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1 | INTRODUCTION

In this paper, we discuss some aspects of the trace theory for Sobolev spaces on infinite metric graphs. By a metric graph
we mean a geometric configuration that arises if one replaces the edges of a discrete graph by intervals, and one introduces
a differential operator on such a structure by defining a differential expression on each interval and by imposing a gluing
condition at each node. A metric graph together with a differential operator on it is often called a quantum graph. While
quantum graphs represent by now a well-established theory [3, 4, 18, 42], the most attention was concentrated on the
study of regular configurations with suitable lower bounds on the edge lengths and other parameters: In that case, it is
known that gluing conditions at the nodes are sufficient to define a self-adjoint operator or a non-self-adjoint one with
good properties [25]. More recent papers [11, 12, 16, 19, 23, 40, 45, 60] initiated the discussion of the most general quantum
graphs, which shows that in many cases additional “boundary conditions at the external boundary” must be imposed.
It should be noted that the notion of boundary for general graphs is not obvious, which is a well-known issue for both
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metric and discrete infinite graphs [12, 33, 41, 46, 66]; we recall that metric and discrete graphs show a number of common
features [13, 41, 44, 53], and in case of equilateral metric graphs even a kind of unitary equivalence between respective
Laplacians can be established, see the first paper by von Below [63] and later developments, for example, in [54, 55, 64].

If the boundary is naturally defined (e.g., for a tree, the set of infinite paths starting at a fixed vertex can be naturally
viewed as the boundary), one arrives at the question of the description of possible boundary conditions, which requires a
construction of suitable function spaces at the boundary as well as a rigorous definition of boundary values for functions
defined on the graph. For some classes of infinite trees, the abstract boundary can be endowed with a metric structure,
which gives rise to Sobolev-type spaces and associated trace theorems. The paper [5] deals with dyadic discrete trees: One
identifies the tree boundary with the ring Z, of 2-adic numbers and establishes a trace theorem for a class of weights. A
similar construction was applied in [7, 32, 35-39] for more general trees and more general function spaces as well: In all
these works, the boundary of a discrete tree is viewed as a totally disconnected metric space with, respectively, defined
function spaces on it. The paper [12] makes first steps in defining the boundary of a metric graph as a totally disconnected
metric space, but no precise trace theorem was established. Further trace results for a class of metric graphs with unit edge
lengths were established in [38, 39] with the unit length edges, still for an abstractly defined boundary. At the same time,
if a metric graph is considered as a model of a structure embedded into a space, then in many cases, its boundary can be
naturally identified with a surface: As an example, one may think of a dandelion clock, whose surface can be viewed as
a sphere in the three-dimensional Euclidean space. The aim of this work is to elaborate a theory of boundary traces on
metric trees using concrete geometric realizations of the abstract tree boundary. Our analysis includes a description of the
range of the trace operator (and not just its boundedness), which seems to be new for metric graphs.

The idea of such an identification is not completely new, and our work is mainly motivated by the papers [30, 47, 52, 61]
dealing with the analysis of Dirichlet-to-Neumann operators and wave equations on trees viewed as a model of human
lung. In particular, our main object (geometric tree) is directly borrowed from [30]. One may also mention the paper [6], in
which abstract metric spaces are obtained as the limits of embedded discrete structures (hyperbolic tilings), which leads
to some precise mapping theorems as well. Nevertheless, while the tilings used show some ideological similarities with
the multiscale decompositions employed in our work (see below), our precise situation (trace map for a metric tree) is not
covered directly by the constructions of [6]. We also mention the papers [14, 26] in which abstract versions of multiscale
decompositions (usually referred to as dyadic or p-adic cubes) were used for other purposes such as boundedness criteria
for singular integral operators: We refer to Kigami’s monograph [34] for a variety of further applications. While some
elements of our analysis look very similar to the ideas used in the analysis in metric spaces with the help of p-adic cubes,
the objectives are not same: We have two given objects (a metric tree and a Riemannian manifold) with smooth structures
that are already prescribed, and the goal is to interpret one of them as the boundary of the second one. This setting is quite
different to what was done for the abstract metric spaces, where the key step is the definition of a smooth structure using
suitable embedded trees/graphs.

The paper [47], which was our main starting point, deals with weigthed discrete Laplacians on an infinite dyadic tree,
and it established a trace theorem for discrete Sobolev spaces by identifying the boundary with a Euclidean domain. Note
that the later paper [5] has shown the equivalence of the resulting mapping theorems with the approach based on abstract
tree boundaries viewed as ultrametric spaces. The works [30, 52, 61] proposed a modified model with the help of the con-
tinuous weighted Laplacians, and an identification of the boundary trace with an interval was addressed. Moreover in [61]
the Sobolev regularity was partially studied. The notion of the boundary trace was then used as a theoretical tool in [52, 61]
in order to establish the equivalence between various definitions of the Sobolev spaces on the fractal trees, which further
served for numerical approximation of infinite trees by their finite truncations when solving the wave equation [27-29,
31]. It should be said that the approaches of [30] and [30, 52, 61] to the definition of the boundary trace were quite different:
The paper [47] uses an orthonormal basis of harmonic functions (so that the definition of the boundary trace of an arbi-
trary function is recovered from its expansion in this basis), while [30, 52, 61] used more explicit approximations by finite
truncations. As a by-result of our analysis, one obtains that both the approaches are equivalent and allow for inclusion of
Riemannian manifolds and not just Euclidean domains.

We now describe our configuration and the main results in greater detail. Let p € N with p > 2 be given and a root
o be given. We glue to o an edge ¢, represented by an interval of length ¢, the second vertex of ey, will be called
Xop- If all e, and X, with n € Ny and k € {0, ..., p" — 1} are already constructed, then to each X, ; we attach p new
edges e,41 pk+j> With j € {0, ..., p — 1}, having lengths ¢,,,; ;14 ;, and the pendant vertices of e, pi j, to be denoted by
Xy41,pk+j» Will be viewed as children of X, .. This process continues infinitely, which creates a infinite rooted metric tree
T . The subtree of 7 starting at X, x, that is, the subtree spanned by the offsping of X, ; (the children, the children of the
children, etc.), will be denoted by 7;, ;. See Figure 1.
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FIGURE 1 (A)Thetree 7. (B) A subtree 7, ;.

For subsequent constructions, it will be useful to introduce coordinates on 7. Denote by L, the distance between the
root o and X, i, that is, the length of the unique path between o and X, ; obtained by summing the lengths of all edges
in the path. Then by (n, k, t) with t € [L,,x — €, x, Ly x|, we denote the point of e, ;, which is at the distance L, j — ¢ from
X, k- In this notation,

Xpk=Wk,Ly)=m+1,pk+j,L,,)forany j €{0,...,p — 1}

Let w : T — (0,0) be a locally bounded measurable function, which will be used as an integration weight: For
f T — C, one defines

o p"-1

d .k, Lk, t)dt,
/Tfu 22/ f@r,k, ) w(n, k, t)dt

n=0 k=0 Y Luk—Cnk

then

L) o= {F 1T = € fly, = [ 7P du <o),

Due to the above definition, the set of vertices has zero measure. Therefore, each measurable function f : 7 — C can be
identified with a family of functions (f, ),

fn,k = f(n, k, ) . (Ln,k — fn,k’Ln,k) - C, ne NO’ ke {0, ,pn — 1}
Then f = (f, ) belongs to L*(7T) if and only if
o p"-1 5
12y = 2 2 / |f k(O] Wi (D) dt < oo

n=0 k=0 Y Luk—Cnk

If f = (fux) is such that all f, ; have locally integrable distributional derivatives f :l ,» We denote f" 1= (f :l .)- The first
Sobolev space H'(7) on T is then introduced as

HY(T) :={f € LX(T) : [ is continwous with " € LXT),  If I35, 1= 1120, + 151220
Moreover, we denote

HNT) :={f € HY(T) : there exists N € N such that fni =0forall (n,k) with n > N3},

H(T) := the closure of H;(7) in H(T).
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FIGURE 2 Theboundary of 7 viewed as a surface Q.

FIGURE 3 Anexample of a multiscale decomposition (for p = 2).

One arrives at the following quite natural questions:

(a) Do we have Hy(7) = H'(7)?

(b) If not, can we characterize the functions in Hé(T) by their “behavior of infinity,” that is, by the behavior of
f=fnr) € H(T) forn — o?

(c) Can this “behavior at infinity” be characterized by a function defined on some set Q viewed as the “boundary” of 7?

Remark that the H'-norm on 7 represents the sesquilinear form of the Neumann Laplace operator A, which is important
for the study of various diffusion processes on 7. One can also consider first a thickened version 7; of T (i.e., one embeds
7 in R" and takes the e-neighborhood) and consider the associated Neumann Laplacian A, then one has a suitably
defined convergence of A, to A as € — 0, see [57, 58]. The problem (a) is related to the question whether the boundary of
T is penetrable, that is, whether one can impose alternative boundary conditions at the tree boundary. In fact, problem
(a) was already addressed for several classes of metric graphs, see [40, Section 3] and [41, Theorem 7.24], but none of
them covers our situation in full generality. The problems (b) and (c) are closely related to a concrete representation of
such conditions and to the existence and uniqueness of solutions of the associated boundary value problems. We provide
answers to the above questions by identifying the abstract boundary 07 with a geometric object, more precisely, an open
set Q with compact closure in a d-dimensional Riemannian manifold (in particular, Q is allowed to be an arbitrary compact
Riemannian manifold), see Figure 2. The main assumption on Q is that it admits a special decomposition: There exists
Quk CQ,neNyke{0,.., p" — 1}, constructed as follows. One sets Qg ; := Q. If some Q,  is constructed, one chooses
p nonempty disjoint subsets Q41 piyj C Q. j € {0, ..., p — 1}, such that

p-1

Qi \ U Qn+1,pk+j =0,
j=0

and this process continues infinitely (Figure 3). In addition, one needs to impose some geometric conditions on Q, x
for large n: Informally, all Q, , must have approximately the same volume, and their shape is not allowed to become
“too complicated.” A decomposition satisfying all necessary assumptions will be called a regular strongly balanced
p-multiscale decomposition of Q (we refer to Subsection 3.2 for rigorous definitions concerning Euclidean open sets and
to Subsection 3.4 for an extension to the case of manifolds).
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FIGURE 4 Identifying 7, , with Q, .

Remark that the combinatorial structure of the family (€, ;) repeats the combinatorial structure of the family of subtrees
(T,.x): For arbitrary (n, k) and (n’, k'), one has

(1) Qn,k C Qn’,k’ if and only if 7;,1’]{ C 7;1/’](/,

(2) QuxkNQy o #WBifand onlyif 7, N Ty i # 0,

and this observation is used to create a link between the functions defined on 7 and those defined on Q. More precisely,
one imagines that the boundary of 7 is glued to Q in such a way that the boundary of each 7, is glued to Q, ;. In this
case, if a function f on 7 has a constant value a,, ; along some 7,, . and is zero on all other subtrees 7, ; with j # k, then
it natural to identify the boundary trace of f with the function a, 1, , (Figure 4). It appears that this somewhat naive

definition can be given a rigorous form, and a part of our main results can be summarized as follows:

Theorem 1.1. Assume that there exist constantso > 0,0 < € < 1,and ¢ > 1such thatforanyn € Nyandk € {0, ..., p" — 1},
there holds

clen <t <ct, cla" <w,y < cal. €))
Then Hy(T) # H'(T) if and only if
1
t<ap< -—. 2)
¢
Assume that (2) is satisfied and let Q be a nonempty open set with compact closure in a d-dimensional Riemannian man-

ifold of bounded geometry. We denote by H5(Q) the associated fractional Sobolev spaces of order s > 0 and require that Q
admits a regular strongly balanced p-multiscale decomposition (Q,, ) as defined in Subsection 3.4. Denote

I —1
C,:=1<1_M>>0
log p

andlet0 <s < % such that s < od, then forany f € HY(T), there exists the limit

p-1
Teroe_ 15
vhS = lim KZO F&n i)y, € H(Q).

The embedded trace operator defined by yg : HY(T) —» H%(Q) is a bounded linear operator with ker yg =H é(Q), and

yI(H'\(T)) = HO(Q) ifod < %

Remark 1.2. The right-hand inequality in (2) means precisely that the tree 7 has finite total weight.
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Remark 1.3. If Q is a Euclidean open set, then one can show that the linear map yg given by the same expression is
bounded and surjective as a map from H'(7) to A°4(Q) for any value of o, where A°4(Q) is a so-called approximation
space (which happens to coincide with H°? if od < é): We refer to Subsection 4.3 for more detailed formulations. This
settles the open question [52, section 5, Question 2] about the range of the embedded trace operator for our class of metric
graphs, even for a more general geometric trace realization.

For d = 1 our result is very close to the construction of the bounded trace operator in [61, Theorem 5.4.13] and [30,
sections 3.1-3.2], but even in this case our result is stronger (for the class of trees we consider) as we show its surjectivity
for a range of parameters.

A large part of the paper is devoted to the proof of the assertions of Theorem 1.1 for the case ¢ = 1 in (1). For this special
case, the tree 7 will be denoted by T and called geometric tree following the convention proposed in [30]. The advantage of
the geometric tree is that it allows for a decomposition into a direct sum of one-dimensional problems, and trace theorems
in one dimension are much simpler to study. Such a decomposition is well known [51, 57], but we need a number of explicit
formulas for various intermediate transformation operators, which are missing in the existing literature, so we opted for
a self-contained presentation in Section 2. This part of analysis is concluded by constructing an abstract trace operator in
Subsection 2.5, which maps H'(T) into a discrete ¢2-type space inherited from the direct sum decomposition.

In Section 3, we introduce approximation spaces A" (), which consist of the functions defined on Q that can be “well
approximated” by linear combinations of indicator functions of some subsets of Q. In Subsection 3.1, we recall the most
important constructions for fractional Sobolev spaces, which are used in the analysis. In Subsection 3.2, we introduce spe-
cial decompositions of Euclidean domains and define the associated approximation spaces. In Subsection 3.3, we show
that in some important cases the approximation spaces coincide with the usual fractional Sobolev spaces. The construc-
tions of Subsections 3.2 and 3.3 are an adaptation of the respective 2-adic spaces in [47], which were in turn motivated by
more general considerations coming from the wavelet analysis [15, 48]. In Subsection 3.4, we transfer these constructions
to the case of open sets on manifolds using the traditional approach with local charts. We note that Sections 2 and 3 are
independent from each other. They also contain a lot of introductory material and we hope that they can be of independent
interest beyond the immediate scope of this work.

In Section 4, we make last steps in the construction of the embedded trace operator. First, in Subsection 4.1, we identify
the ¢2-space from the construction of the abstract trace operator with the approximation spaces A”(Q) using an identi-
fication of suitable bases. The embedded trace operator is then obtained as the superposition of this identification with
the abstract trace operator, and the resulting properties are summarized in Subsection 4.2. At this point, all assertions
of Theorem 1.1 are proved for the geometric tree T, and in Subsection 4.3, we transfer them to the general 7 using a
coordinate change.

All preceding results require the existence of decompositions of open sets or manifolds into pieces with special prop-
erties; it seems that these questions were not addressed in sufficient generality in earlier works. In the last Section 5, we
show that such decompositions exist for large classes of Q, in particular, for all convex polyhedrons, all convex smooth
domains and all compact manifolds. This is done by adapting the existing results from very diverse areas of analysis to the
context of multiscale decompositions.

We consider this work as an initial component for the systematic analysis of boundary value and transmission prob-
lems on infinite metric graphs, which will be continued in several directions. A key role in our analysis is played by the
decomposition of trees into a direct sum of one-dimensional problems. It was noted in [8] that such decomposition actually
exists for a much larger class of metric graphs, so we hope that at least some elements of our analysis will be useful beyond
the context of trees. The possibility of the identification of the tree boundary with a prescribed surface gives a possible
approach to describe the interaction between fractal trees touching each other along some interface and to include fractal
building blocks in the so-called hybrid spaces [2, 9, 10, 17, 56, 59]. Such applications will be covered in ongoing works.

2 | ANALYSIS ON GEOMETRIC TREES
2.1 | Tree structure and function spaces

In this section, we analyze in greater detail the “ideal” case ¢, := ¢" and w, j = a' forall (n, k), thatis, withc = 1in (1).
The corresponding tree will be denoted T (as opposite to 7 for the general case) and called a geometric tree. The geometric
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FIGURE 5 The structure of a geometric tree.

trees have a lot of symmetries, which will be exploited for the analysis, and some expressions can be written in a slightly
different form.
Remark that the underlying combinatorial graph is G := (V, E), with the set of vertices V" and the set of edges E given

by
Vi={olu{X,,: neNy, ke{0,1,..,p"—1}},
E:={e,x : n€Ny, k€{0,1,..,p" —1}},

(09X0,0)a n = O,
(Xn—l,[logp k]’Xn,k)a n>0,

en’k =

where [¢t] stands for the integer part of t € [0, c0), that is, the largest integer not exceeding ¢. Remark that each edge e,
connects each X, ; with its uniquely defined parent, which is X n—1[log, k] for n > 1 and o for n = 0. All vertices except the
root have the degree p + 1 (i.e., have p + 1 neighbors: p children and 1 parent), and the degree of the root is 1. For p = 1,
the graph G is simply a half-infinite chain, so we assume from now on that p > 2.

Consider the numbers

n
=0, t,=) ¢5 neN, L:=limt,€ (0] (3)
n—oo
k=0

By construction, the numbers t_; <ty < t; < ... subdivide (0, L) into the infinitely many intervals (¢t,,_;, t,) of length ¢",
n € Ny (Figure 5). The combinatorial tree G is related to the metric tree T as follows: We identify each e,, ; with a copy of
[t,—1,t,] using the convention that the endpoint of e, j is identified with the initial point of each of its children. In other
words,

T :={((nk),t): n€Ny, k€{0,..,p" =1}, t € [ty_1,t,1}/ ~
for the identification ~ defined by
((n, k), t,) ~((m+1,pk + j),t,), neNyke{0,..,p"—1},j€{0,..,p—1}
For what follows for x,y € T, we write

(1) x <y ifthe path from o to y passes through x (equivalently one can say that y belongs to the offspring of x),
(2) x<yifx<yandx #y.

We will also need to consider some special subgraphs of T. For n € N, denote

T" := the tree truncated after the nth generation,
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that is, T" is composed of all edges e, with m < n.Forn € N, k € {0, ..., p" — 1}, consider

Tok :={xeT: X, <x}
Remark that
p—1 .
J jo.
Tk = U -l]—n,k’ —H_n,k Y= Cny1pk+j Y —l]—n+1,pk+ja
Jj=0
see Figure 6. By construction, each T]n . is a rooted metric tree (having the same combinatorial structure as T itself) with

X, 1 being the root. The vertices of Ti i are Xy o and Xy jpmy jpm-14r Withm € Nand r € {0, ..., pmt - 1}.
The set T becomes a metric space if one considers the natural distance p,

p(x,y) := the length of the unique path between x,y € T, |x] := p(x,0)forx €T,

which gives rise to the notion of a continuous function on T. The number L in (3) is usually referred to as the height of T,
and

for all subsequent constructions we assume

L< or, equivalently, t <1.

We consider the measure u on T, which coincides with a” dt along e, ;, where dt is the one-dimensional Lebesgue
measure and a > 0 is a fixed constant. A function f : T — C is measurable if each of its components

fok s -, tn]l 2t f((n,k),t) € C, fok i= f|en,k for short,

is measurable; in most cases, we will identify f with the set of its components (f,, k). The integral of such f over T with
respect to u is then given by

o pt-1 ty
[raw=F T ar [ fuwa
T n=0 k=0 In—1

The above integration gives rise to the naturally defined space L(T):

L*(T) :

{f : T - C measurable : ”f”iZ(T) ::/|f|2du< oo},
T

o p"-1

tn
Z Z 2
'/T|f|2d/1 = . & an”fn,k”iz(en’k)’ “fn,k”iz(en’k) ::4/[ |fn,k(t)| dt
n= = n—1

85U8017 SUOWILIOD A0 8(qeoljdde ayy Aq pausenob afe sejole YO ‘8sn JO Sa|Nn 10} ARIq1T8UIUO A8]IAA UO (SUOIPUOD-PUe-SWLBIW00 A8 1M ARe.q 118U JUO//:SdnL) SUORIPUOD Pue Sue | 841 88S *[7202/2T/TT] Uo ARiqiTauliuo AB|im ‘1a Jeled eroped JO A1sieAun Aq 725008202 eUew/Z00T OT/I0p/Wod A8 i Afe.d jpuluo//:Sdny wouy papeojumoq ‘0 ‘9192z2ST



FRANCESCHI ET AL. MATHEMATISCHE 9
NACHRICHTEN

In addition, we consider the Sobolev-type space H'(T) defined by
HY(T) :={f € L*(T) : fux € H'(ty—1,t,) forany (n, k), f' := (f! ) € L*(T) and f is continuous on T}.

Recall that H'(t,_4,t,) C C°([t,_1,t,]) due to Sobolev embedding theorem, so the continuity of f on T in the above
definition of H'(T) actually means the continuity at the vertices,

i) = fry1,pisj(tn) foralln € Ny, k €{0,...,p" =1}, j €{0,...,p — 1}

We equip H'(T) with the scalar product (-, -) HI(T) defined by
(f’g>H1(T) = <fag>L2(1r) + <f/ag,>L2(-n-)

and the induced norm || - || z1¢7), then one easily checks that H 1(T) becomes a Hilbert space. The following result from
[30, section 3.5] will be important below:

Lemma 2.1. Forany p €N, ¢ € (0,1), a > 0, the embedding H'(T) < L?*(T) is compact.
Now we denote

HX(T) :={f =(fux) € H'(T) : 3N € Nsuch that f,, =0forn> N},

H,(T) := the closure of H}(T) in H'(T).

2.2 | Orthogonal decompositions

All constructions in this section are essentially from the paper [51], but we need several intermediate objects, which did
not appear there explicitly, so we prefer to give a complete argument.

We now introduce several subspaces of L?(T) determined through additional invariance properties. We start with the
space of radial functions,

L2 (T) :={f € LX(T) : foranyx,y € T with |x| = |y| one has f(x) = f()},

which will be considered with the induced scalar product. Remark that f € era 4(T) means the existence of a function
F :(0,L) —» C with f(x) = F(|x|) for all x € T, which means that the components (f, ;) satisfy f,(t) = F(t) for all
e,k € Eandt € (t,_1,t,). Thisyields

) p"-1 .1, ) p'-1 .ty ) ty L
1By =X 3 [ lfafde= Y ar ¥ [ pofa= Yo [ pofa= [ Fof ao
n=0 k=0 Y th—1 n=0 k=0 Y th-1 n=0 th—1 0

for the weight function
q : (05 L) = (0’ OO), q(t) = (Ofp)n fort e (t}’l—li tn)
The above computation shows that the map

Urad : Lz((07L)7 q(t) dt) - L2 (—[l—)7 UradF . —[l— ER N F(|x|)a

rad

is a unitary operator. Furthermore, consider the roots of unity:

27mi

O, :=e78, se€f{0,..,p—1},
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and define, fore,; € Eands €{1,..,p — 1},

L, (M :={fel*M: finy,, =0andforany j,j €{0,..,p—1}and

nk,s

x € Tfl’k andy € Ti,k with |x| = |y| one has 8, f(x) = 6, f(y)}.

Observe that each function f € Lfl i s(T) is radial on each subtree Ti » Which means that f(x) only depends on the
distance p(x, X, ) for all x € Ti .- More precisely, for some functions F; : (t,,L) — C, j €{0,..., p — 1}, there holds

f(x)=F;(|x|) for all x € Tfl > and, in addition, F; = 9§F0 for each j €{0,..., p — 1}, so f is uniquely determined by
F :=F,. By construction we have

o0 pm_l_l Lpym 2 ©0 pm_l_l Lpym 2
[, 1= T e T [ g @ de = Y arm ¥ [ R0 @
T m=1 r=0 t m=1 r=0 t

nk n+m—1 n+m—1

°° tnam 2
2 an+mpm—l/ |F](l’)| dt
m=1

Inm—1
- fm 2 L 2
—p ¥ @ [ el a =t [Rof ao,
m=n+1 tm—1 th
and
p-1 p-1 L N p-1 L . )
[irau= [ wpa=F [ ra=p 3 [ IF@F a0d =5 Y [ jelrof a0
T Tuk =07 T, j=0 7ty Jj=07tn
p-1 L ) L X
-p 3 [ ol awa = [ PO a0
j=0“1n tn
This computation shows that the map
Unks © Lty L), p"q(t)de) > L2 (T),
0/F(|x , ifx e T/ forsomeje 0,..,p—1},
R 2 GO i jE0..p =1}
” 0, otherwise,
is a unitary operator. We further denote
1 gl 2 1 gl 2
H (1) :=H(T)nL; (T), Hn,k,S(T) :=H (T)nLn,k’S(T),
and note the obvious implications
feH, (M= el M, feH, (D= feL (D 4)
Theorem 2.2 [51]. One has the orthogonal direct sum decomposition
p—1
—72 2
rM=1,,0e P DL .M. 5)

ep kEE s=1

Proof. (A) We begin with the orthogonality. Let f € Lfl (I for some (n,k,s), then f =U,F for some F €
L2 ((ty, L), p~"q(1) dt).
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(Al Letg € L2, ((T), then g = Uy,qG for some G € L*((0, L), q(t) dt) and

p—1 " '~ bnym
8 p2m = Z/ fgdu= 2 Z atm Z / Frnamgepmtjpm=14r(8) 8nvm jepm jpm-14,(8) dt
j=0 Tnk j=0 m= ntm-1
p-1 P - Lntm L ® lham -
=) ) arm Z / 6/F()G(t)dr = 2 > amtmp / 6! F(1) G(t) dt
Jj=0m=1 tntm—1 Jj=0m=1 tn+m—1
p-1 , tm _ p=1 N\ L
=Y plel ) (ap)” / F()G(t)dt = p_"_1<z e;) / F(t)G(t) q(t)dt
Jj=0 m=n+1 Im—1 j=0 th
while
p-1 p
i 1-0 1-1
‘] f— —S = =
e 0

SO <f’g>L2('I]') =0.

(A.2) Nowletg € Ln, K.
three possiblities:
(A.2.1) None of X, <X, ;s and X, j» <X, holds. In this case, one has T, ; N T, =%, so f and g have disjoint
supports and (f, g)LZ(T) =0.
(A.2.2) One has X, <X,y or X, <X, . To be definite, assume that X, ;» <X, then T, C T
j'efo,..,p—1}

&) = /T fedu = /T fedu = Z / fedu

(T)with (n, k,s) # (n',k’,s'),theng = U,y ¢G forsome G € L? ((t,,, L), p~"q(t) dt). We have

K for some

m 1_

p—1 thm
= Z 2 e 2 / Fntm Jkpm+jpm= 14 (8) 8nam Jepm+jpm— () de.
j: m=1

Inym—1

. i
By assumptions in each summand, we have [, 4, xpmyjpm-14,() = 6/F(t) and Enamkpmsjpm-14r(E) = 6;, G(t), so
similarly to the preceding computation, we obtain

T 2 e Z ole] / FOGDd= S Z wrrprgler) [ oL

j=0 m= Lnym—1 j=0 m= Lnym—1
p—-1 o ) , tm - y p—1 L .
=Y Y @prp e, / F()G()dt = p™la,) ' 6] / F(t)G(t)g(t)dt =
Jj=0 m=n+1 tm—1 j=0 th
N’
=0Dby (6)

(A.2.3) Onehas X, x = X,y . In this case, s # 5,

fn+m,kpm+jpm—1+r(t) = 9§F(t)’ gn+m,kpm+jpm—1+r(t) = eﬁ,G(t),
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forallmeN, j €{0,..,p—1}andr €{0,..., p™ ! — 1}, and

&) = / fedu = / fEdu = Z / fedu

X - Lnym
= Z Z e Z / Snamepma jpn=14r(8) namjcpm s jpm-14r(t) di
Jj=0m=1 Lnym—1
X m ‘- Lnm p—1 oo th+m
= Z Z m+n Z eJ / F(t)G(r)dt = Z Z metn pm— 16] / F(t)_G(t)dt
Jj=0 m=1 r=0 lnpm—1 Jj=0 m=1 lnym—1

_ t p—1 j L
- 2 (;) Y (apypt / F()G@dt = p71 Y (j—) / F®) G0 g0 dt,
j=0 NV

m=n+1 Im—1 n

while

SO <f’ g>L2(1D =0.

The orthogonality of the decomposition is completely proved.
(B) In order to prove the totality of the decomposition, it is sufficient to show that any function supported on a single
edge belongs to the right-hand side of (5). So lete,,, € E and h € L*(t,,_1, t,,,). Define v € L*(T) by

{h, (n,k) = (m,r),
Un,k =

0, otherwise,

then we need to show that v belongs to the right-hand side of (5).
Consider the p™-dimensional subspace

S:={ueL*T): u,, €Chforn=mandk =0,..,p™ —1,u, =0forn # m},
then by construction, we have v € S. In addition,
SN Li,k’s(T) = {0} for n > m and any (k, s),
dim (SnL2 () =1,
dim <S N Lfl’k,s(T)> = 1for n < m and any (k, s).
This yields
m—1p"—1 p—1

dim|{Sn|L (T)® @ @Lnks(T) =dim (SnL; (D) + Z Z Z dim <S anz,k,s(—l]—)>

ey kEE s= n=0 k=0 s=1

LT

m—1

=1+ Z p"(p—1)=p™ =dimS,
n=0

&M'

which shows that S ¢ L? d(T) ® @e v€E @p 2 (T), and due to v € S, we arrive at the conclusion. O

n,k,s
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By using the inclusions (4) we immediately obtain the following:

Corollary 2.3. One has the orthogonal decomposition

H(M=H (e P @H,,ksm
ey kEE s=
Corollary 2.4. The map
U:=Uq® P EBUnks L((0,L),q)dy & P EBLZ((rn,L) pqnd) - L2 (M P @Lnksm.

en kEE s=1 en kEE s=1 enkEE s=

is a unitary operator.

In order to have a similar transformation for H 1-spaces, we recall that for an interval (a,b) C R and a piecewise
continuous weight function v : (a,b) — (0, o), one usually denotes

H'((a,b),v(t)dt) := {f € L*((a,b),v(t)dt) : f" € L*((a,b), v(t) dt)},

which becomes a Hilbert space if considered with the scalar product

b
<f’g>H1((a,b),v(t) an = <f’g>L2((a,b),u(t) ant <f,’g,>L2((a,b),v(t)dt) = / (f(t)g(t) + f’(t)g’(t))v(t) de.
a

In addition we make the following observations:

(1) IfF € L?>((0,L), g(t)dt), then:
* U,qF is continuous on T if and only if F is continuous on (0, L),
* U,qF € H(T)if and only if F € H' ((0,L), q(t) dt),
* and in this case we have

”(UradF), ”iZ(‘D = ” Urad(F,)”iz(T) ”F, ”LZ((O L) q(t)dt)’
(2) if F € L?>((t,,L), p~"q(t)dt), then:
* U, sF is continuous on T if and only if F is continuous on [f,, L) with F(¢,) = 0

* in this case U, ;F € H'(T) ifand only if F € H' ((¢,,, L), p~"q(t) dt),

 and in this case [|(Uy e sFY 12,5, = 1Unics Moy = IF I iy

Therefore, it will be convenient to denote
H'((t,, L), p~"q(t)dt) := {f € H'((t,,L), p"q(t)dt) : f(t,) =0},
then it follows that
Unaa : HY(0,1),q(t)dt) » HL (T), Uy : H'((t, L), p~"q(0)de) > HY, (T)

are unitary operators, which gives the following:
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Corollary 2.5. The map

p—1
U:= Urad & @ @ Un,k,s

en kEE s=1

defines a unitary operator

1 -1
HY((0,L),q()dty & € p@ﬁl((tn,m, p"q)dn) > HL (M & P pGBH}I,k,S(T ) = H'(T).

e, k€E s=1 e, k€E s=1
2.3 | Embeddings and equivalent norms
We denote

AYT) := {f € H'(T) : f(0) =0},
which is a closed subspace of H!(T).
Lemma 2.6 (Poincaré inequality). There is a constant C > 0 such that
I fllz2cry < CIf' Mzzcr forall f € HY(T). (7

Proof. For (7), it is sufficient to show that the number

T
fEAN(T), f20 ||f||L2(1r)

a:

is strictly positive (then one can choose C := 1/+/a). Remark that
HMxAYT) > (f.8) = (.82

is a closed, symmetric, nonnegative, densely defined sesquilinear form in L?*(T), so it generates a nonnegative self-
adjoint operator A in L?(T), and the above number a is the bottom of the spectrum of A. By Lemma 2.1, the embedding
HY(T) = L*(T) is compact, then A has compact resolvent, and a is its smallest eigenvalue due to the min-max principle.
In particular, the infimum in the definition of a is attained on some eigenfunction F € H'(T). We have obviously a > 0.

Assume that a = 0, then ||F’|| iz M= 0. This means that F; , = 0forall (n, k), that is, all F, ;. are constant. The continuity
of F shows that F is constant on T, and F € H'(T) means that F(0) = 0 and then F = 0, which is impossible. Hence,
a>0. O

In view of Lemma 2.6, the norm induced by the H!-scalar product

(o @ma =8

is equivalent to the initial H'(T)-norm. Moreover, we have the direct sum decomposition

p—1
Am=a,me @ P, M,

e, kEE s=1
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H (M) :=HT)nH. (M ={feH., (T): flo)=0},
H}l’k,s(T) 1= HYT) nH}l,k’S(T) {fe ans(T) : flo)=0}= nks(T)
which is orthogonal with respect to both (-, -) HL(T) and (-, -) AT

We further remark that for F € H' ((0, L), g(t) dt), the inclusion U,4F € FIrla 4(T) is equivalent to F(0) = 0. So if we
additionally denote

HY((0,L),q(t)dt) := {F € H'((0,L),q(¢)dt) : F(0) =0},

then we conclude that the map

p—1
U:=Un® P P Unis

ep k€EE s=1

is an isomorphism between A ((0, L), q(¢t) dt) & €@ @p 't ((t,, L), p~"q(t) dt) equipped with the usual H! scalar

products and

ey kEE
Am=a Mo P @ansor) ®)
ey kEE s=

viewed with the H' scalar product.
We will additionally introduce the space

H(M={f €HT): fo)=0}, Hy(T)={f €HyT): f(o)=0},

then it is standard to see that H(l)(T) is the closure of H}(T) in A(T). In particular, H,(T) is a closed subspace of H(T),
so using the orthogonal decomposition (8), we arrive at the decomposition

p-1
ﬁé(-ﬂ—) = Hé|rad(T) ® @ @Héln,k,sﬂ—) (9)

ep kEE s=1
with
AL g = AL (MO HXD), HY, (1) :=HL, (T)nHAT),

which is orthogonal with respect to the A'-scalar product. Further remark that for F € H' ((0, L), g(¢) dt), the inclusion
U,.qF € HX(T) is equivalent to

F € H((0,L),q(t)dt) = {F € H'((0,L),q(t)dt) : Ja € (0,L) such that F(¢) = 0 forall t > a}.

Recall that U,,4 is an isomorphism between A ((0, L), g(t) dt) and Hra d(TT) and A! o d(TT) N HX(T) is dense in H olra d(T) SO
it follows that

UraéHélrad(T) = the closure of H}((0,L), q(t)dt) in H'((0, L), q(¢) dt) =: Hé((o, L), q(t)dt).
Remark that the usual mollifying procedure shows that

H;((0,L), q(t)dt) = the closure of C(0, L) in H'((0,L), q(t) dt),

which will be useful below.
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Similarly one shows that for any (n, k, s), there holds
Un . H} . (1) =H)((t,,L), p"q(t)dt) := the closure of C°(t,,, L) in H'((t,, L), p~"q(t) dr),

s 0|n,k,s

and we conclude that the map

p—1
U:=Up,® @ @ Un,k,s

ep kEE s=1

is an isomorphism between

p—1
AY(©,L),q)dt) & @ € A (¢t L), pq(1) d1)

en kEE s=1

equipped with the usual H! scalar products and

Hé(—l]—) =H |rad(—|]—)ea @ @Holnks(—ﬂ—)

ep kEE s=

viewed with the H' scalar product.

2.4 | Harmonic functions
By construction, FIé (T) is a closed subspace of H'(T), so let us introduce the subspace
H)(T) := the orthogonal complement of A (T) in H'(T).
We would like to understand the structure of this subspace, in particular, to construct an orthonormal basis (recall that

the orthogonality is understood with respect to the H'-scalar product).
Remark first that in view of the orthogonal decompositions (8) and (9), we have the orthogonal decomposition

agl —
A\ =H),, (D& P 69 H o (D (10)
enkEE s=
Alra 4(T) := the orthogonal complement of H Olra d(T) in Hra 4(M,

Aln k. S(TT) = the orthogonal complement of H ks (M in H! nks (m.

Let fi.d € H 4(T), then fr.q € AL (T)ifand only if

Alrad
(fl & >L2(T) = (frad» &) pp(yy = Oforall g € Hélrad(T). a1

We write fruq = UragFraa With Fpq € H((0,1),q(t)dt) and g = U,,qG with G € Hj ((0,L),q(t)dr) and recall that
C(0,L) is dense in H, é ((0, L), q(t)dt), then it follows that (11) holds if and only if

((UraaFraa)'s UradG)') oy = Oforall G € C2(0, L).
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AS (UragFraq)’ = Uraa(F!,;) and (UaqG)' = Uyaq(G”) and Uy,q is unitary as an operator L* ((0, L), q(t) dt) — L? (T, this
is equivalent to

L
’ ) — /g / _ ©
/0 FLo(OGOQW At = FL,0:8 2 0.1 gy = 0 For all G € C2(0. L), 12)

which means that (qF; . d)’ = 0in (0, L) in the sense of distributions, which shows that F; .q = ¢/q forsome c € C. We also
recall that F,,4 must be continuous with F,4(0) = 0, so F,,q is completely determined by the value c of its derivative in
(0,1): Forany n € Ny and t € (¢,_1,1,), one has

c t—t (=A% t—t ' ( € )”
’ _ B —ty t _ —lp ap
Frad(t) = —(ocp)”’ Fraq(t) = C( (ap)" + kg() <0(p) > =¢ (ap)" " 1-— 2

ap

It remains to check if F,,q € H' ((0, L), g(t) dt), for ¢ # 0. We have
L 2 - fn 2
/ / — !/
Il o g a0 / [Frag@l a0 dt = 3, (ep)" / L] dt
n= n—1

[e9) ; (o] f n
Z p) )2n (ty —th1) = |C|2,;)<@> )

=¢n

which is finite if and only if £ < ap, which we assume from now on: In this case,

-1
t
! — 1el2 - -
||Frad||L2((0L)q(t)dt) le] <1 o(p) ’ (13)
To compute ||Fyqll? (0.0 dry Ve first represent, for any n € Ny and t € (t,,_1,t,),
e \" eV
PP = e ¢ tnt) +zt‘tn-11_<5) ; - ()
d (ap)? (apyr ,_ L - !
ap ap
therefore,
¢ \" ¢ \"
‘ 1-(= 1-(=
e N ) (2)
/ [Fraa()] dt = lel| 51—+ — || —=—
- @py® " (apy 1_ L <
ap ap
and

L = tn
2 2
”Frad”iz((O,L),q(t)dt) = / |Frad(t)| Q(t) dt = Z(ap)n/ |Frad(t)| dt
0 n=0

lh—1

2
n n
1 © P n 0 1—(%) 0 1—(%)
SEEDY (7) W + 3 (@pty" ,
n=0 p n=0 l—i n=0 1— —
ap ap
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which is finite if and only if £° < ap and ap? <1 (we recall that £ < 1 by the initial assumption). For subsequent
computations, it will be useful to normalize F,,q in H' ((0, L), g(¢) dt), in view of (13) this amounts to the choice

and gives

¢ f—t n—1 y k
—tn-1
Fraa(t) = V 1- %< (@p) + k;o <@> >, t € (ty-1,ty), neN. (14)

We summarize these computations as

1

i i 1 CUpaFrags € <ap <=,

H_,(T) # Hy,,(T) if and only if ¢ < ap < > oD = radFra <7
0, otherwise.

The spaces H' Alnks

is dense in Héln 1.s(I, then a function f, ;s € H L nis(T) belongs to H

H' ((t,,L), p~"q(t) dt) satisfying

are studied in the same way. Let us fix an admissible triple (n, k, s) and recall that U, ; (C°(¢t,,, L)

Aln K. (D ifand only if f, ) s = Uy sFp s With F €

(UniesFuics) s UniesGY) oy, = O forall G € CE(ty, 1),

which can be equivalently rewritten as

L
= (F, .G =p [ B 0000 =
b

U F U G’
< nks( nks) n,k,s( )> L2((t,,L),p~"g(t) db)

LX(T)
forall G € CZ°(t,, L), which means (gF ;l " S)’ = 0in (t,,L). As F,,  ; can be chosen independent of (k, s), we write simply
Fn = Fn,k,s-

So we obtain F}, = ¢/q in (t,, L) with some ¢ € C, and for ¢ € (£,,1,n—1, tnsm) With m € N, one has

¢ m—1
m—1 ¢ n+k f—t ¢ n+11 — (-)
t—t _ — _
Fl)=—S . Fy0 :c<a"—+ml N <_> )EC E= nmet <_> BRI |
k=1

(ap)n+m ( p)n+m ap (OCp)"'H” ap 1- L
ap
In order to check if F,, € A ((t,, L), p~"q(t) dt), we again compute
Yl+Wl
VLI 1oty = P Z / IF4 (0P ap) ™ dt
Lpym—1
(o] (o] ¢ n+m
— 2N n+m —2(n+m) n+m _ 2,,—h I
lePp™ X e ap) X apy = e p" 3 (ap> :
m=1 m=1
which is finite if and only if £ < ap, and in that case
+1
_lePe T
, —
£ ”LZ((I L.prg)d) — pr \ ap ¢ 15)

ap
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Furthermore, in this case for t € (t,;,—1, tpm) With m € N, one has

e \" e\™
1—-{— 2n+2| 1 — ( —
(t = taym)® £t (a ) ¢ <a )
2 _ 1012 n+m _ p v p
IEn (DI = Icl (ap)2n+am +2(t t"+m—1)(ap)2n+m+1 1— t + ap 1 ‘. ’
ap ap
therefore,
2
¢ m—1 ¢ m—1
bnem 1 g3m+3n g+l 1- <_> ¢ n+2| 1 — <—>
Zdp=tep| 2 2n+2m ap mnf U ap
|F (0] dt = |c| +¢ +¢ ,
trrmet 3 (ap)2n+2m (ap)2n+m+1 1— i C(p 1— i
ap ap
and
e tnam 2
2 o
“Fn”LZ((tn,L),p_”q(t)dt) - p " Z(O‘P)M—m/ |Fn(t)| dt
m=1 th+m—1
2
m—1 m—1
1/ ¢3 n+m p3n+am+1 1- (i ¢ 2n+2| 1 — <i>
a [e4
=le?|3( = + - P + (aptyrm( — S A
ap (ap)r+ 1= £ ap 1- £
ap ap

is finite if and only if £* < ap and apf < 1 (as one always has ¢ < 1). For what follows, we normalize F,, y ; to have unit
norm in H' ((¢,, L), p~"q(t) dt): as follows from (15), this means the choice

_n(Z g ap—¢
¢.=p (f) ¢
and then
n m—1 n+k
_n(% 2 Jap—=C [ t—tyim i . 1
F,()=p <€> \/ - ( G kz::l = 1€ (typmets bnam) With m € N (16)
Therefore,

1 CU,ksFn, € <ap< 1
~ ~ . . ~ k, s R
Hrll,k’S(T) + H(l)ln,k,s(T) ifand only if £ < ap < Him,k,s(m = s 13

¢ 0, otherwise.
We summarize the preceding computations:
Lemma 2.7. One has H,(T) # {0} or, equivalently, H}(T) # H'(T), if and only if
¢ <ap< % 17)
If this condition is satisfied, then the functions

$rad 1= UraaFraqa and ¢, s = Uy sFy With e, € Eands €{1,...,p — 1}

with F,q from (14) and F,, from (16) form an orthonormal basis in Hi(T).
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We remark that the criterion (17) for Hé (T) # H'(T) and, equivalently, for H é (T) # H'(T), was already obtained in [30]
(even for a more general configuration) by different methods, but in our case, it appears naturally as a by-result of the

construction of the orthonormal basis.
For subsequent constructions, we will need the limits

F® = tl—l>rll:1* Frad(t)’ F;?LO = ll_l)l’[l:lﬁ Fn(t)‘

rad °

As F,q and F,, are increasing functions, we have

o0 . . A n £
Frad ,}LrEoFrad(tn) = y}l_{lgo \/;l;) <@>

1]
—_
|
]
S
T:
g8
—
— |
|
A
S
+
+
1]
—_
|
Q
Sl
—
I =
|<\
Q
T q
| =
N

and, similarly,

=1 \@P
Due to
()
i<i>n+k_<i)n+lmz—l<i>k_<i>n+l ap oo <i>n+1
“~\ap ap “= \ap ap 1_i ap a
ap
we obtain

F°°=Pn(g)§ ap—t( ¢\ _ap _ | ¢ ()
" t t ap ap—¢  \Nap—-¢t\a)

2.5 | Abstract trace operator

Everywhere in this subsection we assume that

’ the inequalities (17) are satisfied. ‘

Now we construct the first version of the trace operator. We define
Z :={rad}u{(n,k,s) : e, €E,s€{l,..,p—1}}
and define
v:Z - {radtuN,, wv(rad):=rad, v(nk,s):=n.
For numerical operations, it will be useful to identify

rad := —1.

(18)

19)

(20)
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Recall that we have the orthogonal decomposition H(T) = Hy(T) @ H,(T) and let P, : H'(T) - H,(T) be the
orthogonal projector. By Lemma 2.7, the map

0 : ¢tX2)> (a) ~ ), a,U,F, € H)(T)
zeZ

is unitary. Remark that the behavior of U,F, near the boundary of T is uniquely quantified by z and the limiting values
F;"(’Z) defined in (18). Therefore, it is reasonable to consider the multiplication operator

v(z)
M : ¢X(2) - tX2), (a,)+ <P_7F§E’z)az>-

v(z)
The explicit expressions (19) and (20) show that the coefficients p_TFSE’z) are strictly positive and uniformly bounded,

therefore, the operator M is injective and bounded. However, it is not surjective. Namely, for r > 0, introduce

t3(2) 1= {(a) € £%(2) 1 (P"Pa) € (D)}, @)l 1= [P Pa)llexz)- e4y)
Denote
1 ap 1 log¢ —loga
= log—=—==-(1-——"—
° 2logp %877 2< log p >0,
then

o _ 4 —ov(z)
FV(Z)—‘/ap_fp forall z € Z,

and it follows that M : ¢2(Z) — ¢2(Z) is a bounded bijective operator. This gives the abstract trace operator
T :=MO'P, : HA(T) - ¢2(2), (22)

which is a linear operator that is bounded and surjective by construction. Remark that M®~! is injective, which shows
that ker 7 = ker P, = H(T). In addition we extend 7 to H(T): For any f € H'(T), set

of i=1f (23)
with any f € H'(T) such that f = f in T \ T” for some n € N,,.

Theorem 2.8. The abstract trace operator T : HYT) —» f?,(Z) is well defined, linear, bounded, surjective, with
ker = Hy(T).

Proof. Let f € H(T)and f,g € A'(T)suchthat f = fin T\ T" forsome n € Nyand f = gin T \ T™ for some m € N,,.
Without loss of generality assume n < m, then f = §in T \ T, thatis, f — g = 0in T \ T This means that 7(f — §) = 0,
i.e. 7f = tg. This shows that 7 is a well-defined map.

Let ¢ : (0,L) —» R be a C* function such that ¢ = 0in (0, %) and g =1in (%,L). For f € H'(T), the function f : T3
x ~ ¢(|x])f(x) belongs to H(T) and coincides with f in T \ T, so one has tf = tf. As f ~ f is linear, it follows that
the extended 7 is also linear.

To show the boundedness, it is sufficient to show the boundedness of the map H'(T) 3 f ~ f € HY(T). For any f €
H(T), one has the identities

f0,0 = §0f, .fn,k = fn,k for (n, k) # (0,0).
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This gives

!
I ey = 2 @I

Gn,kGE

=Wyt 2 @I < ol * 1 1y
en kEE
(n,k)#(0,0)

and

”f(l),()”Lz(o N ”gof()o +o fOO“Lz(O = 2“§0f0 0”L2(0,1) + 2”§0,f0,0“22(0’1)

<20l o221, + 209 131 foolZs 0 1) < 2Dl foollZ g, With b 2= max{ligllZ, g 1%}

so one obtains ||f||H1m < 2b||f00||H1(0’1) + ”f”Hl(D <(b+ 1)||f||H1(T), which gives the result.
The map H'(T)  f — f € H'(T) is surjective, which shows that the range of 7 is the same as before.

Hl T - ~ ~ H1 T ~ ~ ~
If f € H)(T), then there exist f,, € HA(T) with f,, ——— f.Then f,, € H(T)with f,, — > f,s0 f € A\T)and cf =
f =0.
1

N . . HY(T)
On the other hand, iftf = 0,thentf =0and f € Hé(T). Then there exist g, € HX(T) with g, —()—> f- The function
g: Taxm (1—g¢(x])) f(x) is supported in T° and, hence, it belongs to H.(T). Therefore, g + g, € HL(T) with g +

H'(T) .
gn—— g+ f = f,s0f €H). O

The above definition of 7 is involved due to the application of the orthogonal projector and the expansion into an
orthonormal basis. Let us show that it can be recovered using more elementary operations.

Lemma 2.9. One has continuous embeddings
ﬁl((05 L)5 Q(t) dt) i CO([()’ L])9 Hl((tn’ L)’ p_nq(t) dt) < CO([trN L])for any n E NO:
where the right-hand sides are endowed with || - || o

Proof. The continuity inside the respective intervals is clear due to the one-dimensional Sobolev theorem, and it remains
to establish norm estimates. Let f € H' ((0,L), q(t)dt) and t € (0,L), then

, ' 5 Lo 2 Loy / 2 L
rof =] [ roa s(/o s (s)|ds) —(/0 =l (s)|\/q(s>ds) [ / g ds

The second factor on the right-hand side is || f ||§~I1 (©L)g0)dr)’ while

tn ) p n -
/oq(s) / (cxp)n Zg(@) Srase

Ast € (0, L) was arbitrary, this yields || ]l < \/E”f”FIl((O,L),q(t)dt)' )
If f € H' ((t,, L), p~"q(t) dt) with some n € N, then its extension to (0, L) by zero f belongs to f € H' ((0,L), q(t) dt),
and one uses the first part of the proof. O

Lemma 2.10. Let 7’ : H'(T) — ¢?(Z) be a bounded linear map such that

(a) T'f =0forany f € HX(T),
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(b) forany F € H' ((0,L), q(t) dt), one has

lim;_ ;- F(t), z=rad,

(T,UradF)z = {

0, otherwise,

(c) forany A € Z \ {rad}and any F € H" ((t,z), L), p7*Pq(t) dt), one has

(T/UAF)Z = p_ 2

@ | lim,_;- F(t), z=A4,
0, otherwise,

then v’ = 7. Moreover, these properties are satisfied by 7.

Proof. We first remark that the limits on the right-hand sides of (b) and (c) are well defined by Lemma 2.9; for (b), one
uses the fact that F coincides with some function F € H' ((0,L), gq(t) dt) in (%, L).

(i) The boundedness of 7’/ and the condition (a) give Hé(T) c kert’. Forany A, z € Z, we have

»(z) »(z)
. i — o0 e —
(@' $), = (T'UFypy), = lim - F®p 2, z=4  _[Fap 2, z=4
0, otherwise, 0, otherwise.

On the other side, by definition we have (071¢;,), = &, , (where §, , are the usual Kronecker symbols) and, therefore,

(1)
- o0 —
o, =4F 7 Far z=4,
0, otherwise,

which coincides with 7/¢;. As the linear span of IfIé(T) and (¢;),c7 is dense in H(T) and 7’ is bounded, it follows
that 7/ = ¢ on HY(T).

(ii) Letg : (0,L) » R be a C* function such that ¢ = 0 in (0, %) and ¢ =1in (%,L). For f € H'(T), consider f : T 3
x - @(|xf(x) € AY(T). As f — f =0in T\ T°, we have f — f € HX(T), and

aeD)

T’f(i)r’f(;)rf = f.

(iii) Itremains to check that 7 satisfies the three properties. Remark that (a) holds by construction. Let F be as in (b), then
one can represent F := cF,q + G with ¢ € C and lim,_ ;- G(t) = 0. By linearity we have

(TUradF)z = T(CUradFrad + UradG) = CFf:darad,z + tUeG = <l1_1)1}:£ F(t)>5rad,z + tUG.
Therefore, to show (b), it is sufficient to show that tU,,4G = 0. For that we take ¢ € C*(R) such that 0 < ¢ < 1, with
p(t) =1fort <0and ¢(t) = 0fort > 1, and for n € N, consider the functions

t—t,_
P L §0<€—:1>’ Gy = pnG EHCI((O,L),q(l’)dt).

As for any n there holds 7U,,4G,, = 0, it is sufficient to show that G,, — G in H' ((0, L), q(t)dt) as n — oo.
The dominated convergence implies G, — G in L? ((0, L), q(t) dt) as n — co0. We have G/, = ¢/,G + ¢,,G’ and the second
summand converges to G’ in L? ((0, L), g(¢) dt) as n — oo. It remains to check ¢/,G — 0 in L? ((0,L), g(¢) dt) for n — co.
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‘We have

w60 = ¢ (=t Yo,

and the function vanishes outside (¢,,_;, t,,) C (t,,_1,L). If follows that
L
ILGI2 e [T i6rgaar
PO 20 n)qan = "pan t gqt)dt.
n-1
As G vanishes at L, for all t € (t,,_1, L), we have

L

L L L L L
cOP = | / &'(s)ds| = | / G(51V/a)— ds| < / IG/(9)12g(s) ds / s / IG/(9)I2q(s) ds / ds
t t 1/ q(s) t ¢ 4q0s) tho1 th q(s)
and we obtain
t 9l /& ds [F
I 12 TNy e ® _as
IhGI 0100y < Co / GOPgE G =g / o) awas (24)

In order to show the sought convergence, it suffices to show that C,, remain bounded for large n. For that, using the explicit
expression of g and the relations (17), we compute

Logs rF ° - N
5 o Sar 5,5)
/tn—l q(s) J;, 1® kg—f “P) k=;—1 ap

n-1 -1 1

:(focp)n—l(l—focp)—1<of;p> <1_Cf;p> E€2n—2(1_€ap)_1<1_af;p> ’

which gives

-1
19l 1 4
Cn— 72 (l—focp) 1—@ ,

that is, C,, are independent of n. This concludes the proof of (b) for 7, and the property (c) is proved in the same way. []

We complement the preceding observations by the following approximation result, which will be useful for the
geometric interpretation of the embedded trace:

Lemma 2.11. For f € H'(T) and N € N, let fy be the extension of f|y~ by constants, that is,

) 1= f(0), xeTV,
N ' f(XN,K)9 X € —H_N’K, K e {0, ,pN — 1},

N—
then fy BN f in HY(T), in particular, tf = limy_, o 7fx in €2(2).

Proof. Due to the one-dimensional Sobolev inequality for any N € N, one can find some By > 0 such that | f(Xy )| <
Byl fllgicr for any f € H'(T) and any K € {0, ..., p¥ — 1}. We have

pN-1

2
Iy = Wy + 2 [N 0)) /T ldu,
K=0 N.K
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while
p—1 o p'-1 ) a7
/ ld/,tzz Z Z(cxﬁ”sp Z(pocf)”z:sN<oo.
TNk j=0 n=N+1 k=0 n=N+1

It follows that ”fN“iZ(T) < ||f||i2(w) + PN+1BJZVSN||f||12q1(T) < o0, thatis, fy € L*(T) for any N. At the same time,

! <
P =4 Ime =N
0, otherwise.

In particular, |} | < |f’], which yields || f} Iz2cr) < I1f'llz2cr) and fy € H'(T). In addition,

N—oo
Iy = fle2ery = 1 l2enmvy —— 0. (25)

Now let C > 0 be the constant from the Poincaré inequality (7). By construction, one has fy — f € H!(T), therefore, due
to (25),
N—-oo

Ifn = fllzany < CNfy = ey —— 0,

which concludes the proof. O

3 | APPROXIMATION SPACES
3.1 | Excursus about Sobolev spaces
Let us briefly recall various definitions and basic facts related to fractional Sobolev spaces H* with s € (0, 1) on open sets
and manifolds.
Let QO c R9 be a nonempty open subset and k € N,, then the kth Sobolev space H*(Q) is defined as
HYQ) = {f € LX(Q) : 6°f € L) forall « € N with |a| < k},

which is a Hilbert space if equipped with the scalar product

<f’g>Hk(Q) = z <aotf, aag>L2(Q)-

la|<k

For Q = RY, we obtain an equivalent definition via the Fourier transform. Namely for s € [0, o0), define the sth Sobolev
space on Q by

H5(RY) = {f e LX(RY) : (£Yf e LZ(Rd)} with (§) := V1 + [§]2,
where f is the Fourier transform of f, which becomes a Hilbert space if equipped with the norm

(8 msmayy = (6 FE)E) 1oy

For s € N, the two above definitions of H*(R?) coincide and the two norms are equivalent.
Let Q C R4 be a bounded nonempty open subset and s € (0, 1), then the sth Sobolev space on H%(Q) is defined as the
space of the restrictions on Q of the functions from H*(R?) with the quotient norm

s . = inf s(Rd)-
I N ers ey, " gl s (e
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We will need various equivalent characterizations of these spaces as well as several equivalent norms [1]. Recall that Q
is said to be with Lipschitz boundary if for any p € 0Q, there exist € > 0, a > 0, a Lipschitz function h defined on the
open ball B.(0) c R4~! with h(0) = 0 and |h(y1, ..., y4_1)| < a for all (y1,...,Y4_1) € B.(0), and Cartesian coordinates
(y1, .- » Ym) centered at p such that

QN {01, 2Ya) ¢ G1s s Yao1) € Be(0), [yql <2a} = {12 ¥a) © V15 eees Ya—1) € Be(0), (¥, oo, Yg—1) < yq < 2a}.

The first reformulation comes from the interpolation theory, see [62, Chapter 34]. Let X and Y be normalized spaces
with X C Y and s € (0,1). Choose any b > 1 and for f € Y and ¢ > 0, define

K(f,t) = girel)f((llf —glly +tliglx),  F* :=(F)jen with F} := bK(f,b7)), (26)
then the interpolated space [Y, X ], is defined by
[V, X], = {f €Y : IfI 5, = IFIE + IFI2, < oo}, 27)
and for any 0 < s < s’ < 1, one has

H(@) = L@, 1 @), 28)

s/

with an equivalence of the associated norms, see [15, Theorem 3.5.1]
If O has Lipschitz boundary, then

2
HY(Q) = {f €LX(Q) : [fPq :=/ FO O 44y < oo}, (29)
Q

«Q |x_y|d+2s

while the seminorms f — ||[F®||,2 and [-]ys(q) are equivalent, see [62, Chapter 36].
Another group of equivalent characterizations comes from the theory of Besov spaces, which we discuss following [15,
Chapter 3]. For f € L*(Q), define its modulus of smoothness by

w(f, ) := sup IFCH+M = Fllagy £>0 Qni=Qn@+h). (30)
<t
For s € (0,1) one defines the Besov seminorm [ f]p 5 of f by
! dr
U= [ e
0
then the Besov space Bj ,(Q) is defined by

Byo(Q) i={f € LX)+ I, = IfIT +[f15, < oo}

Let b > 1, then the substitution t := b~ gives

1 [
/ t=>w(f, t)Z% = (log b)/ b**w(f,b~)?dx,
0 0
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and using the monotonicity of w(f, t) in ¢, we obtain the inequalities
1 ) ) had . . AR
2 2O < P u (b < [ b b
j=0 j=0 j=0<J

< Z b2s(j+1)w(f’ b—j)z < b z b2sjw(f’ b—j)Z,
Jj=0 j

j=0
which shows that the seminorm
[ = ||bw(f, b)), (31)
is equivalent to the above Besov seminorm. If, in addition, the set Q has Lipschitz boundary, then
B3,(Q) = [LA(Q), H'(Q)] = HY(Q),

and the seminorms f ~ ||[b%w(f,b™/)|l¢2 and [ f]gs(q) are equivalent.
We summarize the above considerations as follows:

Proposition 3.1. Let Q ¢ R? be a nonempty bounded open subset with Lipschitz boundary, 0 < s < s’ < 1. For f € L*(Q),
define

’ ’
W= (W))jen, F3 = (F;’S )jens

is!

S . Y -1 s,s’ . js/d -
Wj ,:pdw(f’p d), Fj =p KS’(f’p d)’

Ko(f.0=_inf (I1f = glliaca) + tlglls o )-
§EHY (Q)
then || - |Ir2 + [-1g s given by (29) and f + || fllr2 + [IW*|l¢2 and f = || fll2 + ||F”'||gz are equivalent norms on H5(Q).

1
Remark that the definitions of Wj and Fj’s, correspond to the choice b := pd in (31) and b :=b :=pd in
(26), respectively.
Finally, if Q is bounded with Lipschitz boundary and 0 < s < § then C°(Q) is dense in H(Q), see, for example,
eq. (2.220) in [49].

3.2 | Multiscale decompositions

Let O ¢ R? be a nonempty bounded open subset. Our next aim is to decompose € in a very special (but still quite natural)
way. We adapt the construction proposed in [47] for p = 2, which is in turn a geometric realization of the approximation
spaces used in the wavelet analysis, see, for example, [15, Chapter 2] or [48, Chapter 2].

.....

(A1) Qoo =
(A2) for any n € Ny, the sets Q,,, ..., Q, pn_; are mutually disjoint;
(A3) foranyn € Njand k =0,..., p" — 1, one has

p—1

Qn,k \ U Qn+1,pk+j
j=0

Qi1 pk+j C Qpy forany j €{0,...,p — 1}, =0.
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The above conditions can be viewed as a hierarchical decomposition procedure: One sets Qg := €, and if for some n all
Qi are already constructed, then one decomposes each Q,, ;. (up to zero measure sets) into p disjoint pieces Q41 pi+ )
J €10, ..., p —1}. In order to have a control of the size of Q,, ;, we introduce further classes of conditions.

A decomposition (Q,, ;) is weakly balanced if

(A4) thereis Cy > 1 such that

1 1Q] Q]
Co SOkl <Co — o

foralln € Nyand k € {0, ..., p" — 1},
and is strongly balanced if it satisfies the stronger condition
(A4*) |Qpil = lpﬁnl foralln € Nyand k € {0,..., p" — 1}.
Finally, a decomposition (Q,, x) is called regular if it satisfies the following two conditions:

(A5) There exists ¢; > 0 such that for alln € Ny and k € {0, ..., p" — 1}, one has

n
diam Q,  <c1p d;

(A6) there exists ¢, > 0 such that forall h € R ne Ny and k € {0, ..., p" — 1}, one has

n(d-1)

|Qn,k \ (Qn,k + h)| < Cz|h|P_ d

Very roughly, the last two conditions say that the shape of Q,, ; cannot become “too complicated” for large n. For the rest
of the subsection, we assume that:

Q c R4 is a bounded open set with Lipschitz boundary which admits 32)

a regular weakly balanced p-multiscale decomposition O := (Qj, ).

This covers a large class of Q: We refer to Section 5 for a more detailed discussion.

The above conditions (A1)-(A3) are very standard and say that the family (Q,, ;) is a so-called dyadic cube, which are a
very popular tool in the geometric analysis on metric spaces, see, for example, Kigami’s book [34]. Usually these standard
requirements are supplied with additional conjectures on the size and the shape of the pieces to guarantee additional
properties of induced function spaces, see, for example, [14, 26] for further alternatives. We remark that our set of condi-
tions (A4)-(A6) is chosen to guarantee a kind of compatibility of the partition with the Euclidian smooth structure and
fractional Sobolev spaces, as will be seen from the subsequent constructions.

Let us establish further properties of ©.

Lemma 3.2. Under the assumption (32), there holds

K :=sup #{j : dist(Q,;, Q) <p 4} < 0.
(n,k)

Proof. Let us pick some (n, k). Recall that by assumption (A5) we have the inequality diam Q, ; <c¢;p i for all j. Now

let j be such that dist(Q, j, Q,x) < p d, then there exist x,, ; € Q,, ; and x,, x € Q,, With |x,, ; — xn,k| <2p d.ltfollows
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that for any x € Q,, ;, one has the inequalities

n n
|x _xn,kl <lx _xn,jl + |xn,j _xn,kl < diaan,j +2p d < (Cl + 2)P d,

which shows the inclusion Q,, ; C B _n(xp k). Using |Q, ;| > CF 11Q|p™", the number of possible js is bounded from

(c1+2)p d
above by the number
N d
|B(c1+2)p_g(xn’k)| _ C07rg <(Cl i 2)p_5> _ C07rg (¢ +2)°
S pe— = - .
C, 1Qlp™ F(g 1) |Q|p—" r<§ ‘) |2 -
For n € N, define
Vo i=span{lqg  : k=0,..,p"—1} CL*(Q), P, := the orthogonal projector on V, in L*(Q); (33)

in other words,

-1
1
P,f= / dx1gq ..
" ,;0 |Qn,k| ankf Onje

Due to the assumption (A3) for any n, we have

p-1
ﬂQn,k = Z ﬂQn+1,pk+j a.e.,
J=0

which shows that (V,,),en, is a strictly increasing sequence of closed subspaces. We will be interested in approximating
arbitrary f by P, f with large n.

Lemma 3.3. Forany f € L>(Q), one has f = lim,,_,o, P,f.
Proof. This is an adaptation of [47, Lemma 4.5].

(i) Letge Co(ﬁ) and € > 0. As g is uniformly continuous on Q, one can find some § > 0 such that lg(x) —g(y)| < ¢ for
all x,y € Qwith |x — y| < 6. By (A5) one can find some N € N such that diam Q,, ; < é foralln > N and all k. Now
let n > N and pick x,, ; € Q,x, then for any x € Q,,x, there holds |g(x) — g(x,,x)| < €. Therefore,

-l

lg — gnllw <ceforg, := g(xn,k)]]Qn,k €Vy,
k=0

which yields [lg — P,gllzz(a) < I8 — gllza) < IIg = gxll% V10 < e/[0] forall n > N.

This shows that ||g — P,gll12(q) 2%, o for any g € Co(a).
(ii) Let f € L*(Q). Let € > 0, then there exists g € C°(Q) with ||f — g|| 12(q) < € By (i) there is N € N such that ||g —
P,gllr2(q) < eforalln > N. Then for all n > N, one has

If = Pufllrz) < IIf —&llz2) + 18 — Pugllzz) + IP(& — Pllrz) < 2I1f — glliz) + 118 — Prgllzzq) < 3¢,

which shows the claim. O
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We now introduce the approximation spaces A”(Q) consisting of the functions f € L?(Q) such that the speed of con-
vergence in Lemma 3.3 can be controlled in some special way. The construction is standard, see, for example, [15, section
3.5], but we need to recall the precise role of various parameters.

Definition 3.4. Letr > 0. For f € L?*(Q) set

g = (gn)neNOs gn = pI diStLZ(Q)(fs Vn) = pg ”f - Pnf”LZ(Q)'
Then the approximation space A"(Q) and its norm are defined by
A@={fel(Q: fet?}, Ifl}q = IIPofIILz(Q) +1I€117,. (34)
Remark that

11,y = IPof 122 gy + 1801 = IPOF 12, g + 1f = Pof 22y = I,
Recall that the space A"(Q) depends on the decomposition (€, ;), but it is not reflected in the notation.

For what follows, it will be useful to work with another equivalent norm on A"(Q). Using the spaces V,, from (33), for
any n € Ny, we introduce

V(), n=0,
U, .= N (35)
V.nV n>1.

n—1° =

By construction, this gives the orthogonal decomposition L*(Q) = @:;O U,, the orthogonal projector Q,, on U, is

given by
Po, n= 0,
Qn =
" P,—P,q, n>1,

and for each n € N and f € L*(Q), we have

f= ZQkf P.f + Z Qf (36)

k=n+1

while the summands on the right-hand side are mutually orthogonal. The following result is a particular case of [15
Theorem 3.5.3], but we include it for the sake of completeness.

Lemma 3.5. Letr > 0. For f € L*(Q), set

{ = (gn)neNoa gn = pF ||an||L2(Q)-

Then || - || ar(q) and f = |[|l¢2 are equivalent norms on A"(Q).

Proof. Recall that by definition there holds ||f||,24r(n) =1Qufl},+ X If - Pnflliz(mpZF. We have
n=0
2 — 2 S 2 22 (39) 2 S 2 22
IS12, = 1Q0S 1172y + Zlnonfnmmp T < Quf Iy + Zluf—Pn_lfanm)p d
n= n=

= Qo I, ) + P Zuf Pufl 0" T < d(IIQofIILz(Q)+ZIIf Puf 12,0, P" ) P12
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At the same time,

o0 o0
2—( 6) 2z
112, 0 = IQufIIZ, +Z||f Paf 2P’ = 1Qof 20y + 2, D, QS Iy

n=0 k=n+1
0 k-1 2— 1
2 _
= 1Q0S 17210y + 2 MQS N2y D P4 = 1Q0f I ) + Z Qw112 5—
k=1 n=0 pd— 1
2 1 SEL: 2
<HQoS N2y + —7— 2, P < 1RSI,
pli —1k=1
< max|1, — Z p ||Qkf||L2(Q) = max [ 1, ——— [I¢11%,
pd-— 1) k=0 p d—1 I:l
3.3 | Relating approximation spaces to Sobolev spaces

Now we are going to compare the above equivalent norms on A"(Q) with suitable Sobolev norms. All results of this
section are suitable adaptations of respective results from [47, section 4] for p = 2 and for slightly different definitions of
multiscale decompositions and the spaces A”. Recall that the seminorm [-]ys was defined in (29).

Lemma 3.6. Forany 0 < s < 1, there exists B > 0 such that for any n € Ny and f € H*(Q) there holds || f — P, f || 12(q) <
Bp 4 [flus)

Proof. Letn € Ny and k € {0, ..., p"* — 1}. Recall that P,, f is piecewise constant,

P f(x) = / FO)dyasx € Q.

IQn |

Using Cauchy-Schwarz inequality, we estimate

2 1 2 1 2
[ w=refe= [ jiw-g [ smales [ g [ G-l

1 ) . 2
- dydx = 75— - dx dy.
= /Qn,k 10,2 e /ank £ = FOI dydx = 15— //Q o |f() = f)| dxdy

Forall x,y € Q, x with x # y, one has |x — y| < diam Q,, ;, which gives

2 (diam Q,, ; )4*% | fx) - f(y)| (diam Q,, )4+
(x) =P, f(x)| dx < // dxdy = ————[f*, 0
/o d chdl T oo ylds AR
Recall due to the choice of Q,,  (see Subsection 3.2) and (A4), we have
(diam Q,, )3 +% _n 10|
- v <c d, Q > ,
|Qn,k| 1P | nkl Cop”
therefore,
(diam Q, ;)T Cy(c;p~ )3+ pn _ Bp_bl . Coctt™
| | - 1o} ’ Q]
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2sn

resulting in || f — P ||L2(Q )<BP_7[f]i[s(an)~Then

pr-1 2ns b"—1 ns
If = Pruf ) = Z If = Puf o, < BP T kZO Liq,0 < B @ If lis@)- _
This allows one to show the first embedding result:

Theorem 3.7. Assume (32), then HS(Q) & A"(Q) forany0 <r <s< 1

Proof. We equip H*(Q) with the interpolation norm (Proposition 3.1)

Is _i
s 2= Wy + PO Ky (F T s 0 <5<’ <1,
Let f € L*(Q). As P ; are orthogonal projections, for any j € Ny and any g € H s'(Q) ¢ L*(Q), one has

lf = Pjfllr2) < IIf = Pjglirz) < N — &llz2) + 18 — Pjglirzq)-

Using Lemma 3.6 to estimate the last summand, we conclude that one can choose some C > 1 such that

is!

_is ,
If =Pjfllz2) < IIf — &llz2) + Cb d g1l s () for all j € N,

which immediately gives

Js'

If = P;flli2) < CKg(f,b d). (37)
Now let f € H*(Q), then

2_
110y = |Pof||L2(Q)+2p If = PiflIZ g
- 2" _i 5 - 2(r— s)] % _ 2
use (37): < C( Iy + X P Ko (fip” O ) =C( If 72+ 2 " Vdpa Ky(fip™ @)
j=0 J=0

o 2 _i is _ 5
user <s: < C(Ilflliz(m + Zp dKy(f,p ¢ )2> = <IIfIIL2(Q) +||paKy(f, 4 )||€2> CIIfIIHS(Q)
j=0

In order to obtain embedding results in the other direction, more work is needed. Recall that the modulus of smoothness
w(f, t) was defined in (30).

n 1
Lemma 3.8. There exists C > 2 such that foralln € Ny, t > 0, and f € V,,, there holds w(f,t) < Cp2 t2 || fl12(q)-
Proof. Consider first the case t € (0, p~ ) for some n € N,,. Let f € V,,, then
5 o] 2
F=2 failo,s faj€C Il = Z P10 2 5o Z |fn il (38)
j=0
where we used (A4) in the last step. Recall that by (A6) for any (n, k), there holds

_n(d—l)
120 \ Qux = 0| = May, = Ta,, I, Scalhlp” @, heRd, (39)
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and by Lemma 3.2 for some K > 0, we have

#{j © dist(Q, ;,Q,x) < p~ 4} <K forany (n,k). (40)

Remark that f(y) = f, for any y € Q,, ;. In particular, if x € Q,  and x + h € Q,, then f(x + h) = f(x). It follows
that for any x € Q, , one has

G+ h) = FOO| = [1g,,(x+h) = 1o, (0] - [fG 4+ B) = F0] = 1,5 (0) = 1o, )] - [fx + ) = F. (4D)

Now let h € R¢ with |h| < t. Then for any x € Q,,, we estimate

2

pi—1 2 pt-1
[fec+m = =] Y fujla,, e+ = far| < <|fn,k| + D |fuslla,, G+ h))
j=0 j=0

2

<|[1fnil + D Ifugl| <[ 1fnil + D |fn !

j 2 dist(Qp 1,Qui)<Ih . -z
] (@ j L p)<IRl J: dist(Qp ;. ) )<p” d

use (40) and Cauchy-Schwarz: < (K + )| |f,x|* + Z |fn,j|2 .

n
J dist(Qy j,Qu)<p 4

Using this inequality on the right-hand side of (41), we obtain

2
[ = ol @ < @+ Dlltay = To oo Faid?+ Ul
Qn,k n

Jrdist(Qy, ;. Q0 )<p” 4

n(d-1)

use (39): < (K +Deylhlp™ @ [1fnscl® + > |fnjl?|

j:diSt(Qn,j’Qn,k)Spia
By summing over all k, we arrive at

n(d—1)

p'-1
/|f(x+h)—f(x)|2dx: Z/ |f(x+h)—f(x)|2dxS(K+1)02|h|p_ d
Q k=0

Qn,k

-l
X (1l + 2 Fnil?
k=0 o -5
Jjudist(Qy,j,.Qp)<p d

-1 PL71
use (40): < (K +1%¢,lhlp @ D |fnil?
k=0

n(d—1) Copn

use (38): < (K +1Pelhlp @ = o fllLq) < pilhlIfliL g, €= K+Dy/557

n 1 n
The last estimate holds for all & with |h| < ¢, which yields w(f,t) < cp2d t2 ||f||i2(m forallt € (0,p d).
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n n 1
For t > p 4 we simply estimate w(t, f) <2||fllL2c) <2p2 t2]|fll;2@q) and obtain the claim by taking C :=
max(2,c). O

Theorem 3.9. Let (32) be satisfied, then for any 0 < s < % and s < r, one has A"(Q) & H5(Q).

Proof. We equip H3(Q) with the Besov norm

s )
113 2= 1 Wy + P wCf, P77,

and recall that for any ¢ > 0, the modulus of smoothness w(f, t) satisfies the triangle inequality with respect to f. For each
Jj, we have

J j J j j
f=2Qf +(F=Pif),  w(f,p )< Y w(Qep ) +w(f —P;f,p ).
k=0 k=0

Remark that Q, f € Vy, so by Lemma 3.8 we estimate with some C > 2,

k

w(Qup ) < Cpi QS i@y w(f = Pif.p” ) < CIf = Pif e
In addition, for k > 1, we have P, P;_; = Py_;, therefore,
1QkfNlz2c) = IPkf = Pr1fllz2) = IPk(f = Pr—1/)z2) £ N = Pr—1f ll2c0)s
and then (recall that Q, = P,)

k

_i i Sk _J
w(f,p ¢)<Cp 2d||P0f||L2(Q)+C2p2d 1| f = Pr_1fllr2) + Cllf = Pjf 2

i=1
i 1 kg
=Cp 2||Pyfllr2q) + Cp Z p2 2| f =P fllrz) + Cllf = Pjfllr2
k=0

i L k4
<Bp 2 ||Pofllizy +B Y, p 2 |f = Pifllra)
k=0

1
with B := Cp2d > C. It follows that for any j, one has
s _1
paw(f,p 1) < B(F|+F)) (42)
with sequences F/ := (F}) and F := (F;) given by

, S_J =1yl Sy k_J
Fii=pd 20|IPofllra@y =P 2 4 lIPof 2 Fj:=pd ZP” 24 || f = Prfllr2q)-

1
Duetos < > we have

had _ 1 J
||F,|| Z |F,|2 = a||Pof||L2(Q) witha := Zp As Z)d < 00.
j_
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In order to control F j» We represent it as

sj j rk rk

and arrive at
F; < 2 P VT pTNf = Pefllacay 43)
Define a := (aj)jGZ and ﬁ = (5})]62 by

0, j<o, 0, j<o,

iz Lo j ) .
p(s Z)d, ]ZO’ pd”f_P]f”Lz(Q)’ JZO’

then (43) takes the form F; < (a * 8); for any j € Ny, with * being the convolution product. Using Young’s convolution
inequality, we obtain ||F||,2 < [l * Blle2z) < llalleiz)llBll2z)- Then it follows by (42) that

+ 2B||a|)?

s )
IF12, = P4 w(f, p~ D>, < 2BIF'll2 + 2BIFI%, < 2Bal|Pof |2 2 MBI,

LX(Q)
Recall that [Pof 112, ) + I1BI2, ) = IIfI%, g, therefore, |12, < 2B max(a, &l , )l f larey forall f € A7(Q). O
By combining Theorems 3.7 and 3.9, we obtain the following result.

Corollary 3.10. Under the assumption (32), there holds A"(Q) = H'(Q) for0 <r < %

3.4 | Extension to open sets in manifolds

Let (S, g) be an d-dimensional Riemannian manifold of bounded geometry. For the construction of Sobolev spaces H*(S)
with s > 0, we refer to [22]. Let Q C S be a nonempty open set such that QcSis compact (the case Q = S is possible, if
S itself is compact). The Sobolev space H5(Q) on Q is then defined as the space of the restrictions on Q of the functions
from H*(S) with the quotient norm

I ey« = E Wl rzscs)-

inf
FeHs(S), Flo=f
It follows from the general construction of Sobolev spaces that:

(1) for any open Q C Q, the linear map H*(Q) 3 f = flq, € H*(Qy) is bounded;
(2) ifforsomelocal chart® : R4 > 0 — O c Sonehas Q C O, then themap f — fo® is an isomorphism between H*(Q)
and H*(Q), with Q : = ®~1(Q) c R4,

,,,,,

conditions hold:
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(B1) Qoo =
0> 1,09 *** > n - 9
(B2) forany n € Ny, the sets Q,,, ..., Q, pn_; are mutually disjoint
(B3) foranyn € Nyjand k =0, ..., p" — 1, one has

p-1

Qn,k \ U 'Q'n+1,pk+j
j=0

Qi1 pkrj C Qpy forany j € {0,...,p — 1}, =0.

This decomposition is called regular and weakly balanced if it satisfies additionally the following:
(B4) Forsome N € N, each Qy x with K € {0, ..., pV — 1} is covered by a local chart @y x on S such that the sets
Oy 1= Oy (Qn k)

are bounded open sets with Lipschitz boundaries in R<.
(B5) Foreach K €{0,..., pN — 1}, the sets

~ N,K . ~
Qn,k .= QN+n,p“K+k’ ne No, ke {O, ,pn - 1},
form a regular weakly balanced p-multiscale decomposition of QN’K,

and it is called regular and strongly balanced if one has in addition, for N from (B4),

(B6) Qx| =pNQ|forallK €10,...,pN — 1},
(B7) foreach K € {0,..., p" — 1} the sets

~NK . ~
Ql’l,k .= QN+n,p"K+k9 ne No, ke {0, ,pn - 1},

form a regular strongly balanced p-multiscale decomposition of QN’K.

For the rest of the subsection, we assume that:

Q C S is an open set with compact closure which admits a regular

44
weakly balanced p-multiscale decomposition (€, ;) “)

and let N and Qn,k be as in (B4)-(B5). Then the sets
QZ}CK = QN+n,p"K+k7 ne No, k (S {0, ,pn - 1}, (45)

form a regular balanced multiscale decomposition of Qy g for K € {0, ..., pV — 1}. In addition, the decomposition (Q,, )
gives rise to the projectors P, and the spaces V,, and A"(Q) defined in the same way as in the Euclidean case: For n € N,
define

V, :=span{lg  : k=0,..,p" -1} C L*(Q),

Vo, n= 0,
U, := N

Van Vn—l’ n>1, (46)
P, := the orthogonal projector on V,, in L*(Q),

Q,, := the orthogonal projector on U, in L*(Q).
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Remark that Lemmas 3.3 and 3.5 are transferred directly to this new setting. We establish several additional properties of
the spaces A"(Q).

Lemma 3.11. Let A"(Qy ) be the approximation spaces associated with the decompositions (Qf:r ’If) from 45, then for any
r>0and N € N, the map

pt-1

J 1 AQ) > f e (fvkkep,.pi-13 € @ ANk, fnk = Flayg
K=0

is an isomorphism.

Proof. For f € L*(Q), we have

1

IQ
n,

1
f dVOlg = aN+n,p"K+k for O(n’k = Q— / f dVOlg.
k | n k | l’l,k| Qn

For n € Ny let PnN’K be the orthogonal projector on

VK = span {1k © ke€f0,...,p" —1}} C LA(Qyk)
n,k
in L*(Qy k), then
r-l pr-1
N.K _ —
Py fni = z —NK. /NdeVOIg HQN}:{ = Z O‘N+n,p”K+k]]QN+n’an+k~
k=0 192, | /oy " k=0
At the same time,
pN+n_1 pN—lp -1 p _1
Pyinf = Z anjla,; = Z Z AN+, prR+ke YOy prkie = Z Py fNK)ﬂQNK:
j=0 K=0 k=0 =0
pY-1 pY-1

f= Z Ing Tay s f=Pnunf = Z (Fng =Py  fng) Toy -
k=0 k=0

As the summands in the last sum have disjoint supports, they are orthogonal in L?(Q), and

p N_1
1f = Prsnf 12 = 2 Ifnk =P gl (47)
For any r > 0, we have
p N_1
N,K 2 _

Zp Thf - PNMfuLZ(Q) KZOZp Tk = PN  fykllP = 2 Nk oy o (48)

Therefore, if f € A"(Q), then
p N_1 (8) 0 nr
2 _ 2= 2
AP = 2 vkl o = ;)p If = Prsnf 1o
er 0 2nr
=p 0 Y pANf = Puflityg <P 4 Zp Thf - Pofl}sq) = ||f||A,(Q),

n=N
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which shows that J is bounded, and it is clearly injective. For any fy x € A"(Qy ), the function

pN-1

= Y fnk lok
K=0

belongs to L?(Q), and

Nr nr
Z z 2— Z 2—
”f”A'(.Q) p d ”f P ”LZ(Q) p ”f P “LZ(Q) + p d p d ”f _PN+V!”I242(Q),
n=0

Nrp V-1

use (48): = ZP d lf—p ||L2(Q)+p @ Z ”fNK”A’(QN )

which shows that f € A"(Q). Therefore, J is surjective as well, and it follows by the closed graph theorem that J is an
isomorphism. O

Lemma 3.12. Assume that (B4) holds with N = 0, that is, there exists a local chart ® : RY> 0O~ O C S such that Q C O
and the sets Q. := ®~1(Q,, ) form a regular weakly balanced p-multiscale decomposition of Q := ®~1(Q). Consider the
associated spaces A"(Q), then for any 0 < r < 1, the map A" (Q) 3 f  f := fod € A"(Q) is an isomorphism.

Proof. Recall that there exists ¢; > 0 such that

diam Q, ; < ¢ép d foralln € Ny and k €{0,..., p" — 1}. (49)

For a function f defined on Q and the function f := fo® defined on Q, one has

/Q FO)dvoly(y) = /Q Fela@du,  Jo(u) := /det (g0 (0,00, 50W)) (50)

.....

and there exist by, b, > 0 such that b; <Jg(u) < b, for all u € Q. It follows that the map © : f — f defines an
isomorphism between L?(Q) and L*(Q),

BillOfI2, ) < IOF12, ) < b2IOSIZ, g forall f € LX(Q),

in particular,

bllﬂn,k| < |'Q'n,k| < bZIQn,kl for all (n’ k) (51)
For n € Ny, let P,, denote the orthogonal projector in L*(Q) on the subspace
V, :=span {ﬂfln,k :kefo,..,p"— 1}},

then

P.f = 2 o / ) dvol, ),

use (50): OP, f(y) = (P, /)(®()) = Z / Faia@dula, (),

IQn |

p'-1

P.OfM) =P f()= Y, =
k=i

. m/ﬂmk Fdulg, , ).
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Therefore,
= Jo) 1
(OP.f = P,0N)¥) = ), / f(u)< o —) dulg,, ). (52)
k=0 7 Quk || |Qn,k| '

As J4 is a smooth function on a neighborhood of the closure of Q,itisa Lipschitz function, and one finds some a > 0
with

o) —Jo(w))| < alu —u'| forall u,u’ € Q.
Pick any u,, ; € Q, and denote J,, . :=Jp(u, 1), then forany u € Qn’k there holds

(49) n

Vo) = Tnil = WoW) = Tl < alu —u, k| < adiamQ,, < ap 4, a:=ac.

We have
||Qn,k| _Jn,klﬁn,kH = |/ (]£I>(y)_Jn,k) dy‘ S[ |Jq>(y)_-,n,k|dy < dp_3|0n,k|,
Qn,k Qn,k

n

and we can find a,, ; € [—d, d] such that |Q, ;| = <Jn,k + an,kp_5> |Q,.x | Then for any u € Q,, ., we have

Jo(u) 1 ‘ _ |J¢(u)|fln,k| - |Qn,k|'
1kl Qe 19119 |
- — o Q _n _n
|<J(I)(u) Jn,k an kP >|| n,kl (d+ |an,k|)p 4 (51) bp 7 ‘ 24
= = < < — with b 1= —.
|Qn,k||Qn,k| |Qn,k| |Qn,k| b1
It follows from (52) that
(©P,f ~ P ®f)(y)| < | - / @) du T, () = bp” 4 (P01 ().
n,k
It follows that
1®P.f = Pa®f 17, < b2D < 1P O1f Il < b _7||®If|||L2(Q) < porp __”f”Lzm)' &)

Now let f € A"(Q), then

1f = Paf 2,y = 10 = PaOS I, ) = [I(©F = OPf) + (P, f = P02 0

<200 = Pofl}, ) + 210Paf = PoOSI7,
2n
use (51) and (53): < 2b7'(|f = Pufllr2cq) + 26267 p™ @ I fllr2cq)s
1Pof 117, ) = IP0®S 17, ) = 1OPof = (OPof = Po®)II7, 5 < 21OPof 7, o + 21OP0f = PoOS 7,

use (51) and (53): < 2671 [[Po fll ) + 2626711 £ ll2c-
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Therefore,

1712 @) = IIPofIILz(m+Zp TNF = Pufl2, 0

_ ~ - Qr - 1
<267 IPof 12, ) + D D7 IS = PufllZ ) | + 20707 1+2pd“ 112,
n=0

n=0 ——
) S ——'
=:5<o S”f”A’(O)

=111 )

< (2b7" +20°b7 A+ ) IS I )

which shows that f € A"(Q) and that © defines a bounded operator A"(Q) — A"(Q), and remark that it is injective

by construction.
On the other hand, let f € A"(Q) and f € L*(Q) with f = ©f. Then

If = PufIlsgy < ballOf - OP, 12,0, = b2|(OF = POS) + (B0 = 0P, )}

use Of = fi <2b,If = PoflI2, ) + 2b211P4Of — OP, fI2,

2n
use (53): < 2blIf = PofI2, ) +20:6%7 P 411

use (S < 2b,11f = Pof 12, g +2620%7 D7 1712, .

~ ~ 2
”Pof”Lz(Q) b2”®P0f”L2(Q) - b2||P0®f - (Pn®f - ®P0f)||L2(Q)

use Of = f: <2b,lIPof 17, o +2b2lIP,©f — OP, fII?

L2(Q) L2(Q)

use (53): < 2bylIPof 17, 5 + 2b207b7 I II7

L2 LA(Q)

use (51): < 2b,[1ByfI, ) + 2b262b7 1112

L2(0) L2(Q)

Therefore,

1 0y = IPofIILZ(Q)+Zp TIF = Puf g,

< U _ 1
< 2bof IPof 117, + Y palf _Pnf||§2(m +2b2b%b 7 1+ Zp 20D IIfIILz(Q)
n=0

n=0 N v
SN~——e 2
=:S<o S”f”AV((z)

=171 g
< (2b, + b20%7 (A + D)) IS,

which shows that f € A"(Q), and, consequently, that @1 : A"(Q) — A’(Q) is everywhere defined and bounded. O

Now we can transfer the relations between A" and H® known for the Euclidian case to the case of manifolds.
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Theorem 3.13. Assume (44). Then forallr > 0 and 0 < s < 1, there holds
AT(Q) & HY(Q)if s < % ands <r, (54)
H(Q) & A"(Q)ifo<r<s<1. (55)

In particular,

AT(Q) = H'(Q) for0 < r < %

Proof. As A"(Q) & A" /(Q) for r > 1/, it is sufficient to prove (54) under the additional assumption r < 1. We first use the
map

pN-1
K=0
which is an isomorphism by Lemma 3.11. For each K, the map
A'(Qnk) 3 fuk P fvk 1= fnko@nk € A"(Qy k)

is also an isomorphism by Lemma 3.12, and Ar(QN,K) E) fN’K - fMK € HS(QN,K) is an embedding by Theorem 3.9. In
addition,

HQng) 3 fng ~ fN,KOq?’XEK = fng € H(Qn k)
is an isomorphism due to the construction of Sobolev spaces. Therefore, we have shown that

pN-1

A(Q) 3 f = (fNke,..pv-1} € @ H(Qy k)
K=0

is an embedding. We now recall that due to s < 1, the subspaces CS"(QN,K) are dense in H S(QN,K), which in turn means

that C°(Qy ) are dense in H%(Qy g ), therefore, the operator Jy g of extension by zero from Qy g to Q extends by density
from C°(Qy k) to an embedding Jyy ¢ : H*(Qy ) — H*(Q). Then

pN-1 pN-1
J: H*(Qn k) 2 (PN g )kefo,..pN -1} P Z InkPnik € H(Q)
K=0 k=0

is an embedding, which finishes the proof of (54).
For (55), we consider the following maps:

N_1
H(Q) > f = (fnxkep.,..pn-1} € pgao HY(Qn ) with fy g 1= flay (@)
HQng) 3 fyg = fyk 1= fnko®yk € HS(Qu k), (b)
HQng) 3 fvg = fvg € A (Quk), ©)
A'(Qn ) 3 vk = Fngo®yy = frg € A(Qug), (d)
pN-1
IgBO A" (k) D (FNKkep,..pv-11 = f € AT(Q). (o)
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The map (a) is an embedding due to the definition of Sobolev spaces (in fact, even as an isomorphism due to the first
half of the proof), (b) is an isomorphism due to the definition of Sobolev spaces, (c) is an embedding by Theorem 3.7, (d)
is an isomorphism by Lemma 3.12, and (e) is an ismorphism by Lemma 3.11. Taking the composition one arrives at the
conclusion. Ol

We discuss the existence of multiscale decompositions and the additional condition (B7) for some classes Q in Section 5.

4 | EMBEDDED TRACES
4.1 | Abstract trace space as an approximation space
Let Q be an open set in R? (as in Subsection 3.2) or in a d-dimensional manifold (as in Subsection 3.4) admitting a p-

multiscale decomposition (€, ;). We introduce an operator of identification I, between the functions defined on Z (see
Subsection 2.5) and the functions defined on Q as follows. First, for each z € Z, consider the basis sequences

e, 1= (6,¢)ez-
Then we consider the linear map
Io : spanfe, : z€ Z} — span{ﬂgmk :neNy, k=0,..,p" =1},
Tg, z =rad,

n Pl

s j _

p2 EGSHQHkaﬂ_, z =(n,k,s).
j=0

IQ e, - (56)

Proposition 4.1 (Euclidean case). Let Q C R be a bounded open set with Lipschitz boundary and the decomposition (Q, )
be regular and strongly balanced. Then for any r > 0, the map I, extends by continuity to an isomorphism between €%(Q)
and A™(Q).

Proof.

() The linear span of e; is dense in ¢2(2), and (e, e§>f2(g) = p2rv(z)5z’ ¢forallz,¢ € Z.
(ii) Now remark thatIge,,q € VandIge, ks € V1. At the same time (using the fact that the decomposition is strongly

balanced),

|Qn,k| R

-1
Y el=o

Jj=0

p—1
n . n
n j n
/ IQen,k,s(x) dx = b2 z es |Qn+1,pk+j| =p?
Qi j=0

and for any k, # k, one has

Ige,ks(x)dx =0
Qn,ko

as e, i s vanishes identically in Q, ;. This shows that Ige, i ¢ is orthogonal in L*(Q) to all g, ko’ ky €{0,...,p—1},
in other words, Ige, x s L V),. Therefore, we have shown that Ige.qg € Uy and Ige, s € U,y or, in other words,

Ige, € Uy, forallz € Z. (57)

As the subspaces U; are mutually orthogonal in L*(Q), one has (Ige,, I, Qe) @) = 0 for v(z) # v(¢). In addition, if

z = (n,ky,s1) and § = (n, ks, 5,) with k; # k,, then Ige, and Ige; have disjoint supports (contained in the disjoint
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sets Q,, i, and Qy, ., ), so one has again (Ige;, [ge;) = 0. Finally,

LX(Q)

ST [SFE=NERY
, s
<IQen,k,s’IQen,k,s’ >L2(Q) = pn Z 9£9§, |Qn+1,pk+j| = pnT z (E) = pnlgn,klas,s"
j=0 j=0 s

Altogether we obtain

<IQ€Z,IQC§>L2(Q) = |Q| 52,{a Zag eZ. (58)

(iii) We will equip A"4(Q) with the norm
2 . 2 2
I, = ;)p QS 172

see Lemma 3.5. For N € N, we denote Wy := span{e, : ¥(z) < N — 1} C ¢2(2). Let f € Wy, then

N
f= Z fzez fr€C, Iszan, Fy,:= Z fzlqe;.
n=0

v(z)<N-1 v(z)=n—1

Due to (57) one has Q,Iof = F,, foralln < N and Q,Iof = 0for n > N + 1, therefore,

N N
(58) 2
g = 2 P Il = 2 P7MIQL D, Ifa17 =10l ) p? @112 = p7 11|l 2 2
n=0 n=0

v(z)=n—1 zeZ

which shows that I, is an isometry (up to a constant factor), in particular, it is bounded and extends an isometry
between of £2(Z) and some closed subspace ran I, C A™(Q).

(iv) It remains to show that ran I, = A"%(Q). Remark that by construction, we have dim Wy = p". At the same
time, IoWy C Vy, so we obtain pV = dim Wy = dimIo(Wy) < dim Vy = pV, which shows that Io(Wy) = Vy
for any N. As N can be arbitrarily large, ranI contains any finite linear combination of 1q, ,. As these linear
combinations span a dense subset of A™(Q) and ran I, is closed, we have ran I = A™(Q). O

Proposition 4.2 (Manifold case). Let Q be an open set with compact closure in a manifold of bounded geometry and the
decomposition (€, ) be regular and strongly balanced. Let 0 < s < 1 with s < rd, then the map I, extends by continuity to
an embedding ¢2(Q) < A%(Q). Fors = rd < 1, this embedding is an isomorphism.

Proof. Let N, @y  and Q,, ;. be as in (B4)~(B5).
(i) IfN =0,thenthemaply : & » (I§)o® is covered by Proposition 4.1 and defines an isomorphism between ¢ 2(2)
and A™(Q), for Q := Qg = @ ().
Ifrd < 1, then it follows by Lemma 3.12 that I, is an isomorphism between £2(Z) and A" 4(Q),and A™(Q) & AS(Q)
for0<s<rd.
Ifrd > 1, using A"(Q) & AS(Q), we obtain I, : £2(Z) & AS(Q), and Lemma 3.12 gives I, : £2(Z) & AS(Q).
(i) Now assume that N > 1 and consider

Wy :=spanfe, : v(z) <N —1}, Oy :=span{lq @ K= 0,..,pN -1},

then by construction, one has Io,(Wy) C Oy. We will equip A™(Q) with the norm

(o]
1 1= 2 P IQAS 17
n=0
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see Proposition 36. The computations (i)-(iii) in the proof of Proposition 4.1 show that

2
||Inf||il,rd = P2r|Q|||(fz)||f§(z) forany f € Wy.

In particular, I, : Wy — Oy is injective. As both Wy, and Oy have the same dimension pV, themap I, : Wy — Oy
is a linear isomorphism, and one can find a basis b?, ..., bP"~1in Wy such that

N
IobX = p2 HQN,K for each K € {0, ..., pV —1}.

(ili) For & € ¢2(2), define &N € Wy by

N ,_{52, wz) <N -1,

3
z 0, otherwise,

and let yx (), K € {0, ..., pN — 1}, be the coordinates of £V in the basis (bX). Now we consider the map

pN-1

W23 E) =00t ) e @D X2,
K=0

K €{0,..,pN —1}.

z

77]{ — {YK(§)7 Z= rad7

§N+I’l,p"K+k,S’ z= (n’ k; 8)5
By construction ¥ is an isomorphism, with ¥~! given by

pY-1
v 2 nﬁdbfa V(Z) S N - 1’
(w10 b) =1

nn_N k_pn—NK s’ z= (n’ k’ S)’ n Z N,

p" VK <k < p" MK +1).
One computes

b, A=rad, v(z) <N -1,

vi(0,..,0,e,,0,..,0)| =411, A=(mk,s),z=m+N,p"K +k,s),
N—_—— .
K—1 times 2 0, otherwise,
or, equivalently,
4 bK, A = rad,
v=(o0,..,0,e,0,..,0) =
~—— €(n+N,pnK+k,s)s A= (n,k,s).

K—1 times

Due to the definition of I, one has then

N
p2lgy, A =rad,
Io¥1(0,..,0,e;,0,..,0) =1 N P71 j
— P> ) 61q ,
K—1 times 'N+n+1,pn+1K+pk+j

j=0
N
=p2JInkloy e
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where

(1) Jy  is the operator of extension by zero from Qy g to Q,
21 Onk - t32(2) - AT d(QN, ) is the identification operator for the decomposition (Q 4, png +1)n k> Which is already
covered by (i).
(iv) The above computations show that I ¥~ acts as

N PE-1

— N— =
Ig¥'(°,...,pP ) =p> Z Inxlay 05
K=0

By (i), eachIq  isanisomorphism (for s = rd < 1) oran embedding (for all other cases), and it follows by Lemma 3.11
that

pN-1
¥ @ cH2) - A4Q)
K=0

is an isomorphism (for s = rd < 1) or an embedding (for all other cases), and then I, = (Io¥~!)¥ preserves the same
properties. |

4.2 | Embedded trace operator
For all assertions in this subsection, let Q be an open set with compact closure in a d-dimensional manifold of bounded
geometry S admitting a regular strongly balanced p-multiscale decomposition (€, ;) as described in Subsections 3.2

and 3.4.
Recall (Theorem 2.8) that we have constructed an abstract trace operator

T HY(T) - ¢2(2),

log¢ —1
LI “p—1<1—u>>o, (59)

o= 2logp 0g7=§ log p

which is bounded and surjective with kerz = Hé(T). We recall that p € N with p > 2 and that the parameters o and ¢
satisfy

0<t<1, €<ocp<1 (60)

E’
see Lemma 2.7. We define the identification/embedding operator
Io @ t2(2) - A%(Q)
as in Propositions 4.1 and 4.2. This gives rise to the embedded trace operator
Yo = IQT . HI(T) — AS(Q),
with the following options for s:
(1) IfQisad-dimensional Euclidean open set (as in Subsection 3.2), then y, is a bounded linear operator for any 0 < s <
od, surjective for s = od.
(2) If Q is an open set in d-dimensional manifold (as in Subsection 3.4), then y is a bounded linear operator for any
0 < s < 1such thats < od, surjective for s = od < 1.

In all these cases, one has by construction

keryq = kert = H)(T).
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In addition, using the identification between the approximation and Sobolev spaces (Theorem 3.13) we obtain the
following:

(3) If Qisan open set in d-dimensional manifold, then
7o : HY(T) & H¥(Q) forand 0 < 5 < % with s < od.
In particular,

ya(H\(D)) = H*4(Q) ifod < 3. (61)

Remark 4.3. 1t is useful to check that the condition od < % in (61) can really be satisfied under the restrictions (59) and
(60). In view of (59), the condition can be rewritten as

d ap . ap 1

so together with (60), we arrive at

ap .1 1
0<t<1, 1<— <Inu1{25,pd}.

Therefore, if one fixes arbitrary ¢ € (0,1) and p € N with p > 2, the required condition is satisfied for
4 <a< 4 min{i,pi},
p p 2
that is, for a nontrivial range of a.
Finally, we give a more illustrative description of the embedded trace operator, which uses more classical terms:
Theorem 4.4 (Embedded trace using limit values). Let 0 < s < % with s < od, then for any f € H'(T), there holds

pY-1
vof = lim ¥ fXn) Toy,e
K=0

where the limit is taken in H5(Q).
Proof.

(i) Let f € HY(T). For N € N, consider fy : T — C defined by

(o) i fx), xeTV,
VT Sk, x € Tyk, K €0,...,pN — 13,

N—
In Lemma 2.11, we have shown that fy € H'(T) with fy - f in HY(T). Due to the boundedness of y, we have
N—
vofn - vof in H5(Q). Therefore, it is sufficient to show that for any N € N, one has

pN-1
Yofn = Z F&XNx) Tay - (62)
K=0
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(ii) Let N € N be fixed. Pick a function F € H' ((0, L), q(t) dt) such that F(t) = 0 for t < ty and F(t) = 1 for t > ty,;.

(iii)

Define ¢ := U,qF € H'(T), thatis, ¢ : T 3 x = F(|x]), then Pty € H(T) for any K € {0, ..., p¥ — 1}. We will
show that

Yalplr, ) = Tg, , foranyK € {0,..., p" —1}. (63)

In fact, if (63) is proved, then (62) follows directly: One has

pN-1
fv= D FXne ity in T\ TV,
K=0
which implies
pN-1 63) pN-1
Yofn = Z f(XN,K)VQ(qohN,K) = Z FXN oy
k=0 K=0

It remains to prove (63). Consider
Sy :=span{ply,, @ K=0,..,pN =1} c H'(T).

The functions @1y,  form a basis of Sy, so dim Sy = p". Now we remark that for any z € Z, one has the inclusion
dimS n HX(T) c CU,F, and

1, n<N-1
. 1 _ . 1 _ bl —_— bl
dim (SnH. (T)) =1, dim (S n Hn’k,s(T)> = {0 N

Due to the orthogonal decomposition H(T) = ez H 1(T), we conclude that

Sy =span{U,F : z€ Z,v(z) <N —1},

_¥2
and the functions U,F with v(z) < N — 1 form a basis in Sy. Recall that by Lemma 2.10 we have tU,F = p 2 e, for

v(z) £ N — 1, and then, using (56),

Ta, z = rad,
(z)

YoU.F =p 2 Ige, = pz_wje' v(z) #N —1.
=0

/1

S Qn+1,pk+j ’

z=(n,k,s),

Recall that U,,4F = ¢ and that for (n, k,s) € Z withn < N — 1, one has
p-1l
Un,k,sF = z gqo‘]] -I]—Yl+1,pk+j *
Jj=0

Now let us define a linear map R : Sy — L?(Q) by

R(goﬂTN,K) ‘= ‘]]QN,K forany K € {0, ... ’pN -1
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Using the linearity, one obtains

-1 p -1
R(UradF) = R(go) =R Z qO]]TN,K Z R(gM]TNK) - 2 1]QNK - ﬂQ,
K=0

and for any (n,k,s) € Zwithn <N -1,

R(pTy,,, ) =R Z plink|= Z R(eTnx)
K: TNk CThy1,pk+j K: TN gCTyi1,pk+j

= Z 1]QN,K = Z 1]QN,K = 1]Qn+1,pk+j’
K: TNk CTyt1,pk+j KONk CQpy1,ph+)
p—1 p—1

_ J _ J

R(UnisF) = Y 0IR(pl,, )= 2. 8l1q, .

Jj=0 j=0

which shows that R(U,F) = yqU,F for any z € Z with v(z) < N — 1. As U,F form a basis of Sy, it follows that
R =7yaqlsy- In particular, yo(eTr, ) = R(ply, ) for all K € {0, ..., p¥ — 1}, which shows (63) and concludes the
proof. ]

Remark 4.5. In Theorem 4.4, one can also take the limit in A3(Q) with any s such that y, : H'(Q) — A%(Q) is bounded:
The proof remains unchanged.

4.3 | Proof of Theorem 1.1

By now we have proved all assertions of Theorem 1.1 for the special case 7 = T. Recall that in Theorem 1.1 we require the
condition (1), that is,

k
<c, <<, (64)

and that T corresponds to ¢ = 1. In order to cover the case of general 7, we employ a suitable bijection between 7 and T.
Namely, definegp : T — 7 by

[—t,_
¢(n1 ka t) := <n5 k7Ln,k - f}’l,k + f—,,:ll f}’l,k>7

then ¢ maps the vertices X, on T to the same vertices on 7, the restrictions ¢|,, , are dilations by constant factors, and
both ¢ and ¢! are continuous.

Iff :7 - C,considerg := fop : T — C. Remark that f is continuous if and only if g is continuous. Furthermore, if
f = ni)and g = (gn), then

oo p -1
2
117, = / k) wni(s)ds,
nk fnk

oo p -1
I, = / 80O ds

o p'-1 ty co p'-1 Lnk

t—t,_ 2 Ak ’ 2
= 2 2 oc"/ gn,k<n, k,Lpj—€nx + f—nnlfn,k>| dt = Z Z a |81k (s)|” ds.
n=0 k=0 n— n=0 k=0 Lyk—Cnk
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In view of (64), we have

fn
<c o Swpy < ca < ot —,
l’on,k fn,k

and we infer

NI,y < If 1%, < Pllgl - (65)

In addition, f,  is weakly differentiable if and only if g, ; is weakly differentiable, and then

k
g;’k = ;n Ogo)n,k'
By (64), it follows that ¢ 1| f’og| < |g’| < c|f’o¢]|, and then
_4||f “LZ(T) - _lef, qo”LZ(T)“g ”Lz(‘[) — 2||f,°¢I|L2(‘|D - 4||f,||L2(7')

It follows that the linear operator ® : f ~— fog is an isomorphism between L?*(7") and L?(T) as well as between H'(7")
and H'(T). In addition, it is bijective from H}(7") and H}(T) by construction, so it is also an isomorphism between H é(T)
and Hy(T). This shows that H'(7") # H}(7) if and only if H'(T) # H;(T), which is equivalent to the inequalities (17).

Due to Theorem 4.4, we actually have yg = yq00, so the properties of yo from the preceding subsection are directly
transferred to yg. In particular:

(1) kery] = @7 (keryg) = 0~ (Hy(T)) = Hy(T),

(2) if Q is a d-dimensional Euclidean open set admitting a regular strongly balanced p-multiscale decomposition (Sub-
section 3.2), then yg : HY(T) —» A%(Q) is a bounded linear operator for any 0 < s < od, and it is surjective for
s =od,

(3) if Qis an open set in d-dimensional manifold and admitting a regular strongly balanced p-multiscale decomposition
(Subsection 3.4), then:
* yq : HY(T) = A%(Q) is a bounded linear operator for any 0 < s < 1 such that s < od, surjective if s = od < 1,
* yo : HY(T) — H*(Q) is a bounded linear operator for any 0 < s < % such that s < ad, surjective if s = od < %

All assertions are proved.

5 | EXISTENCE OF REGULAR BALANCED DECOMPOSITIONS

The construction of the embedded trace in the preceding subsection requires the existence of a regular strongly balanced
p-multiscale decomposition. Let us show that such decompositions really exist for a wide class of Q. Our approach also
indicates how to construct such a decomposition for a given domain or manifold. Our construction is strictly adapted to
the required properties stated in Sections 3.2 and 3.4. We note that the existence of dyadic cubes with various additional
properties in abstract metric spaces is discussed, for example, in [14, 26].

Example 5.1 (Hypercubes). Let us show first how to construct a regular strongly balanced p-multiscale decomposition of
the d-dimensional hypercube

Q@ :=(0,1)? c RC.
For d = 1, we decompose iteratively each interval into p equal subintervals to obtain the decomposition

QM =(kp™,(k+1p™), neN, kefo,..,p"—1k (66)
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For d > 2, we obtain a decomposition by dividing alternately each side into p equal parts. First, set Qo := Q. Now
assume that Qidi are already constructed for some n € N and all k € {0, ..., p" — 1} and that for each (n, k), one has

@ _ ~@ 1)
Ql’l,k - in’kl Xoee X Qnd’kd

(@)

with suitable ny, € Ny and k; € {0, ..., p"s — 1}. Leti € {1, ...,d} be such that (n + 1) =i mod d, then we obtain Qi1 okt

with j € {0, ..., p — 1} by subdividing the ith side Qil‘)kA of Q’(fi into p equal subintervals

F ._ M :
IJ ._Qni+1,pki+j, ]6{0591)_1}’

and then by setting, for each j € {0, ..., p — 1},

Q(d) — Q(l) X Q(l) X j’] X Q(l) X oo X Q(l)

n+lpk+j = Cnky ni—1.ki—1 N1k ng.kq”

Let us show that this decomposition is regular and strongly balanced. The assumptions (A1)—-(A3) are obviously satisfied,
(d) (d)
toQ
nk n+1,k

we remark that for n > d + 1, each Q’(fi has the form I X --- X I;, where [ jare intervals with

as well as (A4¥), as on each passage from Q one divides the volumes exactly by p. In order to check (A5)-(A6),

p X< <pFfor(K-1)d+1<n<Kd, KEeN,.

‘We infer

n+d n—d

i< p T (@)

and it follows that

n—d

diam Q) = VIL I+~ + [P < Vdp @ =pVdp 4,
that is, (A5) is satisfied. Now let h = (hy, ..., hy) € R4, then
QN QYY) +hy = I X Iy x -+ X I\ (I + hy) X (I + hy) X -+ X (Ig + hg))
CU\Uy+h))xIy x - xIy
UL XU \Uy+h)) X X1y
WU L XL XX Tg \ g + hy)).
We have |I;, \ (Ix + hy)| < |hg| < |h|, which gives the volume estimate
d 67 & n=d\ 471 d-1
QN @) +h)| < I;|hk|g|1j| < kZl |hk|(p‘7> <dp®np" T
- F -

and shows (A6).

Example 5.2 (Piecewise smooth star-shaped open sets). One says that a bounded open set Q ¢ R? belongs to the class
(H) if:

(1) Qs star-shaped with respect to a point x, € Q.
(2) There exist € > 0 with B.(x,) C Q and a finite partition of Q = Q; U --- U Q,, such that foreach j =1, ..., n:
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* each Q; is a cone with vertex at x,
* 9Q;NdQisa C1 surface,
* the set B.(xy) N Q; is convex.
(3) There exists § > 0 such that v(x) - (x — x) > & for all x € dQ, where v(x) denotes the outward unit normal to dQ at
X (defined almost everywhere on 6Q).

Remark that the class (H) contains all convex polyhedrons and all convex open sets with smooth boundaries. It is
shown in [20, Theorem 5.4] that for arbitrary Q, Q' in (H) with |Q| = |Q’|, there exists a bi-Lipschitz bijection ® : Q' —» Q
with | det D®| = 1 (i.e., @ preserves the volumes). Note that for many special classes of Q, Q' like cubes, balls, cylinders,
simplices such a map ® can be given by explicit formulas, see [21, 24] and references therein.

If Q' admits a regular strongly balanced p-multiscale decomposition (Q’ - thenthesets Q,, . 1= CI>(Q ) formaregular
strongly balanced p-multiscale decomposition of Q, as the conditions (AS) (A6) remain true under bi- L1psch1tz transfor-
mations. In particular, for each Q in (H), one can take a hypercube Q with |Q| = |Q| and translate a decomposition of Q
(Example 5.1) into a decomposition of Q.

This discussion shows that any open set Q of the class (H) admits a regular strongly balanced p-multiscale decomposi-
tion.

Example 5.3 (Composed open sets). Let Q be an open set with compact closure in a d-dimensional manifold of bounded
geometry S. Assume that Q can be decomposed (up to zero measure sets) into disjoint open pieces W, j = 1, ..., p" such
that

(1) all W; have the same volume,

(2) there exist local charts ®; : R?3 0; — 0; c Swith W; C 0;,

(3) the sets W]- 1= (IJJTI(WJ-) c RY are with Lipschitz boundaries and admit regular strongly balanced p-multiscale
decompositions,

then the decompositions of W ; are first transferred to W; with the help of ®; and then suitably renumerated to produce
a regular strongly balanced p-multiscale decomposition of the whole Q.

Example 5.4 (Compact manifolds). By combining the preceding observations, one can show that each compact manifold
admits a regular strongly balanced p-multiscale decomposition. The idea comes from Benoit Kloeckner’s comments in
the MathOverflow discussion [43].

Let (Q, g) be acompact d-dimensional Riemannian manifold. It is known [65] that Q admits a triangulation: There exist
disjoint open W1, ..., W C Q with

and local charts @; : RY> 0 i+~ 0; C Qwith W] C Oj such that the sets Q j = d)JTl(Wj) are d-dimensional simplices.

Without loss of generality we assume that N = p” (otherwise one cuts some of the simplices Q j into smaller subsimplices
to obtain a required number). Then one can find a smooth function f : Q — (0, o) such that

_ el
fdvolg
[, raek= 5
By [50] there exists a diffeomorpism ¢ : Q — Q with ¢..(f dvoly) = dvol,. The open sets Q; := $(W) satisty
Q]
1Q;| = [ 1dvol, = 1dvol, = fdvol, = N
Q; ¢(W;) W,

that is, they have the same volume and exhaust Q up to a zero-measure subset. In addition, each Q; is covered by the local
chart ¥; := ¢o®; with 1I‘J._I(Q i) = Q j- As discussed in Example 5.2, each simplex Q ; admits a regular strongly balanced
p-multiscale decomposition. This decomposition is transferred to Q; with the help of ¥;, and the resulting decompositions
of Q; are then combined into a regular strongly balanced p-multiscale decomposition of Q.
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