and real data. In practice, the resemblance between training and test data is strictly
limited by the accuracy of the simulation, which can mimic a real scenario only up to
a certain extent.

On real-world scenes the Two-Peaks Network approach achieves performance compar-
able to the other state-of-the-art algorithms. It produces an error of 2.60 cm on Sy

and an error of 2.12 cm on S5, performing better than most competing methods, with
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Approach S1 # of
[em]  parameters

Single freq. (60 MHz) 16.7 -
SRA [55] 15.0 -
DeepToF [38] + calibration  26.1 330k
Agresti et al. [21] 7.49 150k
Two-Peaks Network [22]

trained on FLAT dataset 30.5 22k
trained on the Walls dataset  20.0 22k
Direct-Global Network [23]

D 12.2 3k
SD 6.17 23k

Table 5.3: Quantitative comparison between several state-of-the-art MPI correction algorithms
on the test set of the synthetic dataset S;. The evaluation metric is the MAE. The complexity
of each method is also displayed.

the exception of the unsupervised domain adaptation technique of Agresti et al. [39]
which produces test errors of respectively 2.36 and 1.66 cm. We stress the fact that the
unsupervised domain adaptation technique has been adapted using unsupervised real
data similar to the one in S, and S5, while our approach relies only on a completely
different synthetic training dataset. It is remarkable to notice that our method clearly
outperforms the SRA method [55], which is the one adopting the most similar setup to
ours. We both acquire data at three modulation frequencies and use a physical model
to describe the MPI effect under the specular reflections assumption. The MAEs on
datasets S, and S5 obtained by SRA are respectively 5.11 and 3.37 cm. Even if in the
case of Two-Peaks Network we are considering only two reflections, experimental res-
ults show good MPI compensation capabilities, confirming that many real-world cases
can be well approximated by a two components reflection model. This is due to the
fact that, since the light power decays with the square of the distance, higher order re-
flections reaching the camera are very dim. Moreover, real lambertian surfaces present
always a fraction of specular reflections and thus our assumption in first approximation
holds also for those surfaces. From Figure 5.9 it is possible to see how this approach
removes most of the MPI on wall surfaces and reduces it in proximity of edges. The
large amount of MPI on the floor surfaces is also consistently reduced even if some

depth reconstruction errors are still present. These areas are probably subject to more
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complex reflection patterns and are therefore more error prone. Looking at the network
output at some significant points (Figure 5.8), it is evident that it has learnt to discrim-
inate between MPI-free and MPI-affected pixels, introducting the global component
only when it is necessary to compensate for the MPI effect and providing a more reli-
able depth estimation.

The Direct-Global Separation Network instead, not only clearly outperforms both the
architecture proposed in [21] and the Two-Peaks Network, but also beats the results
from [47] on Sy, while falling shortly behind on S5, all by using just % of the para-
meters from [47]. This is particularly striking as differently from [47] we only rely on
synthetic data for our prediction. Given this, we have clear reasons to expect an even
better performance by using some unsupervised domain adaptation techniques as was
done in [47]. Another interesting outcome is the fact that the D module alone, shows
quite competitive results w.r.t. SD and [47] and at the same time outperforms other
architectures such as [21] and the Two-Peaks Network. The D model is extremely light,
with just around 3k learnable parameters, but still gets close to state-of-the-art results.
A second version of the D model with 25k parameters has also been trained but the

improvement is not significant w.r.t. the lighter version.

Figure 5.9 shows a qualitative comparison on a few images from the S, and Sj
datasets. The Two-Peaks Network clearly outperforms the DeepToF approach, show-
ing MPI correction capabilities close to those of [47] on difficult surfaces such as the
floors or tilted surfaces. It is also possible to notice that the remaining artefacts show
a salt and pepper kind of behaviour, which is due to the very small receptive field of
the network. The limitations of this small receptive field can be seen also from Table
5.2, where the introduction of bilateral filtering significantly improves the performance
of the network. The Direct-Global Separation Network we propose shows a clear im-
provement on the competitors, providing a good reconstruction also on regions highly
corrupted by MPI such as the floor and other steeply sloped scene elements. As an
example we can consider the first row of Figure 5.9, where not only the floor shows
a better reconstruction, but the MPI artefacts on the wall on the right are almost com-
pletely corrected. Similar considerations can be made on the last image row, where
our approach is the only one able to clear the right face of the box on the left side, a
particularly difficult surface due to its tilt.

In Table 5.3 we report instead the comparison made on the S; dataset. This is inter-

esting due to the abundant presence of shot noise which can hinder the performance
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Figure 5.10: Qualitative results on a particularly noisy image from the test set of the iToF2dToF
dataset [1]. On the left side the single frequency reconstruction at 100 MHz, on the right side
the network prediction.

of some approaches. The problem is that, while MPI correction can be performed us-
ing only information along the transient dimension, that is not possible for shot noise
removal. Networks such as the Two-Peaks Network and the D module of the Direct-
Global Separation Network have a receptive field of size 3 x 3, which hampers the
performance on S;. We tested the Two-Peaks Network once training it on the FLAT
dataset [45], and then on the Walls dataset (training it on S; is not possible due to
the lack of transient information). In both cases, as expected, the performance is not
satisfactory. Similar conclusions can be drawn when training the D model alone. Its
performance is better than that of the Two-Peaks Network as D can also be trained on
S directly, but still far from optimal. In this case, as shown in the table, the addition
of the § module was crucial, as the gap between SD and D is much wider than before.
At the same time however, with the SD architecture we are still able to outperform
approaches relying on much more complex networks, and in particular, the one from
Agresti et al. [21] (that introduced the dataset S7), by more than 1 cm. To conclude,
we will now see how our the Direct-Global Separation Network fares in the presence
of extremely high amounts of shot noise. To this aim, we trained our DS architecture
on the iToF2dToF dataset [1], which, as described in Section 4, has a very high amount
of shot noise. To put things into perspective, the single frequency reconstruction at 100
MHz of the test set from the measurements with shot noise leads to a MAE of 7.24 cm,
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while the same computation done on images with only MPI, gives an error of 1.45 cm,
meaning that MPI accounts only for 20% of the total reconstruction error.

Following the setup from [1], we used two input frequencies, 20 and 100 MHz,
masked the edges using a Canny edge detector during testing and did not consider the
highest 1% of errors for the final computation. Our approach shows some remarkable
denoising capabilities even in this scenario as it can be seen in Figure 5.10. Quantitat-
ively, our approach reaches a test error of 1.97 cm, removing around 75% of the noise,
that is behind the performances of iToF2dToF, which removes around 82% of the noise,
but this is to be expected considering the very different scenario. Our approach consists
of a very light architecture with extremely good MPI denoising capabilities, which is
also able to deal with relatively high amount of shot noise, but the removal of zero-
mean noise sources is not its primary objective, while iToF2dToF mostly focuses on
this task. Moreover, the difference in complexity between the two architectures is strik-
ing: iToF2dToF needs almost two million parameters, while our network is still able to

remove three quarters of the total noise using 100 times less parameters.

5.4.3 Transient Reconstruction

We will now provide some qualitative results on the performance of the Transient Re-
construction Module of the Direct-Global Separation Network, highlighting its pros
and current limitations, and then make a qualitative comparison with iToF2dToF [1],
the only other data-driven model that tries to reconstruct transient information. In
Figure 5.11 we can see a comparison between the transient ground truth and the recon-
struction of our network for 4 pixels from our transient dataset. On the top row we
show a pair of good examples, where both the direct and the global components are
captured quite well; on the bottom row instead we can see some of the limitations of
our model. The direct component still shows a good reconstruction, while the global
is more challenging to be reconstructed. The y axis has been logarithmically scaled to
show both the direct and global components. In Figure 5.12 we show the performance
of our approach on two pixels from the iToF2dToF dataset. Since the direct component
of the transient pixel is very spread in this case, and our method only predicts a single
peak, we show also an edited version of the ground truth for a better comparison. We
substituted the original direct component with a single peak whose magnitude corres-

ponds to the sum of all elements of the original direct, and whose position is taken from
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Figure 5.11: Qualitative examples showing the transient reconstruction capabilities of our
approach. On the top row we show a pair of good examples, while on the bottom one a pair of

less accurate ones. All the plots have a logarithmic scaling.
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Figure 5.12: Qualitative comparison on two pixels from the iToF2dToF dataset. The direct
ground truth has been substituted by a peak whose magnitude consists of the sum of the
whole direct, and its position of the weighted average of the direct elements.
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Figure 5.13: Training curves obtained running the network optimization for noise levels
o, ={0.00;0.01;0.02;0.03} on training and validation sets. The metrics monitored are, from
left to right, the measurement error, the reconstruction error, the overall error and the MAE on
the depth estimated using the predicted output backscattering vector on synthetic data.

the weighted sum of all direct elements’ positions, with each weight consisting of the
element value itself. We can see that our method shows promising performances also
on a previously unseen dataset, capturing very precisely the direct component, and re-
constructing reasonably well the global. It is also clear that our model proposes a much
more convincing reconstruction w.r.t. that of iToF2dToF for both components, as the

competitor has a much worse estimate, especially for the global component.

5.4.4 Ablation Studies for the Two-Peaks Network

In this section we present some ablation studies to evaluate the impact of some of
the employed design choices. In particular we focus on the addition of noise during
training, on the exploitation of the spatial correlation between pixels and finally on the
choice of the loss function.

Firstly, we will consider the addition of noise to the simulations. As we have men-
tioned, there is a loss in performance when switching from synthetic to realistic data,
due to the different characteristics of the two sets. The addition of noise helps the gen-
eralization capabilities of the network and reduces the gap. We repeated the training
multiple times, varying the standard deviation of the noise o, added to the input data.
At each epoch we monitored the behaviour of measurement error L,,, reconstruction
error £, and overall error £ = L,,, + L,, as well as the MAE on the depth estimated
using the predicted output backscattering vector. Figure 5.13 reports the behaviour of
the considered metrics during the optimization on both the synthetic training and valid-

ation sets. As expected, the higher the noise level, the larger the errors of the predictive
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Figure 5.14: Performance of a network trained on synthetic data with or without noise on the
S3 dataset.

Oy 0.00 0.01 0.02 003 Windowsize 1x1 3x3 5x5b 7Tx7

MAE [cm] 4.02 2.65 2.58 2.83 MAE [cm] 272 258 261 280

Table 5.4: MAE on the S; dataset for differentTable 5.5: MAE on the S; dataset for different
amounts of noise. Window size is 3 x 3. window sizes. Noise level is o, = 0.02.

model will be for the synthetic data. More interesting is instead the behaviour on real
data: in Figure 5.14a we show the performance of the network trained without noise
on the dataset S3 compared to a direct estimation of the depth from the component at
60 MHz. It is clear that after a promising start, the network performance starts quickly
degrading as it better learns the synthetic dataset; as the trend goes on we quickly get
to the point where its performance gets worse with respect even to a rough estimation
based on a single frequency component. The opposite trend is instead shown in Figure
5.14b, where we display the network performance over the S5 dataset after training
the model with a noise std of o, = 0.02. The network quickly outperforms the naive
reconstruction based on a single modulation frequency while showing an overall better
behaviour.

In Table 5.4, we show the overall best performance of our network on the S5 dataset
for different noise levels. While a small amount of noise helps with the generalization,
if it gets too high we instead make the task too hard to solve. Experimentally, a noise

std of 0, = 0.02 turned out to be the best compromise as it can be seen in the table.
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Another line of investigation is the relevance of the spatial correlation in the final
prediction. The idea is that the network should take advantage also from the local in-
formation coming from a small neighbourhood around each pixel to produce a more
reliable result. To this end, we trained our network for increasing kernel sizes and
evaluated its performance on the real datasets. In Table 5.5 we can see that we have
the best results for a window size of 3 x 3 pixels around the central one, while they
get worse for increasing sizes. Focusing on the network trained without spatial correla-
tion (1 x 1 windows) the average MAEs obtained over S, and S5 are respectively 3.43
and 2.52 cm, which turn into 2.99 and 1.88 cm after some bilateral filtering. Experi-
mental results confirm our intuition. In the noise-free case the two networks converge
to very similar results, while in the case of noise the spatial correlation helps providing
a smoother prediction making the network more resilient against noise. Figure 5.15a
reports the depth error maps we get on dataset S5 without exploiting the spatial correl-
ation.

In Figure 5.15b we show the results obtained on three real scenes for values of P = 1, 2
and 3 (corresponding to windows of size 3 X 3,5 x 5 and 7 x 7). It is quite clear how
a bigger window size generates some strong artifacts and leads to over-correcting MPI.
One more time we stress the importance of linking the final prediction for each pixel
to the corresponding input pixel since it is the one which carries the most information,

using only a small amount of spatial correlation to refine the estimation.

The choice of a proper loss function is a crucial point in the machine learning
pipeline. As already stated, some problems arise with the reconstruction loss func-
tion L, since we are dealing with highly sparse vectors and in this case the gradient
likely vanishes. In our study we evaluated many different loss function models in order
to identify the best suitable one for our task. We started from the common MAE and
MSE but they produce an all-zero output backscattering vector in most of the cases.
Intuitively, looking at the behaviour of these loss functions in Figure 5.16 it is evid-
ent that applying the gradient descent algorithm the solution easily gets stuck on bad
local minima. Then we shifted to cross-correlation based loss functions obtaining a
significant improvement in the final prediction but they still are subjected to numerical
instabilities during the optimization phase. The best results came from the weighted
Earth Mover Distance introduced in Section 5.2.3 which exhibits good convergence
properties and turns out to be able to drive the algorithm towards the optimal solution

in a smooth fashion.
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Figure 5.15: (a) Depth error maps on dataset S3 obtained without spatial correlation. (b)
Predicted depth error maps obtained with increasing kernel size on three real scenes, from left
to right respectively P=1,2 and 3.
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Figure 5.16: Behaviour of MAE, MSE and EMD loss functions varying amplitude A and posi-
tion T' of the predicted direct component.
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As a final study, we decided to investigate the goodness of the prediction of our net-
work for the intensity and time components of the two predicted peaks (corresponding
to direct and global component). Since the S3, S and S5 dataset do not have transient
information, we relied on the synthetic validation dataset we introduced in Section 4
in order to compare our approach to [55], which is the only one among the compared
approaches that estimates the second peak. Comparing the accuracy of the reconstruc-
tion of the global component is quite straightforward: from Table 5.2 we can retrieve
the depth information (which is linked to the time displacement) and we can see that
our method reaches significantly better results (2.60 and 2.12 cm on the S; and Ss
datasets respectively vs. 5.11 and 3.37 of [55]), while concerning the intensity values
of the first peak we obtained a MAE of 0.0783 for our method against 0.1905 for SRA.
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Training # of images 51 Sy S

dataset S1 Walls  [em] [em] [cm]
S1 (pa) 40 - 593 365 2.33
Walls (¢ q) - 45 192 246 2.39
Walls (@a) - 134 184 234 240
Walls (vaq) - 134 122 2.26 2.44

S1 (pa) + Walls (pgq) 40 134 6.99 226 204
S1 (pa) + Walls (vg) 40 134 6.17 2.06 1.87

Table 5.6: Quantitative comparison of the performance of different training datasets on the syn-
thetic dataset S; and on the real datasets S, and S5 for different training datasets and losses.
The evaluation metric is the MAE. All trainings have been performed on the SD network.

For the second peak, since it is not always present, we considered the capability of the
approaches to correctly detect its presence with the well known precision-recall meas-
ures. The precision (number of pixels correctly identified as having a second peak over
the total amount that have it), is 0.945 for our approach against 1 for SRA. However,
this results is due to the fact that SRA overestimates the presence of the second peak as
shown by the recall measure (number of pixels correctly identified as having a second
peak divided by the total amount of peaks identified), with a result of 0.839 for our
approach against 0.675 for SRA. Our approach also better estimates the intensity of
the second peak with a MAE of 0.0702 against 0.0944 of SRA [55].

5.4.5 Ablation Studies for the Direct-Global Separation Network

As follows, we show some ablation studies regarding the Direct-Global Separation
Network which explain the choices behind our network architecture. Among other
variations, we study how the training datasets, the receptive field and the number of

input frequencies influence the final performance.

TRAINING DATASET AND NUMBER OF FREQUENCIES The prediction quality of any
data-driven technique heavily depends on the goodness of the dataset used to train it
in the first place. For this reason, we decided to test three different scenarios: in
the first one we trained our SD model on the S; dataset alone, in the second one the
Walls dataset was the only input of the network, and in the final one we used both for
supervision, as we did for the results in the previous section. In order to make the

comparison fair, we also decided to perform different trainings on the Walls dataset
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Input frequencies S dataset Sy dataset S5 dataset

[em) [em)] [em)
Single frequency 50 MHz 18.0 5.31 3.82
20,50 MHz 6.56 3.44 2.31
20, 50,60 MHz 6.17 2.06 1.87

Table 5.7: Quantitative comparison of the performance of a different number training frequen-
cies on the synthetic dataset S; and on the real datasets S; and S;. The evaluation metric is
the MAE. The first row shows the baseline error at 50 MHz without any processing.

supervising either on vg or on ¢4 (i.e., the phase of the direct component). Finally, as
the two datasets have a different size, we also added one entry where our method has
been trained on a reduced version of our dataset (45 training images instead of 134).
The outcome of this study is shown in Table 5.6. Considering first the results on S;, we
can see that the training performed on 5 itself leads to the best performance, followed
at a short distance by using both datasets; training on Walls alone instead falls behind by
a large margin. This is not surprising as the images from Walls have no shot noise, thus
explaining the poor performance. What’s more remarkable instead is the prediction on
real data, as the .S, dataset yields a significantly poorer performance when compared to
the training on Walls. The dissimilarity between the two datasets is striking: the former
i1s made of much more complex scenes, shows a wide range of textures and has a good
amount of simulated noise; the latter instead focuses on extremely simple structures, no
changes in texture and its only noise source is MPI. What seems to be happening is that
the added complexity of the dataset and some issues it presents (some scene elements
of the S, dataset present very unreliable information), make the prediction harder for
the network. Moreover, our approach relies mostly on the information in the transient
direction, making in this way the complex structures from S; less relevant than the
cleaner phasor data from Walls. In the end, combining the two datasets leads to the
best overall solution, with a competitive performance on S, and the best prediction on
both real datasets. It is also useful to point out that using v4 for supervision improves
on training only on the phase, showing how a transient dataset can be useful for MPI

correction.

Another point of interest concerns the ability of the model in dealing with a different
number of input frequencies. In particular, we decided to train our model with two fre-

quencies, 20 and 50 MHz, and see how it coped in comparison to the three frequencies
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Figure 5.17: Comparison between the Direct-Global Separation Network and the Two-Peaks
Network

Receptive field S; dataset S dataset S5 dataset

[em] [em] [em]

7T 8.08 2.44 1.82
11 x 11 6.17 2.06 1.87
15 x 15 6.35 2.00 2.10
21 x 21 8.19 2.42 2.45

Table 5.8: Quantitative comparison of the performance of different receptive fields for the SD
network on the synthetic dataset S; and on the real datasets S, and S5. The evaluation metric
is the MAE.

input. In Table 5.7 we can see that the lack of the 60 MHz component (depth estimated
from higher frequencies has typically a smaller error) has indeed a toll on the over-
all performance, but the model is still able to clean a noteworthy amount of MPI. To
put things into perspective, it is enough to look at Table 5.6, where we can see how a
2 frequencies training on Walls still provides a better prediction than a 3 frequencies
training on S; on the real datasets.

RECEPTIVE FIELD AND NETWORK COMPLEXITY As we have seen in Table 5.2,
there is no clear correlation between the number of parameters of the architecture and
its actual performance. This is due to multiple factors, such as the high risk of overfit-
ting due to the domain difference between training and test data, the relatively small
sizes of the datasets (even the Walls one only comprises around 200 images) and the
main focus of the model itself, which can be centered on the use of spatial features

(e.g. [21, 39]) or on the transient dimension ([22] and ours). In our case, we have to
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consider an additional factor which are the characteristics of our training datasets. In
particular, while a relatively large receptive field would be better in order to deal with
shot noise, we cannot enlarge it too much as our main tool, the Walls dataset, is made
mostly of flat surfaces and there is a risk of overfitting its structure. Learning too much
from this dataset geometry, as it can be seen in Table 5.8, decreases the performance of
the model. From the Table we can see that the overall best performance on the datasets
arises from a receptive field of either 11 x 11 or 15 x 15, while it clearly degrades for
smaller or bigger sizes. We decided to employ a receptive field of 11 x 11 due to its

slightly better performance and the reduced network complexity.

5.5 Conclusions

In these chapters we have introduced a new transient dataset and two novel networks
for MPI denoising and transient reconstruction. The Walls dataset is composed of
simple structures, which however represent well enough common cases of MPI. The
first method, the Two-Peaks Network has been built to handle high dimensional data.
To do so, we split the problem in two parts: a predictive model and a backscattering
model which encodes the transient information into two peaks. The network is light
and reaches close to state-of-the-art performance training only on synthetic data. The
Direct-Global Subdivision Network instead is modular: the Spatial Feature Extractor
1s deals with zero mean errors, the Direct Phasor Estimator deals with MPI and the
Transient Reconstruction Module reconstructs the transient information from the pre-
vious. The SD architecture reaches state-of-the-art performance both on synthetic and
real data, while the D one shows comparable performance, while only needing 3k net-
work weights. The model shows also promising results regarding the reconstruction
of transient information. A key challenge that we will explore is how to find an ac-
curate model for the global component that can be represented with a few parameters.
Moreover, we plan to substitute the parametric functions with a network in order to
learn more complex global component shapes. Finally, we also plan to investigate
applications of our method, such as non-line-of-sight (NLOS) imaging. It has been
shown [60] that from the information carried by the global component it is possible to
completely reconstruct a NLOS pixel; while the cited work relies SPAD sensors, our

plan is to perform the same task starting from 1ToF information.
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6 Depth Completion and Network Quantization

In the previous chapters we have seen, among other things, some methods for MPI de-
noising for iToF data. Tackling this task is particularly important as it allows to retrieve
a depth image where the distortion is greatly reduced. In this chapter we will still work
with iToF data, but we will consider a different setting where MPI is not an issue. In
particular, we will work with an 1ToF sensor where the light source is not full-field, but
illuminates only a set of dots as it can be seen in the first image of Figure 6.1. This
procedure strongly limits the amount of light inside of the scene, thus reducing the
impact of secondary light bounces to the point where MPI is negligible and the depth
recovered on the illuminated areas is very accurate. This technology however has the
obvious drawback of reducing the amount of reliable information as all the areas that
are not illuminated have no meaningful data. In practice, if for the task of MPI correc-
tion we worked with distorted images at full resolution, in this chapter we will instead
work with low resolution images where the measured depth is instead quite accurate.
We will start by describing the task, which is called depth completion, together with
the related literature, and then proceed to explain what network quantization is, since
as before one of the objectives is to keep our architectures as light as possible. To-
wards the end of the chapter we will talk about existing datasets for depth completion
and introduce SDS-STI1Kk, a very sparse dataset which is going to be one of the main
benchmarks for our approach. The proposed method and the results will be shown in

the next chapter.

6.1 Depth Completion

The task of depth completion consists in the estimation of a dense depth map starting
from a sparse depth image and a corresponding dense RGB image. This task is partic-

ularly compelling in practice as common depth sensors such a dToF ones tend to have
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a lower resolution w.r.t. common RGB ones. This is due to multiple factors, such as
a limited fill-factor linked to pixel complexity and/or the use of a dot pattern light to
limit the power consumption. In Figure 6.1, we can see an example of the inputs and

outputs related to the task of depth completion.

Sparse Depth Map RGB Image Dense Depth Map

Figure 6.1: The task of depth completion

6.1.1 Related Works

The task of depth completion has been popular in computer vision since the introduc-
tion of depth sensors [61, 62] and has been commonly addressed by neural networks
with convolutional encoder-decoder architectures [63, 64, 2, 65, 4, 66, 5]. Many other
works define the state of the art in depth completion [67, 68, 69, 70, 71, 72, 73, 74].
We will compare our results against CNN solutions [3, 2, 4, 5] selected on the basis
of their similar complexity (single encoder-decoder). These will be retrained on our
sparse ToF datasets. There exist also higher-complexity networks leveraging, e.g., mul-
tiple decoder branches [75, 65] or separate encoder branches [66, 76, 77, 78] but in
this work we aimed for a more compact and lightweight model. We will only focus
on single-frame depth completion. Many contributions extend depth completion by
either self-supervision or by providing as input multiple RGB-D frames with known
or inferred poses [2, 79, 80, 78, 81]. By tackling only the single-frame case, we grant
temporally-independent behavior for both dynamic and static cameras and remove ad-
ditional computational effort required by pose estimation via neural networks (e.g.,

[82]) or traditional odometry. We now discuss the main works we compare against.

SPARSE-TO-DENSE (S2D [2]) is a popular approach using a single encoder-decoder

network. Its core contribution is self-supervision by pose estimation (a feature we do
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Figure 6.2: S2D Network architecture [2]

not leverage) as well as its long-standing role in the KITTI leaderboard compared to
its low complexity. In its supervised flavor, the paper uses a mixed loss, with /5-loss
as well as /;-loss on the prediction gradients to enforce piecewise-smoothness of the
depth map. The network structure can be seen in Figure 6.2 The network architecture
is similar to ours, except for the use of transpose convolution layers in the decoder, and
for the use of two separate layers to pre-process the RGB and sparse depth inputs. As
shown in [2, Sec. 6.4] and confirmed in our experiments, its robustness to sparsity is

limited. We reproduced and retrained their model.
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Figure 6.3: D3 network architecture [3]
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D3 [3] is developed using DenseNet [83] layers as building blocks. Its input pre-
processing is an efficient way to initialize the depth map and attain high quality while
maintaining low complexity. NYU-Depth v2 results are provided, but the authors’
code is not public and we could not reproduce their quality in our implementation and

retraining.
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Figure 6.4: CSPN network architecture [4]

CONVOLUTIONAL SPATIAL PROPAGATION NETWORK (CSPN [4]) was among the
first works [4, 75, 5] to propose a two-stage network architecture using spatial propaga-
tion layers. This entails: (i) generation of a “blurred” depth map and affinity matrix
using an encoder-decoder network ; (i7) iterative refinement using the learned affinity
matrix as weights for anisotropic diffusion. We retrained the authors’ model via their

code.

NON-LOCAL SPATIAL PROPAGATION NETWORK (NLSPN [5]) improves upon [4],
its main novelty being the use of non-local neighbors in the diffusion process, which
is implemented by deformable convolutions. The authors show it achieves superior
performances w.r.t. S2D and CSPN on NYU-Depth v2. In our experiments, we con-
firm this is indeed the most competitive approach at its network complexity. Further
improvements were recently presented [84]. We retrained the authors’ model via their

code.
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6.1.2 Neural Networks Quantization

Quantized Neural Networks (QNN) [85, 86, 87] are DNNs for which a smaller number
of bits b < 32 is used to represent the weights and activations. QNNs are key to achiev-
ing efficient and low-power inference: they require considerably less memory and have
a lower computational complexity, since quantized values can be stored, multiplied and
accumulated efficiently.

Quantization-Aware Training (QAT) refers to a set of special algorithms to train
QNNss, leading to superior results than post-training quantization. Recent QAT meth-
ods [88, 89, 90, 91, 92] proved effective on classification tasks.

These methods often use uniform quantization and the same bit width in each net-
work layer. To improve QAT, Uhlich et al. [93] and Nikoli¢ et al. [94] proposed to
learn the optimal bit width for each layer while achieving a target size budget. On clas-
sification tasks, these mixed precision approaches show superior results since the bit
widths can be allocated optimally across the network. Much less evidence of successful

QAT exists for regression tasks such as depth completion.

6.2 Sparse ToF Datasets

We target datasets that are critically challenging in terms of sparsity. We consider
indoor scenes (range: [0, 15]m) with rich structure and detailed objects with diverse

camera orientations. Given sparse depth maps Dg, let us define the sparsity level K :=
100 [{i€[np]x[ny]:(Ds);#Invalid }|

npNy

at target depth map resolution* n; x n,. We tackle very

“Typically equal to the input RGB frame resolution or a cropping of it.
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(b) 304 x 224, K ~ 1.4% (c) 640 x 480, K ~ 0.4%

Figure 6.6: RGB-annotation overlay of (a) KITTI (LiDAR; range: [0, 85]m), (b) NYU-Depth v2
(processed; range: [0, 10]m), (c) SDS-ST1k (sparse ToF; range: [0, 15]m). Annotations (red) at
available sparse depth coordinates. Figure best viewed in color.

sparse settings where K = 0.4 ~ 1.4% (as a reference in the widely used KITTI depth
completion benchmark™ K =~ 4 ~ 5%). A visual overview is provided in Fig. 6.6.

Indeed, such higher values of K simplify the depth completion task. In this work
we will focus on indoor 3D perception datasets with very sparse depth maps, where
traditional pipelines [95] will struggle to achieve good results.

Our main results are given on NYU-Depth v2 [96] as broadly adopted public-domain
dataset. For the training set, we use a subset of ~ 50K RGB-D images from the 249
standard training scenes. Each image is downsized to 320 x 240 then center-cropped to
304 x 224, identically to [63, 5]. The main difference we introduce is that we process
the depth by subsampling it with a triangular tiling dot pattern generated from sparse
illumination of commercial VCSELs [97] instead of choosing random indices. This
results in sparse depth maps Dg with on-average 943 active pixels (K =~ 1.4%; see
Fig. 6.6b) sampled from the full, dense depth map D¢t which is used as supervision.

"By computing K over the standard validation set of KITTI Depth Completion.
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The surface normals map Ngr was also estimated from Dgr. The standard test set of
654 images is processed identically.

In addition, we provide results on SDS-ST1k [98], a contributed dataset using 8
diverse environments from Unreal Engine [99] marketplace assets yielding ~ 18K
images from random camera poses at resolution 640 x 480. To obtain sparse ToF
data, we apply a light source with dot pattern light shading in our raytracing ToF
simulator; this is received on a simulated ToF sensor compatible with low power
designs and camera specifications (e.g., sensor integration time, camera intrinsics).
This provides both sparse ToF depth maps Dy with realistic parallax and pattern geo-
metry, and ground truth Dgr, Ngr. In this setting we obtain on-average 1239 active
pixels out of 640 x 480 depth map values, , yielding a challenging K =~ 0.4% (see
Fig. 6.6c). The recommended training/testing split yields ~ 5K images as test set; this
will be provided at https://github.com/sony/ai-research-code. We
shall train our models with 160 x 160 non-overlapping patches (i.e., 12 per image) to
meet training device memory limitations. We also augment the training set by random
horizontal and vertical flipping. We generate a mask as hexagonal sparsity pattern and
943 depth pixels are sampled from the dense depth map, producing the sparsity level
of 1.385%.
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7 Quantized Deep learning Approach for Depth Comple-
tion

In this chapter, we will provide an in-depth description of the approach we take for
depth completion. We start by describing the preprocessing of our data and the net-
work architecture we start from; we then explain all the task-related improvements we
introduce and the loss function we employed. Finally, we explain the quantization ap-
proaches we applied to reduce the network size and conclude with the experimental

results.

7.1 Network Design

The input of all considered depth completion methods is an RGB-D frame comprised
of a colour image and a sparse depth map, suitably projected to RGB camera space
by assuming known intrinsics and RGB-ToF extrinsics, and with negligible RGB-ToF

baseline to avoid occlusions.

7.1.1 Input Pre-Processing

We leverage the input pre-processing method of Chen ez al. [3]: given the sparse depth
Dg, we compute an initial guess Dynp of the depth map by Nearest Neighbors In-
terpolation (NNI), i.e., mapping each coordinate to the closest sparse depth pixel in
the Euclidean sense. We also compute the Euclidean Distance Transform (EDT) E
with [100] (via OpenCV) given the 2-D valid coordinates of Dg. NNI is obtained by
the same call, which takes median CPU time itxn; = 4.99 ms over SDS-ST1k and
tnnt = 0.99 ms over NYU-Depth v2. We normalize Dyyp by the maximum range
Dyax := 15m and E by F,,., := 40, which we find empirically to be an appropriate
normalization value for our datasets. The EDT feeds the CNN an uncertainty map of

D, I.e., it is low where sparse depth is known and progressively higher when it is
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Figure 7.1: Summary of our network design for depth completion: (a) Network architecture.
We highlight pre-processing blocks (gray); tensor operators (orange, square); training supervi-
sion operators (teal) and connections (dashed); concatenation (yellow, circle); the UNety ., .
module (blue); the normals estimation block (purple). (b) UNety ., ,,, Module. May> indic-
ates a MaxPooling2D layer with stride 2. U, indicates an Upsample2D layer using nearest
neighbors upsampling with factor 2. (c) Basic convolutional building blocks of the UNety ;, , .,
Module. (d) Normals Estimation Block, as implemented by 1-D convolution (x) in the respective
directions.

not. We tried replacing NNI with linear interpolation® in preliminary tests, but this did

not show any benefits while increasing CPU time.

7.1.2 Network Architecture

A summary of our supervised approach is given in Fig. 7.1. The core CNN element
(Fig. 7.1b) is a simple “UNet-like” [101] template, dubbed UNety , . ., of which we

“Linear interpolation on a non-uniform grid due to the dot pattern requires Delaunay triangulation,
which is costly and cannot be reused as the pattern can change at every frame.
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tune the number of scales n, and feature maps ny relative to the highest scale. Our
reference is ny = 5,ny = 64. The number of feature maps doubles at each scale as
their spatial resolution is reduced, up to 2"~ ! at the lowest scale. The basic building
blocks (Fig. 7.1c) are standard 2-D convolutions with 3 x 3 filters, with padding to same
resolution as the layer input and stride 1. We chose to replace transpose convolutions
in the decoder with upsampling and convolution layers, as preliminary tests indicated
better performance on our datasets. All skip connections are by concatenation except
for the last one, which is a tensor addition w.r.t. Dyni. Thus, we have the (normalized)
interpolated depth D = Dyni + UNetg,n; n,(Dxnt, B, C), i.e., UNety ., computes
a residual w.r.t. the initial guess.

7.1.3 Normals Estimation Block

As shown in Fig. 7.1a, we estimate the surface normals map N from the interpolated
depth map D rather than using costly dedicated decoders [65]. We resort to a well-
known approximation that is directly applicable to depth maps; the computation graph
is reported in Fig. 7.1d. Given a depth map tensor D at the input, we approximate
horizontal and vertical image axes derivatives by centered differences using two fixed-
kernel 1-D convolutions yielding the tensors (%—5, %—i)). We then have at the i-th pixel
the normal vector

(7.1)

We found this small-kernel method sufficiently accurate to enforce similarity” between

~

(N);, (Ngr); at training.

7.1.4 Loss Function

Our supervised training follows the flow in Fig. 7.1a. The supervision is comprised of
two terms. The first term measures the ¢,-norm distance between (normalized) ground

truth Dgt and D, i.e., for dataset D with J samples,

Ly, (D) =137 || vec(D;—Dary)|2, p=1,2. (7.2)

"We ensure the surface normals’ orientation is always consistently pointing towards the camera both
in Ng1 and N.
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L An RMSE (mm) MNS
Ly, n/a 105.2 0.538
Ly, n/a 97.8 0.754
Loy +MLy 1 259.0 0.864
Loy + MLy 1071 227.0 0.868
Lo+ ML, 1072 101.5 0.838
Lo + MLy, 1073 98.7 0.783
Lo+ MLy, 1074 109.3 0.764
Lo,
/
L

Lo, +AP'L,

(b)

Figure 7.2: Loss function tuning on SDS-ST1k (resolution 640 x 480): (a) Quantitative analysis;
(b) Qualitative analysis of error maps (range: [—500, 500] mvm). Figure best viewed in color.
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The second term measures similarity between the dense ground truth normals map Ngr
and N from the block in Fig. 7.1d: for each -th pixel normal we measure the cosine

similarity cos @ = ((Ngt)s, (IV);). We then take its average over the dataset and define

the normals loss

Lo(D) = = 7= 30, S (Nam)is (N))s) (7.3)

with range [—1, 1] (at —1 all normals are identical). In the presence of invalid ground
truth depth or normals map (e.g., for invalid pixels in NYU-Depth v2) we exclude the
corresponding pixel from the loss computations.

Only part of the literature uses normals supervision* [65, 75], while all depth com-
pletion approaches use depth supervision providing scale. Normals supervision alone

is not sufficient to retrieve scale. Thus, we minimize
L(D) := Ly, (D) + MLn(D) (7.4)

which balances between scale-dependent and scale-independent terms using A\, €
[0,1]. This weight depends on the dataset and must be tuned empirically. To do so,
we run preliminary tests of our approach (Fig. 7.1a) on SDS-ST1k under different®
L= {Ls, Lo, Lo + MLy} and A\, := 1077, ¢ = 0,...,4, in the same settings de-
scribed in Sec. 7.3.1. Indeed, defining the conventional RMSE and Mean Normals
Similarity

J npNy %
as quality metrics we see that large values of A, degrade the RMSE, and vice versa for
MNS. We find the best trade-off at A°°* = 1073. As confirmation of this, in Fig. 7.2b
we report one sample error map D — Dgr under different £. As we move from Ly, to

Ly, the observed error map pattern artefact disappears. Remaining errors at depth map

discontinuities are reduced by using the normals loss L,,.
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ny ng MParams RMSE (mm) MNS

64 5 50.3 98.7 0.783
32 5 12.6 105.0 0.775
16 5 3.2 181.1 0.751
64 4 12.6 219.2 0.779
64 3 3.1 248.4 0.761
32 4 3.1 274.8 0.767

Table 7.1: Network tuning on SDS-ST1k (resolution 640 x 480). We confirm a steady decrease
of quality metrics as the feature maps ny relative to the highest scale and the scales n, are
reduced.

7.1.5 Network Tuning

We investigated simple strategies to reduce the size of the initial model, such as tuning
the UNety ,, fi7s module by its number of feature maps n ¢ relative to the highest scale,
and the number of scales n,. Our preliminary tests, in the same setting as Sec. 7.3.1
on SDS-ST1k, actually confirm (Tab. 7.1) that any pair smaller than (ny, ns) = (64,5)
leads to a rapid degradation of RMSE and MNS, with the reduction of ng (shallower
network) being generally worse than that of ny. Thus, we choose to achieve memory
size reduction by quantization of the full model with (nf, n,) = (64, 5) which, as we

will show, allows for a more compact model with limited impact on quality metrics.

7.2 Quantization-Aware Training

Let Q(x; ¢) be an arbitrary scalar quantizer with parameters ¢, which maps * € R
to discrete values {qi, ..., ¢ } represented by b bits, b : I < 2°. This quantizer may be
applied to both weights and activations to reduce their memory size requirements. This
can be done by either post-training quantization or by Quantization-Aware Training
(QAT), which generally achieves better accuracy than the former. QAT consists in

fSmoothness losses on the gradients of D are also common [2, 77] but not considered here as the
normals loss implements similar behavior in a supervised and more geometrically sound fashion.

SWe verified in preliminary tests that £,, + A\,L, is systematically worse than the ¢; case and
excluded it accordingly.
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training the quantized version of a DNN (in this case, CNN) while applying Q(z; ¢)
to its weights and/or activations. However, this is challenging as the gradient through
the quantizer is zero almost everywhere; a solution to this is the Straight-Through
Estimator (STE) [102]. A symmetric uniform quantizer Qy (x; ¢) then maps = € R to
uniformly quantized values by

d m l < max
4= Qul; ) == sign(x) [ +3) el < , (7.6)

Gmax ‘ x | > Gmax

where the parameter vector ¢ := [d, Gmax, b7 with step size d € RT, maximum value
(max € R, and number of bits or bit width b € N : b > 2 of the quantized value q.

7.2.1 Uniform Precision Models

We start by considering uniform precision (UP) QAT, i.e., every weight (or activation)
of every layer has the same predefined bit width b and QAT optimizes over the remain-
ing parameters d, quax Of ¢». We conducted extensive experiments to preserve depth
completion accuracy while quantizing with (7.6) the weights and activations in our
model. The most effective UP QAT training procedure was obtained by initializing
from the pretrained float32 model and using learnable ¢y, as in the Trained Quantiz-
ation Threshold (TQT) approach [92]; to stabilize the QAT, we used cosine learning
rate decay scheduling [103], and we first trained with RMSprop until convergence (32
epochs in our case), followed by Adam [104] for 20 more epochs.

7.2.2 Mixed Precision Models

Recent results [93, 94] show that, for a given memory size budget, better accuracy
than UP QAT can be achieved using mixed precision (MP) QAT, i.e., each layer uses
its own bit width learned at training to fit a target total network size. Following [93]
we parametrize Qu(r; ¢) with their range and step size d, from which the bit width
b := [1+108y(¢max/d + 1)] is then inferred. With this parametrization and STE [102]
gradient, we can use standard stochastic gradient descent methods to learn per-layer
optimal bit widths jointly with network parameters. To achieve target network sizes

we add to (7.4) size constraints on the weights and activations as penalty terms [105],
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minimizing

ﬁMp = E(D) + )\W H’laX(O, Sw)2 + )\A maX(O, SA)2 (77)
Sy = (XF SL) — 89,8 = Nyybyy, S2 = by S8 | Ny (7.8)

where z := {W, A} denote weights or activations; S’ their per-layer total memory size
for N, ; coefficients with learned bit widths b, ;; S is the target size which we tune! by
a reference average bit width b,. The parameters \yv € R* and Ay € R* are chosen to
balance the respective penalties. We empirically set them following the criteria in [93,
Sec. 4], yielding A\w =~ 2.66 - 10~7, A\ ~ 1.73 - 107%. In MP QAT we also initialize
network parameters from the pretrained float32 model, and run Adam for 60 epochs

until convergence with cosine learning rate decay scheduling.

7.2.3 Weights Quantization

We initially compare weights-only UP QAT and MP QAT against the pretrained float32
model, with the same dataset and setting as Sec. 7.1.5. In all our models the last layer is
at float32 precision as it directly produces the regression output in Fig. 7.1a. We refer
to UP models WEP and MP models W, at (fixed or average) bit width b. We report the
most compact UP model WY¥ (b = 4) providing best quality metrics, and compare it
against the most compact MP model W,, where x denotes target size S\OM* := 14 MB,
i.e., by ~ 2.35 bit when setting the size constraint.

The results in Fig. 7.3a allow us to establish that MP QAT is superior to UP, as
with half of the weights memory size we see no degradation of MNS and a slight
improvement in RMSE due to refinement from the pretrained float32 model. We also
observe in Fig. 7.3b how the per-layer precision allocation of MP naturally tends to

assign smaller (larger) bit widths to inner (outer) layers of the QNN.

7.2.4 Activations Quantization

For efficient inference on mobile or low-power devices, it is crucial to consider the
quantization of both weights and activations. Indeed, activations can dominate memory

requirements at inference (especially for encoder-decoder networks such as ours) and

IThis tuning can arbitrarily refer to an average bit width or to a total size (in which case the average
as defined in (7.8) can be fractional).
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Bit Width bW,l

(b)

Tr-T] bw

Precision Weights Size (MB) RMSE (mm) MNS

float32 198.5 98.7 0.783

Uniform (WJ%) 25.1 100.3 0.762

Mixed (W,) 13.9 94.5 0.783

(a)
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Figure 7.3: Weights quantization. (a) Results on SDS-ST1k (resolution 640 x 480) for the most
compact UP model W’F at bit width b = 4 and MP model W, at average bit width by = 2.35.
(b) Per-layer precision allocation of W, (last float32 layer omitted) and the corresponding by
(dashed).

Weights Activatior

Method  Size  Size l({x,i];: ynf:ﬁ “(‘;‘)E MNS  61(%) 62(%) 63(%) Mede‘:L‘St)GPU
(MB)  (MB) ’
NYU-Depth v2 (center cropped, 304 x 224)

S2D 90.1 322.7 72.1 34.1 1.230 0.538 99.79 99.97 99.99 4.83 (0)
D3 7.8 59.9 128.3 46.9 1.760 0.422 99.13 99.79 99.94 © 19?9”C7§U)
CSPN 832.1 44.2 79.0 28.5 0.970 0.752 99.68 99.95 99.99 63.97 (14.02)

NLSPN  100.1 200.2 61.4 22.5 0.750 0.800 99.83 99.98 100.00 42.50 (7.93)
Ours 198.5 145.5 63.7 232 0.782 0.790 99.81 99.98 99.99  5.11 (0.99CFV)
SDS-ST1k (640 x 480)

S2D 90.1 1455.5 643.3 589.9 29.130 0.158 55.45 83.27 94.25 6.02 (0)
D3 7.8 270.2 176.7 57.4 2.500 0.572 98.40 99.40 99.70 “ ;gfgu)
CSPN 832.1 199.2 174.3 97.1 3.850 0.687 98.60 99.60 99.78 154.62 (23.50)
NLSPN  100.1 890.6 99.1 294 1.150 0.775 99.39 99.81 99.92 148.68 (11.18)
Ours 198.5 656.3 98.7 21.7 0.829 0.783 99.45 99.81 99.91 “ ;ggSU)

Table 7.2: Depth completion models. The median ¢gpy is given as tiotal (tinitialization)- 1N OUrS

and D3, initialization is computed on “FU.
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Weights Activatior RMSE MAE MRE

Precision (i/l[z];) (i/}z];) mm)  (mm) %) MNS  §1(%) 02(%) 03(%)
NYU-Depth v2 (center cropped, 304 x 224)
float32 198.5 145.5 63.7 23.2 0.782 0.790 99.81 99.98 99.99
WsgAsg 22.1 479 64.2 234 0.784 0.793 99.81 99.98 99.99
W4Asg 220 36.2 64.3 235 0.793 0.790 99.81 99.98 99.99
WyAy 23.7 17.6 70.3 26.1 0.894 0.739 99.76 99.97 99.95
Wi 13.7 145.5 64.9 23.6 0.796 0.786 99.81 99.98 99.99
SDS-ST1k (640 x 480)
float32 198.5 656.3 98.7 21.7 0.829 0.783 99.45 99.81 99.91

WsAg 459 164.1 101.7 225 0.874 0781 9940 9979 9991
WiAs 207 1633 1013 211 0810 0776  99.48  99.83  99.92
WaAs 211 78.4 99.0 244 0958 0638 9941 9981  99.92

W, 139 656.3 94.5 20.8 0.808 0784 9948 9983  99.92

Table 7.3: Quantized network models. Among MP QNN models, we highlight the best trade-off
between lowest memory footprint and best quality metrics for weights and activations (yellow)
and weights-only (orange). Figure best viewed in color.

may additionally cost many read/write accesses of buffer memory, with large impact
on energy consumption. As we observed that MP is capable of achieving superior
performances than UP for the weights-only case, our final results (Sec. 7.3.3) will
consider MP QAT with weights and activations quantization at 4 to 8 bits; we therefore
denote them by Wy A, where o/, b” > 2 are average bit widths that set the respective
size constraints.

7.3 Results

We present our results using the same quality metrics of most prior works [63, 3]:
RMSE, Mean Absolute Error (MAE), Mean Absolute Relative Error (MRE), and ¢;, 7 =
1,2, 3; we also add the MNS metric (7.5) to study normals similarity. Where reported,
the median GPU time per prediction ({gpy) is measured on an NVidia GTX 1080 Ti.

The reported results are given on full-frame test sets from Sec. 6.2.

7.3.1 Training Setup

We train our depth completion model for 40 epochs until convergence using RMSprop
as the optimizer with learning rate p := 10~* and batch size of 8 (SDS-ST1k) or 4
(NYU-Depth v2). Given its very large resolution, all trainings of our model on SDS-
ST1k leverage patches of 160 x 160, but we switch to full 640 x 480 inference when
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computing quality metrics since our networks are fully convolutional.

We also retrain other competing methods for comparison, by following the super-
vised training procedures described by the respective authors as reproducible from their
codes (S2D, CSPN and NLSPN) or descriptions (D?), while providing as input our
sparse ToF datasets. We also tested the authors” CSPN and NLSPN models pretrained
on NYU-Depth v2 with randomly sampled patterns, but the resulting performances
were worse than our retraining.

In addition to the float32 model, we consider our quantized MP models Wy Ag,
W, Ag, Wy Ay (Sec. 7.2.4) and W, (Sec. 7.2.3)"; the subscripts denote the respective
average bit widths. For MP QAT, we use the NNabla [106] implementation of [93].
In this case we obtained the best results by training our MP models starting from the
pretrained float32 model, with the Adam optimizer for 60 epochs until convergence,

starting from learning rate p := 10~* with cosine learning rate decay scheduling [103].

7.3.2 Depth Completion Models

We first discuss some quantitative results of our method (in float32 precision) against
others in Tab. 7.2. We achieve very good results on both evaluated datasets despite
their different sparsity level K: our method ranks second-best on NYU-Depth v2 with
a RMSE of 63.7mm and best on SDS-ST1k with a RMSE of 98.7mm. MAE and
MNS confirm the RMSE ranking. We also achieve very competitive tgpy by virtue of
the simple initialization obtained via NNI and simple encoder-decoder architecture of
Fig. 7.1a.

NLSPN provides the most competitive performances: it is quality-wise the best ap-
proach on NYU-Depth v2 (but the RMSE gap w.r.t. ours is very limited, only 2.3 mm)
and second-best on SDS-ST1k, as confirmed by all quality metrics as well as visual
results (Sec. 7.3.4). However, its tgpy is relatively high even if the model is substan-
tially compact. This is due to spatial propagation, which requires several iterations (18
as recommended in [5]) that linearly increase ¢{gpy even at constant memory footprint.
tapu also notably increases significantly between 304 x 224 and 640 x 480 resolutions.
Moreover, the initialization cost (i.e., the input encoder-decoder module of NLSPN) is
substantially higher than that of our method, which runs on CPU.

As for the other methods, it is possible to see that CSPN has slightly but consistently

T W, activations are left float32.
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Figure 7.4: Qualitative results. We report, for three arbitrary frames in the test sets of NYU-
Depth v2 (top rows) and SDS-ST1k (bottom rows), the predicted depth maps D and error maps
D — Dgr (range: [—500, 500]mm). Figure best viewed in color.

inferior performances than NLSPN and ours on both datasets. We also observed that
S2D, even if very fast, yields sub-optimal quality metrics on NYU-Depth v2, and poor
quality metrics on SDS-ST1k given its larger resolution at lower K. This confirms the
findings in [2, Sec. 6.4] that the RMSE of S2D deteriorates for lower sparsity level K
and that structured subsampling patterns yield worse performances than random ones.
Finally, we observed that D?, even if starting from the same initialization as ours, yields
worse RMSE and MAE.

7.3.3 Quantized Network Models

The QAT results for our MP models are given in Tab. 7.3. Among those models, we
highlight our best weights-only MP QAT result for W,; the weights size constraint
of 14 MB is met by weights memory size of 13.9 MB after training. This yields 14-
fold memory size reduction w.r.t. the float32 model at 198.5 MB. There, we observe
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limited and graceful degradation of the quality metrics™ (e.g., the RMSE loss is only
1.2 mm on NYU-Depth v2) when reducing precision of the weights and activations
in the float32 model. However, as activations are also crucial for reducing memory
footprint (Sec. 7.2.4), we remark that the overall most compact model with minimal
impact on quality metrics is W4Ag with a RMSE loss of only 0.7 mm on NYU-Depth
v2, as W, A, sees instead significant degradation of the MRE, MNS, and MAE metrics
(e.g., 6.6 mm in RMSE). We select this model for the following analysis.

7.3.4 Qualitative Analysis

We now highlight the visual differences observed between different depth completion
approaches. We consider the best competitor from Sec. 7.1.2, NLSPN, against our
method in its float32 and MP W, Ag flavors. We report three samples from each dataset
with both depth maps D and error maps D— D¢ in the same range to allow for a visual
comparison. On NYU-Depth v2 NLSPN yields sharp edges with minimal amount of
“mixed depth” pixels. However, the float32 and W,Ag models are as sharp, e.g., on
the wall discontinuities (middle row). The error patterns seen in all approaches on
far planar regions (top row) are probably due to the acquisition of Dgr with a Kinect
sensor, whose accuracy decreases with the distance [107].

As for the higher-resolution SDS-ST1k dataset, we see that while depth map quality
of our models is comparable to that of NLSPN, on several scenes the latter yields
larger errors on planar surfaces (e.g., the ground plane) than ours as shown in the
corresponding error maps (top, middle row); our model also recovers more accurately
some complex object details such as the cupboard (middle row), trash bin and shelves

(bottom row).

7.4 Conclusions

In these two chapters we have described a way of acquiring accurate depth informa-
tion from 1ToF cameras at the cost of spatial resolution. We have introduced the task
of depth completion, which is specific to these new settings and described a depth

completion model based on U-Net architecture. As for MPI correction, we also kept

“*We do not report tgpy as comparable with that of the float32 model and not indicative of com-
putation time on dedicated hardware, since fixed-precision operations are here emulated by float32
operations as in [94, 93].
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its size small, using mixed-precision quantization. Our model performs within a few
percent units of the state-of-the-art in terms of quality metrics on standard datasets
such as NYU-Depth v2, but achieves faster GPU time at competitively small memory
footprint and is suitable for real-time applications. A dedicated hardware implementa-
tion of our QNN will take full advantage of mixed-precision by fixed-point operations.
We will investigate knowledge distillation with MP QAT to compress the network, as
well as domain adaptation techniques [108, 71] to improve depth map quality on real
RGB-ToF datasets.
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8 Semi-supervised Techniques for Spectrum Reconstruction

In this chapter we will present a work focused on the training of network architectures
for spectrum reconstruction using a limited amount of supervision. We will begin with
an introduction to hyperspectral imaging, mention some related works on spectrum
reconstruction, and then continue by introducing the main task, which is training a
deep learning architecture with limited supervision. We will then explain the methods
we devised, with the corresponding degree of supervision required and finally compare
the performance of our approaches with some of the best performing architectures in
the literature.

8.1 Hyperspectral Imaging

The output of a common RGB camera consists of an image with 3 values per pixel, each
corresponding to the integration between the spectrum of the incoming light and the
corresponding colour matching function. In Figure 8.1, we can see the colour match-
ing functions corresponding to the XYZ colour space. This 3 channel representation
is quite common as it mimics the behaviour of the human eye, but it is also a rough
encoding of the incoming information. In general, the spectral signature is a complex
function, which can hardly be encoded by 3 values and which extends much further
than the visible spectrum. An example of it can be seen in Figure 8.2. Hyperspectral
cameras provide instead a much finer sampling of the incoming spectrum, which is not
necessarily constrained to the visible spectrum. While an RGB camera returns only 3
values for each image pixel, a hyperspectral camera can provide tens or hundreds of
samples. The downside of this technology is the added complexity of scanning such a
high number of wavelengths which can lead to longer acquisition times.

There are 4 scanning techniques, each with its pros and cons. Spatial scanning, em-

ployed in push-broom spectrometers [109], gathers simultaneously all the wavelengths
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Figure 8.1: Colour matching functions of the XYZ colour space.
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Figure 8.2: Spectral signature of blue sky.

of a single line of the image, while spectral scanning, used for example in tunable
filters cameras [109], outputs a monochromatic image for each sampled wavelength.

These two techniques provide high-resolution images, but have long acquisition times,
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as the operation has to be repeated for each image column or for each sampled wavelength
respectively. Non-scanning is a different kind of technique which takes a snapshot of
the entire 3D data-cube, by projecting it into a 2D image; this leads to a fast acquisition
time, but requires a pricey setup and long times of post-processing for the recovery of
the 3D data cube. Finally, spatiospectral scanning is a techniques standing in between
spatial and spectral scanning, and it consists in sampling the data-cube in a diagonal

manner. An overview of these 4 scanning techniques is shown in Figure 8.3.

1/ (b)

(c) (d)

Figure 8.3: Overview of the 4 scanning techniques.(a) non-scanning, (b) spectral scanning,
(c) spatial scanning, (d) spatiospectral scanning. Image taken from [6].
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8.2 Related Work

As we have seen in Section 8.1, all the current scanning techniques for hyperspectral
imaging have flaws linked to high cost and/or high acquisition/processing time. To
overcome these issues, a lot of focus was put on the processing side to recover the
necessary information from low resolution HSI images. In particular hyperspectral
super-resolution starts with a low resolution HSI image, and possibly a matching high-
resolution RGB one, and tries to enhance it in the spatial domain [110].

On a different note, spectrum reconstruction tries to limit as much as possible the use
of hyperspectral hardware: at inference time the pipeline would get in input an RGB
image and directly provide in output the hyperspectral counterpart [7]. The procedure,
shown in Fig. 8.4, can also be seen as image super-resolution in the spectral domain,
since it is not the size of the image that changes but the number of channels. Spectrum
reconstruction is overall a very ill-posed task since the RGB information (that is the
result of an integration operation over the spectrum) is a very sparse representation of

the hyperspectral data. One of the first works introducing the recovery of hyperspectral

Figure 8.4: Spectrum Reconstruction converts an RGB image to its hyperspectral counterpart.
We include the inverse transformation as a physical model within the training.

information from single RGB images following a machine learning approach was [7],
where the hyperspectral data is computed using a dictionary based approach. Their
contribution also included the acquisition of the ICVL dataset which is one of the
biggest up to date. Later, Aeschbacher et al. proposed A+ [111], which built on the

previous method and improved its performance: to our knowledge, it has the best
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performances among approaches not based on deep learning.

Deep learning techniques were firstly employed for this task in 2017 when Galliani
et al. [112] adapted the Tiramisu semantic segmentation network to spectrum recon-
struction. Since then, many other architectures have been proposed as in [113, 114,
115] but it was only in 2018 with the NTIRE challenge for spectrum reconstruction
[116] that the current state of the art was set: all the participants employed deep learn-
ing approaches, adapting architectures such as ResNet [117], U-Net [118] and Gener-
ative Adversarial Networks (GANSs) [119]. The winner of the challenge was the team
of Shi et al. [120], that managed to get first and second place with their HSCNN-D and
HSCNN-R architectures based on the residual network model. Note that we use their
HSCNN-R architecture as our core network. It is also worth mentioning the U-Net
architecture proposed by Can et al. [121] which obtained the best results on the NUS
[122] and CAVE [123] datasets outperforming Galliani et al. [112]. Yan et al. [115]
also exploit a U-Net architecture and claimed to be on par with [112].

8.3 Training with Limited Supervision

As already pointed out, the biggest issue when trying to exploit machine learning for
this task is the lack of hyperspectral data. As a matter of fact, while there exist data-
bases of labeled RGB images for various tasks containing tens of thousand or even
millions of samples, the biggest hyperspectral images database is composed of only
256 images [116]. Training a Deep Neural Network with such a limited amount of
data is a very challenging task easily leading to overfitting on the training set. A com-
monly used workaround is to split the training images into patches: this strategy allows
to reduce the issue but goes far from solving the problem. Moreover, these large data-
sets are only available for a few specific cases and it is therefore impossible to deploy
such networks in other situations without creating a large HSI dataset which is costly
and time-consuming. In this thesis, we introduce a set of learning strategies able to
provide good performances even when the HSI data at our disposal is very limited,
thus overcoming the issue.

We consider 4 possible scenarios. The first is the completely unsupervised scenario
(T%,), where no hyperspectral information is available and we have only RGB data
at our disposal. Here, as expected, performances are limited but we will introduce
the physical model which will be used as the starting building block for the other
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approaches. The second (7;) is a semi-supervised scenario where a large number of
RGB images are at our disposal but only a few hyperspectral ones. In the third setting
(1T,) we have the RGB images while the HSI information is given only for a few pixels.
Notice that this is a much more challenging setting compared to the previous one since
the number of samples with hyperspectral information is several orders of magnitude
smaller, but it is interesting since it matches the behaviour of point spectrometers. For
the latter we consider a domain transfer setting where HSI information is available for
a source domain but only a limited amount of hyperspectral samples are provided for

the target domain, that has slightly different properties.

8.4 Proposed Methods

Fig. 8.5 shows a high level overview of our framework. The RGB images are given
in input to a Deep Neural Network (DNN) that can be any suitable architecture for
spectrum reconstruction. In this work we exploited the HSCNN-R model [120]: this
network re-frames the spectral interpolation as a super-resolution task in the spectral
domain and has been developed starting from the VDSR network for image super-
resolution [124]. The baseline HSCNN network [114] has been improved by remov-
ing the hand-crafted upsampling and introducing residual blocks. We further slightly
modify the architecture by using a ReLLU activation function for the final layer to con-
straint the output to be positive and a different initialization improving the mapping to
the desired [0, 1] range.

When applying machine learning to complex tasks, a good practice is to exploit
the underlying physical model to constraint the training [125, 126, 127]. For example
when splitting illumination and reflectance in color images it is possible to exploit
the fact that the product of the two gives the original image to discard solutions not
satisfying this relation [128]. While this kind of constraints are not sufficient on their
own, they significantly aid the training by putting some boundaries on the manifold of
possible solutions. In order to exploit this idea, the output of the network is connected
to multiple branches: the first one performs the conversion to RGB using the physical
model and compares the result to the input, the second takes care of the additional
constraints driving the reconstruction in the hyperspectral domain and finally there is a
supervised loss for cases where HSI data is available.

The physical model branch will remain the same throughout all the proposed tech-
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niques, while different strategies will be proposed for the other modules and for the
merging between the various components. In the following sections we will firstly in-

troduce the physical model and then present case by case the various proposed strategies.

Semi-supervised Training with Images (T;)
Semi-supervised Training with Pixels (T};)
Unsupervised Training (T,,)

HSI prediction

-

- L‘I"VM

I . !
L GB

N

.i

Figure 8.5: Structure of the training pipeline

8.4.1 Physical model

In the case of spectrum reconstruction, the underlying physical model that can be ex-
ploited is the conversion of hyperspectral images back to the RGB domain (see Fig.
8.4): while the RGB to hyperspectral mapping is very underconstrained, the oppos-
ite relation is an univocal function fpysr .rgp (more in detail, there is a function
fhsisrep With ¢ = R, G, B for each of the 3 color components). For this reason
we mapped the output of the network back to the RGB space and compared it to the
input image. The difference between the two images is captured by the loss Lrap:

. N,

7

3
1 C
Lres = 30N D> Mije— fasronas(Piy)l (8.1)

J =1 j=1 c=1

<

where we denote the pixels in the original image with I and the predicted HSI samples
with P. N; and N; correspond to the size of the image in the spatial dimensions and
c loops over the 3 color channels. In a practical case the conversion would need to

be done using the camera spectral sensitivity functions, which are usually provided or
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known. In our case, since there are no aligned RGB images in the datasets, we em-
ployed a standard conversion from the HSI domain to the SRGB domain. We used the
CIE 1931 colour matching functions, assumed a D65 standard illuminant and applied
gamma correction. However notice that fys; ,rgp can be any generic function and
the proposed approach is agnostic to the employed camera model. As discussed the
physical model loss alone is far from sufficient for reliable results and additional con-
straints are needed. In fact, there is a multitude of spectra which can be converted back
to the same RGB values, as the transformation is the output of an integration operation.
The physical model does not help in resolving this ambiguity, but penalizes all options
not leading to the input RGB values.

8.4.2 Unsupervised Training (T,)

The training with RGB information alone proved, as expected, to be particularly chal-
lenging: our objective is to retrieve the HSI information without having any ground
truth spectral sample. Referring to Fig. 8.5, we used the Total Variation Minimization
(TVM) loss Ly [129] in the spectral dimension as an additional constraint. The
TVM loss is usually composed of two terms, one regarding the variation of the new
signal and the other keeping into account the similarity with the original signal. We
only used the first since the physical model can be seen as a raw replacement of the

second:
N; Nj N,—1

Lrow = v o) _1ZZZW”H Pijsl (8.2)

i=1 j=1 s=1

where as before /V; and V; correspond to the two image dimensions while N, corres-
ponds to the number of spectral bands; the P term indicates the predicted intensity of
a pixel for a given position and spectral band.

The network training is performed with the combined loss £, = Lrap + ALy
The A parameter controls the relative weight of the two terms and we experimentally
set it to A = 0.01. The effect of L1y, consists in smoothing the signal in the spectral
dimension, which is desirable as the spectrum of an image tends to be very correlated
and without discontinuities as shown in [130], [131] and [132].

The results are still far from sufficient, but the model trained together with £rgp and
Ly presents two useful properties: the output has a consistent RGB representation

and shows correlation in the spectral domain (smooth behaviour of the spectra). This
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unsupervised model has been used as a starting point for all of our successive tasks, as

it significantly eases the training.

8.4.3 Semi-supervised Training with Images (T;)

When the training dataset contains both RGB and hyperspectral images, the previous
approach can be combined with the standard supervised training on hyperspectral data.
The training in this case is performed in two phases. In the first only RGB images are
used and an initial model is trained for S; steps in an unsupervised way as in Section
8.4.2, minimizing the loss £,. This initial stage performs a robust initialization of
the network making the semi-supervised training in the next phase more stable. In
the second phase we use together the two different sets of images, the RGB ones and
the hyperspectral ones. For images where only RGB data is available, we use the
previously introduced physical model loss, but without the total variation term. We
disabled this term since while in the initial phase its smoothing effect was needed for
a more stable estimate, in the second phase it would lead to an excessive smoothing
of the spectra, as a more accurate shape can now be learned from the HSI data. For
images where the HSI data is available, we instead use a supervised strategy where we
compare the HSI ground truth with the prediction using the Mean Relative Absolute
Error (MRAE):

NJ Ns
7 P ‘
ﬁ 7]7 7.7 S 8.3
HSL= N N N2 » e i (8.3)
i=1 j=1 s=1 i

where N is the number of spectral bands (31 in our case), / denotes the ground truth
hyperspectral values and P the network prediction. We used the MRAE since this
metric normalizes the error w.r.t. the intensity of the ground truth, avoiding a bias
towards brighter pixels (as happening with RMSE), especially because it is common
for some of the channels to be consistently darker than others.

In particular, each batch of training data (that contains By, = 64 samples in our
experimental setting, see Section 8.6.1) contains only images from one set (i.e., with
HSI ground truth or RGB only). Assuming to have a much larger amount of RGB
images than hyperspectral data, the training procedure is organized in blocks of & iter-
ations: each block consist in a first iteration where the network is trained on a batch
of B; patches with HSI ground truth followed by &£ — 1 iterations where the network
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is trained on RGB only data (the RGB batches are different in each iteration). The
training procedure is shown in Fig. 8.6. It is repeated for S, steps to obtain the final
model. Notice how the use of RGB images in training reduces the risk of overfitting:
if the network overfits on the HSI images, which are few, still it will have to fulfil the

physical model constraint on the much larger RGB dataset.

Phase 1 Phase 2

-t - .

Block (k batches)

‘Baich (64 samples)

=t (L) /\(@)(&GBJ«(&GBJ(@ (@)&&GBJ(&GB)&L@B (&)k&%ﬁ(&wk@
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Figure 8.6: Proposed semi-supervised training procedure for the scenarios 7; and 7, (example
with k = 4).

8.4.4 Semi-supervised Training with Pixels (Tp)

For this more challenging scenario the hyperspectral ground truth is only available
for a few pixels scattered among the images, while all the other ones only have RGB
information. The major challenge in this case is how to exploit the very little amount
of HSI data in a deep learning scenario. This setting reflects the real world situation
where the RGB information is easily acquired using standard cameras, while on the
hyperspectral side the available hardware is a spectrometer which allows us to acquire
only one pixel at a time. Spectrometers are more common and cheaper than devices
able to acquire the HSI data of an entire image. In this work we assume to have only
Ny hyperspectral pixels. We tested with 10%, 10% and 10* pixels, which are reasonable
assumptions for the previously described scenario. We will denote with /; their RGB
values and with H, their spectra while the selection strategy is discussed in Section 8.5.

The scenario described in Section 8.4.3 for semi-supervision based on images is
not suitable for this case. For example the ICVL dataset [7] used in the experimental
evaluation contains about 200 images, while in our case we can consider even only
Ny = 10% HSI pixels, i.e., less than a ground truth pixel for each training image.
In practice, the information in such a low amount of HSI pixels would be unable to

significantly drive the training procedure. The exploited idea consists in building an
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approximated ground truth for all of our RGB images using the RGB information to-
gether with the small amount of available HSI pixels. In other words, we augment the
ground truth available by constructing hyperspectral images based on the few pixels
available. For each RGB pixel [;; we search for the closest one Ij(; ;) (in terms of
mean absolute error) in the RGB domain among the ones with HSI ground truth. We
then assign the HSI information ]:[” = Hy(; ;) found in this way to the original pixel.
The procedure is depicted in Fig. 8.7: we are building a coarse approximation of the
ground truth where each pixel has the spectrum of the closest sample among the ones
with HSI data. At the end of the process each training image will have a roughly estim-
ated HSI counterpart which can be used during training. The training procedure works
then in two phases, the first with RGB data only and the second with a mix of RGB
images [ and estimated HSI data H. 1t is the same approach of Section 8.4.3 (Fig. 8.6),
using the same losses but with the coarse approximation of the HSI data Hin place of
the ground truth H. In this setting, since HSI data can be estimated for each image, the
blocks of iterations are smaller (i.e. £ = 3), leading to a larger fraction of HSI based
iterations. The rounds with RGB information this time are not necessarily beneficial
for the final performance but help with the convergence in the cases where the HSI

information is very coarse (cases with 1’000 and 100 pixels).
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Figure 8.7: Creation of approximate HSI information from a few ground truth pixels.
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Notice that this approach makes use of the assumption that pixels with similar RGB

values also have a similar spectrum. Even if in some cases the assumption seems reas-
onable, in particular if they are also part of the same region or object (e.g., pixels from
the same region of the sky), this assumption turns out to be false in general, as the
same RGB triplet can be originated from very different spectra. However, it provides a
reasonably good starting point for the neural network training. For further, more quant-
itative arguments, refer to the supplementary materials.
Notice that the network does not produce a one-to-one mapping between an input RGB
value and the corresponding spectra (otherwise a simple look-up table or clustering
technique would lead to the same result), but instead provides an output that depends
on the context and semantic interpretation of the neighbourhood of the pixel. In prac-
tice we can expect that a small amount of pixels are initially mapped to a completely
wrong ground truth; however, later on the network is responsible for detecting and cor-
recting this inaccurate mapping based on the local neighbourhood of the pixels. These
expectations are confirmed by the experimental evaluation in Section 8.6.

Moreover, one can argue that the space spanned by the hyperspectral pixels in an
image is a considerably small manifold and therefore even if the space of possible
hyperspectral pixels is in principle much larger than the RGB space, in practice the
sampling of this space is very sparse and it is reasonable to use a limited number
of spectra for the supervised loss term using the approximated ground truth. Notice
also that we begin our training from a model trained on the £, loss and we continue
to use the RGB data with the Lrgp loss during the second phase, which guides the
network to produce outputs close to the available spectra H' but taking into account
the contextual information. Moreover, as remarked in the previous case, also here the
RGB constraints helps reducing the risk of overfitting. In short, a simple acquisition
with an RGB camera and a few hyperspectral data points with a spectrometer can be

used with the proposed approach to train a network efficiently.

8.4.5 Transfer Learning Scenario

Finally the proposed approach has been exploited in a transfer learning framework.
We employed the Harvard hyperspectral dataset [132], which is much smaller than
the ICVL dataset [7] and not enough for an accurate training of the proposed model.

We extracted some hyperspectral pixels as explained in Section 8.5 and these pixels
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together with the RGB images were given in input to a network previously trained
with full supervision on ICVL data. The training procedure consisted in the same
alternating behaviour previously described, based on cycles containing batches using
the Lyg; loss on the constructed approximated ground truth and batches using the
physical model loss £ on RGB data. The performances for 102, 10 and 10 pixels
were compared to a fully supervised training based on a few hyperspectral images and

to the proposed pixel loss approach, both performed from scratch.

8.5 Hyperspectral Pixels Selection

The semi-supervised approach with sparse HSI samples (7,,) of Section 8.4.4 requires
a reliable strategy for the choice of the pixels with HSI ground truth data.

Recall that we need to select Ny pixels from a set of RGB images which are going
to be the pixels with HSI ground truth. The approximated training set will then be built
using a nearest neighbour approach, assigning to each RGB pixel the HSI values of
the closest point with ground truth. Using euclidean distance in the RGB space as a
measure of similarity, if the closest HSI sample is too far away we cannot expect the
estimated HSI information to be reliable. Following this line of reasoning a random
selection would be suboptimal, as it would lead to some over-represented spectrum
types typically corresponding to larger or more frequent regions. As an example, in an
outdoor scenario a random choice would provide many very similar HSI pixels from
the sky, while probably missing many small structures.

What we are looking for is a way to find a set of pixels which covers the RGB space
of our images in the best possible way: ideally we would like the great majority of the
pixels of the images to have a close neighbor in the ground truth set. This problem
can be solved exploiting a clustering scheme. The RGB pixels are clustered using
the k-means algorithm (with the k-means++ [133] initialization) and we compute the
centroids as the points minimizing the average within class variance. The spectrum
corresponding to the centroid is then assigned to all RGB pixels in the vicinity. The
well-known limitations of this simple but fast algorithm are not relevant in our case as
we know the number of centroids beforehand and as a spherical shape of the clusters
is reasonable.

As an additional remark, the sSRGB domain does not seem to be the optimal choice

to run the k-means algorithm as the distance in the space does not always match the
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perceived color difference. However, a clustering based on the CIELab color space did
not improve the results.

Besides using the proposed approach to produce the training sets for the experiments,
an important aspect is how to apply this clusterization approach in a practical scenario.
One could proceed by acquiring RGB data, cluster them to get the most relevant points
and finally get the spectral information for the selected point, typically by using a
spectrometer.

Another possibility would be to directly acquire the desired pixels based on the
choice of an expert that controls the spectrometer. This would probably lead to even
better performances than the ones shown here. since the algorithm is only based on the
RGB domain, while an human expert has also some prior knowledge of the semantic

content and hyperspectral prior of the elements of the image.

8.6 Experimental Results

In this section we evaluate the performances of our approach on the ICVL dataset [7]
and we compare it with the methods of Aeschbacher et al. [111], Can et al. [121], Yan
et al. [115] and Shi et al. [120]. The latter is the winner of the NTIRE challenge and
the current top performing approach. Notice that, in contrast to ours, these methods
are all fully supervised approaches.

8.6.1 Datasets and Experimental Setup

In order to test the proposed approaches we rely on the well-known ICVL dataset
[7] which is one the largest hyperspectral dataset up to now along with its extended
version used for the NTIRE challenge [116]. It consists of 201 images, mostly outdoor,
representing rural and urban scenes. Each HSI image consists of 31 planes representing
spectral nodes between 400 and 700 nm by steps of 10 nm. For all experiments both
HSI and RGB images were normalized to the [0, 1] range.

The proposed model has been implemented using Pytorch [134]. We exploited the
Adam optimization algorithm with an initial learning rate of 2 * 10~% and a polynomial
function as decay policy. The employed parameters are: 5, = 0.9, 5 = 0.999 and
¢ = 107®. The model has been trained in an unsupervised way for S; = 1’000 steps

followed by Sy = 2’000 steps of semi-supervised optimization. Early stopping was
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used to reduce overfitting. The training took on average 36 hours using 4 NVIDIA
GTX 1080Ti GPUs. The images were split into patches of 50 by 50 pixels and grouped
in batches of 64. The inference on the other hand was performed on the entire images.
To evaluate the fine-tuning approach described in Section 8.4.5, we used the Harvard
dataset [132]. This smaller set is composed of 50 images both outdoor and indoor. For
our experiments we only focused on the 39 outdoor images.

For a fair comparison with competing approaches, we tested the different methods
on the train and test split used in [121] except for 8 images that we moved from the test
set to a validation set, and used the code provided by the authors of the various works
with the parameters suggested in the publications. We retrained these methods instead
of getting the data from the respective publications since each of them has different
variations of the metrics and different splits between training, validation and testing
sets. However results are very similar to the ones presented in the papers. For [111] we
do not correct the offset in the hyperspectral images and we do not apply the gamma
correction, since they apply the hyperspectral to RGB transformation not only to the
images but also to the dictionary itself. Therefore, only for this method, the SRGB
values are slightly different, but we experimentally verified that this has a very small
influence on the results. We compare the methods by using the MRAE metric (8.3) and
the Root Mean Squared Error (RMSE).

8.6.2 Quantitative Results

Table 8.1 presents the hyperspectral reconstruction error of the proposed semi-supervised
approaches and of the competing methods while Fig. 8.8 gives a visual overview of the
performances of the various approaches by comparing the accuracy of each method
together with the amount of supervision necessary. Note that the amount of supervi-
sion is expressed on a logarithmic scale, as our approaches work with an amount of
hyperspectral data several orders of magnitude smaller than competing ones.

The results in the table show that the use of the physical model to include standard
RGB images is a very efficient approach to reduce the amount of hyperspectral images
or pixels needed for supervision. With only 10 HSI images instead of almost 100 used
by the other methods, we obtain a MRAE of 0.019, outperforming all competing meth-
ods except [120], that outperforms ours by a very small margin. By using only pixel-

wise supervision, allowing the use of data acquired by a spectrometer, our approach
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MRAE RMSE
%102 %102
Aesch. etal. [111] | 3 % 10° pixels | 3.3 0.74
Yan et al. [115] 99 images 3.0 0.69
Canetal. [121] 99 images 2.2 0.59
99 images 1.4 0.48
10 images 2.5 0.75

Method HSI GT

Shi et al. [120]

Ours (73) 10 images 1.9 0.61
100 pixels 2.5 0.72
Ours (13,) 1’000 pixels 1.9 0.66

10’000 pixels 1.7 0.55

Table 8.1: Reconstruction error of our semi-supervised methods and of fully-supervised com-
peting methods. The amount of HSI ground truth (GT) used for supervision is also shown.

is very competitive as well. In particular, we get our best result (0.017) using 10’000
pixels only, which is drastically less HSI data than the other supervised approaches.
This value is very close to the state-of-the-art and outperforms all approaches except
[120]. Furthermore with only 100 pixels we are still able to outperform 2 out of 4
compared methods. The RMSE values give the same key insights as MRAE.

For all benchmarked fully supervised methods, many hyperspectral images are needed
for training, thus requiring a hyperspectral camera and a lot of effort for the acquisition.
Our approaches are much easier to deploy in a real situation as the hyperspectral data
required is hugely reduced. Training the method from Shi et al. on only 10 images
leads to a very large drop in accuracy. On the other side, our approach is able to work
even with this limited hyperspectral information thanks to the exploitation of standard
RGB images with the help of the physical model and reach a much lower error rate
(MRAE of 0.019 compared to 0.025). Notice that in this setting, where the amount of
HSI data is the same, we clearly outperform [120]. Our pipeline enables the estima-
tion of hyperspectral images in real word situations where the amount of hyperspectral
ground truth data is limited. Notice that our method gives the second best result with
much less supervision than all the four compared methods. Interesting is the fact that
10’000 pixels selected from 100 images seem to be more representative of the different
spectra than 10 full images as it leads to a lower error. If comparing the accuracy with
10’000 pixels selected only from the same 10 images, the image-wise supervision leads

to better performances as expected.
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Figure 8.8: MRAE as a function of the amount of supervision necessary to train the DNN or
the dictionary for our approaches (in red) and the competing ones.

As a further comparison, using only the clustering approach without the network,
e.g., just a lookup table on the spectral values getting the nearest neighbour for each
pixel, leads to much worse performances (MRAE of 0.017 instead of 0.029 in the
10’000 pixels case). This shows how the DNN exploits contextual information to re-
cover pixels that were initially assigned to the wrong spectrum.

The results shown in Table 8.1 and Fig. 8.8 are further illustrated in Fig. 8.9, where
the approaches using a supervision in the form of images are compared. The number
of RGB and hyperspectral pixels used for training are represented as bars, showing that
our approach replaces most of the HSI data by the use of standard RGB information. It
clearly shows that our approach is making the best of the limited supervision. On one
hand our training with only 10 hyperspectral images outperforms all tested approaches
from literature expect for [120], all using 99 images. On the other hand it gives much
lower error than [120] trained on 10 images (that in this case achieves a MRAE of
0.025), proving that the inclusion of RGB images in the training using the physical
model is useful.

The same representation is used in Fig. 8.10 where we compare methods based on
pixel-wise supervision along with the state-of-the-art method by Shi et al. [120]. The
small amount of hyperspectral data needed by our approach can be in the form of

single pixels, while preserving an accurate estimation of hyperspectral data from RGB.
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As expected the more pixels we have for supervision, the better the results (up to a
certain limit). As the number of pixels used grows to 10’000 the error rate decreases
and approaches the results of [120], while requiring 4 orders of magnitude less HSI
information.

8.6.3 Qualitative Results

Fig. 8.11 shows an example of estimated spectra of a pixel corresponding to the grass
region. Consistently with the results discussed before, and similarly to the behaviour
on many other samples, the method of [111] is less accurate, followed by the methods
of [115] and [121]. Our method gives similar results as [120] although it is only weakly
supervised.

Fig. 8.12 shows the average MRAE at each location on some sample images for the
different methods. Aeschbacher et al. [111] fails in regions such as grass or sky, where
the other methods show good performances. In general the trees are challenging for all
the methods. On these images our method shows similar performances as [121] and
close to [120].
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8.6.4 Fine-tuning on Harvard dataset

Fig. 8.13 shows an overview of the results obtained by fine-tuning on the Harvard
dataset. Note that the amount of supervision is expressed on a logarithmic scale, as
our approach works with a few pixels versus the few dozen images needed for the fully
supervised case. The results show that our approach can also be used as a domain
adaptation tool. It allows to get a reliable prediction when starting from a pre-trained
DNN and adapting to a new dataset with only few hyperspectral samples available for
it (while standard RGB images are available). The figure shows how the fine-tuning of
a model trained initially on ICVL database exploiting only a few pixels of the target
domain is almost as reliable as the same model fine-tuned in a fully-supervised fashion
(with as little as 10* pixels the MRAE is 0.0247 instead of 0.0242). Furthermore the
fine-tuning gives slightly better results than a network trained from scratch using the

same number of pixels.

8.7 Conclusions and Future Work

In this chapter we introduced a semi-supervised deep learning approach for estimating
hyperspectral data from RGB images that can be trained with a limited amount of
supervision. We exploited a physical model to constrain the training thus allowing the
usage of standard RGB images to support the training procedure. The proposed method
allows to obtain very good performances with just a few hyperspectral images or even
just some sparse samples. In a real world scenario this allows to obtain a reliable
hyperspectral estimation for the whole image using training data from a standard RGB
camera coupled with a point spectrometer.

Future research will be devoted to the inclusion of adversarial learning techniques
into the proposed framework and to the extension of the fine-tuning approach to a
more advanced semi-supervised domain adaptation scheme. Also we plan to test the
proposed approach in different environments, for example indoor or including specific
objects. Finally, the proposed approach can be extended to make predictions out of the

visible range, for example in the near infrared.
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9 Conclusions

This Ph.D. thesis is the result of three years of work on Time-of-Flight sensors. We
have begun by describing in Chapter 2 the fundamental principles of this technology
both in the case of direct ToF sensors and in the case of indirect ones. We then provided
a more in depth view of iToF sensors, explaining their limitations and error sources,
with the spotlight taken by Multi-Path Interference. Following that, in chapter 3 we in-
troduced the task of MPI correction and that of transient reconstruction and in chapter
4 the datasets we employed; in particular, we also described the Walls dataset, a tran-
sient dataset based on simple structure that was built during the first year of Ph.D.. In
Chapter 5 we then introduced two models for MPI correction. The first one called the
Two-Peaks Network, which exploits a simple encoding of transient information to aid
the training; the second one instead, called Direct-Global Separation Network, sub-
divides the transient information in the iToF domain and also provides a prediction of
the entire transient vector. Both approaches were shown to have very competitive per-
formance, with the second one reaching state-of-the-art results on real data.

In Chapter 6, we explained a second manner to employ iToF sensors in order to get a
more accurate prediction at the cost of spatial resolution. We then introduced the task
of depth completion and showed in Chapter 7 a quantized neural network with compet-
itive performance. For all these methods we posed particular attention to the network
size, as a small size is needed to limit the energy consumption and to go towards real
time implementations. Finally, in Chapter 8, we investigated a different kind of sensor:
hyperspectral cameras. We then showed some techniques for training network for spec-
trum reconstruction with little supervision.

This thesis leaves open several interesting paths of research. First of all, one straight-
forward improvement on the Direct-Global Separation Network, would be to use an
unsupervised domain adaptation approach as done in [39] to get a better performance

on real data. Regarding transient reconstruction instead, it is possible to think of em-
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ploying a different architecture rather than a parametric model to improve the accuracy
of the global reconstruction; afterwards, it would be interesting to see how the global
information can be used for other tasks such as material estimation or Non-Line-of-
Sight-Imaging. On the topic of depth completion it would be interesting to test the
architecture on an actual mobile environment, see if the inference time and the energy
consumption are satisfying or if there is still more to improve. Finally, for the semi-
supervised techniques on spectrum reconstruction, it would be reasonable to apply
UDA approaches to improve the reconstruction.
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