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Abstract
We consider a class of infinite weightedmetric trees obtained as perturbations of
self-similar regular trees. Possible definitions of the boundary traces of functions
in the Sobolev space on such a structure are discussed by using identifications
of the tree boundary with a surface. Our approach unifies some construc-
tions proposed by Maury, Salort, and Vannier for discrete weighted dyadic trees
(expansion in orthogonal bases of harmonic functions on the graph and using
Haar-type bases on the domain representing the boundary), and by Nicaise and
Semin and Joly, Kachanovska, and Semin for fractal metric trees (approximation
by finite sections and identification of the boundary with a interval): We show
that both machineries give the same trace map, and for a range of parameters
we establish the precise Sobolev regularity of the traces. In addition, we intro-
duce new geometric ingredients by proposing an identification with arbitrary
Riemannian manifolds. It is shown that any compact manifold admits a suit-
able multiscale decomposition and, therefore, can be identified with a metric
tree boundary in the context of trace theorems.

KEYWORDS
fractional Sobolev space, metric graph, multiscale analysis, quantum graph, trace theorem,
triangulation of a manifold

1 INTRODUCTION

In this paper, we discuss some aspects of the trace theory for Sobolev spaces on infinite metric graphs. By a metric graph
wemean a geometric configuration that arises if one replaces the edges of a discrete graph by intervals, and one introduces
a differential operator on such a structure by defining a differential expression on each interval and by imposing a gluing
condition at each node. A metric graph together with a differential operator on it is often called a quantum graph. While
quantum graphs represent by now a well-established theory [3, 4, 18, 42], the most attention was concentrated on the
study of regular configurations with suitable lower bounds on the edge lengths and other parameters: In that case, it is
known that gluing conditions at the nodes are sufficient to define a self-adjoint operator or a non–self-adjoint one with
good properties [25]. More recent papers [11, 12, 16, 19, 23, 40, 45, 60] initiated the discussion of the most general quantum
graphs, which shows that in many cases additional “boundary conditions at the external boundary” must be imposed.
It should be noted that the notion of boundary for general graphs is not obvious, which is a well-known issue for both
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2 FRANCESCHI et al.

metric and discrete infinite graphs [12, 33, 41, 46, 66]; we recall that metric and discrete graphs show a number of common
features [13, 41, 44, 53], and in case of equilateral metric graphs even a kind of unitary equivalence between respective
Laplacians can be established, see the first paper by von Below [63] and later developments, for example, in [54, 55, 64].
If the boundary is naturally defined (e.g., for a tree, the set of infinite paths starting at a fixed vertex can be naturally

viewed as the boundary), one arrives at the question of the description of possible boundary conditions, which requires a
construction of suitable function spaces at the boundary as well as a rigorous definition of boundary values for functions
defined on the graph. For some classes of infinite trees, the abstract boundary can be endowed with a metric structure,
which gives rise to Sobolev-type spaces and associated trace theorems. The paper [5] deals with dyadic discrete trees: One
identifies the tree boundary with the ring ℤ2 of 2-adic numbers and establishes a trace theorem for a class of weights. A
similar construction was applied in [7, 32, 35–39] for more general trees and more general function spaces as well: In all
these works, the boundary of a discrete tree is viewed as a totally disconnected metric space with, respectively, defined
function spaces on it. The paper [12] makes first steps in defining the boundary of a metric graph as a totally disconnected
metric space, but no precise trace theoremwas established. Further trace results for a class of metric graphs with unit edge
lengths were established in [38, 39] with the unit length edges, still for an abstractly defined boundary. At the same time,
if a metric graph is considered as a model of a structure embedded into a space, then in many cases, its boundary can be
naturally identified with a surface: As an example, one may think of a dandelion clock, whose surface can be viewed as
a sphere in the three-dimensional Euclidean space. The aim of this work is to elaborate a theory of boundary traces on
metric trees using concrete geometric realizations of the abstract tree boundary. Our analysis includes a description of the
range of the trace operator (and not just its boundedness), which seems to be new for metric graphs.
The idea of such an identification is not completely new, and our work is mainly motivated by the papers [30, 47, 52, 61]

dealing with the analysis of Dirichlet-to-Neumann operators and wave equations on trees viewed as a model of human
lung. In particular, ourmain object (geometric tree) is directly borrowed from [30]. Onemay alsomention the paper [6], in
which abstract metric spaces are obtained as the limits of embedded discrete structures (hyperbolic tilings), which leads
to some precise mapping theorems as well. Nevertheless, while the tilings used show some ideological similarities with
the multiscale decompositions employed in our work (see below), our precise situation (trace map for a metric tree) is not
covered directly by the constructions of [6]. We also mention the papers [14, 26] in which abstract versions of multiscale
decompositions (usually referred to as dyadic or 𝑝-adic cubes) were used for other purposes such as boundedness criteria
for singular integral operators: We refer to Kigami’s monograph [34] for a variety of further applications. While some
elements of our analysis look very similar to the ideas used in the analysis in metric spaces with the help of 𝑝-adic cubes,
the objectives are not same: We have two given objects (a metric tree and a Riemannianmanifold) with smooth structures
that are already prescribed, and the goal is to interpret one of them as the boundary of the second one. This setting is quite
different to what was done for the abstract metric spaces, where the key step is the definition of a smooth structure using
suitable embedded trees/graphs.
The paper [47], which was our main starting point, deals with weigthed discrete Laplacians on an infinite dyadic tree,

and it established a trace theorem for discrete Sobolev spaces by identifying the boundary with a Euclidean domain. Note
that the later paper [5] has shown the equivalence of the resulting mapping theorems with the approach based on abstract
tree boundaries viewed as ultrametric spaces. The works [30, 52, 61] proposed a modified model with the help of the con-
tinuous weighted Laplacians, and an identification of the boundary trace with an interval was addressed. Moreover in [61]
the Sobolev regularity was partially studied. The notion of the boundary trace was then used as a theoretical tool in [52, 61]
in order to establish the equivalence between various definitions of the Sobolev spaces on the fractal trees, which further
served for numerical approximation of infinite trees by their finite truncations when solving the wave equation [27–29,
31]. It should be said that the approaches of [30] and [30, 52, 61] to the definition of the boundary trace were quite different:
The paper [47] uses an orthonormal basis of harmonic functions (so that the definition of the boundary trace of an arbi-
trary function is recovered from its expansion in this basis), while [30, 52, 61] used more explicit approximations by finite
truncations. As a by-result of our analysis, one obtains that both the approaches are equivalent and allow for inclusion of
Riemannian manifolds and not just Euclidean domains.
We now describe our configuration and the main results in greater detail. Let 𝑝 ∈ ℕ with 𝑝 ≥ 2 be given and a root

𝑜 be given. We glue to 𝑜 an edge 𝑒0,0 represented by an interval of length 𝓁0,0, the second vertex of 𝑒0,0 will be called
𝑋0,0. If all 𝑒𝑛,𝑘 and 𝑋𝑛,𝑘 with 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1} are already constructed, then to each 𝑋𝑛,𝑘 we attach 𝑝 new
edges 𝑒𝑛+1,𝑝𝑘+𝑗, with 𝑗 ∈ {0, … , 𝑝 − 1}, having lengths 𝓁𝑛+1,𝑝𝑘+𝑗 , and the pendant vertices of 𝑒𝑛+1,𝑝𝑘+𝑗 , to be denoted by
𝑋𝑛+1,𝑝𝑘+𝑗, will be viewed as children of 𝑋𝑛,𝑘. This process continues infinitely, which creates a infinite rooted metric tree . The subtree of  starting at 𝑋𝑛,𝑘, that is, the subtree spanned by the offsping of 𝑋𝑛,𝑘 (the children, the children of the
children, etc.), will be denoted by 𝑛,𝑘. See Figure 1.
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FRANCESCHI et al. 3

(A) (B)

F IGURE 1 (A) The tree  . (B) A subtree 𝑛,𝑘 .

For subsequent constructions, it will be useful to introduce coordinates on  . Denote by 𝐿𝑛,𝑘 the distance between the
root 𝑜 and 𝑋𝑛,𝑘, that is, the length of the unique path between 𝑜 and 𝑋𝑛,𝑘 obtained by summing the lengths of all edges
in the path. Then by (𝑛, 𝑘, 𝑡)with 𝑡 ∈ [𝐿𝑛,𝑘 − 𝓁𝑛,𝑘, 𝐿𝑛,𝑘], we denote the point of 𝑒𝑛,𝑘, which is at the distance 𝐿𝑛,𝑘 − 𝑡 from
𝑋𝑛,𝑘. In this notation,

𝑋𝑛,𝑘 = (𝑛, 𝑘, 𝐿𝑛,𝑘) = (𝑛 + 1, 𝑝𝑘 + 𝑗, 𝐿𝑛,𝑘) for any 𝑗 ∈ {0, … , 𝑝 − 1}.

Let 𝑤 ∶  → (0,∞) be a locally bounded measurable function, which will be used as an integration weight: For
𝑓 ∶  → ℂ, one defines

∫ 𝑓 d𝜇 ∶=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

∫
𝐿𝑛,𝑘

𝐿𝑛,𝑘−𝓁𝑛,𝑘

𝑓(𝑛, 𝑘, 𝑡) 𝑤(𝑛, 𝑘, 𝑡) d𝑡,

then

𝐿2( ) ∶=
{
𝑓 ∶  → ℂ ∶ ‖𝑓‖2

𝐿2( )
∶= ∫ |𝑓|2 d𝜇 < ∞

}
.

Due to the above definition, the set of vertices has zero measure. Therefore, each measurable function 𝑓 ∶  → ℂ can be
identified with a family of functions (𝑓𝑛,𝑘),

𝑓𝑛,𝑘 ∶= 𝑓(𝑛, 𝑘, ⋅) ∶ (𝐿𝑛,𝑘 − 𝓁𝑛,𝑘, 𝐿𝑛,𝑘) → ℂ, 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}.

Then 𝑓 = (𝑓𝑛,𝑘) belongs to 𝐿2( ) if and only if

‖𝑓‖2
𝐿2( )

∶=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

∫
𝐿𝑛,𝑘

𝐿𝑛,𝑘−𝓁𝑛,𝑘

||𝑓𝑛,𝑘(𝑡)||2𝑤𝑛,𝑘(𝑡) d𝑡 < ∞.

If 𝑓 = (𝑓𝑛,𝑘) is such that all 𝑓𝑛,𝑘 have locally integrable distributional derivatives 𝑓′
𝑛,𝑘
, we denote 𝑓′ ∶= (𝑓′

𝑛,𝑘
). The first

Sobolev space𝐻1( ) on  is then introduced as

𝐻1( ) ∶= {𝑓 ∈ 𝐿2( ) ∶ 𝑓 is continuous with 𝑓′ ∈ 𝐿2( )}, ‖𝑓‖2
𝐻1( )

∶= ‖𝑓‖2
𝐿2( )

+ ‖𝑓′‖2
𝐿2( )

.

Moreover, we denote

𝐻1
𝑐 ( ) ∶= {𝑓 ∈ 𝐻1( ) ∶ there exists 𝑁 ∈ ℕ such that 𝑓𝑛,𝑘 ≡ 0 for all (𝑛, 𝑘) with 𝑛 > 𝑁},

𝐻1
0( ) ∶= the closure of𝐻1

𝑐 ( ) in𝐻1( ).
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4 FRANCESCHI et al.

F IGURE 2 The boundary of  viewed as a surface Ω.

F IGURE 3 An example of a multiscale decomposition (for 𝑝 = 2).

One arrives at the following quite natural questions:

(a) Do we have 𝐻1
0( ) = 𝐻1( )?

(b) If not, can we characterize the functions in 𝐻1
0( ) by their “behavior of infinity,” that is, by the behavior of

𝑓 = (𝑓𝑛,𝑘) ∈ 𝐻1( ) for 𝑛 → ∞?
(c) Can this “behavior at infinity” be characterized by a function defined on some setΩ viewed as the “boundary” of  ?
Remark that the𝐻1-norm on  represents the sesquilinear form of the Neumann Laplace operator Δ, which is important
for the study of various diffusion processes on  . One can also consider first a thickened version 𝜀 of  (i.e., one embeds
 in ℝ𝑛 and takes the 𝜀-neighborhood) and consider the associated Neumann Laplacian Δ𝜀, then one has a suitably
defined convergence of Δ𝜀 to Δ as 𝜀 → 0, see [57, 58]. The problem (a) is related to the question whether the boundary of
 is penetrable, that is, whether one can impose alternative boundary conditions at the tree boundary. In fact, problem
(a) was already addressed for several classes of metric graphs, see [40, Section 3] and [41, Theorem 7.24], but none of
them covers our situation in full generality. The problems (b) and (c) are closely related to a concrete representation of
such conditions and to the existence and uniqueness of solutions of the associated boundary value problems. We provide
answers to the above questions by identifying the abstract boundary 𝜕 with a geometric object, more precisely, an open
setΩwith compact closure in a𝑑-dimensional Riemannianmanifold (in particular,Ω is allowed to be an arbitrary compact
Riemannian manifold), see Figure 2. The main assumption on Ω is that it admits a special decomposition: There exists
Ω𝑛,𝑘 ⊂ Ω, 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, constructed as follows. One setsΩ0,0 ∶= Ω. If someΩ𝑛,𝑘 is constructed, one chooses
𝑝 nonempty disjoint subsets Ω𝑛+1,𝑝𝑘+𝑗 ⊂ Ω𝑛,𝑘, 𝑗 ∈ {0, … , 𝑝 − 1}, such that

||||||Ω𝑛,𝑘 ⧵

𝑝−1⋃
𝑗=0

Ω𝑛+1,𝑝𝑘+𝑗

|||||| = 0,

and this process continues infinitely (Figure 3). In addition, one needs to impose some geometric conditions on Ω𝑛,𝑘

for large 𝑛: Informally, all Ω𝑛,𝑘 must have approximately the same volume, and their shape is not allowed to become
“too complicated.” A decomposition satisfying all necessary assumptions will be called a regular strongly balanced
𝑝-multiscale decomposition of Ω (we refer to Subsection 3.2 for rigorous definitions concerning Euclidean open sets and
to Subsection 3.4 for an extension to the case of manifolds).
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FRANCESCHI et al. 5

F IGURE 4 Identifying 𝑛,𝑘 with Ω𝑛,𝑘 .

Remark that the combinatorial structure of the family (Ω𝑛,𝑘) repeats the combinatorial structure of the family of subtrees
(𝑛,𝑘): For arbitrary (𝑛, 𝑘) and (𝑛′, 𝑘′), one has

(1) Ω𝑛,𝑘 ⊂ Ω𝑛′,𝑘′ if and only if 𝑛,𝑘 ⊂ 𝑛′,𝑘′ ,
(2) Ω𝑛,𝑘 ∩ Ω𝑛′,𝑘′ ≠ ∅ if and only if 𝑛,𝑘 ∩ 𝑛′,𝑘′ ≠ ∅,

and this observation is used to create a link between the functions defined on  and those defined on Ω. More precisely,
one imagines that the boundary of  is glued to Ω in such a way that the boundary of each 𝑛,𝑘 is glued to Ω𝑛,𝑘. In this
case, if a function 𝑓 on  has a constant value 𝛼𝑛,𝑘 along some 𝑛,𝑘 and is zero on all other subtrees 𝑛,𝑗 with 𝑗 ≠ 𝑘, then
it natural to identify the boundary trace of 𝑓 with the function 𝛼𝑛,𝑘𝟙Ω𝑛,𝑘

(Figure 4). It appears that this somewhat naive
definition can be given a rigorous form, and a part of our main results can be summarized as follows:

Theorem1.1. Assume that there exist constants𝛼 > 0, 0 < 𝓁 < 1, and 𝑐 ≥ 1 such that for any𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1},
there holds

𝑐−1𝓁𝑛 ≤ 𝓁𝑛,𝑘 ≤ 𝑐𝓁𝑛, 𝑐−1𝛼𝑛 ≤ 𝑤𝑛,𝑘 ≤ 𝑐𝛼𝑛. (1)

Then𝐻1
0( ) ≠ 𝐻1( ) if and only if

𝓁 < 𝛼𝑝 <
1

𝓁
. (2)

Assume that (2) is satisfied and letΩ be a nonempty open set with compact closure in a 𝑑-dimensional Riemannian man-
ifold of bounded geometry. We denote by 𝐻𝑠(Ω) the associated fractional Sobolev spaces of order 𝑠 ≥ 0 and require that Ω
admits a regular strongly balanced 𝑝-multiscale decomposition (Ω𝑛,𝑘) as defined in Subsection 3.4. Denote

𝜎 ∶=
1

2

(
1 −

log 𝓁 − log 𝛼

log 𝑝

)
> 0

and let 0 ≤ 𝑠 <
1

2
such that 𝑠 ≤ 𝜎𝑑, then for any 𝑓 ∈ 𝐻1( ), there exists the limit

𝛾
Ω
𝑓 ∶= lim

𝑁→∞

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾)𝟙Ω𝑁,𝐾
∈ 𝐻𝑠(Ω).

The embedded trace operator defined by 𝛾
Ω
∶ 𝐻1( ) → 𝐻𝑠(Ω) is a bounded linear operator with ker 𝛾

Ω
= 𝐻1

0(Ω), and

𝛾
Ω

(
𝐻1( )

)
= 𝐻𝜎𝑑(Ω) if 𝜎𝑑 <

1

2
.

Remark 1.2. The right-hand inequality in (2) means precisely that the tree  has finite total weight.
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6 FRANCESCHI et al.

Remark 1.3. If Ω is a Euclidean open set, then one can show that the linear map 𝛾
Ω
given by the same expression is

bounded and surjective as a map from 𝐻1( ) to 𝐴𝜎𝑑(Ω) for any value of 𝜎, where 𝐴𝜎𝑑(Ω) is a so-called approximation
space (which happens to coincide with 𝐻𝜎𝑑 if 𝜎𝑑 <

1

2
): We refer to Subsection 4.3 for more detailed formulations. This

settles the open question [52, section 5, Question 2] about the range of the embedded trace operator for our class of metric
graphs, even for a more general geometric trace realization.
For 𝑑 = 1 our result is very close to the construction of the bounded trace operator in [61, Theorem 5.4.13] and [30,

sections 3.1–3.2], but even in this case our result is stronger (for the class of trees we consider) as we show its surjectivity
for a range of parameters.

A large part of the paper is devoted to the proof of the assertions of Theorem 1.1 for the case 𝑐 = 1 in (1). For this special
case, the tree  will be denoted by𝕋 and called geometric tree following the convention proposed in [30]. The advantage of
the geometric tree is that it allows for a decomposition into a direct sum of one-dimensional problems, and trace theorems
in one dimension aremuch simpler to study. Such a decomposition is well known [51, 57], but we need a number of explicit
formulas for various intermediate transformation operators, which are missing in the existing literature, so we opted for
a self-contained presentation in Section 2. This part of analysis is concluded by constructing an abstract trace operator in
Subsection 2.5, which maps𝐻1(𝕋) into a discrete 𝓁2-type space inherited from the direct sum decomposition.
In Section 3, we introduce approximation spaces 𝐴𝑟(Ω), which consist of the functions defined on Ω that can be “well

approximated” by linear combinations of indicator functions of some subsets of Ω. In Subsection 3.1, we recall the most
important constructions for fractional Sobolev spaces, which are used in the analysis. In Subsection 3.2, we introduce spe-
cial decompositions of Euclidean domains and define the associated approximation spaces. In Subsection 3.3, we show
that in some important cases the approximation spaces coincide with the usual fractional Sobolev spaces. The construc-
tions of Subsections 3.2 and 3.3 are an adaptation of the respective 2-adic spaces in [47], which were in turn motivated by
more general considerations coming from the wavelet analysis [15, 48]. In Subsection 3.4, we transfer these constructions
to the case of open sets on manifolds using the traditional approach with local charts. We note that Sections 2 and 3 are
independent from each other. They also contain a lot of introductorymaterial andwe hope that they can be of independent
interest beyond the immediate scope of this work.
In Section 4, we make last steps in the construction of the embedded trace operator. First, in Subsection 4.1, we identify

the 𝓁2-space from the construction of the abstract trace operator with the approximation spaces 𝐴𝑟(Ω) using an identi-
fication of suitable bases. The embedded trace operator is then obtained as the superposition of this identification with
the abstract trace operator, and the resulting properties are summarized in Subsection 4.2. At this point, all assertions
of Theorem 1.1 are proved for the geometric tree 𝕋, and in Subsection 4.3, we transfer them to the general  using a
coordinate change.
All preceding results require the existence of decompositions of open sets or manifolds into pieces with special prop-

erties; it seems that these questions were not addressed in sufficient generality in earlier works. In the last Section 5, we
show that such decompositions exist for large classes of Ω, in particular, for all convex polyhedrons, all convex smooth
domains and all compact manifolds. This is done by adapting the existing results from very diverse areas of analysis to the
context of multiscale decompositions.
We consider this work as an initial component for the systematic analysis of boundary value and transmission prob-

lems on infinite metric graphs, which will be continued in several directions. A key role in our analysis is played by the
decomposition of trees into a direct sumof one-dimensional problems. It was noted in [8] that such decomposition actually
exists for amuch larger class of metric graphs, so we hope that at least some elements of our analysis will be useful beyond
the context of trees. The possibility of the identification of the tree boundary with a prescribed surface gives a possible
approach to describe the interaction between fractal trees touching each other along some interface and to include fractal
building blocks in the so-called hybrid spaces [2, 9, 10, 17, 56, 59]. Such applications will be covered in ongoing works.

2 ANALYSIS ON GEOMETRIC TREES

2.1 Tree structure and function spaces

In this section, we analyze in greater detail the “ideal” case 𝓁𝑛,𝑘 ∶= 𝓁𝑛 and𝑤𝑛,𝑘 = 𝛼𝑛 for all (𝑛, 𝑘), that is, with 𝑐 = 1 in (1).
The corresponding tree will be denoted 𝕋 (as opposite to  for the general case) and called a geometric tree. The geometric

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300574 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FRANCESCHI et al. 7

F IGURE 5 The structure of a geometric tree.

trees have a lot of symmetries, which will be exploited for the analysis, and some expressions can be written in a slightly
different form.
Remark that the underlying combinatorial graph is 𝐺 ∶= (𝑉, 𝐸), with the set of vertices 𝑉 and the set of edges 𝐸 given

by

𝑉 ∶= {𝑜} ∪
{
𝑋𝑛,𝑘 ∶ 𝑛 ∈ ℕ0, 𝑘 ∈ {0, 1, … , 𝑝𝑛 − 1}

}
,

𝐸 ∶=
{
𝑒𝑛,𝑘 ∶ 𝑛 ∈ ℕ0, 𝑘 ∈ {0, 1, … , 𝑝𝑛 − 1}

}
,

𝑒𝑛,𝑘 ∶=

{
(0, 𝑋0,0), 𝑛 = 0,

(𝑋𝑛−1,[log𝑝 𝑘], 𝑋𝑛,𝑘), 𝑛 ≥ 0,

where [𝑡] stands for the integer part of 𝑡 ∈ [0,∞), that is, the largest integer not exceeding 𝑡. Remark that each edge 𝑒𝑛,𝑘
connects each 𝑋𝑛,𝑘 with its uniquely defined parent, which is 𝑋𝑛−1,[log𝑝 𝑘] for 𝑛 ≥ 1 and 𝑜 for 𝑛 = 0. All vertices except the
root have the degree 𝑝 + 1 (i.e., have 𝑝 + 1 neighbors: 𝑝 children and 1 parent), and the degree of the root is 1. For 𝑝 = 1,
the graph 𝐺 is simply a half-infinite chain, so we assume from now on that 𝑝 ≥ 2.
Consider the numbers

𝑡−1 ∶= 0, 𝑡𝑛 =

𝑛∑
𝑘=0

𝓁𝑘, 𝑛 ∈ ℕ0, 𝐿 ∶= lim
𝑛→∞

𝑡𝑛 ∈ (0,∞]. (3)

By construction, the numbers 𝑡−1 < 𝑡0 < 𝑡1 < … subdivide (0, 𝐿) into the infinitely many intervals (𝑡𝑛−1, 𝑡𝑛) of length 𝓁𝑛,
𝑛 ∈ ℕ0 (Figure 5). The combinatorial tree 𝐺 is related to the metric tree 𝕋 as follows: We identify each 𝑒𝑛,𝑘 with a copy of
[𝑡𝑛−1, 𝑡𝑛] using the convention that the endpoint of 𝑒𝑛,𝑘 is identified with the initial point of each of its children. In other
words,

𝕋 ∶=
{
((𝑛, 𝑘), 𝑡) ∶ 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, 𝑡 ∈ [𝑡𝑛−1, 𝑡𝑛]

}
∕ ∼

for the identification ∼ defined by

((𝑛, 𝑘), 𝑡𝑛) ∼ ((𝑛 + 1, 𝑝𝑘 + 𝑗), 𝑡𝑛), 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, 𝑗 ∈ {0, … , 𝑝 − 1}.

For what follows for 𝑥, 𝑦 ∈ 𝕋, we write

(1) 𝑥 ≤ 𝑦 if the path from 𝑜 to 𝑦 passes through 𝑥 (equivalently one can say that 𝑦 belongs to the offspring of 𝑥),
(2) 𝑥 < 𝑦 if 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦.

We will also need to consider some special subgraphs of 𝕋. For 𝑛 ∈ ℕ, denote

𝕋𝑛 ∶= the tree truncated after the 𝑛th generation,
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8 FRANCESCHI et al.

F IGURE 6 The subtrees 𝕋𝑛,𝑘 and 𝕋
𝑗

𝑛,𝑘
.

that is, 𝕋𝑛 is composed of all edges 𝑒𝑚,𝑘 with𝑚 ≤ 𝑛. For 𝑛 ∈ ℕ, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, consider

𝕋𝑛,𝑘 ∶= {𝑥 ∈ 𝕋 ∶ 𝑋𝑛,𝑘 ≤ 𝑥}.

Remark that

𝕋𝑛,𝑘 =

𝑝−1⋃
𝑗=0

𝕋
𝑗

𝑛,𝑘
, 𝕋

𝑗

𝑛,𝑘
∶= 𝑒𝑛+1,𝑝𝑘+𝑗 ∪ 𝕋𝑛+1,𝑝𝑘+𝑗,

see Figure 6. By construction, each 𝕋
𝑗

𝑛,𝑘
is a rooted metric tree (having the same combinatorial structure as 𝕋 itself) with

𝑋𝑛,𝑘 being the root. The vertices of 𝕋
𝑗

𝑛,𝑘
are 𝑋𝑛,𝑘 and 𝑋𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟 with𝑚 ∈ ℕ and 𝑟 ∈ {0, … , 𝑝𝑚−1 − 1

}
.

The set 𝕋 becomes a metric space if one considers the natural distance 𝜌,

𝜌(𝑥, 𝑦) ∶= the length of the unique path between 𝑥, 𝑦 ∈ 𝕋, |𝑥| ∶= 𝜌(𝑥, 𝑜) for 𝑥 ∈ 𝕋,

which gives rise to the notion of a continuous function on 𝕋. The number 𝐿 in (3) is usually referred to as the height of 𝕋,
and

for all subsequent constructions we assume

𝐿 < ∞ or, equivalently, 𝓁 < 1.

We consider the measure 𝜇 on 𝕋, which coincides with 𝛼𝑛 d𝑡 along 𝑒𝑛,𝑘, where d𝑡 is the one-dimensional Lebesgue
measure and 𝛼 > 0 is a fixed constant. A function 𝑓 ∶ 𝕋 → ℂ is measurable if each of its components

𝑓𝑛,𝑘 ∶ [𝑡𝑛−1, 𝑡𝑛] ∋ 𝑡 ↦ 𝑓((𝑛, 𝑘), 𝑡) ∈ ℂ, 𝑓𝑛,𝑘 ∶= 𝑓|𝑒𝑛,𝑘 for short,
is measurable; in most cases, we will identify 𝑓 with the set of its components (𝑓𝑛,𝑘). The integral of such 𝑓 over 𝕋 with
respect to 𝜇 is then given by

∫
𝕋

𝑓 d𝜇 ∶=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑛 ∫
𝑡𝑛

𝑡𝑛−1

𝑓𝑛,𝑘(𝑡) d𝑡.

The above integration gives rise to the naturally defined space 𝐿2(𝕋):

𝐿2(𝕋) ∶=
{
𝑓 ∶ 𝕋 → ℂmeasurable ∶ ‖𝑓‖2

𝐿2(𝕋)
∶= ∫

𝕋

|𝑓|2 d𝜇 < ∞
}
,

∫
𝕋

|𝑓|2 d𝜇 ∶=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑛‖𝑓𝑛,𝑘‖2𝐿2(𝑒𝑛,𝑘), ‖𝑓𝑛,𝑘‖2𝐿2(𝑒𝑛,𝑘) ∶= ∫
𝑡𝑛

𝑡𝑛−1

||𝑓𝑛,𝑘(𝑡)||2 d𝑡.
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FRANCESCHI et al. 9

In addition, we consider the Sobolev-type space𝐻1(𝕋) defined by

𝐻1(𝕋) ∶=
{
𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓𝑛,𝑘 ∈ 𝐻1(𝑡𝑛−1, 𝑡𝑛) for any (𝑛, 𝑘), 𝑓′ ∶= (𝑓′

𝑛,𝑘
) ∈ 𝐿2(𝕋) and 𝑓 is continuous on 𝕋

}
.

Recall that 𝐻1(𝑡𝑛−1, 𝑡𝑛) ⊂ 𝐶0 ([𝑡𝑛−1, 𝑡𝑛]) due to Sobolev embedding theorem, so the continuity of 𝑓 on 𝕋 in the above
definition of𝐻1(𝕋) actually means the continuity at the vertices,

𝑓𝑛,𝑘(𝑡𝑛) = 𝑓𝑛+1,𝑝𝑘+𝑗(𝑡𝑛) for all 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, 𝑗 ∈ {0, … , 𝑝 − 1}.

We equip 𝐻1(𝕋) with the scalar product ⟨⋅, ⋅⟩𝐻1(𝕋) defined by

⟨𝑓, 𝑔⟩𝐻1(𝕋) ∶= ⟨𝑓, 𝑔⟩𝐿2(𝕋) + ⟨𝑓′, 𝑔′⟩𝐿2(𝕋)
and the induced norm ‖ ⋅ ‖𝐻1(𝕋), then one easily checks that 𝐻1(𝕋) becomes a Hilbert space. The following result from
[30, section 3.5] will be important below:

Lemma 2.1. For any 𝑝 ∈ ℕ, 𝓁 ∈ (0, 1), 𝛼 > 0, the embedding𝐻1(𝕋) ↪ 𝐿2(𝕋) is compact.

Now we denote

𝐻1
𝑐 (𝕋) ∶=

{
𝑓 = (𝑓𝑛,𝑘) ∈ 𝐻1(𝕋) ∶ ∃𝑁 ∈ ℕ such that 𝑓𝑛,𝑘 ≡ 0 for 𝑛 > 𝑁

}
,

𝐻1
0(𝕋) ∶= the closure of𝐻1

𝑐 (𝕋) in𝐻1(𝕋).

2.2 Orthogonal decompositions

All constructions in this section are essentially from the paper [51], but we need several intermediate objects, which did
not appear there explicitly, so we prefer to give a complete argument.
We now introduce several subspaces of 𝐿2(𝕋) determined through additional invariance properties. We start with the

space of radial functions,

𝐿2
rad

(𝕋) ∶=
{
𝑓 ∈ 𝐿2(𝕋) ∶ for any 𝑥, 𝑦 ∈ 𝕋 with |𝑥| = |𝑦| one has 𝑓(𝑥) = 𝑓(𝑦)

}
,

which will be considered with the induced scalar product. Remark that 𝑓 ∈ 𝐿2
rad

(𝕋) means the existence of a function
𝐹 ∶ (0, 𝐿) → ℂ with 𝑓(𝑥) = 𝐹(|𝑥|) for all 𝑥 ∈ 𝕋, which means that the components (𝑓𝑛,𝑘) satisfy 𝑓𝑛,𝑘(𝑡) = 𝐹(𝑡) for all
𝑒𝑛,𝑘 ∈ 𝐸 and 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛). This yields

‖𝑓‖2
𝐿2(𝕋)

=

∞∑
𝑛=0

𝛼𝑛

𝑝𝑛−1∑
𝑘=0

∫
𝑡𝑛

𝑡𝑛−1

||𝑓𝑛,𝑘(𝑡)||2 d𝑡 = ∞∑
𝑛=0

𝛼𝑛

𝑝𝑛−1∑
𝑘=0

∫
𝑡𝑛

𝑡𝑛−1

||𝐹(𝑡)||2 d𝑡 = ∞∑
𝑛=0

𝛼𝑛𝑝𝑛 ∫
𝑡𝑛

𝑡𝑛−1

||𝐹(𝑡)||2 d𝑡 = ∫
𝐿

0

||𝐹(𝑡)||2 𝑞(𝑡) d𝑡
for the weight function

𝑞 ∶ (0, 𝐿) ↦ (0,∞), 𝑞(𝑡) = (𝛼𝑝)𝑛 for 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛).

The above computation shows that the map

𝑈rad ∶ 𝐿2((0, 𝐿), 𝑞(𝑡) d𝑡) → 𝐿2
rad

(𝕋), 𝑈rad𝐹 ∶ 𝕋 ∋ 𝑥 ↦ 𝐹(|𝑥|),
is a unitary operator. Furthermore, consider the roots of unity:

𝜃𝑠 ∶= 𝑒
2𝜋𝑖

𝑝
𝑠
, 𝑠 ∈ {0, … , 𝑝 − 1},
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10 FRANCESCHI et al.

and define, for 𝑒𝑛,𝑘 ∈ 𝐸 and 𝑠 ∈ {1, … , 𝑝 − 1},

𝐿2
𝑛,𝑘,𝑠

(𝕋) ∶=
{
𝑓 ∈ 𝐿2(𝕋) ∶ 𝑓|𝕋⧵𝕋𝑛,𝑘

= 0 and for any 𝑗, 𝑗′ ∈ {0, … , 𝑝 − 1} and

𝑥 ∈ 𝕋
𝑗

𝑛,𝑘
and 𝑦 ∈ 𝕋

𝑗′

𝑛,𝑘
with |𝑥| = |𝑦| one has 𝜃−𝑗𝑠 𝑓(𝑥) = 𝜃

−𝑗′

𝑠 𝑓(𝑦)
}
.

Observe that each function 𝑓 ∈ 𝐿2
𝑛,𝑘,𝑠

(𝕋) is radial on each subtree 𝕋
𝑗

𝑛,𝑘
, which means that 𝑓(𝑥) only depends on the

distance 𝜌(𝑥, 𝑋𝑛,𝑘) for all 𝑥 ∈ 𝕋
𝑗

𝑛,𝑘
. More precisely, for some functions 𝐹𝑗 ∶ (𝑡𝑛, 𝐿) → ℂ, 𝑗 ∈ {0, … , 𝑝 − 1}, there holds

𝑓(𝑥) = 𝐹𝑗 (|𝑥|) for all 𝑥 ∈ 𝕋
𝑗

𝑛,𝑘
, and, in addition, 𝐹𝑗 = 𝜃

𝑗
𝑠𝐹0 for each 𝑗 ∈ {0, … , 𝑝 − 1}, so 𝑓 is uniquely determined by

𝐹 ∶= 𝐹0. By construction we have

∫
𝕋
𝑗

𝑛,𝑘

|𝑓|2 d𝜇 =

∞∑
𝑚=1

𝛼𝑛+𝑚

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

||𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡)||2 d𝑡 = ∞∑
𝑚=1

𝛼𝑛+𝑚

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

||𝐹𝑗(𝑡)||2 d𝑡
=

∞∑
𝑚=1

𝛼𝑛+𝑚𝑝𝑚−1 ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

||𝐹𝑗(𝑡)||2 d𝑡
= 𝑝−𝑛−1

∞∑
𝑚=𝑛+1

(𝛼𝑝)𝑚 ∫
𝑡𝑚

𝑡𝑚−1

||𝐹𝑗(𝑡)||2 d𝑡 = 𝑝−𝑛−1 ∫
𝐿

𝑡𝑛

||𝐹𝑗(𝑡)||2 𝑞(𝑡) d𝑡,
and

∫
𝕋

|𝑓|2 d𝜇 = ∫
𝕋𝑛,𝑘

|𝑓|2 d𝜇 =

𝑝−1∑
𝑗=0

∫
𝕋
𝑗

𝑛,𝑘

|𝑓|2 d𝜇 = 𝑝−𝑛−1

𝑝−1∑
𝑗=0

∫
𝐿

𝑡𝑛

||𝐹𝑗(𝑡)||2 𝑞(𝑡) d𝑡 = 𝑝−𝑛−1

𝑝−1∑
𝑗=0

∫
𝐿

𝑡𝑛

||𝜃𝑗𝑠𝐹(𝑡)||2 𝑞(𝑡) d𝑡
= 𝑝−𝑛−1

𝑝−1∑
𝑗=0

∫
𝐿

𝑡𝑛

||𝐹(𝑡)||2 𝑞(𝑡) d𝑡 = 𝑝−𝑛 ∫
𝐿

𝑡𝑛

||𝐹(𝑡)||2 𝑞(𝑡) d𝑡.
This computation shows that the map

𝑈𝑛,𝑘,𝑠 ∶ 𝐿2((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) → 𝐿2

𝑛,𝑘,𝑠
(𝕋),

𝑈𝑛,𝑘,𝑠𝐹 ∶ 𝑥 ↦

{
𝜃
𝑗
𝑠𝐹(|𝑥|), if 𝑥 ∈ 𝕋

𝑗

𝑛,𝑘
for some 𝑗 ∈ {0, … , 𝑝 − 1},

0, otherwise,

is a unitary operator. We further denote

𝐻1
rad

(𝕋) ∶= 𝐻1(𝕋) ∩ 𝐿2
rad

(𝕋), 𝐻1
𝑛,𝑘,𝑠

(𝕋) ∶= 𝐻1(𝕋) ∩ 𝐿2
𝑛,𝑘,𝑠

(𝕋),

and note the obvious implications

𝑓 ∈ 𝐻1
rad

(𝕋) ⇒ 𝑓′ ∈ 𝐿2
rad

(𝕋), 𝑓 ∈ 𝐻1
𝑛,𝑘,𝑠

(𝕋) ⇒ 𝑓′ ∈ 𝐿2
𝑛,𝑘,𝑠

(𝕋). (4)

Theorem 2.2 [51]. One has the orthogonal direct sum decomposition

𝐿2(𝕋) = 𝐿2
rad

(𝕋) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐿2
𝑛,𝑘,𝑠

(𝕋). (5)

Proof. (A) We begin with the orthogonality. Let 𝑓 ∈ 𝐿2
𝑛,𝑘,𝑠

(𝕋) for some (𝑛, 𝑘, 𝑠), then 𝑓 = 𝑈𝑛,𝑘,𝑠𝐹 for some 𝐹 ∈

𝐿2 ((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡).
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FRANCESCHI et al. 11

(A.1) Let 𝑔 ∈ 𝐿2
rad

(𝕋), then 𝑔 = 𝑈rad𝐺 for some 𝐺 ∈ 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡) and

⟨𝑓, 𝑔⟩𝐿2(𝕋) = 𝑝−1∑
𝑗=0

∫
𝕋
𝑗

𝑛,𝑘

𝑓�̄� d𝜇 =

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑛+𝑚

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) 𝑔𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) d𝑡

=

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑛+𝑚

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝜃
𝑗
𝑠 𝐹(𝑡) 𝐺(𝑡) d𝑡 =

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑛+𝑚𝑝𝑚−1 ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝜃
𝑗
𝑠 𝐹(𝑡) 𝐺(𝑡) d𝑡

=

𝑝−1∑
𝑗=0

𝑝−𝑛−1𝜃
𝑗
𝑠

∑
𝑚=𝑛+1

(𝛼𝑝)𝑚 ∫
𝑡𝑚

𝑡𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡 = 𝑝−𝑛−1

(
𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠

)
∫

𝐿

𝑡𝑛

𝐹(𝑡) 𝐺(𝑡) 𝑞(𝑡) d𝑡

while

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 =

1 − 𝜃
𝑝
𝑠

1 − 𝜃𝑠
≡ 1 − 1

1 − 𝜃𝑠
≡ 0, (6)

so ⟨𝑓, 𝑔⟩𝐿2(𝕋) = 0.

(A.2) Now let 𝑔 ∈ 𝐿2
𝑛′,𝑘′,𝑠′

(𝕋)with (𝑛, 𝑘, 𝑠) ≠ (𝑛′, 𝑘′, 𝑠′), then 𝑔 = 𝑈𝑛′,𝑘′,𝑠′𝐺 for some𝐺 ∈ 𝐿2 ((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡).Wehave

three possiblities:
(A.2.1) None of 𝑋𝑛,𝑘 ≤ 𝑋𝑛′,𝑘′ and 𝑋𝑛′,𝑘′ ≤ 𝑋𝑛,𝑘 holds. In this case, one has 𝕋𝑛,𝑘 ∩ 𝕋𝑛′,𝑘′ = ∅, so 𝑓 and 𝑔 have disjoint

supports and ⟨𝑓, 𝑔⟩𝐿2(𝕋) = 0.

(A.2.2) One has 𝑋𝑛,𝑘 < 𝑋𝑛′,𝑘′ or 𝑋𝑛,𝑘 < 𝑋𝑛′,𝑘′ . To be definite, assume that 𝑋𝑛′,𝑘′ < 𝑋𝑛,𝑘, then 𝕋𝑛,𝑘 ⊂ 𝕋
𝑗′

𝑛′,𝑘′
for some

𝑗′ ∈ {0, … , 𝑝 − 1}.

⟨𝑓, 𝑔⟩𝐿2(𝕋) = ∫
𝕋

𝑓�̄� d𝜇 = ∫
𝕋𝑛,𝑘

𝑓�̄� d𝜇 =

𝑝−1∑
𝑗=0

∫
𝕋
𝑗

𝑛,𝑘

𝑓�̄� d𝜇

=

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) 𝑔𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) d𝑡.

By assumptions in each summand, we have 𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) = 𝜃
𝑗
𝑠𝐹(𝑡) and 𝑔𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) = 𝜃

𝑗′

𝑠′
𝐺(𝑡), so

similarly to the preceding computation, we obtain

⟨𝑓, 𝑔⟩𝐿2(𝕋) = 𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛

𝑝𝑚−1−1∑
𝑟=0

𝜃
𝑗
𝑠 𝜃

−𝑗′

𝑠′

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡 =

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛𝑝𝑚−1𝜃
𝑗
𝑠 𝜃

−𝑗′

𝑠′ ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡

=

𝑝−1∑
𝑗=0

∞∑
𝑚=𝑛+1

(𝛼𝑝)𝑚𝑝−𝑛−1𝜃
𝑗
𝑠 𝜃

−𝑗′

𝑠′ ∫
𝑡𝑚

𝑡𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡 = 𝑝−𝑛−1𝜃
−𝑗′

𝑠′

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠

⏟⏟⏟
=0 by (6)

∫
𝐿

𝑡𝑛

𝐹(𝑡) 𝐺(𝑡)𝑞(𝑡) d𝑡 = 0.

(A.2.3) One has 𝑋𝑛,𝑘 = 𝑋𝑛′,𝑘′ . In this case, 𝑠 ≠ 𝑠′,

𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) = 𝜃
𝑗
𝑠𝐹(𝑡), 𝑔𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) = 𝜃

𝑗

𝑠′
𝐺(𝑡),
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12 FRANCESCHI et al.

for all𝑚 ∈ ℕ, 𝑗 ∈ {0, … , 𝑝 − 1} and 𝑟 ∈ {0, … , 𝑝𝑚−1 − 1}, and

⟨𝑓, 𝑔⟩𝐿2(𝕋) = ∫
𝕋

𝑓�̄� d𝜇 = ∫
𝕋𝑛,𝑘

𝑓�̄� d𝜇 =

𝑝−1∑
𝑗=0

∫
𝕋
𝑗

𝑛,𝑘

𝑓�̄� d𝜇

=

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛

𝑝𝑚−1−1∑
𝑟=0

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝑓𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) 𝑔𝑛+𝑚,𝑘𝑝𝑚+𝑗𝑝𝑚−1+𝑟(𝑡) d𝑡

=

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛

𝑝𝑚−1−1∑
𝑟=0

𝜃
𝑗
𝑠 𝜃

−𝑗

𝑠′ ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡 =

𝑝−1∑
𝑗=0

∞∑
𝑚=1

𝛼𝑚+𝑛𝑝𝑚−1𝜃
𝑗
𝑠 𝜃

−𝑗

𝑠′ ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡

=

𝑝−1∑
𝑗=0

(
𝜃𝑠
𝜃𝑠′

)𝑗 ∑
𝑚=𝑛+1

(𝛼𝑝)𝑚𝑝−𝑛−1 ∫
𝑡𝑚

𝑡𝑚−1

𝐹(𝑡) 𝐺(𝑡) d𝑡 = 𝑝−𝑛−1

𝑝−1∑
𝑗=0

(
𝜃𝑠
𝜃𝑠′

)𝑗

∫
𝐿

𝑡𝑛

𝐹(𝑡) 𝐺(𝑡) 𝑞(𝑡) d𝑡,

while

𝑝−1∑
𝑗=0

(
𝜃𝑠
𝜃𝑠′

)𝑗

=

1 −

(
𝜃𝑠

𝜃𝑠′

)𝑝

1 −
𝜃𝑠

𝜃𝑠′

≡ 1 − 1

1 −
𝜃𝑠

𝜃𝑠′

= 0,

so ⟨𝑓, 𝑔⟩𝐿2(𝕋) = 0.

The orthogonality of the decomposition is completely proved.
(B) In order to prove the totality of the decomposition, it is sufficient to show that any function supported on a single

edge belongs to the right-hand side of (5). So let 𝑒𝑚,𝑟 ∈ 𝐸 and ℎ ∈ 𝐿2(𝑡𝑚−1, 𝑡𝑚). Define 𝑣 ∈ 𝐿2(𝕋) by

𝑣𝑛,𝑘 ∶=

{
ℎ, (𝑛, 𝑘) = (𝑚, 𝑟),

0, otherwise,

then we need to show that 𝑣 belongs to the right-hand side of (5).
Consider the 𝑝𝑚-dimensional subspace

𝑆 ∶=
{
𝑢 ∈ 𝐿2(𝕋) ∶ 𝑢𝑛,𝑘 ∈ ℂℎ for 𝑛 = 𝑚 and 𝑘 = 0,… , 𝑝𝑚 − 1, 𝑢𝑛,𝑘 = 0 for 𝑛 ≠ 𝑚

}
,

then by construction, we have 𝑣 ∈ 𝑆. In addition,

𝑆 ∩ 𝐿2
𝑛,𝑘,𝑠

(𝕋) = {0} for 𝑛 ≥ 𝑚 and any (𝑘, 𝑠),

dim
(
𝑆 ∩ 𝐿2

rad
(𝕋)

)
= 1,

dim
(
𝑆 ∩ 𝐿2

𝑛,𝑘,𝑠
(𝕋)

)
= 1 for 𝑛 < 𝑚 and any (𝑘, 𝑠).

This yields

dim
⎡⎢⎢⎣𝑆 ∩

⎛⎜⎜⎝𝐿2rad(𝕋) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐿2
𝑛,𝑘,𝑠

(𝕋)
⎞⎟⎟⎠
⎤⎥⎥⎦ = dim

(
𝑆 ∩ 𝐿2

rad
(𝕋)

)
+

𝑚−1∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝑝−1∑
𝑠=1

dim
(
𝑆 ∩ 𝐿2

𝑛,𝑘,𝑠
(𝕋)

)

= 1 +

𝑚−1∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝑝−1∑
𝑠=1

1 = 1 +

𝑚−1∑
𝑛=0

𝑝𝑛(𝑝 − 1) = 𝑝𝑚 = dim𝑆,

which shows that 𝑆 ⊂ 𝐿2
rad

(𝕋) ⊕
⨁

𝑒𝑛,𝑘∈𝐸

⨁𝑝−1

𝑠=1
𝐿2
𝑛,𝑘,𝑠

(𝕋), and due to 𝑣 ∈ 𝑆, we arrive at the conclusion. □
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FRANCESCHI et al. 13

By using the inclusions (4) we immediately obtain the following:

Corollary 2.3. One has the orthogonal decomposition

𝐻1(𝕋) = 𝐻1
rad

(𝕋) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
𝑛,𝑘,𝑠

(𝕋).

Corollary 2.4. The map

𝑈 ∶= 𝑈rad ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝑈𝑛,𝑘,𝑠 ∶ 𝐿2((0, 𝐿), 𝑞(𝑡) d𝑡) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐿2((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) → 𝐿2

rad
(𝕋) ⊕

⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐿2
𝑛,𝑘,𝑠

(𝕋).

is a unitary operator.

In order to have a similar transformation for 𝐻1-spaces, we recall that for an interval (𝑎, 𝑏) ⊂ ℝ and a piecewise
continuous weight function 𝑣 ∶ (𝑎, 𝑏) → (0,∞), one usually denotes

𝐻1((𝑎, 𝑏), 𝑣(𝑡) d𝑡) ∶=
{
𝑓 ∈ 𝐿2((𝑎, 𝑏), 𝑣(𝑡) d𝑡) ∶ 𝑓′ ∈ 𝐿2((𝑎, 𝑏), 𝑣(𝑡) d𝑡)

}
,

which becomes a Hilbert space if considered with the scalar product

⟨𝑓, 𝑔⟩𝐻1((𝑎,𝑏),𝑣(𝑡) d𝑡) = ⟨𝑓, 𝑔⟩𝐿2((𝑎,𝑏),𝑣(𝑡) d𝑡) + ⟨𝑓′, 𝑔′⟩𝐿2((𝑎,𝑏),𝑣(𝑡) d𝑡) ≡ ∫
𝑏

𝑎

(
𝑓(𝑡)𝑔(𝑡) + 𝑓′(𝑡)𝑔′(𝑡)

)
𝑣(𝑡) d𝑡.

In addition we make the following observations:

(1) If 𝐹 ∈ 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡), then:
∙ 𝑈rad𝐹 is continuous on 𝕋 if and only if 𝐹 is continuous on (0, 𝐿),
∙ 𝑈rad𝐹 ∈ 𝐻1(𝕋) if and only if 𝐹 ∈ 𝐻1 ((0, 𝐿), 𝑞(𝑡) d𝑡),
∙ and in this case we have

‖(𝑈rad𝐹)
′‖2

𝐿2(𝕋)
= ‖𝑈rad(𝐹

′)‖2
𝐿2(𝕋)

= ‖𝐹′‖2
𝐿2((0,𝐿),𝑞(𝑡) d𝑡)

;

(2) if 𝐹 ∈ 𝐿2 ((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡), then:

∙ 𝑈𝑛,𝑘,𝑠𝐹 is continuous on 𝕋 if and only if 𝐹 is continuous on [𝑡𝑛, 𝐿) with 𝐹(𝑡𝑛) = 0,
∙ in this case 𝑈𝑛,𝑘,𝑠𝐹 ∈ 𝐻1(𝕋) if and only if 𝐹 ∈ 𝐻1 ((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡),
∙ and in this case ‖(𝑈𝑛,𝑘,𝑠𝐹)

′‖2
𝐿2(𝕋)

= ‖𝑈𝑛,𝑘,𝑠(𝐹
′)‖2

𝐿2(𝕋)
= ‖𝐹′‖2

𝐿2((𝑡𝑛,𝐿),𝑝−𝑛𝑞(𝑡) d𝑡)
.

Therefore, it will be convenient to denote

�̃�1((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) ∶=

{
𝑓 ∈ 𝐻1((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡) ∶ 𝑓(𝑡𝑛) = 0
}
,

then it follows that

𝑈rad ∶ 𝐻1((0, 𝐿), 𝑞(𝑡) d𝑡) → 𝐻1
rad

(𝕋), 𝑈𝑛,𝑘,𝑠 ∶ �̃�1((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) → 𝐻1

𝑛,𝑘,𝑠
(𝕋)

are unitary operators, which gives the following:
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14 FRANCESCHI et al.

Corollary 2.5. The map

𝑈 ∶= 𝑈rad ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝑈𝑛,𝑘,𝑠

defines a unitary operator

𝐻1((0, 𝐿), 𝑞(𝑡) d𝑡) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

�̃�1((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) → 𝐻1

rad
(𝕋) ⊕

⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
𝑛,𝑘,𝑠

(𝕋) ≡ 𝐻1(𝕋).

2.3 Embeddings and equivalent norms

We denote

�̃�1(𝕋) ∶=
{
𝑓 ∈ 𝐻1(𝕋) ∶ 𝑓(𝑜) = 0

}
,

which is a closed subspace of𝐻1(𝕋).

Lemma 2.6 (Poincaré inequality). There is a constant 𝐶 > 0 such that

‖𝑓‖𝐿2(𝕋) ≤ 𝐶‖𝑓′‖𝐿2(𝕋) for all 𝑓 ∈ �̃�1(𝕋). (7)

Proof. For (7), it is sufficient to show that the number

𝑎 ∶= inf
𝑓∈�̃�1(𝕋), 𝑓≢0

‖𝑓′‖2
𝐿2(𝕋)‖𝑓‖2
𝐿2(𝕋)

is strictly positive (then one can choose 𝐶 ∶= 1∕
√
𝑎). Remark that

�̃�1(𝕋) × �̃�1(𝕋) ∋ (𝑓, 𝑔) ↦ ⟨𝑓′, 𝑔′⟩𝐿2(𝕋)
is a closed, symmetric, nonnegative, densely defined sesquilinear form in 𝐿2(𝕋), so it generates a nonnegative self-
adjoint operator 𝐴 in 𝐿2(𝕋), and the above number 𝑎 is the bottom of the spectrum of 𝐴. By Lemma 2.1, the embedding
�̃�1(𝑇) ↪ 𝐿2(𝕋) is compact, then 𝐴 has compact resolvent, and 𝑎 is its smallest eigenvalue due to the min–max principle.
In particular, the infimum in the definition of 𝑎 is attained on some eigenfunction 𝐹 ∈ �̃�1(𝕋). We have obviously 𝑎 ≥ 0.
Assume that 𝑎 = 0, then ‖𝐹′‖2

𝐿2(𝕋)
= 0. This means that 𝐹′

𝑛,𝑘
= 0 for all (𝑛, 𝑘), that is, all 𝐹𝑛,𝑘 are constant. The continuity

of 𝐹 shows that 𝐹 is constant on 𝕋, and 𝐹 ∈ �̃�1(𝕋) means that 𝐹(𝑜) = 0 and then 𝐹 ≡ 0, which is impossible. Hence,
𝑎 > 0. □

In view of Lemma 2.6, the norm induced by the �̃�1-scalar product

⟨𝑓, 𝑔⟩�̃�1(𝕋) ∶= ⟨𝑓′, 𝑔′⟩𝐿2(𝕋)
is equivalent to the initial 𝐻1(𝕋)-norm. Moreover, we have the direct sum decomposition

�̃�1(𝕋) = �̃�1
rad

(𝕋) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

�̃�1
𝑛,𝑘,𝑠

(𝕋),
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FRANCESCHI et al. 15

with

�̃�1
rad

(𝕋) ∶= �̃�1(𝕋) ∩ 𝐻1
rad

(𝕋) ≡ {𝑓 ∈ 𝐻1
rad

(𝕋) ∶ 𝑓(𝑜) = 0},

�̃�1
𝑛,𝑘,𝑠

(𝕋) ∶= �̃�1(𝕋) ∩ 𝐻1
𝑛,𝑘,𝑠

(𝕋) ≡ {𝑓 ∈ 𝐻1
𝑛,𝑘,𝑠

(𝕋) ∶ 𝑓(𝑜) = 0} ≡ 𝐻1
𝑛,𝑘,𝑠

(𝕋),

which is orthogonal with respect to both ⟨⋅, ⋅⟩𝐻1(𝕋) and ⟨⋅, ⋅⟩�̃�1(𝕋).
We further remark that for 𝐹 ∈ 𝐻1 ((0, 𝐿), 𝑞(𝑡) d𝑡), the inclusion 𝑈rad𝐹 ∈ �̃�1

rad
(𝕋) is equivalent to 𝐹(0) = 0. So if we

additionally denote

�̃�1((0, 𝐿), 𝑞(𝑡) d𝑡) ∶=
{
𝐹 ∈ 𝐻1((0, 𝐿), 𝑞(𝑡) d𝑡) ∶ 𝐹(0) = 0

}
,

then we conclude that the map

𝑈 ∶= 𝑈rad ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝑈𝑛,𝑘,𝑠

is an isomorphism between �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡) ⊕
⨁

𝑒𝑛,𝑘∈𝐸

⨁𝑝−1

𝑠=1
�̃�1 ((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡) equipped with the usual𝐻1 scalar
products and

�̃�1(𝕋) ≡ �̃�1
rad

(𝕋) ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
𝑛,𝑘,𝑠

(𝕋) (8)

viewed with the �̃�1 scalar product.
We will additionally introduce the space

�̃�1
𝑐 (𝕋) = {𝑓 ∈ 𝐻1

𝑐 (𝕋) ∶ 𝑓(𝑜) = 0
}
, �̃�1

0(𝕋) = {𝑓 ∈ 𝐻1
0(𝕋) ∶ 𝑓(𝑜) = 0

}
,

then it is standard to see that �̃�1
0(𝕋) is the closure of �̃�

1
𝑐 (𝕋) in �̃�1(𝕋). In particular, �̃�1

0(𝕋) is a closed subspace of 𝐻
1(𝕋),

so using the orthogonal decomposition (8), we arrive at the decomposition

�̃�1
0(𝕋) = �̃�1

0|rad(𝕋) ⊕ ⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
0|𝑛,𝑘,𝑠(𝕋) (9)

with

�̃�1
0|rad(𝕋) ∶= �̃�1

rad
(𝕋) ∩ 𝐻1

0(𝕋), 𝐻1
0|𝑛,𝑘,𝑠(𝕋) ∶= 𝐻1

𝑛,𝑘,𝑠
(𝕋) ∩ 𝐻1

0(𝕋),

which is orthogonal with respect to the �̃�1-scalar product. Further remark that for 𝐹 ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡), the inclusion
𝑈rad𝐹 ∈ 𝐻1

𝑐 (𝕋) is equivalent to

𝐹 ∈ �̃�1
𝑐 ((0, 𝐿), 𝑞(𝑡) d𝑡) ≡ {

𝐹 ∈ �̃�1((0, 𝐿), 𝑞(𝑡) d𝑡) ∶ ∃𝑎 ∈ (0, 𝐿) such that 𝐹(𝑡) = 0 for all 𝑡 ≥ 𝑎
}
.

Recall that𝑈rad is an isomorphism between �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡) and �̃�1
rad

(𝕋), and �̃�1
rad

(𝕋) ∩ 𝐻1
𝑐 (𝕋) is dense in �̃�1

0|rad(𝕋), so
it follows that

𝑈−1
rad

�̃�1
0|rad(𝕋) = the closure of �̃�1

𝑐 ((0, 𝐿), 𝑞(𝑡) d𝑡) in �̃�1((0, 𝐿), 𝑞(𝑡) d𝑡) =∶ �̃�1
0((0, 𝐿), 𝑞(𝑡) d𝑡).

Remark that the usual mollifying procedure shows that

�̃�1
0((0, 𝐿), 𝑞(𝑡) d𝑡) = the closure of 𝐶∞

𝑐 (0, 𝐿) in �̃�1((0, 𝐿), 𝑞(𝑡) d𝑡),

which will be useful below.
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16 FRANCESCHI et al.

Similarly one shows that for any (𝑛, 𝑘, 𝑠), there holds

𝑈−1
𝑛,𝑘,𝑠

𝐻1
0|𝑛,𝑘,𝑠(𝕋) = �̃�1

0((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) ∶= the closure of 𝐶∞

𝑐 (𝑡𝑛, 𝐿) in �̃�1((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡),

and we conclude that the map

𝑈 ∶= 𝑈rad ⊕
⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝑈𝑛,𝑘,𝑠

is an isomorphism between

�̃�1
0((0, 𝐿), 𝑞(𝑡) d𝑡) ⊕

⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

�̃�1
0((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡)

equipped with the usual𝐻1 scalar products and

�̃�1
0(𝕋) ≡ �̃�1

0|rad(𝕋) ⊕ ⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
0|𝑛,𝑘,𝑠(𝕋)

viewed with the �̃�1 scalar product.

2.4 Harmonic functions

By construction, �̃�1
0(𝕋) is a closed subspace of �̃�

1(𝕋), so let us introduce the subspace

�̃�1
Δ(𝕋) ∶= the orthogonal complement of �̃�1

0(𝕋) in �̃�1(𝕋).

We would like to understand the structure of this subspace, in particular, to construct an orthonormal basis (recall that
the orthogonality is understood with respect to the �̃�1-scalar product).
Remark first that in view of the orthogonal decompositions (8) and (9), we have the orthogonal decomposition

�̃�1
Δ(𝕋) ≡ �̃�1

Δ|rad(𝕋) ⊕ ⨁
𝑒𝑛,𝑘∈𝐸

𝑝−1⨁
𝑠=1

𝐻1
Δ|𝑛,𝑘,𝑠(𝕋), (10)

�̃�1
Δ|rad(𝕋) ∶= the orthogonal complement of �̃�1

0|rad(𝕋) in �̃�1
rad

(𝕋),

𝐻1
Δ|𝑛,𝑘,𝑠(𝕋) ∶= the orthogonal complement of𝐻1

0|𝑛,𝑘,𝑠(𝕋) in 𝐻1
𝑛,𝑘,𝑠

(𝕋).

Let 𝑓rad ∈ �̃�1
rad

(𝕋), then 𝑓rad ∈ �̃�1
Δ|rad(𝕋) if and only if

⟨𝑓′
rad

, 𝑔′⟩
𝐿2(𝕋)

≡ ⟨𝑓rad, 𝑔⟩�̃�1(𝕋) = 0 for all 𝑔 ∈ �̃�1
0|rad(𝕋). (11)

We write 𝑓rad = 𝑈rad𝐹rad with 𝐹rad ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡) and 𝑔 = 𝑈rad𝐺 with 𝐺 ∈ �̃�1
0 ((0, 𝐿), 𝑞(𝑡) d𝑡) and recall that

𝐶∞
𝑐 (0, 𝐿) is dense in �̃�1

0 ((0, 𝐿), 𝑞(𝑡) d𝑡), then it follows that (11) holds if and only if⟨
(𝑈rad𝐹rad)

′, (𝑈rad𝐺)
′
⟩
𝐿2(𝕋)

= 0 for all 𝐺 ∈ 𝐶∞
𝑐 (0, 𝐿).
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FRANCESCHI et al. 17

As (𝑈rad𝐹rad)
′ = 𝑈rad(𝐹

′
rad

) and (𝑈rad𝐺)
′ = 𝑈rad(𝐺

′) and 𝑈rad is unitary as an operator 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡) → 𝐿2
rad

(𝕋), this
is equivalent to

∫
𝐿

0

𝐹′
rad

(𝑡)𝐺′(𝑡)𝑞(𝑡) d𝑡 ≡ ⟨𝑓′
rad

, 𝑔′⟩
𝐿2((0,𝐿),𝑞(𝑡) d𝑡)

= 0 for all 𝐺 ∈ 𝐶∞
𝑐 (0, 𝐿), (12)

whichmeans that (𝑞𝐹′
rad

)′ = 0 in (0, 𝐿) in the sense of distributions, which shows that 𝐹′
rad

= 𝑐∕𝑞 for some 𝑐 ∈ ℂ. We also
recall that 𝐹rad must be continuous with 𝐹rad(0) = 0, so 𝐹rad is completely determined by the value 𝑐 of its derivative in
(0,1): For any 𝑛 ∈ ℕ0 and 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛), one has

𝐹′
rad

(𝑡) =
𝑐

(𝛼𝑝)𝑛
, 𝐹rad(𝑡) = 𝑐

(
𝑡 − 𝑡𝑛−1
(𝛼𝑝)𝑛

+

𝑛−1∑
𝑘=0

(
𝓁

𝛼𝑝

)𝑘
)

≡ 𝑐

⎛⎜⎜⎜⎝
𝑡 − 𝑡𝑛−1
(𝛼𝑝)𝑛

+
1 −

(
𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠.
It remains to check if 𝐹rad ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡), for 𝑐 ≠ 0. We have

‖𝐹′
rad

‖2
𝐿2((0,𝐿),𝑞(𝑡) d𝑡)

= ∫
𝐿

0

||𝐹′
rad

(𝑡)||2𝑞(𝑡) d𝑡 = ∞∑
𝑛=0

(𝛼𝑝)𝑛 ∫
𝑡𝑛

𝑡𝑛−1

||𝐹′
rad

(𝑡)||2 d𝑡
=

∞∑
𝑛=0

(𝛼𝑝)𝑛
|𝑐|2

(𝛼𝑝)2𝑛
(𝑡𝑛 − 𝑡𝑛−1
⏟⎴⏟⎴⏟

=𝓁𝑛

) = |𝑐|2 ∞∑
𝑛=0

(
𝓁

𝛼𝑝

)𝑛

,

which is finite if and only if 𝓁 < 𝛼𝑝, which we assume from now on: In this case,

‖𝐹′
rad

‖2
𝐿2((0,𝐿),𝑞(𝑡) d𝑡)

= |𝑐|2(1 −
𝓁

𝛼𝑝

)−1

. (13)

To compute ‖𝐹rad‖2𝐿2((0,𝐿),𝑞(𝑡) d𝑡), we first represent, for any 𝑛 ∈ ℕ0 and 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛),

|𝐹rad(𝑡)|2 = |𝑐|2
⎛⎜⎜⎜⎜⎝
(𝑡 − 𝑡𝑛−1)

2

(𝛼𝑝)2𝑛
+ 2

𝑡 − 𝑡𝑛−1
(𝛼𝑝)𝑛

1 −
(

𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

+

⎛⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎠
,

therefore,

∫
𝑡𝑛

𝑡𝑛−1

||𝐹rad(𝑡)||2 d𝑡 = |𝑐|2⎛⎜⎜⎜⎝
𝓁3𝑛

3(𝛼𝑝)2𝑛
+

𝓁2𝑛

(𝛼𝑝)𝑛

1 −
(

𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠ + 𝓁𝑛

⎛⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎠

and

‖𝐹rad‖2𝐿2((0,𝐿),𝑞(𝑡) d𝑡) = ∫
𝐿

0

||𝐹rad(𝑡)||2𝑞(𝑡) d𝑡 = ∞∑
𝑛=0

(𝛼𝑝)𝑛 ∫
𝑡𝑛

𝑡𝑛−1

||𝐹rad(𝑡)||2 d𝑡

= |𝑐|2
⎛⎜⎜⎜⎜⎝
1

3

∞∑
𝑛=0

(
𝓁3

𝛼𝑝

)𝑛

+

∞∑
𝑛=0

𝓁2𝑛
1 −

(
𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎟⎠
+

∞∑
𝑛=0

(𝛼𝑝𝓁)𝑛

⎛⎜⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑛

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎟⎠

2⎞⎟⎟⎟⎟⎟⎠
,
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18 FRANCESCHI et al.

which is finite if and only if 𝓁3 < 𝛼𝑝 and 𝛼𝑝𝓁 < 1 (we recall that 𝓁 < 1 by the initial assumption). For subsequent
computations, it will be useful to normalize 𝐹rad in �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡), in view of (13) this amounts to the choice

𝑐 ∶=

√
1 −

𝓁

𝛼𝑝
,

and gives

𝐹rad(𝑡) =

√
1 −

𝓁

𝛼𝑝

(
𝑡 − 𝑡𝑛−1
(𝛼𝑝)𝑛

+

𝑛−1∑
𝑘=0

(
𝓁

𝛼𝑝

)𝑘
)
, 𝑡 ∈ (𝑡𝑛−1, 𝑡𝑛), 𝑛 ∈ ℕ0. (14)

We summarize these computations as

�̃�1
rad

(𝑇) ≠ �̃�1
0|rad(𝑇) if and only if 𝓁 < 𝛼𝑝 <

1

𝓁
, �̃�1

Δ|rad(𝕋) =
⎧⎪⎨⎪⎩
ℂ𝑈rad𝐹rad, 𝓁 < 𝛼𝑝 <

1

𝓁
,

0, otherwise.

The spaces �̃�1
Δ|𝑛,𝑘,𝑠 are studied in the same way. Let us fix an admissible triple (𝑛, 𝑘, 𝑠) and recall that 𝑈𝑛,𝑘,𝑠𝐶

∞
𝑐 (𝑡𝑛, 𝐿)

is dense in �̃�1
0|𝑛,𝑘,𝑠(𝕋), then a function 𝑓𝑛,𝑘,𝑠 ∈ �̃�1

𝑛,𝑘,𝑠
(𝕋) belongs to �̃�1

Δ|𝑛,𝑘,𝑠(𝕋) if and only if 𝑓𝑛,𝑘,𝑠 = 𝑈𝑛,𝑘,𝑠𝐹𝑛,𝑘,𝑠 with 𝐹 ∈

�̃�1 ((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) satisfying

⟨(𝑈𝑛,𝑘,𝑠𝐹𝑛,𝑘,𝑠)
′, (𝑈𝑛,𝑘,𝑠𝐺)

′⟩
𝐿2(𝕋)

= 0 for all 𝐺 ∈ 𝐶∞
𝑐 (𝑡𝑛, 𝐿),

which can be equivalently rewritten as

⟨𝑈𝑛,𝑘,𝑠(𝐹
′
𝑛,𝑘,𝑠

), 𝑈𝑛,𝑘,𝑠(𝐺
′)⟩

𝐿2(𝕋)
≡ ⟨𝐹′

𝑛,𝑘,𝑠
, 𝐺′⟩

𝐿2((𝑡𝑛,𝐿),𝑝−𝑛𝑞(𝑡) d𝑡)
≡ 𝑝−𝑛 ∫

𝐿

𝑡𝑛

𝐹′
𝑛,𝑘,𝑠

(𝑡)𝐺′(𝑡)𝑞(𝑡) d𝑡 = 0

for all 𝐺 ∈ 𝐶∞
𝑐 (𝑡𝑛, 𝐿), which means (𝑞𝐹′

𝑛,𝑘,𝑠
)′ = 0 in (𝑡𝑛, 𝐿). As 𝐹𝑛,𝑘,𝑠 can be chosen independent of (𝑘, 𝑠), we write simply

𝐹𝑛 ∶= 𝐹𝑛,𝑘,𝑠.

So we obtain 𝐹′
𝑛 = 𝑐∕𝑞 in (𝑡𝑛, 𝐿) with some 𝑐 ∈ ℂ, and for 𝑡 ∈ (𝑡𝑛+𝑚−1, 𝑡𝑛+𝑚) with𝑚 ∈ ℕ, one has

𝐹′
𝑛(𝑡) =

𝑐

(𝛼𝑝)𝑛+𝑚
, 𝐹𝑛(𝑡) = 𝑐

(
𝑡 − 𝑡𝑛+𝑚−1

(𝛼𝑝)𝑛+𝑚
+

𝑚−1∑
𝑘=1

(
𝓁

𝛼𝑝

)𝑛+𝑘
)

≡ 𝑐

⎛⎜⎜⎜⎝
𝑡 − 𝑡𝑛+𝑚−1

(𝛼𝑝)𝑛+𝑚
+

(
𝓁

𝛼𝑝

)𝑛+1 1 −
(

𝓁

𝛼𝑝

)𝑚−1

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠.
In order to check if 𝐹𝑛 ∈ �̃�1 ((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡), we again compute

‖𝐹′
𝑛‖2𝐿2((𝑡𝑛,𝐿),𝑝−𝑛𝑞(𝑡) d𝑡)

= 𝑝−𝑛
∞∑

𝑚=1
∫

𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

|𝐹′
𝑛(𝑡)|2(𝛼𝑝)𝑛+𝑚 d𝑡

= |𝑐|2𝑝−𝑛
∞∑

𝑚=1

𝓁𝑛+𝑚(𝛼𝑝)−2(𝑛+𝑚)(𝛼𝑝)𝑛+𝑚 = |𝑐|2𝑝−𝑛
∞∑

𝑚=1

(
𝓁

𝛼𝑝

)𝑛+𝑚

,

which is finite if and only if 𝓁 < 𝛼𝑝, and in that case

‖𝐹′
𝑛‖2𝐿2((𝑡𝑛,𝐿),𝑝−𝑛𝑞(𝑡) d𝑡)

=
|𝑐|2
𝑝𝑛

(
𝓁

𝛼𝑝

)𝑛+1
1

1 −
𝓁

𝛼𝑝

. (15)
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FRANCESCHI et al. 19

Furthermore, in this case for 𝑡 ∈ (𝑡𝑛+𝑚−1, 𝑡𝑛+𝑚) with𝑚 ∈ ℕ, one has

|𝐹𝑛(𝑡)|2 = |𝑐|2
⎛⎜⎜⎜⎜⎝
(𝑡 − 𝑡𝑛+𝑚−1)

2

(𝛼𝑝)2𝑛+2𝑚
+ 2(𝑡 − 𝑡𝑛+𝑚−1)

𝓁𝑛+1

(𝛼𝑝)2𝑛+𝑚+1

1 −
(

𝓁

𝛼𝑝

)𝑚

1 −
𝓁

𝛼𝑝

+

(
𝓁

𝛼𝑝

)2𝑛+2⎛⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑚

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎠
,

therefore,

∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

||𝐹𝑛(𝑡)||2 d𝑡 = |𝑐|2
⎡⎢⎢⎢⎢⎣
1

3

𝓁3𝑚+3𝑛

(𝛼𝑝)2𝑛+2𝑚
+ 𝓁2𝑛+2𝑚 𝓁𝑛+1

(𝛼𝑝)2𝑛+𝑚+1

1 −
(

𝓁

𝛼𝑝

)𝑚−1

1 −
𝓁

𝛼𝑝

+ 𝓁𝑚+𝑛

(
𝓁

𝛼𝑝

)2𝑛+2⎛⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑚−1

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎦
,

and

‖𝐹𝑛‖2𝐿2((𝑡𝑛,𝐿),𝑝−𝑛𝑞(𝑡) d𝑡)
= 𝑝−𝑛

∞∑
𝑚=1

(𝛼𝑝)𝑛+𝑚 ∫
𝑡𝑛+𝑚

𝑡𝑛+𝑚−1

||𝐹𝑛(𝑡)||2 d𝑡

= |𝑐|2
⎡⎢⎢⎢⎢⎣
1

3

(
𝓁3

𝛼𝑝

)𝑛+𝑚

+
𝓁3𝑛+2𝑚+1

(𝛼𝑝)𝑛+1

1 −
(

𝓁

𝛼𝑝

)𝑚−1

1 −
𝓁

𝛼𝑝

+ (𝛼𝑝𝓁)𝑛+𝑚
(

𝓁

𝛼𝑝

)2𝑛+2⎛⎜⎜⎜⎝
1 −

(
𝓁

𝛼𝑝

)𝑚−1

1 −
𝓁

𝛼𝑝

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎦

is finite if and only if 𝓁3 < 𝛼𝑝 and 𝛼𝑝𝓁 < 1 (as one always has 𝓁 < 1). For what follows, we normalize 𝐹𝑛,𝑘,𝑠 to have unit
norm in �̃�1 ((𝑡𝑛, 𝐿), 𝑝

−𝑛𝑞(𝑡) d𝑡): as follows from (15), this means the choice

𝑐 ∶= 𝑝𝑛
(𝛼
𝓁

) 𝑛

2

√
𝛼𝑝 − 𝓁

𝓁

and then

𝐹𝑛(𝑡) = 𝑝𝑛
(𝛼
𝓁

) 𝑛

2

√
𝛼𝑝 − 𝓁

𝓁

(
𝑡 − 𝑡𝑛+𝑚−1

(𝛼𝑝)𝑛+𝑚
+

𝑚−1∑
𝑘=1

(
𝓁

𝛼𝑝

)𝑛+𝑘
)
, 𝑡 ∈ (𝑡𝑛+𝑚−1, 𝑡𝑛+𝑚) with𝑚 ∈ ℕ. (16)

Therefore,

�̃�1
𝑛,𝑘,𝑠

(𝑇) ≠ �̃�1
0|𝑛,𝑘,𝑠(𝑇) if and only if 𝓁 < 𝛼𝑝 <

1

𝓁
, �̃�1

Δ|𝑛,𝑘,𝑠(𝕋) =
⎧⎪⎨⎪⎩
ℂ𝑈𝑛,𝑘,𝑠𝐹𝑛, 𝓁 < 𝛼𝑝 <

1

𝓁
,

0, otherwise.

We summarize the preceding computations:

Lemma 2.7. One has �̃�1
Δ(𝕋) ≠ {0} or, equivalently, �̃�1

0(𝑇) ≠ �̃�1(𝕋), if and only if

𝓁 < 𝛼𝑝 <
1

𝓁
. (17)

If this condition is satisfied, then the functions

𝜙rad ∶= 𝑈rad𝐹rad and 𝜙𝑛,𝑘,𝑠 ∶= 𝑈𝑛,𝑘,𝑠𝐹𝑛 with 𝑒𝑛,𝑘 ∈ 𝐸 and 𝑠 ∈ {1, … , 𝑝 − 1}

with 𝐹rad from (14) and 𝐹𝑛 from (16) form an orthonormal basis in �̃�1
Δ(𝕋).

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202300574 by U
niversity O

f Padova C
enter D

i, W
iley O

nline L
ibrary on [11/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 FRANCESCHI et al.

We remark that the criterion (17) for �̃�1
0(𝑇) ≠ �̃�1(𝕋) and, equivalently, for𝐻1

0(𝑇) ≠ 𝐻1(𝕋), was already obtained in [30]
(even for a more general configuration) by different methods, but in our case, it appears naturally as a by-result of the
construction of the orthonormal basis.
For subsequent constructions, we will need the limits

𝐹∞
rad

∶= lim
𝑡→𝐿−

𝐹rad(𝑡), 𝐹∞
𝑛 ∶= lim

𝑡→𝐿−
𝐹𝑛(𝑡). (18)

As 𝐹rad and 𝐹𝑛 are increasing functions, we have

𝐹∞
rad

= lim
𝑛→∞

𝐹rad(𝑡𝑛) = lim
𝑛→∞

√
1 −

𝓁

𝛼𝑝

𝑛∑
𝑘=0

(
𝓁

𝛼𝑝

)𝑘

=

√
1 −

𝓁

𝛼𝑝
lim
𝑛→∞

1 −
(

𝓁

𝛼𝑝

)𝑛+1

1 −
𝓁

𝛼𝑝

=

√
1 −

𝓁

𝛼𝑝

1

1 −
𝓁

𝛼𝑝

=

√
𝛼𝑝

𝛼𝑝 − 𝓁

(19)

and, similarly,

𝐹∞
𝑛 = lim

𝑚→∞
𝐹𝑛(𝑡𝑛+𝑚) = lim

𝑚→∞
𝑝𝑛

(𝛼
𝓁

) 𝑛

2

√
𝛼𝑝 − 𝓁

𝓁

𝑚∑
𝑘=1

(
𝓁

𝛼𝑝

)𝑛+𝑘

.

Due to

𝑚∑
𝑘=1

(
𝓁

𝛼𝑝

)𝑛+𝑘

=

(
𝓁

𝛼𝑝

)𝑛+1 𝑚−1∑
𝑘=0

(
𝓁

𝛼𝑝

)𝑘

=

(
𝓁

𝛼𝑝

)𝑛+1 1 −

(
𝓁

𝛼𝑝

)𝑚

1 −
𝓁

𝛼𝑝

𝑚→∞
ssssss→

(
𝓁

𝛼𝑝

)𝑛+1
𝛼𝑝

𝛼𝑝 − 𝓁
,

we obtain

𝐹∞
𝑛 = 𝑝𝑛

(𝛼
𝓁

) 𝑛

2

√
𝛼𝑝 − 𝓁

𝓁

(
𝓁

𝛼𝑝

)𝑛+1
𝛼𝑝

𝛼𝑝 − 𝓁
≡

√
𝓁

𝛼𝑝 − 𝓁

(
𝓁

𝛼

)𝑛

. (20)

2.5 Abstract trace operator

Everywhere in this subsection we assume that

the inequalities (17) are satisfied.

Now we construct the first version of the trace operator. We define

 ∶= {rad} ∪
{
(𝑛, 𝑘, 𝑠) ∶ 𝑒𝑛,𝑘 ∈ 𝐸, 𝑠 ∈ {1, … , 𝑝 − 1}

}
and define

𝜈 ∶  → {rad} ∪ ℕ0, 𝜈(rad) ∶= rad, 𝜈(𝑛, 𝑘, 𝑠) ∶= 𝑛.

For numerical operations, it will be useful to identify

rad ∶= −1.
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FRANCESCHI et al. 21

Recall that we have the orthogonal decomposition �̃�1(𝕋) = �̃�1
0(𝕋) ⊕ �̃�1

Δ(𝕋) and let �̃�Δ ∶ �̃�1(𝕋) → �̃�1
Δ(𝕋) be the

orthogonal projector. By Lemma 2.7, the map

Θ ∶ 𝓁2() ∋ (𝑎𝑧) ↦
∑
𝑧∈

𝑎𝑧𝑈𝑧𝐹𝑧 ∈ 𝐻1
Δ(𝕋)

is unitary. Remark that the behavior of 𝑈𝑧𝐹𝑧 near the boundary of 𝕋 is uniquely quantified by 𝑧 and the limiting values
𝐹∞
𝜈(𝑧)

defined in (18). Therefore, it is reasonable to consider the multiplication operator

𝑀 ∶ 𝓁2() → 𝓁2(), (𝑎𝑧) ↦

(
𝑝
−

𝜈(𝑧)

2 𝐹∞
𝜈(𝑧)

𝑎𝑧

)
.

The explicit expressions (19) and (20) show that the coefficients 𝑝−
𝜈(𝑧)

2 𝐹∞
𝜈(𝑧)

are strictly positive and uniformly bounded,
therefore, the operator𝑀 is injective and bounded. However, it is not surjective. Namely, for 𝑟 ≥ 0, introduce

𝓁2
𝑟() ∶=

{
(𝑎𝑧) ∈ 𝓁2() ∶ (𝑝𝑟𝜈(𝑧)𝑎𝑧) ∈ 𝓁2()

}
, ‖(𝑎𝑧)‖𝓁2𝑟 () ∶=

‖‖(𝑝𝑟𝜈(𝑧)𝑎𝑧)‖𝓁2(). (21)

Denote

𝜎 ∶=
1

2 log 𝑝
log

𝛼𝑝

𝓁
≡ 1

2

(
1 −

log 𝓁 − log 𝛼

log 𝑝

)
> 0,

then

𝐹∞
𝜈(𝑧)

=

√
𝓁

𝛼𝑝 − 𝓁
𝑝−𝜎𝜈(𝑧) for all 𝑧 ∈ ,

and it follows that𝑀 ∶ 𝓁2() → 𝓁2
𝜎() is a bounded bijective operator. This gives the abstract trace operator

𝜏 ∶= 𝑀Θ−1�̃�Δ ∶ �̃�1(𝕋) → 𝓁2
𝜎(), (22)

which is a linear operator that is bounded and surjective by construction. Remark that 𝑀Θ−1 is injective, which shows
that ker 𝜏 = ker �̃�Δ = �̃�1

0(𝕋). In addition we extend 𝜏 to 𝐻1(𝕋): For any 𝑓 ∈ 𝐻1(𝕋), set

𝜏𝑓 ∶= 𝜏𝑓 (23)

with any 𝑓 ∈ �̃�1(𝕋) such that 𝑓 = 𝑓 in 𝕋 ⧵ 𝕋𝑛 for some 𝑛 ∈ ℕ0.

Theorem 2.8. The abstract trace operator 𝜏 ∶ 𝐻1(𝕋) → 𝓁2
𝜎() is well defined, linear, bounded, surjective, with

ker 𝜏 = 𝐻1
0(𝕋).

Proof. Let 𝑓 ∈ 𝐻1(𝕋) and 𝑓, 𝑔 ∈ �̃�1(𝕋) such that 𝑓 = 𝑓 in 𝕋 ⧵ 𝕋𝑛 for some 𝑛 ∈ ℕ0 and 𝑓 = 𝑔 in 𝕋 ⧵ 𝕋𝑚 for some𝑚 ∈ ℕ0.
Without loss of generality assume 𝑛 ≤ 𝑚, then 𝑓 = 𝑔 in𝕋 ⧵ 𝕋𝑚, that is, 𝑓 − 𝑔 = 0 in𝕋 ⧵ 𝕋𝑚. Thismeans that 𝜏(𝑓 − 𝑔) = 0,
i.e. 𝜏𝑓 = 𝜏𝑔. This shows that 𝜏 is a well-defined map.
Let 𝜑 ∶ (0, 𝐿) → ℝ be a 𝐶∞ function such that 𝜑 = 0 in (0,

1

2
) and 𝜑 = 1 in (

3

4
, 𝐿). For 𝑓 ∈ 𝐻1(𝕋), the function 𝑓 ∶ 𝕋 ∋

𝑥 ↦ 𝜑(|𝑥|)𝑓(𝑥) belongs to �̃�1(𝕋) and coincides with 𝑓 in 𝕋 ⧵ 𝕋0, so one has 𝜏𝑓 = 𝜏𝑓. As 𝑓 ↦ 𝑓 is linear, it follows that
the extended 𝜏 is also linear.
To show the boundedness, it is sufficient to show the boundedness of the map 𝐻1(𝕋) ∋ 𝑓 ↦ 𝑓 ∈ �̃�1(𝕋). For any 𝑓 ∈

𝐻1(𝕋), one has the identities

𝑓0,0 = 𝜑𝑓, 𝑓𝑛,𝑘 = 𝑓𝑛,𝑘 for (𝑛, 𝑘) ≠ (0, 0).
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22 FRANCESCHI et al.

This gives

‖𝑓‖2
�̃�1(𝕋)

=
∑

𝑒𝑛,𝑘∈𝐸

(𝛼𝑝)𝑛‖𝑓′
𝑛,𝑘

‖2
𝐿2(𝑡𝑛−1,𝑡𝑛)

= ‖𝑓′
0,0‖2𝐿2(0,1) + ∑

𝑒𝑛,𝑘∈𝐸

(𝑛,𝑘)≠(0,0)
(𝛼𝑝)𝑛‖𝑓′

𝑛,𝑘
‖2
𝐿2(𝑡𝑛−1,𝑡𝑛)

≤ ‖𝑓′
0,0‖2𝐿2(0,1) + ‖𝑓‖2

𝐻1(𝕋)
,

and

‖𝑓′
0,0‖2𝐿2(0,1) = ‖𝜑𝑓′

0,0 + 𝜑′𝑓0,0‖2𝐿2(0,1) ≤ 2‖𝜑𝑓′
0,0‖2𝐿2(0,1) + 2‖𝜑′𝑓0,0‖2𝐿2(0,1)

≤ 2‖𝜑‖2∞‖𝑓′
0,0‖2𝐿2(0,1) + 2‖𝜑′‖2∞‖𝑓0,0‖2𝐿2(0,1) ≤ 2𝑏‖𝑓0,0‖2𝐻1(0,1)

with 𝑏 ∶= max{‖𝜑‖2∞, ‖𝜑′‖2∞},

so one obtains ‖𝑓‖2
�̃�1(𝕋)

≤ 2𝑏‖𝑓0,0‖2𝐻1(0,1)
+ ‖𝑓‖2

𝐻1(𝕋)
≤ (2𝑏 + 1)‖𝑓‖2

𝐻1(𝕋)
, which gives the result.

The map𝐻1(𝕋) ∋ 𝑓 ↦ 𝑓 ∈ �̃�1(𝕋) is surjective, which shows that the range of 𝜏 is the same as before.

If 𝑓 ∈ 𝐻1
0(𝕋), then there exist 𝑓𝑛 ∈ 𝐻1

𝑐 (𝕋)with 𝑓𝑛

𝐻1(𝕋)
sssss→ 𝑓. Then 𝑓𝑛 ∈ �̃�1

𝑐 (𝕋)with 𝑓𝑛

𝐻1(𝕋)
sssss→ 𝑓, so 𝑓 ∈ �̃�1

0(𝕋) and 𝜏𝑓 =

𝜏𝑓 = 0.

On the other hand, if 𝜏𝑓 = 0, then 𝜏𝑓 = 0 and 𝑓 ∈ �̃�1
0(𝕋). Then there exist 𝑔𝑛 ∈ �̃�1

𝑐 (𝕋) with 𝑔𝑛
𝐻1(𝕋)
sssss→ 𝑓. The function

𝑔 ∶ 𝕋 ∋ 𝑥 ↦ (1 − 𝜑(|𝑥|)) 𝑓(𝑥) is supported in 𝕋0 and, hence, it belongs to 𝐻1
𝑐 (𝕋). Therefore, 𝑔 + 𝑔𝑛 ∈ 𝐻1

𝑐 (𝕋) with 𝑔 +

𝑔𝑛
𝐻1(𝕋)
sssss→ 𝑔 + 𝑓 = 𝑓, so 𝑓 ∈ 𝐻1

𝑐 (𝕋). □

The above definition of 𝜏 is involved due to the application of the orthogonal projector and the expansion into an
orthonormal basis. Let us show that it can be recovered using more elementary operations.

Lemma 2.9. One has continuous embeddings

�̃�1((0, 𝐿), 𝑞(𝑡) d𝑡) ↪ 𝐶0([0, 𝐿]), �̃�1((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡) ↪ 𝐶0([𝑡𝑛, 𝐿]) for any 𝑛 ∈ ℕ0,

where the right-hand sides are endowed with ‖ ⋅ ‖∞.
Proof. The continuity inside the respective intervals is clear due to the one-dimensional Sobolev theorem, and it remains
to establish norm estimates. Let 𝑓 ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡) and 𝑡 ∈ (0, 𝐿), then

||𝑓(𝑡)||2 = |||∫ 𝑡

0

𝑓′(𝑠) d𝑠
|||2 ≤

(
∫

𝐿

0

||𝑓′(𝑠)|| d𝑠
)2

=

(
∫

𝐿

0

1√
𝑞(𝑠)

⋅ ||𝑓′(𝑠)||√𝑞(𝑠) d𝑠

)2

≤ ∫
𝐿

0

d𝑠

𝑞(𝑠)
⋅ ∫

𝐿

0

||𝑓′(𝑠)||2𝑞(𝑠) d𝑠.
The second factor on the right-hand side is ‖𝑓‖2

�̃�1((0,𝐿),𝑞(𝑡) d𝑡)
, while

∫
𝐿

0

d𝑠

𝑞(𝑠)
=

∞∑
𝑛=0

∫
𝑡𝑛

𝑡𝑛−1

d𝑠

(𝛼𝑝)𝑛
=

∞∑
𝑛=0

(
𝓁

𝛼𝑝

)𝑛

=∶ 𝑎 < ∞.

As 𝑡 ∈ (0, 𝐿) was arbitrary, this yields ‖𝑓‖∞ ≤ √
𝑎‖𝑓‖�̃�1((0,𝐿),𝑞(𝑡) d𝑡).

If 𝑓 ∈ �̃�1 ((𝑡𝑛, 𝐿), 𝑝
−𝑛𝑞(𝑡) d𝑡)with some 𝑛 ∈ ℕ0, then its extension to (0, 𝐿) by zero 𝑓 belongs to 𝑓 ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡),

and one uses the first part of the proof. □

Lemma 2.10. Let 𝜏′ ∶ 𝐻1(𝕋) → 𝓁2() be a bounded linear map such that

(a) 𝜏′𝑓 = 0 for any 𝑓 ∈ 𝐻1
𝑐 (𝕋),
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FRANCESCHI et al. 23

(b) for any 𝐹 ∈ 𝐻1 ((0, 𝐿), 𝑞(𝑡) d𝑡), one has

(𝜏′𝑈rad𝐹)𝑧 =

{
lim𝑡→𝐿− 𝐹(𝑡), 𝑧 = rad,

0, otherwise,

(c) for any 𝜆 ∈  ⧵ {rad} and any 𝐹 ∈ �̃�1
(
(𝑡𝜈(𝜆), 𝐿), 𝑝

−𝜈(𝜆)𝑞(𝑡) d𝑡
)
, one has

(𝜏′𝑈𝜆𝐹)𝑧 = 𝑝
−

𝜈(𝜆)

2

{
lim𝑡→𝐿− 𝐹(𝑡), 𝑧 = 𝜆,

0, otherwise,

then 𝜏′ = 𝜏. Moreover, these properties are satisfied by 𝜏.

Proof. We first remark that the limits on the right-hand sides of (b) and (c) are well defined by Lemma 2.9; for (b), one
uses the fact that 𝐹 coincides with some function �̃� ∈ �̃�1 ((0, 𝐿), 𝑞(𝑡) d𝑡) in (

1

2
, 𝐿).

(i) The boundedness of 𝜏′ and the condition (a) give 𝐻1
0(𝕋) ⊂ ker 𝜏′. For any 𝜆, 𝑧 ∈ , we have

(𝜏′𝜙𝜆)𝑧 = (𝜏′𝑈𝜆𝐹𝜈(𝜆))𝑧 =

⎧⎪⎨⎪⎩
lim𝑡→𝐿− 𝐹𝜈(𝜆)(𝑡)𝑝

−
𝜈(𝑧)

2 , 𝑧 = 𝜆,

0, otherwise,
=

⎧⎪⎨⎪⎩
𝐹∞
𝜈(𝜆)

𝑝
−

𝜈(𝑧)

2 , 𝑧 = 𝜆,

0, otherwise.

On the other side, by definitionwe have (Θ−1𝜙𝜆)𝑧 = 𝛿𝜆,𝑧 (where 𝛿𝜆,𝑧 are the usual Kronecker symbols) and, therefore,

(𝜏𝜙𝜆)𝑧 =

⎧⎪⎨⎪⎩
𝑝
−

𝜈(𝜆)

2 𝐹∞
𝜈(𝜆)

, 𝑧 = 𝜆,

0, otherwise,

which coincides with 𝜏′𝜙𝜆. As the linear span of �̃�1
0(𝕋) and (𝜙𝜆)𝜆∈ is dense in �̃�1(𝕋) and 𝜏′ is bounded, it follows

that 𝜏′ = 𝜏 on �̃�1(𝕋).
(ii) Let 𝜑 ∶ (0, 𝐿) → ℝ be a 𝐶∞ function such that 𝜑 = 0 in (0,

1

2
) and 𝜑 = 1 in (

3

4
, 𝐿). For 𝑓 ∈ 𝐻1(𝕋), consider 𝑓 ∶ 𝕋 ∋

𝑥 ↦ 𝜑(|𝑥|)𝑓(𝑥) ∈ �̃�1(𝕋). As 𝑓 − 𝑓 = 0 in 𝕋 ⧵ 𝕋0, we have 𝑓 − 𝑓 ∈ 𝐻1
𝑐 (𝕋), and

𝜏′𝑓
(a)
= 𝜏′𝑓

(i)
= 𝜏𝑓

(23)
= 𝜏𝑓.

(iii) It remains to check that 𝜏 satisfies the three properties. Remark that (a) holds by construction. Let 𝐹 be as in (b), then
one can represent 𝐹 ∶= 𝑐𝐹rad + 𝐺 with 𝑐 ∈ ℂ and lim𝑡→𝐿− 𝐺(𝑡) = 0. By linearity we have

(𝜏𝑈rad𝐹)𝑧 = 𝜏(𝑐𝑈rad𝐹rad + 𝑈rad𝐺) = 𝑐𝐹∞
rad

𝛿rad,𝑧 + 𝜏𝑈rad𝐺 ≡ (
lim
𝑡→𝐿−

𝐹(𝑡)
)
𝛿rad,𝑧 + 𝜏𝑈rad𝐺.

Therefore, to show (b), it is sufficient to show that 𝜏𝑈rad𝐺 = 0. For that we take 𝜑 ∈ 𝐶∞(ℝ) such that 0 ≤ 𝜑 ≤ 1, with
𝜑(𝑡) = 1 for 𝑡 ≤ 0 and 𝜑(𝑡) = 0 for 𝑡 ≥ 1, and for 𝑛 ∈ ℕ, consider the functions

𝜑𝑛 ∶ 𝑡 ↦ 𝜑

(
𝑡 − 𝑡𝑛−1

𝓁𝑛

)
, 𝐺𝑛 ∶= 𝜑𝑛𝐺 ∈ 𝐻1

𝑐 ((0, 𝐿), 𝑞(𝑡) d𝑡).

As for any 𝑛 there holds 𝜏𝑈rad𝐺𝑛 = 0, it is sufficient to show that 𝐺𝑛 → 𝐺 in𝐻1 ((0, 𝐿), 𝑞(𝑡) d𝑡) as 𝑛 → ∞.
The dominated convergence implies𝐺𝑛 → 𝐺 in 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡) as 𝑛 → ∞. We have𝐺′

𝑛 = 𝜑′
𝑛𝐺 + 𝜑𝑛𝐺

′ and the second
summand converges to 𝐺′ in 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡) as 𝑛 → ∞. It remains to check 𝜑′

𝑛𝐺 → 0 in 𝐿2 ((0, 𝐿), 𝑞(𝑡) d𝑡) for 𝑛 → ∞.
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24 FRANCESCHI et al.

We have

(𝜑′
𝑛𝐺)(𝑡) =

1

𝓁𝑛
𝜑′

(
𝑡 − 𝑡𝑛−1

𝓁𝑛

)
𝐺(𝑡),

and the function vanishes outside (𝑡𝑛−1, 𝑡𝑛) ⊂ (𝑡𝑛−1, 𝐿). If follows that

‖𝜑′
𝑛𝐺‖2

𝐿2((0,𝐿),𝑞(𝑡) d𝑡)
≤ ‖𝜑′‖∞

𝓁2𝑛 ∫
𝐿

𝑡𝑛−1

|𝐺(𝑡)|2𝑞(𝑡) d𝑡.
As 𝐺 vanishes at 𝐿, for all 𝑡 ∈ (𝑡𝑛−1, 𝐿), we have

|𝐺(𝑡)|2 = |||∫ 𝐿

𝑡

𝐺′(𝑠) d𝑠
||| = |||∫ 𝐿

𝑡

𝐺′(𝑠)
√
𝑞(𝑠)

1√
𝑞(𝑠)

d𝑠
||| ≤ ∫

𝐿

𝑡

|𝐺′(𝑠)|2𝑞(𝑠) d𝑠 ∫ 𝐿

𝑡

d𝑠

𝑞(𝑠)
≤ ∫

𝐿

𝑡𝑛−1

|𝐺′(𝑠)|2𝑞(𝑠) d𝑠 ∫ 𝐿

𝑡𝑛−1

d𝑠

𝑞(𝑠)
,

and we obtain

‖𝜑′
𝑛𝐺‖2

𝐿2((0,𝐿),𝑞(𝑡) d𝑡)
≤ 𝐶𝑛 ∫

𝐿

𝑡𝑛−1

|𝐺′(𝑡)|2𝑞(𝑠) d𝑠, 𝐶𝑛 ∶=
‖𝜑′‖∞
𝓁2𝑛 ∫

𝐿

𝑡𝑛−1

d𝑠

𝑞(𝑠) ∫
𝐿

𝑡𝑛−1

𝑞(𝑠) d𝑠. (24)

In order to show the sought convergence, it suffices to show that𝐶𝑛 remain bounded for large 𝑛. For that, using the explicit
expression of 𝑞 and the relations (17), we compute

∫
𝐿

𝑡𝑛−1

d𝑠

𝑞(𝑠) ∫
𝐿

𝑡𝑛−1

𝑞(𝑠) d𝑠 =

∞∑
𝑘=𝑛−1

(𝓁𝛼𝑝)𝑘 ⋅

∞∑
𝑘=𝑛−1

(
𝓁

𝛼𝑝

)𝑘

= (𝓁𝛼𝑝)𝑛−1(1 − 𝓁𝛼𝑝)−1
(

𝓁

𝛼𝑝

)𝑛−1(
1 −

𝓁

𝛼𝑝

)−1

≡ 𝓁2𝑛−2(1 − 𝓁𝛼𝑝)−1
(
1 −

𝓁

𝛼𝑝

)−1

,

which gives

𝐶𝑛 =
‖𝜑′‖∞
𝓁2

(1 − 𝓁𝛼𝑝)−1
(
1 −

𝓁

𝛼𝑝

)−1

,

that is, 𝐶𝑛 are independent of 𝑛. This concludes the proof of (b) for 𝜏, and the property (c) is proved in the same way. □

We complement the preceding observations by the following approximation result, which will be useful for the
geometric interpretation of the embedded trace:

Lemma 2.11. For 𝑓 ∈ 𝐻1(𝕋) and𝑁 ∈ ℕ, let 𝑓𝑁 be the extension of 𝑓|𝕋𝑁 by constants, that is,

𝑓𝑁(𝑥) ∶=

{
𝑓(𝑥), 𝑥 ∈ 𝕋𝑁,

𝑓(𝑋𝑁,𝐾), 𝑥 ∈ 𝕋𝑁,𝐾, 𝐾 ∈ {0, … , 𝑝𝑁 − 1},

then 𝑓𝑁

𝑁→∞
sssss→ 𝑓 in𝐻1(𝕋), in particular, 𝜏𝑓 = lim𝑁→∞ 𝜏𝑓𝑁 in 𝓁2

𝜎().

Proof. Due to the one-dimensional Sobolev inequality for any 𝑁 ∈ ℕ, one can find some 𝐵𝑁 > 0 such that |𝑓(𝑋𝑁,𝐾)| ≤
𝐵𝑁‖𝑓‖𝐻1(𝕋) for any 𝑓 ∈ 𝐻1(𝕋) and any 𝐾 ∈ {0, … , 𝑝𝑁 − 1}. We have

‖𝑓𝑁‖2
𝐿2(𝕋)

= ‖𝑓‖2
𝐿2(𝕋𝑁)

+

𝑝𝑁−1∑
𝐾=0

||𝑓(𝑋𝑁,𝐾)||2 ∫
𝕋𝑁,𝐾

1 d𝜇,
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FRANCESCHI et al. 25

while

∫
𝕋𝑁,𝐾

1 d𝜇 =

𝑝−1∑
𝑗=0

∞∑
𝑛=𝑁+1

𝑝𝑛−1∑
𝑘=0

(𝛼𝓁)𝑛 ≡ 𝑝

∞∑
𝑛=𝑁+1

(𝑝𝛼𝓁)𝑛 =∶ 𝑠𝑁
(17)
< ∞.

It follows that ‖𝑓𝑁‖2
𝐿2(𝕋)

≤ ‖𝑓‖2
𝐿2(𝕋𝑁)

+ 𝑝𝑁+1𝐵2
𝑁𝑠𝑁‖𝑓‖2

𝐻1(𝕋)
< ∞, that is, 𝑓𝑁 ∈ 𝐿2(𝕋) for any 𝑁. At the same time,

(𝑓′
𝑁)𝑛,𝑘 =

{
𝑓′
𝑛,𝑘

, 𝑛 ≤ 𝑁,

0, otherwise.

In particular, |𝑓′
𝑁| ≤ |𝑓′|, which yields ‖𝑓′

𝑁‖𝐿2(𝕋) ≤ ‖𝑓′‖𝐿2(𝕋) and 𝑓𝑁 ∈ 𝐻1(𝕋). In addition,

‖𝑓′
𝑁 − 𝑓′‖𝐿2(𝕋) = ‖𝑓′‖𝐿2(𝕋⧵𝕋𝑁)

𝑁→∞
sssss→ 0. (25)

Now let 𝐶 > 0 be the constant from the Poincaré inequality (7). By construction, one has 𝑓𝑁 − 𝑓 ∈ �̃�1(𝕋), therefore, due
to (25),

‖𝑓𝑁 − 𝑓‖𝐿2(𝕋) ≤ 𝐶‖𝑓′
𝑁 − 𝑓′‖𝐿2(𝕋) 𝑁→∞

sssss→ 0,

which concludes the proof. □

3 APPROXIMATION SPACES

3.1 Excursus about Sobolev spaces

Let us briefly recall various definitions and basic facts related to fractional Sobolev spaces 𝐻𝑠 with 𝑠 ∈ (0, 1) on open sets
and manifolds.
Let Ω ⊂ ℝ𝑑 be a nonempty open subset and 𝑘 ∈ ℕ0, then the 𝑘th Sobolev space𝐻𝑘(Ω) is defined as

𝐻𝑘(Ω) =
{
𝑓 ∈ 𝐿2(Ω) ∶ 𝜕𝛼𝑓 ∈ 𝐿2(Ω) for all 𝛼 ∈ ℕ𝑑

0 with |𝛼| ≤ 𝑘
}
,

which is a Hilbert space if equipped with the scalar product

⟨𝑓, 𝑔⟩𝐻𝑘(Ω) =
∑
|𝛼|≤𝑘 ⟨𝜕𝛼𝑓, 𝜕𝛼𝑔⟩𝐿2(Ω).

ForΩ = ℝ𝑑, we obtain an equivalent definition via the Fourier transform. Namely for 𝑠 ∈ [0,∞), define the 𝑠th Sobolev
space on Ω by

𝐻𝑠(ℝ𝑑) =
{
𝑓 ∈ 𝐿2(ℝ𝑑) ∶ ⟨𝜉⟩𝑠𝑓 ∈ 𝐿2(ℝ𝑑)

}
with ⟨𝜉⟩ ∶= √

1 + |𝜉|2,
where 𝑓 is the Fourier transform of 𝑓, which becomes a Hilbert space if equipped with the norm

⟨𝑓, 𝑔⟩𝐻𝑠(ℝ𝑑),∧ =
⟨⟨𝜉⟩𝑠𝑓, ⟨𝜉⟩𝑠�̂�⟩

𝐿2(ℝ𝑑)
.

For 𝑠 ∈ ℕ0, the two above definitions of𝐻𝑠(ℝ𝑑) coincide and the two norms are equivalent.
Let Ω ⊂ ℝ𝑑 be a bounded nonempty open subset and 𝑠 ∈ (0, 1), then the 𝑠th Sobolev space on 𝐻𝑠(Ω) is defined as the

space of the restrictions on Ω of the functions from𝐻𝑠(ℝ𝑑) with the quotient norm

‖𝑓‖𝐻𝑠(Ω),∗ = inf
𝑔∈𝐻𝑠(ℝ𝑑), 𝑔|Ω=𝑓 ‖𝑔‖𝐻𝑠(ℝ𝑑).
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26 FRANCESCHI et al.

We will need various equivalent characterizations of these spaces as well as several equivalent norms [1]. Recall that Ω
is said to be with Lipschitz boundary if for any 𝑝 ∈ 𝜕Ω, there exist 𝜀 > 0, 𝑎 > 0, a Lipschitz function ℎ defined on the
open ball 𝐵𝜀(0) ⊂ ℝ𝑑−1 with ℎ(0) = 0 and |ℎ(𝑦1, … , 𝑦𝑑−1)| < 𝑎 for all (𝑦1, … , 𝑦𝑑−1) ∈ 𝐵𝜀(0), and Cartesian coordinates
(𝑦1, … , 𝑦𝑚) centered at 𝑝 such that

Ω∩
{
(𝑦1, … , 𝑦𝑑) ∶ (𝑦1, … , 𝑦𝑑−1) ∈ 𝐵𝜀(0), |𝑦𝑑| < 2𝑎

}
=

{
(𝑦1, … , 𝑦𝑑) ∶ (𝑦1, … , 𝑦𝑑−1) ∈ 𝐵𝜀(0), ℎ(𝑦1, … , 𝑦𝑑−1) < 𝑦𝑑 < 2𝑎

}
.

The first reformulation comes from the interpolation theory, see [62, Chapter 34]. Let 𝑋 and 𝑌 be normalized spaces
with 𝑋 ⊂ 𝑌 and 𝑠 ∈ (0, 1). Choose any 𝑏 > 1 and for 𝑓 ∈ 𝑌 and 𝑡 > 0, define

𝐾(𝑓, 𝑡) = inf
𝑔∈𝑋

(‖𝑓 − 𝑔‖𝑌 + 𝑡‖𝑔‖𝑋), 𝐹𝑠 ∶= (𝐹𝑠)𝑗∈ℕ with 𝐹𝑠
𝑗
∶= 𝑏𝑗𝑠𝐾(𝑓, 𝑏−𝑗), (26)

then the interpolated space [𝑌, 𝑋]𝑠 is defined by

[𝑌, 𝑋]𝑠 ∶=
{
𝑓 ∈ 𝑌 ∶ ‖𝑓‖2

[𝑌,𝑋]𝑠
∶= ‖𝑓‖2𝑌 + ‖𝐹𝑠‖2

𝓁2
< ∞

}
, (27)

and for any 0 < 𝑠 < 𝑠′ ≤ 1, one has

𝐻𝑠(Ω) =
[
𝐿2(Ω),𝐻𝑠′(Ω)

]
𝑠

𝑠′

(28)

with an equivalence of the associated norms, see [15, Theorem 3.5.1]
If Ω has Lipschitz boundary, then

𝐻𝑠(Ω) =

{
𝑓 ∈ 𝐿2(Ω) ∶ [𝑓]2

𝐻𝑠(Ω)
∶= ∫

Ω×Ω

||𝑓(𝑥) − 𝑓(𝑦)||2|𝑥 − 𝑦|𝑑+2𝑠 d𝑥 d𝑦 < ∞

}
, (29)

while the seminorms 𝑓 ↦ ‖𝐹𝑠‖𝓁2 and [⋅]𝐻𝑠(Ω) are equivalent, see [62, Chapter 36].
Another group of equivalent characterizations comes from the theory of Besov spaces, which we discuss following [15,

Chapter 3]. For 𝑓 ∈ 𝐿2(Ω), define its modulus of smoothness by

𝑤(𝑓, 𝑡) ∶= sup|ℎ|≤𝑡 ‖‖𝑓(⋅ + ℎ) − 𝑓‖‖𝐿2(Ωℎ)
, 𝑡 > 0, Ωℎ ∶= Ω ∩ (Ω + ℎ). (30)

For 𝑠 ∈ (0, 1) one defines the Besov seminorm [𝑓]𝐵,𝑠 of 𝑓 by

[𝑓]2𝐵,𝑠 ∶= ∫
1

0

𝑡−2𝑠𝑤(𝑓, 𝑡)2
d𝑡

𝑡
,

then the Besov space 𝐵𝑠
2,2(Ω) is defined by

𝐵𝑠
2,2(Ω) ∶=

{
𝑓 ∈ 𝐿2(Ω) ∶ ‖𝑓‖2

𝐵𝑠
2,2

∶= ‖𝑓‖2
𝐿2

+ [𝑓]2𝐵,𝑠 < ∞
}
.

Let 𝑏 > 1, then the substitution 𝑡 ∶= 𝑏−𝑥 gives

∫
1

0

𝑡−2𝑠𝑤(𝑓, 𝑡)2
d𝑡

𝑡
= (log 𝑏)∫

∞

0

𝑏2𝑠𝑥𝑤(𝑓, 𝑏−𝑥)2 d𝑥,
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FRANCESCHI et al. 27

and using the monotonicity of 𝑤(𝑓, 𝑡) in 𝑡, we obtain the inequalities

1

𝑏2

∞∑
𝑗=0

𝑏2𝑠𝑗𝑤(𝑓, 𝑝−𝑗)2 ≤
∞∑
𝑗=0

𝑏2𝑠𝑗𝑤(𝑓, 𝑏−𝑗−1)2 ≤
∞∑
𝑗=0

∫
𝑗+1

𝑗

𝑏2𝑠𝑥𝑤(𝑓, 𝑏−𝑥)2 d𝑥

≤
∞∑
𝑗=0

𝑏2𝑠(𝑗+1)𝑤(𝑓, 𝑏−𝑗)2 ≤ 𝑏2𝑠
∞∑
𝑗=0

𝑏2𝑠𝑗𝑤(𝑓, 𝑏−𝑗)2,

which shows that the seminorm

𝑓 ↦ ‖‖𝑏𝑠𝑗𝑤(𝑓, 𝑏−𝑗)‖‖𝓁2 (31)

is equivalent to the above Besov seminorm. If, in addition, the set Ω has Lipschitz boundary, then

𝐵𝑠
2,2(Ω) =

[
𝐿2(Ω),𝐻1(Ω)

]
𝑠
≡ 𝐻𝑠(Ω),

and the seminorms 𝑓 ↦ ‖𝑏𝑠𝑗𝑤(𝑓, 𝑏−𝑗)‖𝓁2 and [𝑓]𝐻𝑠(Ω) are equivalent.
We summarize the above considerations as follows:

Proposition 3.1. LetΩ ⊂ ℝ𝑑 be a nonempty bounded open subset with Lipschitz boundary, 0 < 𝑠 < 𝑠′ < 1. For 𝑓 ∈ 𝐿2(Ω),
define

𝑊𝑠 ∶= (𝑊𝑠
𝑗
)𝑗∈ℕ, 𝐹𝑠,𝑠′ ∶= (𝐹𝑠,𝑠′

𝑗
)𝑗∈ℕ,

𝑊𝑠
𝑗
∶= 𝑝

𝑠𝑗

𝑑 𝑤(𝑓, 𝑝
−

𝑗

𝑑 ), 𝐹𝑠,𝑠′

𝑗
∶= 𝑝𝑗𝑠∕𝑑𝐾𝑠′(𝑓, 𝑝

−
𝑗𝑠′

𝑑 ),

𝐾𝑠′ (𝑓, 𝑡) = inf
𝑔∈𝐻𝑠′ (Ω)

(‖𝑓 − 𝑔‖𝐿2(Ω) + 𝑡‖𝑔‖𝐻𝑠′ (Ω)

)
,

then ‖ ⋅ ‖𝐿2 + [⋅]𝐻,𝑠 given by (29) and 𝑓 ↦ ‖𝑓‖𝐿2 + ‖𝑊𝑠‖𝓁2 and 𝑓 ↦ ‖𝑓‖𝐿2 + ‖𝐹𝑠,𝑠′‖𝓁2 are equivalent norms on𝐻𝑠(Ω).

Remark that the definitions of 𝑊𝑠
𝑗
and 𝐹𝑠,𝑠′

𝑗
correspond to the choice 𝑏 ∶= 𝑝

1

𝑑 in (31) and 𝑏 ∶= 𝑏 ∶= 𝑝
𝑠′

𝑑 in
(26), respectively.
Finally, if Ω is bounded with Lipschitz boundary and 0 ≤ 𝑠 <

1

2
, then 𝐶∞

𝑐 (Ω) is dense in 𝐻𝑠(Ω), see, for example,
eq. (2.220) in [49].

3.2 Multiscale decompositions

LetΩ ⊂ ℝ𝑑 be a nonempty bounded open subset. Our next aim is to decomposeΩ in a very special (but still quite natural)
way. We adapt the construction proposed in [47] for 𝑝 = 2, which is in turn a geometric realization of the approximation
spaces used in the wavelet analysis, see, for example, [15, Chapter 2] or [48, Chapter 2].
By a 𝑝-multiscale decomposition ofΩ, wemean a collection (Ω𝑛,𝑘)𝑛∈ℕ0,𝑘∈{0,…,𝑝𝑛−1} of nonempty subsets ofΩ such that

(A1) Ω0,0 = Ω;
(A2) for any 𝑛 ∈ ℕ0, the sets Ω𝑛,0, … ,Ω𝑛,𝑝𝑛−1 are mutually disjoint;
(A3) for any 𝑛 ∈ ℕ0 and 𝑘 = 0,… , 𝑝𝑛 − 1, one has

Ω𝑛+1,𝑝𝑘+𝑗 ⊂ Ω𝑛,𝑘 for any 𝑗 ∈ {0, … , 𝑝 − 1},
||||||Ω𝑛,𝑘 ⧵

𝑝−1⋃
𝑗=0

Ω𝑛+1,𝑝𝑘+𝑗

|||||| = 0.
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28 FRANCESCHI et al.

The above conditions can be viewed as a hierarchical decomposition procedure: One setsΩ0,0 ∶= Ω, and if for some 𝑛 all
Ω𝑛,𝑘 are already constructed, then one decomposes each Ω𝑛,𝑘 (up to zero measure sets) into 𝑝 disjoint pieces Ω𝑛+1,𝑝𝑘+𝑗,
𝑗 ∈ {0, … , 𝑝 − 1}. In order to have a control of the size of Ω𝑛,𝑘, we introduce further classes of conditions.
A decomposition (Ω𝑛,𝑘) is weakly balanced if

(A4) there is 𝐶0 ≥ 1 such that

1

𝐶0

|Ω|
𝑝𝑛

≤ |Ω𝑛,𝑘| ≤ 𝐶0
|Ω|
𝑝𝑛

for all 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1},

and is strongly balanced if it satisfies the stronger condition

(A4*) |Ω𝑛,𝑘| = |Ω|
𝑝𝑛

for all 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1}.

Finally, a decomposition (Ω𝑛,𝑘) is called regular if it satisfies the following two conditions:

(A5) There exists 𝑐1 > 0 such that for all 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, one has

diamΩ𝑛,𝑘 ≤ 𝑐1𝑝
−

𝑛

𝑑 ;

(A6) there exists 𝑐2 > 0 such that for all ℎ ∈ ℝ𝑑, 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, one has

||Ω𝑛,𝑘 ⧵ (Ω𝑛,𝑘 + ℎ)|| ≤ 𝑐2|ℎ|𝑝−
𝑛(𝑑−1)

𝑑 .

Very roughly, the last two conditions say that the shape ofΩ𝑛,𝑘 cannot become “too complicated” for large 𝑛. For the rest
of the subsection, we assume that:

Ω ⊂ ℝ𝑑 is a bounded open set with Lipschitz boundary which admits
a regular weakly balanced 𝑝-multiscale decomposition  ∶= (Ω𝑛,𝑘).

(32)

This covers a large class of Ω: We refer to Section 5 for a more detailed discussion.
The above conditions (A1)–(A3) are very standard and say that the family (Ω𝑛,𝑘) is a so-called dyadic cube, which are a

very popular tool in the geometric analysis on metric spaces, see, for example, Kigami’s book [34]. Usually these standard
requirements are supplied with additional conjectures on the size and the shape of the pieces to guarantee additional
properties of induced function spaces, see, for example, [14, 26] for further alternatives. We remark that our set of condi-
tions (A4)–(A6) is chosen to guarantee a kind of compatibility of the partition with the Euclidian smooth structure and
fractional Sobolev spaces, as will be seen from the subsequent constructions.
Let us establish further properties of .

Lemma 3.2. Under the assumption (32), there holds

𝐾 ∶= sup
(𝑛,𝑘)

#
{
𝑗 ∶ dist(Ω𝑛,𝑗, Ω𝑛,𝑘) ≤ 𝑝

−
𝑛

𝑑
}
< ∞.

Proof. Let us pick some (𝑛, 𝑘). Recall that by assumption (A5) we have the inequality diamΩ𝑛,𝑗 ≤ 𝑐1𝑝
−

𝑛

𝑑 for all 𝑗. Now

let 𝑗 be such that dist(Ω𝑛,𝑗, Ω𝑛,𝑘) ≤ 𝑝
−

𝑛

𝑑 , then there exist 𝑥𝑛,𝑗 ∈ Ω𝑛,𝑗 and 𝑥𝑛,𝑘 ∈ Ω𝑛,𝑘 with |𝑥𝑛,𝑗 − 𝑥𝑛,𝑘| < 2𝑝
−

𝑛

𝑑 . It follows
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FRANCESCHI et al. 29

that for any 𝑥 ∈ Ω𝑛,𝑗 , one has the inequalities

|𝑥 − 𝑥𝑛,𝑘| ≤ |𝑥 − 𝑥𝑛,𝑗| + |𝑥𝑛,𝑗 − 𝑥𝑛,𝑘| < diamΩ𝑛,𝑗 + 2𝑝
−

𝑛

𝑑 ≤ (𝑐1 + 2)𝑝
−

𝑛

𝑑 ,

which shows the inclusionΩ𝑛,𝑗 ⊂ 𝐵
(𝑐1+2)𝑝

−
𝑛
𝑑
(𝑥𝑛,𝑘). Using |Ω𝑛,𝑗| ≥ 𝐶−1

0 |Ω|𝑝−𝑛, the number of possible 𝑗s is bounded from

above by the number

||𝐵
(𝑐1+2)𝑝

−
𝑛
𝑑
(𝑥𝑛,𝑘)||

𝐶−1
0 |Ω|𝑝−𝑛

≡ 𝐶0𝜋
𝑑

2

Γ(
𝑑

2
+ 1)

(
(𝑐1 + 2)𝑝

−
𝑛

𝑑

)𝑑

|Ω|𝑝−𝑛
≡ 𝐶0𝜋

𝑑

2

Γ(
𝑑

2
+ 1)

(𝑐1 + 2)𝑑|Ω| .

□

For 𝑛 ∈ ℕ0, define

𝑉𝑛 ∶= span
{
𝟙Ω𝑛,𝑘

∶ 𝑘 = 0,… , 𝑝𝑛 − 1
}
⊂ 𝐿2(Ω), 𝑃𝑛 ∶= the orthogonal projector on 𝑉𝑛 in 𝐿2(Ω); (33)

in other words,

𝑃𝑛𝑓 =

𝑝𝑛−1∑
𝑘=0

1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

𝑓 d𝑥 𝟙Ω𝑛,𝑘
.

Due to the assumption (A3) for any 𝑛, we have

𝟙Ω𝑛,𝑘
=

𝑝−1∑
𝑗=0

𝟙Ω𝑛+1,𝑝𝑘+𝑗
a.e.,

which shows that (𝑉𝑛)𝑛∈ℕ0
is a strictly increasing sequence of closed subspaces. We will be interested in approximating

arbitrary 𝑓 by 𝑃𝑛𝑓 with large 𝑛.

Lemma 3.3. For any 𝑓 ∈ 𝐿2(Ω), one has 𝑓 = lim𝑛→∞ 𝑃𝑛𝑓.

Proof. This is an adaptation of [47, Lemma 4.5].

(i) Let 𝑔 ∈ 𝐶0(Ω) and 𝜀 > 0. As 𝑔 is uniformly continuous onΩ, one can find some 𝛿 > 0 such that |𝑔(𝑥) − 𝑔(𝑦)| < 𝜀 for
all 𝑥, 𝑦 ∈ Ωwith |𝑥 − 𝑦| < 𝛿. By (A5) one can find some𝑁 ∈ ℕ such that diamΩ𝑛,𝑘 < 𝛿 for all 𝑛 ≥ 𝑁 and all 𝑘. Now
let 𝑛 ≥ 𝑁 and pick 𝑥𝑛,𝑘 ∈ Ω𝑛,𝑘, then for any 𝑥 ∈ Ω𝑛,𝑘, there holds ||𝑔(𝑥) − 𝑔(𝑥𝑛,𝑘)|| < 𝜀. Therefore,

‖𝑔 − 𝑔𝑛‖∞ < 𝜀 for 𝑔𝑛 ∶=

𝑝𝑛−1∑
𝑘=0

𝑔(𝑥𝑛,𝑘)𝟙Ω𝑛,𝑘
∈ 𝑉𝑛,

which yields ‖𝑔 − 𝑃𝑛𝑔‖𝐿2(Ω) ≤ ‖𝑔 − 𝑔𝑛‖𝐿2(Ω) ≤ ‖𝑔 − 𝑔𝑛‖2∞√|Ω| ≤ 𝜀
√|Ω| for all 𝑛 ≥ 𝑁.

This shows that ‖𝑔 − 𝑃𝑛𝑔‖𝐿2(Ω)

𝑛→∞
sssss→ 0 for any 𝑔 ∈ 𝐶0(Ω).

(ii) Let 𝑓 ∈ 𝐿2(Ω). Let 𝜀 > 0, then there exists 𝑔 ∈ 𝐶0(Ω) with ‖𝑓 − 𝑔‖𝐿2(Ω) < 𝜀. By (i) there is 𝑁 ∈ ℕ such that ‖𝑔 −

𝑃𝑛𝑔‖𝐿2(Ω) < 𝜀 for all 𝑛 ≥ 𝑁. Then for all 𝑛 ≥ 𝑁, one has

‖𝑓 − 𝑃𝑛𝑓‖𝐿2(Ω) ≤ ‖𝑓 − 𝑔‖𝐿2(Ω) + ‖𝑔 − 𝑃𝑛𝑔‖𝐿2(Ω) + ‖𝑃𝑛(𝑔 − 𝑓)‖𝐿2(Ω) ≤ 2‖𝑓 − 𝑔‖𝐿2(Ω) + ‖𝑔 − 𝑃𝑛𝑔‖𝐿2(Ω) < 3𝜀,

which shows the claim. □
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30 FRANCESCHI et al.

We now introduce the approximation spaces 𝐴𝑟(Ω) consisting of the functions 𝑓 ∈ 𝐿2(Ω) such that the speed of con-
vergence in Lemma 3.3 can be controlled in some special way. The construction is standard, see, for example, [15, section
3.5], but we need to recall the precise role of various parameters.

Definition 3.4. Let 𝑟 > 0. For 𝑓 ∈ 𝐿2(Ω) set

𝜉 ∶= (𝜉𝑛)𝑛∈ℕ0
, 𝜉𝑛 ∶= 𝑝

𝑛𝑟

𝑑 dist𝐿2(Ω)(𝑓, 𝑉𝑛) ≡ 𝑝
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛𝑓‖𝐿2(Ω).

Then the approximation space 𝐴𝑟(Ω) and its norm are defined by

𝐴𝑟(Ω) =
{
𝑓 ∈ 𝐿2(Ω) ∶ 𝜉 ∈ 𝓁2

}
, ‖𝑓‖2

𝐴𝑟(Ω)
= ‖𝑃0𝑓‖2𝐿2(Ω)

+ ‖𝜉‖2
𝓁2
. (34)

Remark that

‖𝑓‖2
𝐴𝑟(Ω)

≥ ‖𝑃0𝑓‖2𝐿2(Ω)
+ |𝜉0|2 ≡ ‖𝑃0𝑓‖2𝐿2(Ω)

+ ‖𝑓 − 𝑃0𝑓‖2𝐿2(Ω)
≡ ‖𝑓‖2

𝐿2(Ω)
.

Recall that the space 𝐴𝑟(Ω) depends on the decomposition (Ω𝑛,𝑘), but it is not reflected in the notation.
For what follows, it will be useful to work with another equivalent norm on 𝐴𝑟(Ω). Using the spaces 𝑉𝑛 from (33), for

any 𝑛 ∈ ℕ0, we introduce

𝑈𝑛 ∶=

{
𝑉0, 𝑛 = 0,

𝑉𝑛 ∩ 𝑉⟂
𝑛−1, 𝑛 ≥ 1.

(35)

By construction, this gives the orthogonal decomposition 𝐿2(Ω) =
⨁∞

𝑛=0
𝑈𝑛, the orthogonal projector 𝑄𝑛 on 𝑈𝑛 is

given by

𝑄𝑛 ∶=

{
𝑃0, 𝑛 = 0,

𝑃𝑛 − 𝑃𝑛−1, 𝑛 ≥ 1,

and for each 𝑛 ∈ ℕ0 and 𝑓 ∈ 𝐿2(Ω), we have

𝑓 =

∞∑
𝑘=0

𝑄𝑘𝑓 = 𝑃𝑛𝑓 +

∞∑
𝑘=𝑛+1

𝑄𝑘𝑓, (36)

while the summands on the right-hand side are mutually orthogonal. The following result is a particular case of [15,
Theorem 3.5.3], but we include it for the sake of completeness.

Lemma 3.5. Let 𝑟 > 0. For 𝑓 ∈ 𝐿2(Ω), set

𝜁 ∶= (𝜁𝑛)𝑛∈ℕ0
, 𝜁𝑛 ∶= 𝑝

𝑛𝑟

𝑑 ‖𝑄𝑛𝑓‖𝐿2(Ω).

Then ‖ ⋅ ‖𝐴𝑟(Ω) and 𝑓 ↦ ‖𝜁‖𝓁2 are equivalent norms on 𝐴𝑟(Ω).

Proof. Recall that by definition there holds ‖𝑓‖2
𝐴𝑟(Ω)

= ‖𝑄0𝑓‖2𝐿2 + ∞∑
𝑛=0

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑 . We have

‖𝜁‖2
𝓁2

≡ ‖𝑄0𝑓‖2𝐿2(Ω)
+

∞∑
𝑛=1

‖𝑄𝑛𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑

(36)≤ ‖𝑄0𝑓‖2𝐿2(Ω)
+

∞∑
𝑛=1

‖𝑓 − 𝑃𝑛−1𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑

≡ ‖𝑄0𝑓‖2𝐿2(Ω)
+ 𝑝

2
𝑛𝑟

𝑑

∞∑
𝑛=0

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑 ≤ 𝑝
2
𝑟

𝑑

(‖𝑄0𝑓‖2𝐿2(Ω)
+

∞∑
𝑛=0

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑

)
≡ 𝑝

2
𝑟

𝑑 ‖𝑓‖2
𝐴𝑟(Ω)

.
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FRANCESCHI et al. 31

At the same time,

‖𝑓‖2
𝐴𝑟(Ω)

= ‖𝑄0𝑓‖2𝐿2 + ∞∑
𝑛=0

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑
(36)
= ‖𝑄0𝑓‖2𝐿2(Ω)

+

∞∑
𝑛=0

∞∑
𝑘=𝑛+1

‖𝑄𝑘𝑓‖2𝐿2(Ω)
𝑝
2
𝑛𝑟

𝑑

= ‖𝑄0𝑓‖2𝐿2(Ω)
+

∞∑
𝑘=1

‖𝑄𝑘𝑓‖2𝐿2(Ω)

𝑘−1∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 = ‖𝑄0𝑓‖2𝐿2(Ω)
+

∞∑
𝑘=1

‖𝑄𝑘𝑓‖2𝐿2 𝑝2
𝑘𝑟

𝑑 − 1

𝑝
2
𝑟

𝑑 − 1

≤ ‖𝑄0𝑓‖2𝐿2(Ω)
+

1

𝑝
2
𝑟

𝑑 − 1

∞∑
𝑘=1

𝑝
2
𝑘𝑟

𝑑 ‖𝑄𝑘𝑓‖2𝐿2
≤ max

⎛⎜⎜⎝1,
1

𝑝
2
𝑟

𝑑 − 1

⎞⎟⎟⎠
∞∑
𝑘=0

𝑝
2
𝑘𝑟

𝑑 ‖𝑄𝑘𝑓‖2𝐿2(Ω)
≡ max

⎛⎜⎜⎝1,
1

𝑝
2
𝑟

𝑑 − 1

⎞⎟⎟⎠‖𝜁‖2𝓁2 . □

3.3 Relating approximation spaces to Sobolev spaces

Now we are going to compare the above equivalent norms on 𝐴𝑟(Ω) with suitable Sobolev norms. All results of this
section are suitable adaptations of respective results from [47, section 4] for 𝑝 = 2 and for slightly different definitions of
multiscale decompositions and the spaces 𝐴𝑟. Recall that the seminorm [⋅]𝐻𝑠 was defined in (29).

Lemma 3.6. For any 0 < 𝑠 < 1, there exists 𝐵 > 0 such that for any 𝑛 ∈ ℕ0 and 𝑓 ∈ 𝐻𝑠(Ω) there holds ‖𝑓 − 𝑃𝑛𝑓‖𝐿2(Ω) ≤
𝐵𝑝

−
𝑛𝑠

𝑑 [𝑓]𝐻𝑠(Ω).

Proof. Let 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1}. Recall that 𝑃𝑛𝑓 is piecewise constant,

𝑃𝑛𝑓(𝑥) =
1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

𝑓(𝑦) d𝑦 as 𝑥 ∈ Ω𝑛,𝑘.

Using Cauchy–Schwarz inequality, we estimate

∫
Ω𝑛,𝑘

||𝑓(𝑥) − 𝑃𝑛𝑓(𝑥)||2 d𝑥 = ∫
Ω𝑛,𝑘

|||𝑓(𝑥) − 1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

𝑓(𝑦) d𝑦
|||2 d𝑥 = ∫

Ω𝑛,𝑘

||| 1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

(𝑓(𝑥) − 𝑓(𝑦)) d𝑦
|||2 d𝑥

≤ ∫
Ω𝑛,𝑘

1|Ω𝑛,𝑘|2 |Ω𝑛,𝑘|∫
Ω𝑛,𝑘

||𝑓(𝑥) − 𝑓(𝑦)||2 d𝑦 d𝑥 =
1|Ω𝑛,𝑘| ∬Ω𝑛,𝑘×Ω𝑛,𝑘

||𝑓(𝑥) − 𝑓(𝑦)||2 d𝑥 d𝑦.

For all 𝑥, 𝑦 ∈ Ω𝑛,𝑘 with 𝑥 ≠ 𝑦, one has |𝑥 − 𝑦| ≤ diamΩ𝑛,𝑘, which gives

∫
Ω𝑛,𝑘

||𝑓(𝑥) − 𝑃𝑛𝑓(𝑥)||2 d𝑥 ≤ (diamΩ𝑛,𝑘)
𝑑+2𝑠|Ω𝑛,𝑘| ∬

Ω𝑛,𝑘×Ω𝑛,𝑘

||𝑓(𝑥) − 𝑓(𝑦)||2|𝑥 − 𝑦|𝑑+2𝑠 d𝑥 d𝑦 ≡ (diamΩ𝑛,𝑘)
𝑑+2𝑠|Ω𝑛,𝑘| [𝑓]2

𝐻𝑠(Ω)
.

Recall due to the choice of Ω𝑛,𝑘 (see Subsection 3.2) and (A4), we have

(diamΩ𝑛,𝑘)
𝑑+2𝑠|Ω𝑛,𝑘| ≤ 𝑐1𝑝

−
𝑛

𝑑 , |Ω𝑛,𝑘| ≥ |Ω|
𝐶0𝑝𝑛

,

therefore,

(diamΩ𝑛,𝑘)
𝑑+2𝑠|Ω𝑛,𝑘| ≤ 𝐶0(𝑐1𝑝

−
𝑛

𝑑 )𝑑+2𝑠𝑝𝑛|Ω| = 𝐵𝑝
−

2𝑠𝑛

𝑑 , 𝐵 ∶=
𝐶0𝑐

𝑑+2𝑠
1|Ω|
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32 FRANCESCHI et al.

resulting in ‖𝑓 − 𝑃𝑛‖2𝐿2(Ω𝑛,𝑘)
≤ 𝐵𝑝

−
2𝑠𝑛

𝑑 [𝑓]2
𝐻𝑠(Ω𝑛,𝑘)

. Then

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
=

𝑝𝑛−1∑
𝑘=0

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω𝑛,𝑘)
≤ 𝐵𝑝

−
2𝑛𝑠

𝑑

𝑏𝑛−1∑
𝑘=0

[𝑓]2
𝐻𝑠(Ω𝑛,𝑘)

≤ 𝐵𝑝
−

𝑛𝑠

𝑑 ‖𝑓‖𝐻𝑠(Ω).
□

This allows one to show the first embedding result:

Theorem 3.7. Assume (32), then𝐻𝑠(Ω) ↪ 𝐴𝑟(Ω) for any 0 ≤ 𝑟 ≤ 𝑠 < 1.

Proof. We equip𝐻𝑠(Ω) with the interpolation norm (Proposition 3.1)

‖𝑓‖2𝐻𝑠 ∶= ‖𝑓‖2
𝐿2(Ω)

+ ‖‖𝑝 𝑗𝑠

𝑑 𝐾𝑠′ (𝑓,
−

𝑗𝑠′

𝑑 )‖‖2𝓁2 , 0 < 𝑠 < 𝑠′ < 1.

Let 𝑓 ∈ 𝐿2(Ω). As 𝑃𝑗 are orthogonal projections, for any 𝑗 ∈ ℕ0 and any 𝑔 ∈ 𝐻𝑠′(Ω) ⊂ 𝐿2(Ω), one has

‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω) ≤ ‖𝑓 − 𝑃𝑗𝑔‖𝐿2(Ω) ≤ ‖𝑓 − 𝑔‖𝐿2(Ω) + ‖𝑔 − 𝑃𝑗𝑔‖𝐿2(Ω).

Using Lemma 3.6 to estimate the last summand, we conclude that one can choose some 𝐶 ≥ 1 such that

‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω) ≤ ‖𝑓 − 𝑔‖𝐿2(Ω) + 𝐶𝑏
−

𝑗𝑠′

𝑑 ‖𝑔‖𝐻𝑠′ (Ω) for all 𝑗 ∈ ℕ0,

which immediately gives

‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω) ≤ 𝐶𝐾𝑠′(𝑓, 𝑏
−

𝑗𝑠′

𝑑 ). (37)

Now let 𝑓 ∈ 𝐻𝑠(Ω), then

‖𝑓‖2
𝐴𝑟(Ω)

= ‖𝑃0𝑓‖2𝐿2(Ω)
+

∞∑
𝑗=0

𝑝
2
𝑗𝑟

𝑑 ‖𝑓 − 𝑃𝑗𝑓‖2𝐿2(Ω)

use (37): ≤ 𝐶

(‖𝑓‖2
𝐿2(Ω)

+

∞∑
𝑗=0

𝑝
2
𝑗𝑟

𝑑 𝐾𝑠′ (𝑓, 𝑝
−

𝑗𝑠′

𝑑 )2

)
≡ 𝐶

(‖𝑓‖2
𝐿2(Ω)

+

∞∑
𝑗=0

𝑝
2(𝑟−𝑠)

𝑗

𝑑 𝑝
2𝑠𝑗

𝑑 𝐾𝑠′ (𝑓, 𝑝
−

𝑗𝑠′

𝑑 )2

)

use 𝑟 ≤ 𝑠: ≤ 𝐶

(‖𝑓‖2
𝐿2(Ω)

+

∞∑
𝑗=0

𝑝
2𝑠𝑗

𝑑 𝐾𝑠′ (𝑓, 𝑝
−

𝑗𝑠′

𝑑 )2

)
≡ 𝐶

(‖𝑓‖2
𝐿2(Ω)

+ ‖‖𝑝 𝑗𝑠

𝑑 𝐾𝑠′ (𝑓,
−

𝑗𝑠′

𝑑 )‖‖2𝓁2) ≡ 𝐶‖𝑓‖2
𝐻𝑠(Ω)

.
□

In order to obtain embedding results in the other direction,morework is needed. Recall that themodulus of smoothness
𝑤(𝑓, 𝑡) was defined in (30).

Lemma 3.8. There exists 𝐶 ≥ 2 such that for all 𝑛 ∈ ℕ0, 𝑡 > 0, and 𝑓 ∈ 𝑉𝑛, there holds 𝑤(𝑓, 𝑡) ≤ 𝐶𝑝
𝑛

2𝑑 𝑡
1

2 ‖𝑓‖𝐿2(Ω).

Proof. Consider first the case 𝑡 ∈ (0, 𝑝
−

𝑛

𝑑 ) for some 𝑛 ∈ ℕ0. Let 𝑓 ∈ 𝑉𝑛, then

𝑓 =

𝑝𝑛−1∑
𝑗=0

𝑓𝑛,𝑗𝟙Ω𝑛,𝑗
, 𝑓𝑛,𝑗 ∈ ℂ, ‖𝑓‖2

𝐿2(Ω)
=

𝑝𝑛−1∑
𝑗=0

|𝑓𝑛,𝑗|2|Ω𝑛,𝑗| ≥ |Ω|
𝐶0𝑝𝑛

𝑝𝑛−1∑
𝑗=0

|𝑓𝑛,𝑗|2, (38)

where we used (A4) in the last step. Recall that by (A6) for any (𝑛, 𝑘), there holds

||Ω𝑛,𝑘 ⧵ (Ω𝑛,𝑘 − ℎ)|| ≡ ‖𝟙Ω𝑛,𝑘−ℎ − 𝟙Ω𝑛,𝑘
‖𝐿1(Ω𝑛,𝑘) ≤ 𝑐2|ℎ|𝑝−

𝑛(𝑑−1)

𝑑 , ℎ ∈ ℝ𝑑, (39)
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FRANCESCHI et al. 33

and by Lemma 3.2 for some 𝐾 > 0, we have

#
{
𝑗 ∶ dist(Ω𝑛,𝑗, Ω𝑛,𝑘) ≤ 𝑝

−
𝑛

𝑑
} ≤ 𝐾 for any (𝑛, 𝑘). (40)

Remark that 𝑓(𝑦) = 𝑓𝑛,𝑘 for any 𝑦 ∈ Ω𝑛,𝑘. In particular, if 𝑥 ∈ Ω𝑛,𝑘 and 𝑥 + ℎ ∈ Ω𝑛,𝑘, then 𝑓(𝑥 + ℎ) = 𝑓(𝑥). It follows
that for any 𝑥 ∈ Ω𝑛,𝑘, one has

||𝑓(𝑥 + ℎ) − 𝑓(𝑥)|| = ||𝟙Ω𝑛,𝑘
(𝑥 + ℎ) − 𝟙Ω𝑛,𝑘

(𝑥)|| ⋅ ||𝑓(𝑥 + ℎ) − 𝑓(𝑥)|| ≡ ||𝟙Ω𝑛,𝑘−ℎ(𝑥) − 𝟙Ω𝑛,𝑘
(𝑥)|| ⋅ ||𝑓(𝑥 + ℎ) − 𝑓(𝑥)||. (41)

Now let ℎ ∈ ℝ𝑑 with |ℎ| ≤ 𝑡. Then for any 𝑥 ∈ Ω𝑛,𝑘, we estimate

||𝑓(𝑥 + ℎ) − 𝑓(𝑥)||2 = ||| 𝑝
𝑛−1∑
𝑗=0

𝑓𝑛,𝑗𝟙Ω𝑛,𝑗
(𝑥 + ℎ) − 𝑓𝑛,𝑘

|||2 ≤
(|𝑓𝑛,𝑘| + 𝑝𝑛−1∑

𝑗=0

|𝑓𝑛,𝑗|𝟙Ω𝑛,𝑗
(𝑥 + ℎ)

)2

≤
⎛⎜⎜⎝|𝑓𝑛,𝑘| + ∑

𝑗∶ dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤|ℎ| |𝑓𝑛,𝑗|⎞⎟⎟⎠
2

≤
⎛⎜⎜⎜⎝|𝑓𝑛,𝑘| + ∑

𝑗∶ dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤𝑝−
𝑛
𝑑

|𝑓𝑛,𝑗|⎞⎟⎟⎟⎠
2

use (40) and Cauchy–Schwarz: ≤ (𝐾 + 1)

⎛⎜⎜⎜⎝|𝑓𝑛,𝑘|2 + ∑
𝑗∶ dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤𝑝−

𝑛
𝑑

|𝑓𝑛,𝑗|2⎞⎟⎟⎟⎠.
Using this inequality on the right-hand side of (41), we obtain

∫
Ω𝑛,𝑘

||𝑓(𝑥 + ℎ) − 𝑓(𝑥)||2 d𝑥 ≤ (𝐾 + 1)‖𝟙Ω𝑛,𝑘−ℎ − 𝟙Ω𝑛,𝑘
‖𝐿1(Ω𝑛,𝑘)

⎛⎜⎜⎜⎝|𝑓𝑛,𝑘|2 + ∑
𝑗∶dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤𝑝−

𝑛
𝑑

|𝑓𝑛,𝑗|2⎞⎟⎟⎟⎠
use (39): ≤ (𝐾 + 1)𝑐2|ℎ|𝑝−

𝑛(𝑑−1)

𝑑

⎛⎜⎜⎜⎝|𝑓𝑛,𝑘|2 + ∑
𝑗∶dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤𝑝−

𝑛
𝑑

|𝑓𝑛,𝑗|2⎞⎟⎟⎟⎠.
By summing over all 𝑘, we arrive at

∫
Ω

||𝑓(𝑥 + ℎ) − 𝑓(𝑥)||2 d𝑥 =

𝑝𝑛−1∑
𝑘=0

∫
Ω𝑛,𝑘

||𝑓(𝑥 + ℎ) − 𝑓(𝑥)||2 d𝑥 ≤ (𝐾 + 1)𝑐2|ℎ|𝑝−
𝑛(𝑑−1)

𝑑

×

𝑝𝑛−1∑
𝑘=0

⎛⎜⎜⎜⎝|𝑓𝑛,𝑘|2 + ∑
𝑗∶ dist(Ω𝑛,𝑗 ,Ω𝑛,𝑘)≤𝑝−

𝑛
𝑑

|𝑓𝑛,𝑗|2⎞⎟⎟⎟⎠
use (40): ≤ (𝐾 + 1)2𝑐2|ℎ|𝑝−

𝑛(𝑑−1)

𝑑

𝑝𝑛−1∑
𝑘=0

|𝑓𝑛,𝑘|2
use (38): ≤ (𝐾 + 1)2𝑐2|ℎ|𝑝−

𝑛(𝑑−1)

𝑑
𝐶0𝑝

𝑛|Ω| ‖𝑓‖2
𝐿2(Ω)

≤ 𝑐2𝑝
𝑛

𝑑 |ℎ| ‖𝑓‖2
𝐿2(Ω)

, 𝑐 ∶= (𝐾 + 1)

√
𝐶0𝑐2|Ω| .

The last estimate holds for all ℎ with |ℎ| ≤ 𝑡, which yields 𝑤(𝑓, 𝑡) ≤ 𝑐𝑝
𝑛

2𝑑 𝑡
1

2 ‖𝑓‖2
𝐿2(Ω)

for all 𝑡 ∈ (0, 𝑝
−

𝑛

𝑑 ).
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34 FRANCESCHI et al.

For 𝑡 ≥ 𝑝
−

𝑛

𝑑 we simply estimate 𝑤(𝑡, 𝑓) ≤ 2‖𝑓‖𝐿2(Ω) ≤ 2𝑝
𝑛

2𝑑 𝑡
1

2 ‖𝑓‖𝐿2(Ω) and obtain the claim by taking 𝐶 ∶=

max(2, 𝑐). □

Theorem 3.9. Let (32) be satisfied, then for any 0 < 𝑠 <
1

2
and 𝑠 ≤ 𝑟, one has 𝐴𝑟(Ω) ↪ 𝐻𝑠(Ω).

Proof. We equip𝐻𝑠(Ω) with the Besov norm

‖𝑓‖2𝐵𝑠 ∶= ‖𝑓‖2
𝐿2(Ω)

+ ‖‖𝑝 𝑠𝑗

𝑑 𝑤(𝑓, 𝑝
−

𝑗

𝑑 )‖‖2𝓁2
and recall that for any 𝑡 > 0, themodulus of smoothness𝑤(𝑓, 𝑡) satisfies the triangle inequality with respect to 𝑓. For each
𝑗, we have

𝑓 =

𝑗∑
𝑘=0

𝑄𝑘𝑓 + (𝑓 − 𝑃𝑗𝑓), 𝑤(𝑓, 𝑝
−

𝑗

𝑑 ) ≤
𝑗∑

𝑘=0

𝑤(𝑄𝑘, 𝑝
−

𝑗

𝑑 ) + 𝑤(𝑓 − 𝑃𝑗𝑓, 𝑝
−

𝑗

𝑑 ).

Remark that 𝑄𝑘𝑓 ∈ 𝑉𝑘, so by Lemma 3.8 we estimate with some 𝐶 ≥ 2,

𝑤(𝑄𝑘, 𝑝
−

𝑗

𝑑 ) ≤ 𝐶𝑝
𝑘

2𝑑
−

𝑗

2𝑑 ‖𝑄𝑘𝑓‖𝐿2(Ω), 𝑤(𝑓 − 𝑃𝑗𝑓, 𝑝
−

𝑗

𝑑 ) ≤ 𝐶‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω).

In addition, for 𝑘 ≥ 1, we have 𝑃𝑘𝑃𝑘−1 = 𝑃𝑘−1, therefore,

‖𝑄𝑘𝑓‖𝐿2(Ω) = ‖𝑃𝑘𝑓 − 𝑃𝑘−1𝑓‖𝐿2(Ω) = ‖𝑃𝑘(𝑓 − 𝑃𝑘−1𝑓)‖𝐿2(Ω) ≤ ‖𝑓 − 𝑃𝑘−1𝑓‖𝐿2(Ω),

and then (recall that 𝑄0 = 𝑃0)

𝑤(𝑓, 𝑝
−

𝑗

𝑑 ) ≤ 𝐶𝑝
−

𝑗

2𝑑 ‖𝑃0𝑓‖𝐿2(Ω) + 𝐶

𝑗∑
𝑘=1

𝑝
𝑘

2𝑑
−

𝑗

2𝑑 ‖𝑓 − 𝑃𝑘−1𝑓‖𝐿2(Ω) + 𝐶‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω)

= 𝐶𝑝
−

𝑗

2𝑑 ‖𝑃0𝑓‖𝐿2(Ω) + 𝐶𝑝
1

2𝑑

𝑗−1∑
𝑘=0

𝑝
𝑘

2𝑑
−

𝑗

2𝑑 ‖𝑓 − 𝑃𝑘𝑓‖𝐿2(Ω) + 𝐶‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω)

≤ 𝐵𝑝
−

𝑗

2𝑑 ‖𝑃0𝑓‖𝐿2(Ω) + 𝐵

𝑗∑
𝑘=0

𝑝
𝑘

2𝑑
−

𝑗

2𝑑 ‖𝑓 − 𝑃𝑘𝑓‖𝐿2(Ω)

with 𝐵 ∶= 𝐶𝑝
1

2𝑑 > 𝐶. It follows that for any 𝑗, one has

𝑝
𝑠𝑗

𝑑 𝑤(𝑓, 𝑝
−

𝑗

𝑑 ) ≤ 𝐵(𝐹′
𝑗
+ 𝐹𝑗) (42)

with sequences 𝐹′ ∶= (𝐹′
𝑗
) and 𝐹 ∶= (𝐹𝑗) given by

𝐹′
𝑗
∶= 𝑝

𝑠𝑗

𝑑
−

𝑗

2𝑑 ‖𝑃0𝑓‖𝐿2(Ω) ≡ 𝑝
(𝑠−

1

2
)
𝑗

𝑑 ‖𝑃0𝑓‖𝐿2(Ω), 𝐹𝑗 ∶= 𝑝
𝑠𝑗

𝑑

𝑗∑
𝑘=0

𝑝
𝑘

2𝑑
−

𝑗

2𝑑 ‖𝑓 − 𝑃𝑘𝑓‖𝐿2(Ω).

Due to 𝑠 < 1

2
, we have

‖𝐹′‖2
𝓁2

=

∞∑
𝑗=0

|𝐹′
𝑗
|2 = 𝑎‖𝑃0𝑓‖2𝐿2(Ω)

with 𝑎 ∶=

∞∑
𝑗=0

𝑝
2(𝑠−

1

2
)
𝑗

𝑑 < ∞.
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FRANCESCHI et al. 35

In order to control 𝐹𝑗 , we represent it as

𝐹𝑗 =

𝑗∑
𝑘=0

𝑝
𝑠𝑗

𝑑
+

𝑘

2𝑑
−

𝑗

2𝑑
−

𝑟𝑘

𝑑 𝑝
𝑟𝑘

𝑑 ‖𝑓 − 𝑃𝑘𝑓‖𝐿2(Ω).

We estimate the exponents using 𝑠 ≤ 𝑟:

𝑠𝑗

𝑑
+

𝑘

2𝑑
−

𝑗

2𝑑
−

𝑟𝑘

𝑑
=

(
𝑠 −

1

2

)
𝑗

𝑑
+

(
1

2
− 𝑟

)
𝑘

𝑑
≤

(
𝑠 −

1

2

)
𝑗

𝑑
+

(
1

2
− 𝑠

)
𝑘

𝑑
≡

(
𝑠 −

1

2

)
𝑗 − 𝑘

𝑑
,

and arrive at

𝐹𝑗 ≤
𝑗∑

𝑘=0

𝑝
(𝑠−

1

2
)
𝑗−𝑘

𝑑 𝑝
𝑟𝑘

𝑑 ‖𝑓 − 𝑃𝑘𝑓‖𝐿2(Ω). (43)

Define 𝛼 ∶= (𝛼𝑗)𝑗∈ℤ and 𝛽 ∶= (𝛽𝑗)𝑗∈ℤ by

𝛼𝑗 ∶=

⎧⎪⎨⎪⎩
0, 𝑗 < 0,

𝑝
(𝑠−

1

2
)
𝑗

𝑑 , 𝑗 ≥ 0,
𝛽𝑗 ∶=

⎧⎪⎨⎪⎩
0, 𝑗 < 0,

𝑝
𝑟𝑗

𝑑 ‖𝑓 − 𝑃𝑗𝑓‖𝐿2(Ω), 𝑗 ≥ 0,

then (43) takes the form 𝐹𝑗 ≤ (𝛼 ∗ 𝛽)𝑗 for any 𝑗 ∈ ℕ0, with ∗ being the convolution product. Using Young’s convolution
inequality, we obtain ‖𝐹‖𝓁2 ≤ ‖𝛼 ∗ 𝛽‖𝓁2(ℤ) ≤ ‖𝛼‖𝓁1(ℤ)‖𝛽‖𝓁2(ℤ). Then it follows by (42) that

‖𝑓‖2𝐵𝑠 = ‖‖𝑝 𝑠𝑗

𝑑 𝑤(𝑓, 𝑝
−

𝑗

𝑑 )‖‖2𝓁2 ≤ 2𝐵‖𝐹′‖𝓁2 + 2𝐵‖𝐹‖2
𝓁2

≤ 2𝐵𝑎‖𝑃0𝑓‖2𝐿2(Ω)
+ 2𝐵‖𝛼‖2

𝓁1(ℤ)
‖𝛽‖2

𝓁2(ℤ)
.

Recall that ‖𝑃0𝑓‖2𝐿2(Ω)
+ ‖𝛽‖2

𝓁2(ℤ)
= ‖𝑓‖2

𝐴𝑟(Ω)
, therefore, ‖𝑓‖2𝐵𝑠 ≤ 2𝐵max(𝑎, ‖𝛼‖2

𝓁1(ℤ)
)‖𝑓‖𝐴𝑟(Ω) for all 𝑓 ∈ 𝐴𝑟(Ω). □

By combining Theorems 3.7 and 3.9, we obtain the following result.

Corollary 3.10. Under the assumption (32), there holds 𝐴𝑟(Ω) = 𝐻𝑟(Ω) for 0 ≤ 𝑟 <
1

2
.

3.4 Extension to open sets in manifolds

Let (𝑆, 𝑔) be an 𝑑-dimensional Riemannian manifold of bounded geometry. For the construction of Sobolev spaces𝐻𝑠(𝑆)

with 𝑠 ≥ 0, we refer to [22]. Let Ω ⊂ 𝑆 be a nonempty open set such that Ω ⊂ 𝑆 is compact (the case Ω = 𝑆 is possible, if
𝑆 itself is compact). The Sobolev space 𝐻𝑠(Ω) on Ω is then defined as the space of the restrictions on Ω of the functions
from𝐻𝑠(𝑆) with the quotient norm

‖𝑓‖𝐻𝑠(Ω),∗ = inf
𝐹∈𝐻𝑠(𝑆), 𝐹|Ω=𝑓 ‖𝐹‖𝐻𝑠(𝑆).

It follows from the general construction of Sobolev spaces that:

(1) for any open Ω0 ⊂ Ω, the linear map𝐻𝑠(Ω) ∋ 𝑓 ↦ 𝑓|Ω0
∈ 𝐻𝑠(Ω0) is bounded;

(2) if for some local chartΦ ∶ ℝ𝑑 ⊃ �̃� ↦ 𝑂 ⊂ 𝑆 one hasΩ ⊂ 𝑂, then themap𝑓 ↦ 𝑓◦Φ is an isomorphism between𝐻𝑠(Ω)

and𝐻𝑠(Ω̃), with Ω̃ ∶= Φ−1(Ω) ⊂ ℝ𝑑.

We say that nonempty subsets (Ω𝑛,𝑘)𝑛∈ℕ0,𝑘=0,…,𝑝𝑛−1 ⊂ Ω form a 𝑝-multiscale decomposition of Ω, if the following
conditions hold:
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36 FRANCESCHI et al.

(B1) Ω0,0 = Ω;
(B2) for any 𝑛 ∈ ℕ0, the sets Ω𝑛,0, … ,Ω𝑛,𝑝𝑛−1 are mutually disjoint;
(B3) for any 𝑛 ∈ ℕ0 and 𝑘 = 0,… , 𝑝𝑛 − 1, one has

Ω𝑛+1,𝑝𝑘+𝑗 ⊂ Ω𝑛,𝑘 for any 𝑗 ∈ {0, … , 𝑝 − 1},
||||||Ω𝑛,𝑘 ⧵

𝑝−1⋃
𝑗=0

Ω𝑛+1,𝑝𝑘+𝑗

|||||| = 0.

This decomposition is called regular and weakly balanced if it satisfies additionally the following:

(B4) For some 𝑁 ∈ ℕ0, each Ω𝑁,𝐾 with 𝐾 ∈ {0, … , 𝑝𝑁 − 1} is covered by a local chart Φ𝑁,𝐾 on 𝑆 such that the sets

Ω̃𝑁,𝐾 ∶= Φ−1
𝑁,𝐾(Ω𝑁,𝐾)

are bounded open sets with Lipschitz boundaries in ℝ𝑑.
(B5) For each 𝐾 ∈ {0, … , 𝑝𝑁 − 1}, the sets

Ω̃𝑁,𝐾
𝑛,𝑘

∶= Ω̃𝑁+𝑛,𝑝𝑛𝐾+𝑘, 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1},

form a regular weakly balanced 𝑝-multiscale decomposition of Ω̃𝑁,𝐾 ,

and it is called regular and strongly balanced if one has in addition, for 𝑁 from (B4),

(B6) |Ω𝑁,𝐾| = 𝑝−𝑁|Ω| for all 𝐾 ∈ {0, … , 𝑝𝑁 − 1},
(B7) for each 𝐾 ∈ {0, … , 𝑝𝑁 − 1} the sets

Ω̃𝑁,𝐾
𝑛,𝑘

∶= Ω̃𝑁+𝑛,𝑝𝑛𝐾+𝑘, 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1},

form a regular strongly balanced 𝑝-multiscale decomposition of Ω̃𝑁,𝐾 .

For the rest of the subsection, we assume that:

Ω ⊂ 𝑆 is an open set with compact closure which admits a regular
weakly balanced 𝑝-multiscale decomposition (Ω𝑛,𝑘)

(44)

and let 𝑁 and Ω̃𝑛,𝑘 be as in (B4)–(B5). Then the sets

Ω𝑁,𝐾
𝑛,𝑘

∶= Ω𝑁+𝑛,𝑝𝑛𝐾+𝑘, 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}, (45)

form a regular balanced multiscale decomposition of Ω𝑁,𝐾 for 𝐾 ∈ {0, … , 𝑝𝑁 − 1}. In addition, the decomposition (Ω𝑛,𝑘)

gives rise to the projectors 𝑃𝑛 and the spaces 𝑉𝑛 and 𝐴𝑟(Ω) defined in the same way as in the Euclidean case: For 𝑛 ∈ ℕ0,
define

𝑉𝑛 ∶= span
{
𝟙Ω𝑛,𝑘

∶ 𝑘 = 0,… , 𝑝𝑛 − 1
}
⊂ 𝐿2(Ω),

𝑈𝑛 ∶=

{
𝑉0, 𝑛 = 0,

𝑉𝑛 ∩ 𝑉⟂
𝑛−1, 𝑛 ≥ 1,

𝑃𝑛 ∶= the orthogonal projector on 𝑉𝑛 in 𝐿2(Ω),

𝑄𝑛 ∶= the orthogonal projector on 𝑈𝑛 in 𝐿2(Ω).

(46)
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FRANCESCHI et al. 37

Remark that Lemmas 3.3 and 3.5 are transferred directly to this new setting. We establish several additional properties of
the spaces 𝐴𝑟(Ω).

Lemma 3.11. Let 𝐴𝑟(Ω𝑁,𝐾) be the approximation spaces associated with the decompositions (Ω
𝑁,𝐾
𝑛,𝑘

) from 45, then for any
𝑟 > 0 and𝑁 ∈ ℕ, the map

𝐽 ∶ 𝐴𝑟(Ω) ∋ 𝑓 ↦ (𝑓𝑁,𝐾)𝐾∈{0,…,𝑝𝑛−1} ∈

𝑝𝑛−1⨁
𝐾=0

𝐴𝑟(Ω𝑁,𝐾), 𝑓𝑁,𝐾 ∶= 𝑓|Ω𝑁,𝐾
,

is an isomorphism.

Proof. For 𝑓 ∈ 𝐿2(Ω), we have

1|Ω𝑁,𝐾
𝑛,𝑘

| ∫Ω𝑁,𝐾
𝑛,𝑘

𝑓 dvol𝑔 = 𝛼𝑁+𝑛,𝑝𝑛𝐾+𝑘 for 𝛼𝑛,𝑘 ∶=
1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

𝑓 dvol𝑔.

For 𝑛 ∈ ℕ0 let 𝑃
𝑁,𝐾
𝑛 be the orthogonal projector on

𝑉𝑁,𝐾
𝑛 ∶= span

{
𝟙
Ω
𝑁,𝐾
𝑛,𝑘

∶ 𝑘 ∈ {0, … , 𝑝𝑛 − 1}
}
⊂ 𝐿2(Ω𝑁,𝐾)

in 𝐿2(Ω𝑁,𝐾), then

𝑃𝑁,𝐾
𝑛 𝑓𝑁,𝐾 =

𝑝𝑛−1∑
𝑘=0

1|Ω𝑁,𝐾
𝑛,𝑘

| ∫Ω𝑁,𝐾
𝑛,𝑘

𝑓 dvol𝑔 𝟙Ω𝑁,𝐾
𝑛,𝑘

≡
𝑝𝑛−1∑
𝑘=0

𝛼𝑁+𝑛,𝑝𝑛𝐾+𝑘𝟙Ω𝑁+𝑛,𝑝𝑛𝐾+𝑘
.

At the same time,

𝑃𝑁+𝑛𝑓 =

𝑝𝑁+𝑛−1∑
𝑗=0

𝛼𝑛,𝑗𝟙Ω𝑛,𝑗
=

𝑝𝑁−1∑
𝐾=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑁+𝑛,𝑝𝑛𝐾+𝑘 𝟙Ω𝑁+𝑛,𝑝𝑛𝐾+𝑘
=

𝑝𝑁−1∑
𝐾=0

(𝑃𝑁,𝐾
𝑛 𝑓𝑁,𝐾)𝟙Ω𝑁,𝐾

,

𝑓 =

𝑝𝑁−1∑
𝐾=0

𝑓𝑁,𝐾 𝟙Ω𝑁,𝐾
, 𝑓 − 𝑃𝑁+𝑛𝑓 =

𝑝𝑁−1∑
𝐾=0

(𝑓𝑁,𝐾 − 𝑃𝑁,𝐾
𝑛 𝑓𝑁,𝐾) 𝟙Ω𝑁,𝐾

.

As the summands in the last sum have disjoint supports, they are orthogonal in 𝐿2(Ω), and

‖𝑓 − 𝑃𝑁+𝑛𝑓‖2𝐿2(Ω)
=

𝑝𝑁−1∑
𝐾=0

‖𝑓𝑁,𝐾 − 𝑃𝑁,𝐾
𝑛 𝑓𝑁,𝐾‖2. (47)

For any 𝑟 ≥ 0, we have

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑁+𝑛𝑓‖2𝐿2(Ω)

(47)
=

𝑝𝑁−1∑
𝐾=0

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓𝑁,𝐾 − 𝑃𝑁,𝐾
𝑛 𝑓𝑁,𝐾‖2 ≡ 𝑝𝑁−1∑

𝐾=0

‖𝑓𝑁,𝐾‖2𝐴𝑟(Ω𝑁,𝐾)
. (48)

Therefore, if 𝑓 ∈ 𝐴𝑟(Ω), then

‖𝐽𝑓‖2 = 𝑝𝑁−1∑
𝐾=0

‖𝑓𝑁,𝐾‖2𝐴𝑟(Ω𝑁,𝐾)

(48)
=

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑁+𝑛𝑓‖2𝐿2(Ω)

= 𝑝
−2

𝑁𝑟

𝑑

∞∑
𝑛=𝑁

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
≤ 𝑝

−2
𝑁𝑟

𝑑

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)
= 𝑝

−2
𝑁𝑟

𝑑 ‖𝑓‖2
𝐴𝑟(Ω)

,
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38 FRANCESCHI et al.

which shows that 𝐽 is bounded, and it is clearly injective. For any 𝑓𝑁,𝐾 ∈ 𝐴𝑟(Ω𝑁,𝐾), the function

𝑓 ∶=

𝑝𝑁−1∑
𝐾=0

𝑓𝑁,𝐾 𝟙Ω𝑁,𝐾

belongs to 𝐿2(Ω), and

‖𝑓‖2
𝐴𝑟(Ω)

=

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛‖2𝐿2(Ω)
=

𝑁−1∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛‖2𝐿2(Ω)
+ 𝑝

2
𝑁𝑟

𝑑

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑁+𝑛‖2𝐿2(Ω)
,

use (48): =

𝑁−1∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛‖2𝐿2(Ω)
+ 𝑝

2
𝑁𝑟

𝑑

𝑝𝑁−1∑
𝐾=0

‖𝑓𝑁,𝐾‖2𝐴𝑟(Ω𝑁,𝐾)
< ∞,

which shows that 𝑓 ∈ 𝐴𝑟(Ω). Therefore, 𝐽 is surjective as well, and it follows by the closed graph theorem that 𝐽 is an
isomorphism. □

Lemma 3.12. Assume that (B4) holds with 𝑁 = 0, that is, there exists a local chart Φ ∶ ℝ𝑑 ⊃ �̃� ↦ 𝑂 ⊂ 𝑆 such that Ω ⊂ 𝑂

and the sets Ω̃𝑛,𝑘 ∶= Φ−1(Ω𝑛,𝑘) form a regular weakly balanced 𝑝-multiscale decomposition of Ω̃ ∶= Φ−1(Ω). Consider the
associated spaces 𝐴𝑟(Ω̃), then for any 0 ≤ 𝑟 < 1, the map 𝐴𝑟(Ω) ∋ 𝑓 ↦ 𝑓 ∶= 𝑓◦Φ ∈ 𝐴𝑟(Ω̃) is an isomorphism.

Proof. Recall that there exists 𝑐1 > 0 such that

diam Ω̃𝑛,𝑘 ≤ 𝑐1𝑝
−

𝑛

𝑑 for all 𝑛 ∈ ℕ0 and 𝑘 ∈ {0, … , 𝑝𝑛 − 1}. (49)

For a function 𝑓 defined on Ω and the function 𝑓 ∶= 𝑓◦Φ defined on Ω̃, one has

∫
Ω

𝑓(𝑦) dvol𝑔(𝑦) = ∫
Ω̃

𝑓(𝑢)𝐽Φ(𝑢) d𝑢, 𝐽Φ(𝑢) ∶=
√

det
(
𝑔Φ

(
𝜕𝑗Φ(𝑢), 𝜕𝑘Φ(𝑢)

))
𝑗,𝑘∈{1,…,𝑑}

, (50)

and there exist 𝑏1, 𝑏2 > 0 such that 𝑏1 ≤ 𝐽Φ(𝑢) ≤ 𝑏2 for all 𝑢 ∈ Ω̃. It follows that the map Θ ∶ 𝑓 ↦ 𝑓 defines an
isomorphism between 𝐿2(Ω) and 𝐿2(Ω̃),

𝑏1‖Θ𝑓‖2𝐿2(Ω̃)
≤ ‖Θ𝑓‖2

𝐿2(Ω)
≤ 𝑏2‖Θ𝑓‖2𝐿2(Ω̃)

for all 𝑓 ∈ 𝐿2(Ω),

in particular,

𝑏1|Ω̃𝑛,𝑘| ≤ |Ω𝑛,𝑘| ≤ 𝑏2|Ω̃𝑛,𝑘| for all (𝑛, 𝑘). (51)

For 𝑛 ∈ ℕ0, let �̃�𝑛 denote the orthogonal projector in 𝐿2(Ω̃) on the subspace

�̃�𝑛 ∶= span
{
𝟙Ω̃𝑛,𝑘

∶ 𝑘 ∈ {0, … , 𝑝𝑛 − 1}
}
,

then

𝑃𝑛𝑓 =

𝑝𝑛−1∑
𝑘=0

1|Ω𝑛,𝑘| ∫Ω𝑛,𝑘

𝑓(𝑦) dvol𝑔(𝑦),

use (50): Θ𝑃𝑛𝑓(𝑦) ≡ (𝑃𝑛𝑓)(Φ(𝑦)) =

𝑝𝑛−1∑
𝑘=0

1|Ω𝑛,𝑘| ∫Ω̃𝑛,𝑘

𝑓(𝑢)𝐽Φ(𝑢) d𝑢 𝟙Ω̃𝑛,𝑘
(𝑦),

�̃�𝑛Θ𝑓(𝑦) ≡ �̃�𝑛𝑓(𝑦) =

𝑝𝑛−1∑
𝑘=0

1|Ω̃𝑛,𝑘| ∫Ω̃𝑛,𝑘

𝑓(𝑢) d𝑢 𝟙Ω̃𝑛,𝑘
(𝑦).
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FRANCESCHI et al. 39

Therefore,

(Θ𝑃𝑛𝑓 − �̃�𝑛Θ𝑓)(𝑦) =

𝑝𝑛−1∑
𝑘=0

∫
Ω̃𝑛,𝑘

𝑓(𝑢)

(
𝐽Φ(𝑢)|Ω𝑛,𝑘| − 1|Ω̃𝑛,𝑘|

)
d𝑢 𝟙Ω̃𝑛,𝑘

(𝑦). (52)

As 𝐽Φ is a smooth function on a neighborhood of the closure of Ω̃, it is a Lipschitz function, and one finds some 𝑎 > 0

with

|𝐽Φ(𝑢) − 𝐽Φ(𝑢
′)| ≤ 𝑎|𝑢 − 𝑢′| for all 𝑢, 𝑢′ ∈ Ω̃.

Pick any 𝑢𝑛,𝑘 ∈ Ω̃𝑛,𝑘 and denote 𝐽𝑛,𝑘 ∶= 𝐽Φ(𝑢𝑛,𝑘), then for any 𝑢 ∈ Ω̃𝑛,𝑘 there holds

|𝐽Φ(𝑢) − 𝐽𝑛,𝑘| ≡ |𝐽Φ(𝑢) − 𝐽Φ(𝑢𝑛,𝑘)| ≤ 𝑎|𝑢 − 𝑢𝑛,𝑘| ≤ 𝑎 diam Ω̃𝑛,𝑘

(49)≤ �̃�𝑝
−

𝑛

𝑑 , �̃� ∶= 𝑎𝑐1.

We have

|||Ω𝑛,𝑘| − 𝐽𝑛,𝑘|Ω̃𝑛,𝑘||| = |||∫
Ω̃𝑛,𝑘

(
𝐽Φ(𝑦) − 𝐽𝑛,𝑘

)
d𝑦

||| ≤ ∫
Ω̃𝑛,𝑘

||𝐽Φ(𝑦) − 𝐽𝑛,𝑘|| d𝑦 ≤ �̃�𝑝
−

𝑛

𝑑 |Ω̃𝑛,𝑘|,
and we can find 𝑎𝑛,𝑘 ∈ [−�̃�, �̃�] such that |Ω𝑛,𝑘| = (

𝐽𝑛,𝑘 + 𝑎𝑛,𝑘𝑝
−

𝑛

𝑑

) |Ω̃𝑛,𝑘|. Then for any 𝑢 ∈ Ω̃𝑛,𝑘, we have

||| 𝐽Φ(𝑢)|Ω𝑛,𝑘| − 1|Ω̃𝑛,𝑘| ||| = |||𝐽Φ(𝑢)|Ω̃𝑛,𝑘| − |Ω𝑛,𝑘||Ω𝑛,𝑘||Ω̃𝑛,𝑘| |||
≡

||(𝐽Φ(𝑢) − 𝐽𝑛,𝑘 − 𝑎𝑛,𝑘𝑝
−

𝑛

𝑑

)|| |Ω̃𝑛,𝑘|
|Ω𝑛,𝑘||Ω̃𝑛,𝑘| ≤ (�̃� + |𝑎𝑛,𝑘|)𝑝−

𝑛

𝑑|Ω𝑛,𝑘| (51)≤ 𝑏𝑝
−

𝑛

𝑑|Ω̃𝑛,𝑘| with 𝑏 ∶=
2�̃�

𝑏1
.

It follows from (52) that

|||(Θ𝑃𝑛𝑓 − �̃�𝑛Θ𝑓)(𝑦)
||| ≤ 𝑝𝑛−1∑

𝑘=0

𝑏𝑝
−

𝑛

𝑑|Ω̃𝑛,𝑘| ∫Ω̃𝑛,𝑘

||𝑓(𝑢)|| d𝑢 𝟙Ω̃𝑛,𝑘
(𝑦) ≡ 𝑏𝑝

−
𝑛

𝑑 (�̃�𝑛Θ|𝑓|)(𝑦).
It follows that

‖Θ𝑃𝑛𝑓 − �̃�𝑛Θ𝑓‖2𝐿2(Ω̃)
≤ 𝑏2𝑝

−
2𝑛

𝑑 ‖‖�̃�𝑛Θ|𝑓|‖‖2𝐿2(Ω̃)
≤ 𝑏2𝑝

−
2𝑛

𝑑 ‖‖Θ|𝑓|‖‖2𝐿2(Ω̃)

(51)≤ 𝑏2𝑏−11 𝑝
−

2𝑛

𝑑 ‖𝑓‖2
𝐿2(Ω)

. (53)

Now let 𝑓 ∈ 𝐴𝑟(Ω), then

‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω̃)
≡ ‖Θ𝑓 − �̃�𝑛Θ𝑓‖2𝐿2(Ω̃)

= ‖‖(Θ𝑓 − Θ𝑃𝑛𝑓) + (Θ𝑃𝑛𝑓 − �̃�𝑛Θ𝑓)‖‖2𝐿2(Ω̃)

≤ 2‖Θ(𝑓 − 𝑃𝑛𝑓)‖2𝐿2(Ω̃)
+ 2‖Θ𝑃𝑛𝑓 − �̃�𝑛Θ𝑓‖2𝐿2(Ω̃)

use (51) and (53): ≤ 2𝑏−11 ‖𝑓 − 𝑃𝑛𝑓‖𝐿2(Ω) + 2𝑏2𝑏−11 𝑝
−

2𝑛

𝑑 ‖𝑓‖𝐿2(Ω),‖�̃�0𝑓‖2𝐿2(Ω̃)
≡ ‖�̃�0Θ𝑓‖2𝐿2(Ω̃)

= ‖Θ𝑃0𝑓 − (Θ𝑃0𝑓 − �̃�0Θ𝑓)‖2𝐿2(Ω̃)
≤ 2‖Θ𝑃0𝑓‖2𝐿2(Ω̃)

+ 2‖Θ𝑃0𝑓 − �̃�0Θ𝑓‖2𝐿2(Ω̃)
;

use (51) and (53): ≤ 2𝑏−11 ‖𝑃0𝑓‖𝐿2(Ω) + 2𝑏2𝑏−11 ‖𝑓‖𝐿2(Ω).
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40 FRANCESCHI et al.

Therefore,

‖𝑓‖2
𝐴𝑟(Ω̃)

= ‖�̃�0𝑓‖2𝐿2(Ω̃)
+

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω̃)

≤ 2𝑏−11

⎛⎜⎜⎜⎜⎜⎜⎝
‖𝑃0𝑓‖2𝐿2(Ω)

+

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
≡‖𝑓‖2

𝐴𝑟(Ω)

⎞⎟⎟⎟⎟⎟⎟⎠
+ 2𝑏2𝑏−11

⎛⎜⎜⎜⎜⎜⎝
1 +

∞∑
𝑛=0

𝑝
2𝑛

𝑑
(𝑟−1)

⏟⎴⎴⏟⎴⎴⏟
=∶𝑆 <∞

⎞⎟⎟⎟⎟⎟⎠
‖𝑓‖2

𝐿2(Ω)
⏟⎴⏟⎴⏟
≤‖𝑓‖2

𝐴𝑟(Ω)

≤ (
2𝑏−11 + 2𝑏2𝑏−11 (1 + 𝑆)

)‖𝑓‖2
𝐴𝑟(Ω)

,

which shows that 𝑓 ∈ 𝐴𝑟(Ω̃) and that Θ defines a bounded operator 𝐴𝑟(Ω) → 𝐴𝑟(Ω̃), and remark that it is injective
by construction.
On the other hand, let 𝑓 ∈ 𝐴𝑟(Ω̃) and 𝑓 ∈ 𝐿2(Ω) with 𝑓 = Θ𝑓. Then

‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω)

(51)≤ 𝑏2‖Θ𝑓 − Θ𝑃𝑛𝑓‖2𝐿2(Ω̃)
= 𝑏2‖‖(Θ𝑓 − �̃�𝑛Θ𝑓) + (�̃�𝑛Θ𝑓 − Θ𝑃𝑛𝑓)‖‖2𝐿2(Ω̃)

use Θ𝑓 = 𝑓: ≤ 2𝑏2‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω̃)
+ 2𝑏2‖�̃�𝑛Θ𝑓 − Θ𝑃𝑛𝑓‖2𝐿2(Ω̃)

use (53): ≤ 2𝑏2‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω̃)
+ 2𝑏2𝑏

2𝑏−11 𝑝
−

2𝑛

𝑑 ‖𝑓‖2
𝐿2(Ω)

use (51): ≤ 2𝑏2‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω̃)
+ 2𝑏22𝑏

2𝑏−11 𝑝
−

2𝑛

𝑑 ‖𝑓‖2
𝐿2(Ω̃)

,

‖𝑃0𝑓‖2𝐿2(Ω)

(51)≤ 𝑏2‖Θ𝑃0𝑓‖2𝐿2(Ω̃)
= 𝑏2‖‖�̃�0Θ𝑓 − (�̃�𝑛Θ𝑓 − Θ𝑃0𝑓)‖‖2𝐿2(Ω̃)

use Θ𝑓 = 𝑓: ≤ 2𝑏2‖�̃�0𝑓‖2𝐿2(Ω̃)
+ 2𝑏2‖�̃�𝑛Θ𝑓 − Θ𝑃𝑛𝑓‖2𝐿2(Ω̃)

use (53): ≤ 2𝑏2‖�̃�0𝑓‖2𝐿2(Ω̃)
+ 2𝑏2𝑏

2𝑏−11 ‖𝑓‖2
𝐿2(Ω)

use (51): ≤ 2𝑏2‖�̃�0𝑓‖2𝐿2(Ω̃)
+ 2𝑏22𝑏

2𝑏−11 ‖𝑓‖2
𝐿2(Ω)

.

Therefore,

‖𝑓‖2
𝐴𝑟(Ω)

= ‖𝑃0𝑓‖2𝐿2(Ω̃)
+

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − 𝑃𝑛𝑓‖2𝐿2(Ω̃)

≤ 2𝑏2

⎛⎜⎜⎜⎜⎜⎜⎝
‖𝑃0𝑓‖2𝐿2(Ω)

+

∞∑
𝑛=0

𝑝
2
𝑛𝑟

𝑑 ‖𝑓 − �̃�𝑛𝑓‖2𝐿2(Ω)

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
≡‖𝑓‖2

𝐴𝑟(Ω̃)

⎞⎟⎟⎟⎟⎟⎟⎠
+ 2𝑏22𝑏

2𝑏−11

⎛⎜⎜⎜⎜⎜⎝
1 +

∞∑
𝑛=0

𝑝
2𝑛

𝑑
(𝑟−1)

⏟⎴⎴⏟⎴⎴⏟
=∶𝑆 <∞

⎞⎟⎟⎟⎟⎟⎠
‖𝑓‖2

𝐿2(Ω̃)
⏟⎴⏟⎴⏟
≤‖𝑓‖2

𝐴𝑟(Ω̃)

≤ (
2𝑏2 + 𝑏22𝑏

2𝑏−11 (1 + 𝑆)
)‖𝑓‖2

𝐴𝑟(Ω̃)
,

which shows that 𝑓 ∈ 𝐴𝑟(Ω), and, consequently, that Θ−1 ∶ 𝐴𝑟(Ω̃) → 𝐴𝑟(Ω) is everywhere defined and bounded. □

Now we can transfer the relations between 𝐴𝑟 and𝐻𝑠 known for the Euclidian case to the case of manifolds.
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FRANCESCHI et al. 41

Theorem 3.13. Assume (44). Then for all 𝑟 ≥ 0 and 0 < 𝑠 < 1, there holds

𝐴𝑟(Ω) ↪ 𝐻𝑠(Ω) if 𝑠 < 1

2
and 𝑠 ≤ 𝑟, (54)

𝐻𝑠(Ω) ↪ 𝐴𝑟(Ω) if 0 ≤ 𝑟 ≤ 𝑠 < 1. (55)

In particular,

𝐴𝑟(Ω) = 𝐻𝑟(Ω) for 0 ≤ 𝑟 <
1

2
.

Proof. As 𝐴𝑟(Ω) ↪ 𝐴𝑟′(Ω) for 𝑟 ≥ 𝑟′, it is sufficient to prove (54) under the additional assumption 𝑟 < 1. We first use the
map

𝐴𝑟(Ω) ∋ 𝑓 ↦ (𝑓𝑁,𝐾)𝐾∈{0,…,𝑝𝑁−1} ∈

𝑝𝑁−1⨁
𝐾=0

𝐴𝑟(Ω𝑁,𝐾), 𝑓𝑁,𝐾 ∶= 𝑓|Ω𝑁,𝐾
,

which is an isomorphism by Lemma 3.11. For each 𝐾, the map

𝐴𝑟(Ω𝑁,𝐾) ∋ 𝑓𝑁,𝐾 ↦ 𝑓𝑁,𝐾 ∶= 𝑓𝑁,𝐾◦Φ𝑁,𝐾 ∈ 𝐴𝑟(Ω̃𝑁,𝐾)

is also an isomorphism by Lemma 3.12, and 𝐴𝑟(Ω̃𝑁,𝐾) ∋ 𝑓𝑁,𝐾 → 𝑓𝑁,𝐾 ∈ 𝐻𝑠(Ω̃𝑁,𝐾) is an embedding by Theorem 3.9. In
addition,

𝐻𝑠(Ω̃𝑁,𝐾) ∋ 𝑓𝑁,𝐾 ↦ 𝑓𝑁,𝐾◦Φ
−1
𝑁,𝐾 ≡ 𝑓𝑁,𝐾 ∈ 𝐻𝑠(Ω𝑁,𝐾)

is an isomorphism due to the construction of Sobolev spaces. Therefore, we have shown that

𝐴𝑟(Ω) ∋ 𝑓 ↦ (𝑓𝑁,𝐾)𝐾∈{0,…,𝑝𝑁−1} ∈

𝑝𝑁−1⨁
𝐾=0

𝐻𝑠(Ω𝑁,𝐾)

is an embedding. We now recall that due to 𝑠 < 1

2
, the subspaces 𝐶∞

𝑐 (Ω̃𝑁,𝐾) are dense in 𝐻𝑠(Ω̃𝑁,𝐾), which in turn means
that 𝐶∞

𝑐 (Ω𝑁,𝐾) are dense in𝐻𝑠(Ω𝑁,𝐾), therefore, the operator 𝐽𝑁,𝐾 of extension by zero fromΩ𝑁,𝐾 toΩ extends by density
from 𝐶∞

𝑐 (Ω𝑁,𝐾) to an embedding 𝐽𝑁,𝐾 ∶ 𝐻𝑠(Ω𝑁,𝐾) → 𝐻𝑠(Ω). Then

𝐽 ∶

𝑝𝑁−1⨁
𝐾=0

𝐻𝑠(Ω𝑁,𝐾) ∋ (𝜑𝑁,𝐾)𝐾∈{0,…,𝑝𝑁−1} ↦

𝑝𝑁−1∑
𝑘=0

𝐽𝑁,𝐾𝜑𝑁,𝐾 ∈ 𝐻𝑠(Ω)

is an embedding, which finishes the proof of (54).
For (55), we consider the following maps:

𝐻𝑠(Ω) ∋ 𝑓 ↦ (𝑓𝑁,𝐾)𝐾∈{0,…,𝑝𝑁−1} ∈

𝑝𝑁−1⨁
𝐾=0

𝐻𝑠(Ω𝑁,𝐾) with 𝑓𝑁,𝐾 ∶= 𝑓|Ω𝑁,𝐾
, (a)

𝐻𝑠(Ω𝑁,𝐾) ∋ 𝑓𝑁,𝐾 ↦ 𝑓𝑁,𝐾 ∶= 𝑓𝑁,𝐾◦Φ𝑁,𝐾 ∈ 𝐻𝑠(Ω̃𝑁,𝐾), (b)

𝐻𝑠(Ω̃𝑁,𝐾) ∋ 𝑓𝑁,𝐾 ↦ 𝑓𝑁,𝐾 ∈ 𝐴𝑟(Ω̃𝑁,𝐾), (c)

𝐴𝑟(Ω̃𝑁,𝐾) ∋ 𝑓𝑁,𝐾 ↦ 𝑓𝑁,𝐾◦Φ
−1
𝑁,𝐾 ≡ 𝑓𝑁,𝐾 ∈ 𝐴𝑟(Ω𝑁,𝐾), (d)

𝑝𝑁−1⨁
𝐾=0

𝐴𝑟(Ω𝑁,𝐾) ∋ (𝑓𝑁,𝐾)𝐾∈{0,…,𝑝𝑁−1} ↦ 𝑓 ∈ 𝐴𝑟(Ω). (e)
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42 FRANCESCHI et al.

The map (a) is an embedding due to the definition of Sobolev spaces (in fact, even as an isomorphism due to the first
half of the proof), (b) is an isomorphism due to the definition of Sobolev spaces, (c) is an embedding by Theorem 3.7, (d)
is an isomorphism by Lemma 3.12, and (e) is an ismorphism by Lemma 3.11. Taking the composition one arrives at the
conclusion. □

We discuss the existence of multiscale decompositions and the additional condition (B7) for some classesΩ in Section 5.

4 EMBEDDED TRACES

4.1 Abstract trace space as an approximation space

Let Ω be an open set in ℝ𝑑 (as in Subsection 3.2) or in a 𝑑-dimensional manifold (as in Subsection 3.4) admitting a 𝑝-
multiscale decomposition (Ω𝑛,𝑘). We introduce an operator of identification 𝐼Ω between the functions defined on  (see
Subsection 2.5) and the functions defined on Ω as follows. First, for each 𝑧 ∈ , consider the basis sequences

𝑒𝑧 ∶= (𝛿𝑧,𝜁)𝜁∈.

Then we consider the linear map

𝐼Ω ∶ span{𝑒𝑧 ∶ 𝑧 ∈ } → span{𝟙Ω𝑛,𝑘
∶ 𝑛 ∈ ℕ0, 𝑘 = 0,… , 𝑝𝑛 − 1},

𝐼Ω ∶ 𝑒𝑧 ↦

⎧⎪⎨⎪⎩
𝟙Ω, 𝑧 = rad,

𝑝
𝑛

2

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝟙Ω𝑛+1,𝑝𝑘+𝑗

, 𝑧 = (𝑛, 𝑘, 𝑠).
(56)

Proposition 4.1 (Euclidean case). LetΩ ⊂ ℝ𝑑 be a bounded open set with Lipschitz boundary and the decomposition (Ω𝑛,𝑘)

be regular and strongly balanced. Then for any 𝑟 ≥ 0, the map 𝐼Ω extends by continuity to an isomorphism between 𝓁2
𝑟 (Ω)

and 𝐴𝑟𝑑(Ω).

Proof.

(i) The linear span of 𝑒𝜁 is dense in 𝓁2
𝑟 (), and ⟨𝑒𝑧, 𝑒𝜁⟩𝓁2𝑟 ()

= 𝑝2𝑟𝜈(𝑧)𝛿𝑧,𝜁 for all 𝑧, 𝜁 ∈ .
(ii) Now remark that 𝐼Ω𝑒rad ∈ 𝑉0 and 𝐼Ω𝑒𝑛,𝑘,𝑠 ∈ 𝑉𝑛+1. At the same time (using the fact that the decomposition is strongly

balanced),

∫
Ω𝑛,𝑘

𝐼Ω𝑒𝑛,𝑘,𝑠(𝑥) d𝑥 = 𝑝
𝑛

2

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 |Ω𝑛+1,𝑝𝑘+𝑗| = 𝑝

𝑛

2
|Ω𝑛,𝑘|
𝑝

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 = 0,

and for any 𝑘0 ≠ 𝑘, one has

∫
Ω𝑛,𝑘0

𝐼Ω𝑒𝑛,𝑘,𝑠(𝑥) d𝑥 = 0

as 𝑒𝑛,𝑘,𝑠 vanishes identically in Ω𝑛,𝑘0 . This shows that 𝐼Ω𝑒𝑛,𝑘,𝑠 is orthogonal in 𝐿2(Ω) to all 𝟙Ω𝑛,𝑘0
, 𝑘0 ∈ {0, … , 𝑝 − 1},

in other words, 𝐼Ω𝑒𝑛,𝑘,𝑠 ⟂ 𝑉𝑛. Therefore, we have shown that 𝐼Ω𝑒rad ∈ 𝑈0 and 𝐼Ω𝑒𝑛,𝑘,𝑠 ∈ 𝑈𝑛+1 or, in other words,

𝐼Ω𝑒𝑧 ∈ 𝑈𝜈(𝑧)+1 for all 𝑧 ∈ . (57)

As the subspaces 𝑈𝑗 are mutually orthogonal in 𝐿2(Ω), one has ⟨𝐼Ω𝑒𝑧, 𝐼Ω𝑒𝜁⟩𝐿2(Ω)
= 0 for 𝜈(𝑧) ≠ 𝜈(𝜁). In addition, if

𝑧 = (𝑛, 𝑘1, 𝑠1) and 𝜁 = (𝑛, 𝑘2, 𝑠2) with 𝑘1 ≠ 𝑘2, then 𝐼Ω𝑒𝑧 and 𝐼Ω𝑒𝜁 have disjoint supports (contained in the disjoint
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FRANCESCHI et al. 43

sets Ω𝑛,𝑘1 and Ω𝑛,𝑘2), so one has again ⟨𝐼Ω𝑒𝑧, 𝐼Ω𝑒𝜁⟩𝐿2(Ω)
= 0. Finally,

⟨𝐼Ω𝑒𝑛,𝑘,𝑠, 𝐼Ω𝑒𝑛,𝑘,𝑠′⟩𝐿2(Ω)
= 𝑝𝑛

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝜃

𝑗

𝑠′
|Ω𝑛+1,𝑝𝑘+𝑗| = 𝑝𝑛

|Ω𝑛,𝑘|
𝑝

𝑝−1∑
𝑗=0

(
𝜃𝑠
𝜃𝑠′

)𝑗

= 𝑝𝑛|Ω𝑛,𝑘|𝛿𝑠,𝑠′ .
Altogether we obtain

⟨𝐼Ω𝑒𝑧, 𝐼Ω𝑒𝜁⟩𝐿2(Ω)
= |Ω| 𝛿𝑧,𝜁, 𝑧, 𝜁 ∈ . (58)

(iii) We will equip 𝐴𝑟𝑑(Ω) with the norm

‖𝑓‖2
𝐴,𝑟𝑑

∶=

∞∑
𝑛=0

𝑝2𝑟𝑛‖𝑄𝑛𝑓‖2𝐿2(Ω)
,

see Lemma 3.5. For 𝑁 ∈ ℕ, we denote𝑊𝑁 ∶= span{𝑒𝑧 ∶ 𝜈(𝑧) ≤ 𝑁 − 1} ⊂ 𝓁2
𝑟 (). Let 𝑓 ∈ 𝑊𝑁 , then

𝑓 =
∑

𝜈(𝑧)≤𝑁−1

𝑓𝑧𝑒𝑧, 𝑓𝑧 ∈ ℂ, 𝐼Ω𝑓 =

𝑁∑
𝑛=0

𝐹𝑛, 𝐹𝑛 ∶=
∑

𝜈(𝑧)=𝑛−1

𝑓𝑧𝐼Ω𝑒𝑧.

Due to (57) one has 𝑄𝑛𝐼Ω𝑓 = 𝐹𝑛 for all 𝑛 ≤ 𝑁 and 𝑄𝑛𝐼Ω𝑓 = 0 for 𝑛 ≥ 𝑁 + 1, therefore,

‖𝑓‖2
𝐴,𝑟𝑑

=

𝑁∑
𝑛=0

𝑝2𝑟𝑛‖𝐹𝑛‖2𝐿2(Ω)

(58)
=

𝑁∑
𝑛=0

𝑝2𝑟𝑛|Ω| ∑
𝜈(𝑧)=𝑛−1

|𝑓𝑧|2 = 𝑝2𝑟|Ω| ∑
𝑧∈

𝑝2𝑟𝜈(𝑧)|𝑓𝑧|2 ≡ 𝑝2𝑟|Ω|‖‖(𝑓𝑧)‖‖2𝓁2𝑟 ()
,

which shows that 𝐼Ω is an isometry (up to a constant factor), in particular, it is bounded and extends an isometry
between of 𝓁2

𝑟() and some closed subspace ran 𝐼Ω ⊂ 𝐴𝑟𝑑(Ω).
(iv) It remains to show that ran 𝐼Ω = 𝐴𝑟𝑑(Ω). Remark that by construction, we have dim𝑊𝑁 = 𝑝𝑛. At the same

time, 𝐼Ω𝑊𝑁 ⊂ 𝑉𝑁 , so we obtain 𝑝𝑁 = dim𝑊𝑁 = dim 𝐼Ω(𝑊𝑁) ≤ dim𝑉𝑁 = 𝑝𝑁 , which shows that 𝐼Ω(𝑊𝑁) = 𝑉𝑁

for any 𝑁. As 𝑁 can be arbitrarily large, ran 𝐼Ω contains any finite linear combination of 𝟙Ω𝑛,𝑘
. As these linear

combinations span a dense subset of 𝐴𝑟𝑑(Ω) and ran 𝐼Ω is closed, we have ran 𝐼Ω = 𝐴𝑟𝑑(Ω). □

Proposition 4.2 (Manifold case). Let Ω be an open set with compact closure in a manifold of bounded geometry and the
decomposition (Ω𝑛,𝑘) be regular and strongly balanced. Let 0 ≤ 𝑠 < 1 with 𝑠 ≤ 𝑟𝑑, then the map 𝐼Ω extends by continuity to
an embedding 𝓁2

𝑟(Ω) ↪ 𝐴𝑠(Ω). For 𝑠 = 𝑟𝑑 < 1, this embedding is an isomorphism.

Proof. Let 𝑁, Φ𝑁,𝐾 and Ω̃𝑛,𝑘 be as in (B4)–(B5).

(i) If𝑁 = 0, then themap 𝐼Ω ∶ 𝜉 ↦ (𝐼Ω𝜉)◦Φ0,0 is covered by Proposition 4.1 and defines an isomorphism between 𝓁2
𝑟 ()

and 𝐴𝑟𝑑(Ω̃), for Ω̃ ∶= Ω̃0,0 ≡ Φ−1
0,0(Ω).

If 𝑟𝑑 < 1, then it follows by Lemma 3.12 that 𝐼Ω is an isomorphismbetween𝓁2
𝑟 () and𝐴𝑟𝑑(Ω), and𝐴𝑟𝑑(Ω) ↪ 𝐴𝑠(Ω)

for 0 ≤ 𝑠 ≤ 𝑟𝑑.
If 𝑟𝑑 ≥ 1, using 𝐴𝑟𝑑(Ω̃) ↪ 𝐴𝑠(Ω̃), we obtain 𝐼Ω ∶ 𝓁2

𝑟 () ↪ 𝐴𝑠(Ω̃), and Lemma 3.12 gives 𝐼Ω ∶ 𝓁2
𝑟 () ↪ 𝐴𝑠(Ω).

(ii) Now assume that 𝑁 ≥ 1 and consider

𝑊𝑁 ∶= span{𝑒𝑧 ∶ 𝜈(𝑧) ≤ 𝑁 − 1}, 𝑂𝑁 ∶= span{𝟙Ω𝑁,𝐾
∶ 𝐾 = 0,… , 𝑝𝑁 − 1},

then by construction, one has 𝐼Ω(𝑊𝑁) ⊂ 𝑂𝑁 . We will equip 𝐴𝑟𝑑(Ω) with the norm

‖𝑓‖2
𝐴,𝑟𝑑

∶=

∞∑
𝑛=0

𝑝2𝑟𝑛‖𝑄𝑛𝑓‖2𝐿2(Ω)
,
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44 FRANCESCHI et al.

see Proposition 36. The computations (i)–(iii) in the proof of Proposition 4.1 show that

‖𝐼Ω𝑓‖2𝐴,𝑟𝑑 = 𝑝2𝑟|Ω|‖‖(𝑓𝑧)‖‖2𝓁2𝑟 ()
for any 𝑓 ∈ 𝑊𝑁 .

In particular, 𝐼Ω ∶ 𝑊𝑁 → 𝑂𝑁 is injective. As both𝑊𝑁 and𝑂𝑁 have the same dimension 𝑝𝑁 , themap 𝐼Ω ∶ 𝑊𝑁 → 𝑂𝑁

is a linear isomorphism, and one can find a basis 𝑏0, … , 𝑏𝑝
𝑁−1 in𝑊𝑁 such that

𝐼Ω𝑏
𝐾 = 𝑝

𝑁

2 𝟙Ω𝑁,𝐾
for each 𝐾 ∈ {0, … , 𝑝𝑁 − 1}.

(iii) For 𝜉 ∈ 𝓁2
𝑟(), define 𝜉𝑁 ∈ 𝑊𝑁 by

𝜉𝑁𝑧 ∶=

{
𝜉𝑧, 𝜈(𝑧) ≤ 𝑁 − 1,

0, otherwise,

and let 𝛾𝐾(𝜉), 𝐾 ∈ {0, … , 𝑝𝑁 − 1}, be the coordinates of 𝜉𝑁 in the basis (𝑏𝐾). Now we consider the map

Ψ ∶ 𝓁2
𝑟() ∋ (𝜉𝑧) ↦ 𝜂 ≡ (𝜂0, … , 𝜂𝑝

𝑁−1) ∈

𝑝𝑁−1⨁
𝐾=0

𝓁2
𝑟 (),

𝜂𝐾𝑧 =

{
𝛾𝐾(𝜉), 𝑧 = rad,

𝜉𝑁+𝑛,𝑝𝑛𝐾+𝑘,𝑠, 𝑧 = (𝑛, 𝑘, 𝑠),
𝐾 ∈ {0, … , 𝑝𝑁 − 1}.

By construction Ψ is an isomorphism, with Ψ−1 given by

(
Ψ−1(𝜂0, … , 𝜂𝑝

𝑁−1)
)
𝑧
=

⎧⎪⎪⎨⎪⎪⎩

𝑝𝑁−1∑
𝐾=0

𝜂𝐾
rad

𝑏𝐾𝑧 , 𝜈(𝑧) ≤ 𝑁 − 1,

𝜂𝐾
𝑛−𝑁,𝑘−𝑝𝑛−𝑁𝐾,𝑠

, 𝑧 = (𝑛, 𝑘, 𝑠), 𝑛 ≥ 𝑁,

𝑝𝑛−𝑁𝐾 ≤ 𝑘 < 𝑝𝑛−𝑁(𝐾 + 1).

One computes

⎛⎜⎜⎝Ψ−1( 0, … , 0
⏟⏟⏟
𝐾−1 times

, 𝑒𝜆, 0, … , 0)
⎞⎟⎟⎠
𝑧

=

⎧⎪⎨⎪⎩
𝑏𝐾𝑧 , 𝜆 = rad, 𝜈(𝑧) ≤ 𝑁 − 1,

1, 𝜆 = (𝑛, 𝑘, 𝑠), 𝑧 = (𝑛 + 𝑁, 𝑝𝑛𝐾 + 𝑘, 𝑠),

0, otherwise,

or, equivalently,

Ψ−1( 0, … , 0
⏟⏟⏟
𝐾−1 times

, 𝑒𝜆, 0, … , 0) =

{
𝑏𝐾, 𝜆 = rad,

𝑒(𝑛+𝑁,𝑝𝑛𝐾+𝑘,𝑠), 𝜆 = (𝑛, 𝑘, 𝑠).

Due to the definition of 𝐼Ω, one has then

𝐼ΩΨ
−1( 0, … , 0

⏟⏟⏟
𝐾−1 times

, 𝑒𝜆, 0, … , 0) =

⎧⎪⎨⎪⎩
𝑝

𝑁

2 𝟙Ω𝑁,𝐾
, 𝜆 = rad,

𝑝
𝑁+𝑛

2

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝟙Ω𝑁+𝑛+1,𝑝𝑛+1𝐾+𝑝𝑘+𝑗

= 𝑝
𝑁

2 𝐽𝑁,𝐾𝐼Ω𝑁,𝐾
𝑒𝜆,
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FRANCESCHI et al. 45

where
(1) 𝐽𝑁,𝐾 is the operator of extension by zero from Ω𝑁,𝐾 to Ω,
(2) 𝐼Ω𝑁,𝐾

∶ 𝓁2
𝑟 () → 𝐴𝑟𝑑(Ω𝑁,𝐾) is the identification operator for the decomposition (Ω𝑁+𝑘,𝑝𝑛𝐾+𝑘)𝑛,𝑘, which is already

covered by (i).
(iv) The above computations show that 𝐼ΩΨ−1 acts as

𝐼ΩΨ
−1(𝜂0, … , 𝜂𝑝

𝑁−1) = 𝑝
𝑁

2

𝑝𝐾−1∑
𝐾=0

𝐽𝑁,𝐾𝐼Ω𝑁,𝐾
𝜂𝐾.

By (i), each 𝐼Ω𝑁,𝐾
is an isomorphism (for 𝑠 = 𝑟𝑑 < 1) or an embedding (for all other cases), and it follows byLemma3.11

that

𝐼ΩΨ
−1 ∶

𝑝𝑁−1⨁
𝐾=0

𝓁2
𝑟 () → 𝐴𝑟𝑑(Ω)

is an isomorphism (for 𝑠 = 𝑟𝑑 < 1) or an embedding (for all other cases), and then 𝐼Ω ≡ (𝐼ΩΨ
−1)Ψ preserves the same

properties. □

4.2 Embedded trace operator

For all assertions in this subsection, let Ω be an open set with compact closure in a 𝑑-dimensional manifold of bounded
geometry 𝑆 admitting a regular strongly balanced 𝑝-multiscale decomposition (Ω𝑛,𝑘) as described in Subsections 3.2
and 3.4.
Recall (Theorem 2.8) that we have constructed an abstract trace operator

𝜏 ∶ 𝐻1(𝕋) → 𝓁2
𝜎(), 𝜎 ∶=

1

2 log 𝑝
log

𝛼𝑝

𝓁
≡ 1

2

(
1 −

log 𝓁 − log 𝛼

log 𝑝

)
> 0, (59)

which is bounded and surjective with ker 𝜏 = 𝐻1
0(𝕋). We recall that 𝑝 ∈ ℕ with 𝑝 ≥ 2 and that the parameters 𝛼 and 𝓁

satisfy

0 < 𝓁 < 1, 𝓁 < 𝛼𝑝 <
1

𝓁
, (60)

see Lemma 2.7. We define the identification/embedding operator

𝐼Ω ∶ 𝓁2
𝜎() → 𝐴𝑠(Ω)

as in Propositions 4.1 and 4.2. This gives rise to the embedded trace operator

𝛾Ω ∶= 𝐼Ω𝜏 ∶ 𝐻1(𝕋) → 𝐴𝑠(Ω),

with the following options for 𝑠:

(1) IfΩ is a 𝑑-dimensional Euclidean open set (as in Subsection 3.2), then 𝛾Ω is a bounded linear operator for any 0 ≤ 𝑠 ≤
𝜎𝑑, surjective for 𝑠 = 𝜎𝑑.

(2) If Ω is an open set in 𝑑-dimensional manifold (as in Subsection 3.4), then 𝛾Ω is a bounded linear operator for any
0 ≤ 𝑠 < 1 such that 𝑠 ≤ 𝜎𝑑, surjective for 𝑠 = 𝜎𝑑 < 1.

In all these cases, one has by construction

ker 𝛾Ω = ker 𝜏 = 𝐻1
0(𝕋).
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46 FRANCESCHI et al.

In addition, using the identification between the approximation and Sobolev spaces (Theorem 3.13) we obtain the
following:

(3) If Ω is an open set in 𝑑-dimensional manifold, then

𝛾Ω ∶ 𝐻1(𝕋) ↪ 𝐻𝑠(Ω) for and 0 ≤ 𝑠 <
1

2
with 𝑠 ≤ 𝜎𝑑.

In particular,

𝛾Ω
(
𝐻1(𝕋)

)
= 𝐻𝜎𝑑(Ω) if 𝜎𝑑 <

1

2
. (61)

Remark 4.3. It is useful to check that the condition 𝜎𝑑 <
1

2
in (61) can really be satisfied under the restrictions (59) and

(60). In view of (59), the condition can be rewritten as

𝑑

log 𝑝
log

𝛼𝑝

𝓁
< 1 i.e.

𝛼𝑝

𝓁
< 𝑝

1

𝑑 ,

so together with (60), we arrive at

0 < 𝓁 < 1, 1 <
𝛼𝑝

𝓁
< min

{ 1

𝓁2
, 𝑝

1

𝑑
}
.

Therefore, if one fixes arbitrary 𝓁 ∈ (0, 1) and 𝑝 ∈ ℕ with 𝑝 ≥ 2, the required condition is satisfied for

𝓁

𝑝
< 𝛼 <

𝓁

𝑝
min

{ 1

𝓁2
, 𝑝

1

𝑑
}
,

that is, for a nontrivial range of 𝛼.

Finally, we give a more illustrative description of the embedded trace operator, which uses more classical terms:

Theorem 4.4 (Embedded trace using limit values). Let 0 ≤ 𝑠 <
1

2
with 𝑠 ≤ 𝜎𝑑, then for any 𝑓 ∈ 𝐻1(𝕋), there holds

𝛾Ω𝑓 = lim
𝑁→∞

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾) 𝟙Ω𝑁,𝐾
,

where the limit is taken in𝐻𝑠(Ω).

Proof.

(i) Let 𝑓 ∈ 𝐻1(𝕋). For 𝑁 ∈ ℕ, consider 𝑓𝑁 ∶ 𝕋 → ℂ defined by

𝑓𝑁(𝑥) ∶=

{
𝑓(𝑥), 𝑥 ∈ 𝕋𝑁,

𝑓(𝑋𝑁,𝑘), 𝑥 ∈ 𝕋𝑁,𝐾, 𝐾 ∈ {0, … , 𝑝𝑁 − 1}.

In Lemma 2.11, we have shown that 𝑓𝑁 ∈ 𝐻1(𝕋) with 𝑓𝑁

𝑁→∞
sssss→ 𝑓 in 𝐻1(𝕋). Due to the boundedness of 𝛾Ω we have

𝛾Ω𝑓𝑁

𝑁→∞
sssss→ 𝛾Ω𝑓 in𝐻𝑠(Ω). Therefore, it is sufficient to show that for any 𝑁 ∈ ℕ, one has

𝛾Ω𝑓𝑁 =

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾) 𝟙Ω𝑁,𝐾
. (62)
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FRANCESCHI et al. 47

(ii) Let 𝑁 ∈ ℕ be fixed. Pick a function 𝐹 ∈ 𝐻1 ((0, 𝐿), 𝑞(𝑡) d𝑡) such that 𝐹(𝑡) = 0 for 𝑡 ≤ 𝑡𝑁 and 𝐹(𝑡) = 1 for 𝑡 ≥ 𝑡𝑁+1.
Define 𝜑 ∶= 𝑈rad𝐹 ∈ 𝐻1(𝕋), that is, 𝜑 ∶ 𝕋 ∋ 𝑥 ↦ 𝐹(|𝑥|), then 𝜑𝟙𝕋𝑁,𝐾

∈ 𝐻1(𝕋) for any 𝐾 ∈ {0, … , 𝑝𝑁 − 1}. We will
show that

𝛾Ω(𝜑𝟙𝕋𝑁,𝐾
) = 𝟙Ω𝑁,𝐾

for any 𝐾 ∈ {0, … , 𝑝𝑁 − 1}. (63)

In fact, if (63) is proved, then (62) follows directly: One has

𝑓𝑁 =

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾)𝜑 𝟙𝕋𝑁,𝐾
in 𝕋 ⧵ 𝕋𝑁+1,

which implies

𝛾Ω𝑓𝑁 =

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾)𝛾Ω

(
𝜑𝟙𝕋𝑁,𝐾

)
(63)
=

𝑝𝑁−1∑
𝐾=0

𝑓(𝑋𝑁,𝐾)𝟙Ω𝑁,𝐾
.

(iii) It remains to prove (63). Consider

𝑆𝑁 ∶= span{𝜑1𝕋𝑁,𝐾
∶ 𝐾 = 0,… , 𝑝𝑁 − 1} ⊂ 𝐻1(𝕋).

The functions 𝜑1𝕋𝑁,𝐾
form a basis of 𝑆𝑁 , so dim𝑆𝑁 = 𝑝𝑁 . Now we remark that for any 𝑧 ∈ , one has the inclusion

dim𝑆 ∩ 𝐻1
𝑧(𝕋) ⊂ ℂ𝑈𝑧𝐹, and

dim
(
𝑆 ∩ 𝐻1

rad
(𝕋)

)
= 1, dim

(
𝑆 ∩ 𝐻1

𝑛,𝑘,𝑠
(𝕋)

)
=

{
1, 𝑛 ≤ 𝑁 − 1,

0, 𝑛 ≥ 𝑁.

Due to the orthogonal decomposition𝐻1(𝕋) =
⨁

𝑧∈𝐻1
𝑧(𝕋), we conclude that

𝑆𝑁 = span{𝑈𝑧𝐹 ∶ 𝑧 ∈ , 𝜈(𝑧) ≤ 𝑁 − 1},

and the functions𝑈𝑧𝐹 with 𝜈(𝑧) ≤ 𝑁 − 1 form a basis in 𝑆𝑁 . Recall that by Lemma 2.10 we have 𝜏𝑈𝑧𝐹 = 𝑝
−

𝜈(𝑧)

2 𝑒𝑧 for
𝜈(𝑧) ≤ 𝑁 − 1, and then, using (56),

𝛾Ω𝑈𝑧𝐹 = 𝑝
−

𝜈(𝑧)

2 𝐼Ω𝑒𝑧 =

⎧⎪⎨⎪⎩
𝟙Ω, 𝑧 = rad,
𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝟙Ω𝑛+1,𝑝𝑘+𝑗

, 𝑧 = (𝑛, 𝑘, 𝑠),
𝜈(𝑧) ≠ 𝑁 − 1.

Recall that 𝑈rad𝐹 = 𝜑 and that for (𝑛, 𝑘, 𝑠) ∈  with 𝑛 ≤ 𝑁 − 1, one has

𝑈𝑛,𝑘,𝑠𝐹 =

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝜑𝟙𝕋𝑛+1,𝑝𝑘+𝑗

.

Now let us define a linear map 𝑅 ∶ 𝑆𝑁 → 𝐿2(Ω) by

𝑅(𝜑𝟙𝕋𝑁,𝐾
) ∶= 𝟙Ω𝑁,𝐾

for any 𝐾 ∈ {0, … , 𝑝𝑁 − 1}.
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48 FRANCESCHI et al.

Using the linearity, one obtains

𝑅(𝑈rad𝐹) = 𝑅(𝜑) = 𝑅
⎛⎜⎜⎝
𝑝𝑁−1∑
𝐾=0

𝜑𝟙𝕋𝑁,𝐾

⎞⎟⎟⎠ =
𝑝𝑁−1∑
𝐾=0

𝑅(𝜑𝟙𝕋𝑁,𝐾
) =

𝑝𝑁−1∑
𝐾=0

𝟙Ω𝑁,𝐾
= 𝟙Ω,

and for any (𝑛, 𝑘, 𝑠) ∈  with 𝑛 ≤ 𝑁 − 1,

𝑅(𝜑𝟙𝕋𝑛+1,𝑝𝑘+𝑗
) = 𝑅

⎛⎜⎜⎝
∑

𝐾∶𝕋𝑁,𝐾⊂𝕋𝑛+1,𝑝𝑘+𝑗

𝜑𝕋𝑁,𝐾

⎞⎟⎟⎠ =
∑

𝐾∶𝕋𝑁,𝐾⊂𝕋𝑛+1,𝑝𝑘+𝑗

𝑅(𝜑𝕋𝑁,𝐾)

=
∑

𝐾∶𝕋𝑁,𝐾⊂𝕋𝑛+1,𝑝𝑘+𝑗

𝟙Ω𝑁,𝐾
=

∑
𝐾∶Ω𝑁,𝐾⊂Ω𝑛+1,𝑝𝑘+𝑗

𝟙Ω𝑁,𝐾
= 𝟙Ω𝑛+1,𝑝𝑘+𝑗

,

𝑅(𝑈𝑛,𝑘,𝑠𝐹) =

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝑅(𝜑𝟙𝕋𝑛+1,𝑝𝑘+𝑗

) =

𝑝−1∑
𝑗=0

𝜃
𝑗
𝑠 𝟙Ω𝑛+1,𝑝𝑘+𝑗

,

which shows that 𝑅(𝑈𝑧𝐹) = 𝛾Ω𝑈𝑧𝐹 for any 𝑧 ∈  with 𝜈(𝑧) ≤ 𝑁 − 1. As 𝑈𝑧𝐹 form a basis of 𝑆𝑁 , it follows that
𝑅 = 𝛾Ω|𝑆𝑁 . In particular, 𝛾Ω(𝜑𝟙𝕋𝑁,𝐾

) = 𝑅(𝜑𝟙𝕋𝑁,𝐾
) for all 𝐾 ∈ {0, … , 𝑝𝑁 − 1}, which shows (63) and concludes the

proof. □

Remark 4.5. In Theorem 4.4, one can also take the limit in 𝐴𝑠(Ω) with any 𝑠 such that 𝛾Ω ∶ 𝐻1(Ω) → 𝐴𝑠(Ω) is bounded:
The proof remains unchanged.

4.3 Proof of Theorem 1.1

By now we have proved all assertions of Theorem 1.1 for the special case  = 𝕋. Recall that in Theorem 1.1 we require the
condition (1), that is,

𝑐−1 ≤ 𝓁𝑛,𝑘

𝓁𝑛
≤ 𝑐, 𝑐−1 ≤ 𝑤𝑛,𝑘

𝛼𝑛
≤ 𝑐, (64)

and that 𝕋 corresponds to 𝑐 = 1. In order to cover the case of general  , we employ a suitable bijection between  and 𝕋.
Namely, define 𝜑 ∶ 𝕋 →  by

𝜑(𝑛, 𝑘, 𝑡) ∶=

(
𝑛, 𝑘, 𝐿𝑛,𝑘 − 𝓁𝑛,𝑘 +

𝑡 − 𝑡𝑛−1
𝓁𝑛

𝓁𝑛,𝑘

)
,

then 𝜑 maps the vertices 𝑋𝑛,𝑘 on 𝕋 to the same vertices on  , the restrictions 𝜑|𝑒𝑛,𝑘 are dilations by constant factors, and
both 𝜑 and 𝜑−1 are continuous.
If 𝑓 ∶  → ℂ, consider 𝑔 ∶= 𝑓◦𝜑 ∶ 𝕋 → ℂ. Remark that 𝑓 is continuous if and only if 𝑔 is continuous. Furthermore, if

𝑓 = (𝑓𝑛,𝑘) and 𝑔 = (𝑔𝑛,𝑘), then

‖𝑓‖2
𝐿2( )

=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

∫
𝐿𝑛,𝑘

𝐿𝑛,𝑘−𝓁𝑛,𝑘

||𝑓𝑛,𝑘(𝑠)||2𝑤𝑛,𝑘(𝑠) d𝑠,

‖𝑔‖2
𝐿2(𝕋)

=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑛 ∫
𝑡𝑛

𝑡𝑛−1

||𝑔𝑛,𝑘(𝑡)||2 d𝑡
=

∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑛 ∫
𝑡𝑛

𝑡𝑛−1

|||𝑔𝑛,𝑘
(
𝑛, 𝑘, 𝐿𝑛,𝑘 − 𝓁𝑛,𝑘 +

𝑡 − 𝑡𝑛−1
𝓁𝑛

𝓁𝑛,𝑘

)|||2 d𝑡 = ∞∑
𝑛=0

𝑝𝑛−1∑
𝑘=0

𝛼𝑛 𝓁𝑛

𝓁𝑛,𝑘 ∫
𝐿𝑛,𝑘

𝐿𝑛,𝑘−𝓁𝑛,𝑘

||𝑔𝑛,𝑘(𝑠)||2 d𝑠.
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FRANCESCHI et al. 49

In view of (64), we have

𝑐−2
𝓁𝑛

𝓁𝑛,𝑘
≤ 𝑐−1𝛼𝑛 ≤ 𝑤𝑛,𝑘 ≤ 𝑐𝛼𝑛 ≤ 𝑐2𝛼𝑛 𝓁𝑛

𝓁𝑛,𝑘
,

and we infer

𝑐−2‖𝑔‖2
𝐿2(𝕋)

≤ ‖𝑓‖2
𝐿2( )

≤ 𝑐2‖𝑔‖2
𝐿2(𝕋)

. (65)

In addition, 𝑓𝑛,𝑘 is weakly differentiable if and only if 𝑔𝑛,𝑘 is weakly differentiable, and then

𝑔′
𝑛,𝑘

=
𝓁𝑛,𝑘

𝓁𝑛
(𝑓′◦𝜑)𝑛,𝑘.

By (64), it follows that 𝑐−1|𝑓′◦𝜑| ≤ |𝑔′| ≤ 𝑐|𝑓′◦𝜑|, and then
𝑐−4‖𝑓′‖2

𝐿2( )

(65)≤ 𝑐−2‖𝑓′◦𝜑‖2
𝐿2(𝕋)

‖𝑔′‖2
𝐿2(𝕋)

≤ 𝑐2‖𝑓′◦𝜑‖2
𝐿2(𝕋)

(65)≤ 𝑐4‖𝑓′‖2
𝐿2( )

.

It follows that the linear operatorΘ ∶ 𝑓 ↦ 𝑓◦𝜑 is an isomorphism between 𝐿2( ) and 𝐿2(𝕋) as well as between𝐻1( )

and𝐻1(𝕋). In addition, it is bijective from𝐻1
𝑐 ( ) and𝐻1

𝑐 (𝕋) by construction, so it is also an isomorphism between𝐻1
0( )

and𝐻1
0(𝕋). This shows that𝐻

1( ) ≠ 𝐻1
0( ) if and only if𝐻1(𝕋) ≠ 𝐻1

0(𝕋), which is equivalent to the inequalities (17).
Due to Theorem 4.4, we actually have 𝛾

Ω
= 𝛾Ω◦Θ, so the properties of 𝛾Ω from the preceding subsection are directly

transferred to 𝛾
Ω
. In particular:

(1) ker 𝛾
Ω
= Θ−1(ker 𝛾Ω) = Θ−1

(
𝐻1

0(𝕋)
)
= 𝐻1

0( ),
(2) if Ω is a 𝑑-dimensional Euclidean open set admitting a regular strongly balanced 𝑝-multiscale decomposition (Sub-

section 3.2), then 𝛾
Ω
∶ 𝐻1( ) → 𝐴𝑠(Ω) is a bounded linear operator for any 0 ≤ 𝑠 ≤ 𝜎𝑑, and it is surjective for

𝑠 = 𝜎𝑑,
(3) ifΩ is an open set in 𝑑-dimensional manifold and admitting a regular strongly balanced 𝑝-multiscale decomposition

(Subsection 3.4), then:
∙ 𝛾Ω ∶ 𝐻1( ) → 𝐴𝑠(Ω) is a bounded linear operator for any 0 ≤ 𝑠 < 1 such that 𝑠 ≤ 𝜎𝑑, surjective if 𝑠 = 𝜎𝑑 < 1,
∙ 𝛾Ω ∶ 𝐻1( ) → 𝐻𝑠(Ω) is a bounded linear operator for any 0 ≤ 𝑠 <

1

2
such that 𝑠 ≤ 𝜎𝑑, surjective if 𝑠 = 𝜎𝑑 <

1

2
.

All assertions are proved.

5 EXISTENCE OF REGULAR BALANCED DECOMPOSITIONS

The construction of the embedded trace in the preceding subsection requires the existence of a regular strongly balanced
𝑝-multiscale decomposition. Let us show that such decompositions really exist for a wide class of Ω. Our approach also
indicates how to construct such a decomposition for a given domain or manifold. Our construction is strictly adapted to
the required properties stated in Sections 3.2 and 3.4. We note that the existence of dyadic cubes with various additional
properties in abstract metric spaces is discussed, for example, in [14, 26].

Example 5.1 (Hypercubes). Let us show first how to construct a regular strongly balanced 𝑝-multiscale decomposition of
the 𝑑-dimensional hypercube

𝑄(𝑑) ∶= (0, 1)𝑑 ⊂ ℝ𝑑.

For 𝑑 = 1, we decompose iteratively each interval into 𝑝 equal subintervals to obtain the decomposition

𝑄
(1)
𝑛,𝑘

= (𝑘𝑝−𝑛, (𝑘 + 1)𝑝−𝑛), 𝑛 ∈ ℕ0, 𝑘 ∈ {0, … , 𝑝𝑛 − 1}. (66)
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50 FRANCESCHI et al.

For 𝑑 ≥ 2, we obtain a decomposition by dividing alternately each side into 𝑝 equal parts. First, set Ω0,0 ∶= Ω. Now
assume that 𝑄(𝑑)

𝑛,𝑘
are already constructed for some 𝑛 ∈ ℕ0 and all 𝑘 ∈ {0, … , 𝑝𝑛 − 1} and that for each (𝑛, 𝑘), one has

𝑄
(𝑑)
𝑛,𝑘

= 𝑄
(1)
𝑛1,𝑘1

× ⋯ × 𝑄
(1)
𝑛𝑑,𝑘𝑑

with suitable 𝑛𝑠 ∈ ℕ0 and 𝑘𝑠 ∈ {0, … , 𝑝𝑛𝑠 − 1}. Let 𝑖 ∈ {1, … , 𝑑} be such that (𝑛 + 1) ≡ 𝑖 mod 𝑑, then we obtain 𝑄
(𝑑)
𝑛+1,𝑝𝑘+𝑗

with 𝑗 ∈ {0, … , 𝑝 − 1} by subdividing the 𝑖th side 𝑄(1)
𝑛𝑖 ,𝑘𝑖

of 𝑄(𝑑)
𝑛,𝑘

into 𝑝 equal subintervals

𝐼𝑗 ∶= 𝑄
(1)
𝑛𝑖+1,𝑝𝑘𝑖+𝑗

, 𝑗 ∈ {0, … , 𝑝 − 1},

and then by setting, for each 𝑗 ∈ {0, … , 𝑝 − 1},

𝑄
(𝑑)
𝑛+1,𝑝𝑘+𝑗

= 𝑄
(1)
𝑛1,𝑘1

× 𝑄
(1)
𝑛𝑖−1,𝑘𝑖−1

× 𝐼𝑗 × 𝑄
(1)
𝑛𝑖+1,𝑘𝑖+1

× ⋯ × 𝑄
(1)
𝑛𝑑,𝑘𝑑

.

Let us show that this decomposition is regular and strongly balanced. The assumptions (A1)–(A3) are obviously satisfied,
as well as (A4*), as on each passage from𝑄

(𝑑)
𝑛,𝑘

to𝑄(𝑑)
𝑛+1,𝑘

one divides the volumes exactly by 𝑝. In order to check (A5)–(A6),

we remark that for 𝑛 ≥ 𝑑 + 1, each 𝑄
(𝑑)
𝑛,𝑘

has the form 𝐼1 ×⋯ × 𝐼𝑑, where 𝐼𝑗 are intervals with

𝑝−𝐾 ≤ |𝐼𝑗| ≤ 𝑝1−𝐾 for (𝐾 − 1)𝑑 + 1 ≤ 𝑛 ≤ 𝐾𝑑, 𝐾 ∈ ℕ0.

We infer

𝑝
−

𝑛+𝑑

𝑑 ≤ |𝐼𝑗| ≤ 𝑝
−

𝑛−𝑑

𝑑 (67)

and it follows that

diam𝑄
(𝑑)
𝑛,𝑘

≡ √|𝐼1|2 +⋯+ |𝐼𝑑|2 ≤ √
𝑑 𝑝

−
𝑛−𝑑

𝑑 ≡ 𝑝
√
𝑑 𝑝

−
𝑛

𝑑 ,

that is, (A5) is satisfied. Now let ℎ = (ℎ1, … , ℎ𝑑) ∈ ℝ𝑑, then

𝑄
(𝑑)
𝑛,𝑘

⧵ (𝑄
(𝑑)
𝑛,𝑘

+ ℎ) = (𝐼1 × 𝐼2 ×⋯ × 𝐼𝑑) ⧵ ((𝐼1 + ℎ1) × (𝐼2 + ℎ2) ×⋯ × (𝐼𝑑 + ℎ𝑑))

⊂ (𝐼1 ⧵ (𝐼1 + ℎ1)) × 𝐼2 ×⋯ × 𝐼𝑑

∪ 𝐼1 × (𝐼2 ⧵ (𝐼2 + ℎ2)) ×⋯ × 𝐼𝑑

… ∪ 𝐼1 × 𝐼2 ×⋯ × (𝐼𝑑 ⧵ (𝐼𝑑 + ℎ𝑑)).

We have ||𝐼𝑘 ⧵ (𝐼𝑘 + ℎ𝑘)|| ≤ |ℎ𝑘| ≤ |ℎ|, which gives the volume estimate
||𝑄(𝑑)

𝑛,𝑘
⧵ (𝑄

(𝑑)
𝑛,𝑘

+ ℎ)|| ≤ 𝑑∑
𝑘=1

|ℎ𝑘|∏
𝑗≠𝑘

|𝐼𝑗| (67)≤
𝑑∑

𝑘=1

|ℎ𝑘|(𝑝
−

𝑛−𝑑

𝑑

)𝑑−1

≤ 𝑑𝑝𝑑−1|ℎ|𝑝−𝑛
𝑑−1

𝑑

and shows (A6).

Example 5.2 (Piecewise smooth star-shaped open sets). One says that a bounded open set Ω ⊂ ℝ𝑑 belongs to the class
(H) if:

(1) Ω is star-shaped with respect to a point 𝑥0 ∈ Ω.
(2) There exist 𝜀 > 0 with 𝐵𝜀(𝑥0) ⊂ Ω and a finite partition of Ω = Ω1 ∪⋯ ∪Ω𝑛 such that for each 𝑗 = 1,… , 𝑛:
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FRANCESCHI et al. 51

∙ each Ω𝑗 is a cone with vertex at 𝑥0,
∙ 𝜕Ω𝑗 ∩ 𝜕Ω is a 𝐶1 surface,
∙ the set 𝐵𝜀(𝑥0) ∩ Ω𝑗 is convex.

(3) There exists 𝛿 > 0 such that 𝜈(𝑥) ⋅ (𝑥 − 𝑥0) ≥ 𝛿 for all 𝑥 ∈ 𝜕Ω, where 𝜈(𝑥) denotes the outward unit normal to 𝜕Ω at
𝑥 (defined almost everywhere on 𝜕Ω).

Remark that the class (H) contains all convex polyhedrons and all convex open sets with smooth boundaries. It is
shown in [20, Theorem 5.4] that for arbitraryΩ,Ω′ in (H) with |Ω| = |Ω′|, there exists a bi-Lipschitz bijectionΦ ∶ Ω′ → Ω

with | det 𝐷Φ| = 1 (i.e., Φ preserves the volumes). Note that for many special classes of Ω,Ω′ like cubes, balls, cylinders,
simplices such a map Φ can be given by explicit formulas, see [21, 24] and references therein.
IfΩ′ admits a regular strongly balanced𝑝-multiscale decomposition (Ω′

𝑛,𝑘
), then the setsΩ𝑛,𝑘 ∶= Φ(Ω′

𝑛,𝑘
) forma regular

strongly balanced 𝑝-multiscale decomposition ofΩ, as the conditions (A5)–(A6) remain true under bi-Lipschitz transfor-
mations. In particular, for each Ω in (H), one can take a hypercube 𝑄 with |𝑄| = |Ω| and translate a decomposition of 𝑄
(Example 5.1) into a decomposition of Ω.
This discussion shows that any open setΩ of the class (H) admits a regular strongly balanced 𝑝-multiscale decomposi-

tion.

Example 5.3 (Composed open sets). LetΩ be an open set with compact closure in a 𝑑-dimensional manifold of bounded
geometry 𝑆. Assume thatΩ can be decomposed (up to zero measure sets) into disjoint open pieces𝑊𝑗 , 𝑗 = 1,… , 𝑝𝑁 such
that

(1) all𝑊𝑗 have the same volume,
(2) there exist local charts Φ𝑗 ∶ ℝ𝑑 ∋ �̃�𝑗 → 𝑂𝑗 ⊂ 𝑆 with𝑊𝑗 ⊂ 𝑂𝑗 ,
(3) the sets �̃�𝑗 ∶= Φ−1

𝑗
(𝑊𝑗) ⊂ ℝ𝑑 are with Lipschitz boundaries and admit regular strongly balanced 𝑝-multiscale

decompositions,

then the decompositions of �̃�𝑗 are first transferred to𝑊𝑗 with the help of Φ𝑗 and then suitably renumerated to produce
a regular strongly balanced 𝑝-multiscale decomposition of the whole Ω.

Example 5.4 (Compact manifolds). By combining the preceding observations, one can show that each compact manifold
admits a regular strongly balanced 𝑝-multiscale decomposition. The idea comes from Benoît Kloeckner’s comments in
the MathOverflow discussion [43].
Let (Ω, 𝑔) be a compact 𝑑-dimensional Riemannianmanifold. It is known [65] thatΩ admits a triangulation: There exist

disjoint open𝑊1,… ,𝑊𝑁 ⊂ Ωwith ||Ω ⧵ (𝑊1 ∪⋯ ∪𝑊𝑁)|| = 0

and local charts Φ𝑗 ∶ ℝ𝑑 ∋ �̃�𝑗 ↦ 𝑂𝑗 ⊂ Ω with𝑊𝑗 ⊂ 𝑂𝑗 such that the sets Ω̃𝑗 ∶= Φ−1
𝑗
(𝑊𝑗) are 𝑑-dimensional simplices.

Without loss of generality we assume that𝑁 = 𝑝𝑛 (otherwise one cuts some of the simplices Ω̃𝑗 into smaller subsimplices
to obtain a required number). Then one can find a smooth function 𝑓 ∶ Ω → (0,∞) such that

∫
𝑊𝑗

𝑓 dvol𝑔 =
|Ω|
𝑁

.

By [50] there exists a diffeomorpism 𝜙 ∶ Ω → Ωwith 𝜙∗(𝑓 dvol𝑔) = dvol𝑔. The open sets Ω𝑗 ∶= 𝜙(𝑊𝑗) satisfy

|Ω𝑗| = ∫
Ω𝑗

1 dvol𝑔 = ∫
𝜙(𝑊𝑗)

1 dvol𝑔 = ∫
𝑊𝑗

𝑓 dvol𝑔 =
|Ω|
𝑁

,

that is, they have the same volume and exhaustΩ up to a zero-measure subset. In addition, eachΩ𝑗 is covered by the local
chart Ψ𝑗 ∶= 𝜙◦Φ𝑗 with Ψ−1

𝑗
(Ω𝑗) = Ω̃𝑗 . As discussed in Example 5.2, each simplex Ω̃𝑗 admits a regular strongly balanced

𝑝-multiscale decomposition. This decomposition is transferred toΩ𝑗 with the help ofΨ𝑗 , and the resulting decompositions
of Ω𝑗 are then combined into a regular strongly balanced 𝑝-multiscale decomposition of Ω.
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