
A Correctness and Incorrectness Program Logic

ROBERTO BRUNI, University of Pisa, Italy

ROBERTO GIACOBAZZI, University of Verona, Italy

ROBERTA GORI, University of Pisa, Italy

FRANCESCO RANZATO, University of Padova, Italy

Abstract interpretation is a well known and extensively used method to extract over-approximate program invariants by a sound

program analysis algorithm. Soundness means that no program errors are lost and it is, in principle, guaranteed by construction.

Completeness means that the abstract interpreter reports no false alarms for all possible inputs, but this is extremely rare because it

requires a very precise analysis. We introduce a weaker notion of completeness, called local completeness, which requires that no false

alarms are produced only relatively to some fixed program inputs. Based on this idea, we introduce a program logic, called LCL𝐴 (Local

Completeness Logic for an abstract domain𝐴), for proving both the correctness and incorrectness of program specifications. Our proof

system, which is parameterized by an abstract domain 𝐴, combines over- and under-approximating reasoning. In a provable triple

⊢𝐴 [𝑝] c [𝑞], c is a program, 𝑞 is an under-approximation of the strongest post-condition of c on input 𝑝 such that their abstractions

in 𝐴 coincide. This means that 𝑞 is never too coarse, namely, under some mild assumptions, the abstract interpretation of c does not

yield false alarms for the input 𝑝 iff 𝑞 has no alarm. Therefore, proving ⊢𝐴 [𝑝] c [𝑞] not only ensures that all the alarms raised in 𝑞 are

true ones, but also that if 𝑞 does not raise alarms then c is correct. We also prove that if𝐴 is the straightforward abstraction making all

program properties equivalent then our program logic coincides with O’Hearn’s incorrectness logic, while for any other abstraction,

contrary to the case of incorrectness logic, our logic can also establish program correctness.

CCS Concepts: •Theory of computation→ Logic and verification;Abstraction; Programming logic; Semantics and reasoning;
Program analysis; Hoare logic; Axiomatic semantics; Abstraction; Program reasoning.

Additional Key Words and Phrases: Abstract interpretation, abstract domain, program analysis, program verification, program logic,

local completeness, best correct approximation, incorrectness logic.

1 INTRODUCTION

“The only effective way to raise the confidence level of a program significantly is to give a convincing proof of its correctness”

[Dijkstra 1972b]. This statement, given by E.W. Dijkstra in 1972 in his Turing Award lecture [Dijkstra 1972c], is

universally valid and nowadays felt as an indispensable necessity and still a major challenge in modern information

societies [Hoare 2003; Jones et al. 2006]. The idea of having programs that certify other programs is due to A.M. Turing

[Turing 1989], and put forward by McCarthy [1962], Floyd [1967], and Hoare [1969] in the 1960s. The last 50 years

have witnessed an incredible flourishing of formal methods and tools for achieving this ambitious goal. These include,

among others: Certified compilers [Leroy 2006], certified analyzers [Jourdan et al. 2015], advanced type checkers [Pierce

2002], software model checkers [Ball et al. 2005], and abstract interpretation-based methods for static program analysis

[Cousot 2021; Cousot and Cousot 1977; Giacobazzi and Ranzato 2022]. Proving program correctness means inferring an

adequate invariant which has to be strong enough to imply the desired correctness property for our code. In program

correctness proofs, the ambition to automate the inference of a “good” invariant immediately leads us to the need of

Authors’ addresses: Roberto Bruni, University of Pisa, Pisa, Italy, bruni@di.unipi.it; Roberto Giacobazzi, University of Verona, Verona, Italy, roberto.

giacobazzi@univr.it; Roberta Gori, University of Pisa, Pisa, Italy, gori@di.unipi.it; Francesco Ranzato, University of Padova, Padova, Italy, ranzato@math.

unipd.it.

2023. Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-7771-4154
HTTPS://ORCID.ORG/0000-0002-9582-3960
HTTPS://ORCID.ORG/0000-0002-7424-9576
HTTPS://ORCID.ORG/0000-0003-0159-0068
https://orcid.org/0000-0002-7771-4154
https://orcid.org/0000-0002-9582-3960
https://orcid.org/0000-0002-7424-9576
https://orcid.org/0000-0003-0159-0068

2 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

some sort of over-approximation, making tractable (e.g., decidable) problems that are otherwise intractable. The well

known and inherent undecidability of all non-straightforward extensional properties of programs provides an intrinsic

limitation in the use of approximated and decidable formal methods for proving program properties [Rice 1953] (see

also [Cousot et al. 2018]). This is particularly clear in program analysis, where the necessary termination of the analysis

algorithm may introduce false alarms. The soundness of a program analyser, which is guaranteed by construction in

abstract interpretation, means that all true alarms (also called true positives) are caught, but it is often the case that

false alarms (also called false positives) are reported. There exists a range of successful applications of formal methods

for proving the absence of bugs in programs [Calcagno et al. 2015; Cousot 2021; Distefano et al. 2019; Hoare 1969;

O’Hearn 2018; Rival and Yi 2020; Sadowski et al. 2018]. Of course, as in all verification systems, program analysis is

credible when few false alarms are reported, ideally none. Completeness holds when no false alarm is ever raised, and

this represents in many ways the holy grail of program analysis and verification [Jones et al. 2006].

Understanding whether an alarm corresponds to a true bug, i.e., indirectly whether our approximation method is

complete, boils down to the challenge of proving some sort of program incorrectness. The same E.W. Dijkstra asserted

in 1972 that “Program testing can be used to show the presence of bugs, but never to show their absence” [Dijkstra 1972a].

Proving that our program contains a true bug therefore means isolating those states that will eventually trigger the

fault, i.e., will make our program violating a correctness assertion. This means propagating along the computation

properties of states that are strong enough to isolate those states that will produce a fault. This is the key idea in

O’Hearn [2020]’s incorrectness logic (IL) and its subsequent application to separation logic in [Raad et al. 2020]. By

exploiting under-approximations, any violation exposed by such program analysis corresponds to a true alarm. This

makes IL a credible support for code-review and test-driven software development, although a correctness condition

can still be violated even when no alarm is reported by the analysis.

The tension between proving the absence of bugs and exhibiting their actual presence shaped the research in

programming languages and software engineering for decades. Nevertheless, the problem is far from being solved and

static reasoning should be extended to bug catching, rather than only for proving absence of bugs, as advocated by

O’Hearn [2020].

The Problem

In this work we consider abstract interpretation [Cousot and Cousot 1977] as the reference theory to design and

validate algorithms capable to infer over-approximate program invariants. The problem is how to guarantee that the

approximation is precise enough to avoid false alarms. Next we explain why completeness is crucial to ensure precision

of the analysis and why it is hard to achieve it. The ingredients are: an abstract domain𝐴 of abstract program properties,

e.g., some properties of stores, which is connected with the concrete domain of program properties 𝐶 by a pair of

monotone functions 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶 , respectively the abstraction and concretization map, such that 𝐴 = 𝛼 (𝐶)
and for any concrete property 𝑝 ∈ 𝐶 , 𝑝 ⊆ 𝐴(𝑝) ≜ 𝛾𝛼 (𝑝)1. Program verification by abstract interpretation means that

instead of verifying whether the strongest post-condition post[c] (𝑝) for a program c and a pre-condition 𝑝 , satisfies

a correctness specification spec, we verify whether a sound abstract over-approximation post𝐴 [c] : 𝐴 → 𝐴 satisfies

spec. Using denotational semantics symbols, the original verification problem can be stated more concisely as checking

1
Abstract interpretation is more general than this [Cousot and Cousot 1977]. There are weaker abstract interpretation frameworks where only the

concretization function is assumed to exist [Cousot and Cousot 1992]. We consider the stronger formulation based on Galois insertions because it

is the most widely known and, as observed later, this provides enough mathematical structure to define the key notion of completeness in abstract

interpretation.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 3

if JcK𝑝 ⊆ spec holds, while its abstract counterpart becomes the property 𝛾 (JcK♯
𝐴
𝛼 (𝑝)) ⊆ spec, where JcK denotes the

strongest post-condition function for c and JcK♯
𝐴
is called the abstract interpretation of c on 𝐴.

As observed above, the problem here is that computing JcK♯
𝐴
may degrade the approximation and make the computed

abstract program property too weak to imply the desired specification. This may be a consequence of the fact that

abstract interpretation analysis is done by composing functions. Consider the abstract interpretation of c on 𝐴 defined

as JcK𝐴 ≜ 𝛼 ◦ JcK ◦𝛾 , commonly called best correct approximation (bca) of c in 𝐴. This is the best possible approximate

semantics, namely any abstract interpretation JcK♯
𝐴
is sound if and only if JcK𝐴 ⊆ JcK♯

𝐴
[Cousot and Cousot 1979]. It is

known that, in general, the composition of two bcas is not necessarily a bca itself. Consider the case of the abstract

domain of integer intervals Int whose elements approximate any property 𝑝 ∈ ℘(Z) of the integer values that a variable
𝑥 may assume by the least interval Int(𝑝) = [𝑎, 𝑏] such that 𝑝 ⊆ [𝑎, 𝑏], where 𝑎 ≤ 𝑏, 𝑎 ∈ Z ∪ {−∞} and 𝑏 ∈ Z ∪ {+∞}
and the commands

c1 ≜ if 𝑒𝑣𝑒𝑛(𝑥) then 0 else 1 and c2 ≜ if 𝑒𝑣𝑒𝑛(𝑥) then 𝑥 else 𝑥 + 1 .

In this case, it turns out that Jc2KInt ([0, 1]) = [0, 2] and Jc1KInt ◦ Jc2KInt ([0, 1]) = Jc1KInt ([0, 2]) = [0, 1], while
(Jc1K ◦ Jc2K)Int ([0, 1]) = [0, 0] and [0, 0] ⊊ [0, 1]. The lack of compositionality is the main cause of the interde-

pendence between the precision of an abstract interpretation and the way programs are written [Bruni et al. 2020].

While it is obvious that if JcK♯
𝐴
𝛼 (𝑝) satisfies spec (i.e., 𝛾 (JcK♯

𝐴
𝛼 (𝑝)) ⊆ spec holds) then the program is correct, it may

happen that JcK♯
𝐴
𝛼 (𝑝) does not satisfy spec even if the program is correct, hence producing a false alarm. In this case,

if 𝛾 (JcK♯
𝐴
𝛼 (𝑝)) ⊈ spec, we cannot conclude that the Hoare triple {𝑝} c {spec} is not valid, because any witness in

𝛾 (JcK♯
𝐴
𝛼 (𝑝)) ∖ spec could be a false alarm.

Complete abstract interpretations, instead, do not raise false alarms. Technically, this also requires the assumption

that the specification spec is expressible in 𝐴, namely that spec = 𝐴(spec) holds. For example, the property 𝑥 ≥ 0 is

expressible by the infinite interval [0, +∞]. By contrast, 𝑥 ≠ 0 is not expressible in Int, since the least over-approximating

interval is Int(𝑥 ≠ 0) = Z ⊋ Z ∖ {0}. If spec is expressible in 𝐴, then completeness guarantees that a Hoare triple

{𝑝} c {spec} is valid iff 𝛾 (JcK♯
𝐴
𝛼 (𝑝)) ⊆ spec holds. Thus, any complete abstract verification of spec by means of the

(complete) abstract semantics JcK♯
𝐴
is the same as verifying spec with respect to the concrete semantics. Notably, when

the abstract interpretation is complete then JcK♯
𝐴
always coincides with the bca JcK𝐴 [Giacobazzi et al. 2000]. According

to a well-established definition [Cousot and Cousot 1977, 1979], completeness is a global notion, meaning that it involves

all possible pre-conditions. More precisely, 𝐴 is complete for a program c when JcK♯
𝐴
◦𝛼 = 𝛼 ◦ JcK, namely:

for all 𝑝 ∈ 𝐶, JcK♯
𝐴
𝛼 (𝑝) = 𝛼 (JcK𝑝) holds.

This form of completeness is extremely hard to achieve. Giacobazzi et al. [2015] proved that for any non-straightforward

abstraction 𝐴 there always exists a program c for which any sound abstract interpretation of c on 𝐴 yields at least one

false alarm. Later, Bruni et al. [2020] showed that any program equivalence induced by an abstract interpreter built

over a non-straightforward abstraction violates extensionality. Here, non-straightforward abstractions correspond to

those abstract domains 𝐴 that are able to distinguish at least two programs, i.e., there exist two programs c1 and c2 such

that Jc1K
♯

𝐴
≠ Jc2K

♯

𝐴
, and 𝐴 does not coincide with the identical abstraction, i.e., J·K♯

𝐴
≠ J·K. In particular, it is known

[Giacobazzi et al. 2015] that the main sources of incompleteness lie in the abstract interpretation of store assignments

and Boolean guards. The case of Boolean guards is striking. The semantics of a Boolean guard is a predicate transformer

Jb?K : ℘(Σ) → ℘(Σ), where Σ denotes the set of concrete stores. Completeness of a Boolean guard b? in the abstract

domain 𝐴 means that for all 𝑝 ∈ ℘(Σ), 𝐴(Jb?K𝑝) = 𝐴(Jb?K𝐴(𝑝)). Of course, because both branches of a conditional

Manuscript submitted to ACM

4 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

or loop statement guarded by b must be taken into account, the same condition applies to the negative test ¬b?. For

example, Int is complete for a simple rectifier program, known as ReLU in neural networks:

ReLU(𝑥) ≜ if (𝑥 < 0) then 𝑥 := 0 else skip

even if its Boolean guards are not complete in Int. In fact, for the pre-condition 𝑝 ≜ 𝑥 ∈ {−1, 1}, we have that:

Int(J𝑥 ≥ 0?K𝑝) = Int({1}) = [1, 1] ⊊ [0, 1] = Int(J𝑥 ≥ 0?K[−1, 1]) = Int(J𝑥 ≥ 0?KInt(𝑝)),

meaning that Int is not complete for the guard 𝑥 ≥ 0?. This happens even if both guards 𝑥 < 0? and 𝑥 ≥ 0? are

expressible in Int as 𝑥 ∈ [−∞,−1] and 𝑥 ∈ [0, +∞], respectively. On the other hand, Int is instead trivially complete for

both commands 𝑥 := 0 and skip of ReLU. Hence, it is the lack of completeness of the abstract interpretation of the two

guards 𝑥 < 0? and 𝑥 ≥ 0? that prevents us to inductively prove completeness for the simple program ReLU. Abstraction

refinement does not help either. The complete shell of Int, as described in [Giacobazzi et al. 1998, 2000], for the guards

𝑥 < 0? and 𝑥 ≥ 0? blows up to nearly the concrete domain of all program stores. In fact, we should refine the interval

abstraction by adding denotations that describe any pair of intervals (𝐼1, 𝐼2) such that 𝐼1 ∩ 𝐼2 = ∅ and 𝐼1 ∪ 𝐼2 is not an

interval where 𝐼1 ⊆ Z<0 and 𝐼2 ⊆ Z≥0. This would give us a complete abstract domain for 𝑥 < 0? and 𝑥 ≥ 0? which is

barely equivalent to the concrete domain, and therefore useless for a practical program verification.

Roadmap to Main Contributions

The main theme of the paper is to combine under- and over-approximations via abstract interpretation and the novel

notion of local completeness to define a program logic whose triples either prove correctness or incorrectness.

After some background on abstract interpretation in Section 2, in Section 3 we give necessary and sufficient conditions

that guarantee completeness of Boolean guards on an abstract domain 𝐴. These conditions require that both b? and

¬b? are expressible in the abstract domain and the same has to apply to the join of any two concretizations of abstract

points below 𝛼 (Jb?K) and 𝛼 (J¬b?K). This requirement turns out to be very strong: for example, this condition allows us

to prove that any Boolean guard on the interval abstraction Int is incomplete (cf. Example 3.7).

Since completeness is rare, in Section 4 we introduce locally complete abstract interpretations, a natural weakening

of completeness. Instead of requiring completeness on all possible inputs, a locally complete abstract interpretation

is complete just for some given subset of possible inputs. In the case of a guard b? with input 𝑝 , local completeness

amounts to checking whether Jb?K♯
𝐴
𝛼 (𝑝) = 𝛼 (Jb?K𝑝) holds for that particular 𝑝 ∈ 𝐶 . For example, any guard is locally

complete for any input 𝑝 that is expressible in the abstract domain. In our example of ReLU, it is easy to check that

when the input is any interval or any set of integers all having the same sign, e.g., either all nonnegative or all negative,

then both guards 𝑥 < 0? and 𝑥 ≥ 0? turn out to be locally complete in Int, so that we can inductively infer that ReLU is

locally complete in Int with respect to any such input.

By means of local completeness we can prove the absence of false alarms for programs which are globally incomplete

on a given abstract domain. As a simple example, consider the following program AbsVal for computing the absolute

value of integer variables:

AbsVal(𝑥) ≜ if (𝑥 < 0) then 𝑥 := −𝑥 else skip

AbsVal is globally incomplete on the abstract domain Int. For instance, for a pre-condition 𝑝 ≜ 𝑥 ∈ {−7, 7}, we have that
Int(JAbsValK𝑝) = [7, 7] while Int(JAbsValKInt(𝑝)) = Int(JAbsValK[−7, 7]) = [0, 7]. Therefore, even if the pre-condition

𝑝 does not include zero, an interval analysis of AbsVal yields a false alarm when checking the expressible specification

spec ≜ 𝑥 > 0. Similarly to ReLU, this is not the case when the inputs all have the same sign, no matter if positive or

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 5

⊤

⊥

Hoare
Logic

O’Hearn
Logic

•post[c]𝑝

⊤

⊥

Hoare
Logic

O’Hearn
Logic

𝐴(post[c]𝑝)•

•post[c]𝑝

LCL𝐴

Fig. 1. Relation among LCL𝐴 , O’Hearn’s Incorrectness Logic and Hoare’s partial correctness logic.

negative. Instead, a true alarm for spec can be raised only if the set of input values truly contains zero. This means that

in order to use AbsVal in our code and not having false alarms in an interval analysis, e.g. within a loop, we need to

make sure that AbsVal(𝑥) will be called with 𝑥 always having the same sign.

Our main contribution is in Section 5 where we present a logical proof system ⊢𝐴 called LCL𝐴 (Local Completeness

Logic on𝐴) for locally complete abstract interpretations parameterized on an arbitrary abstract domain𝐴. Our assertions

are Hoare-like triples ⊢𝐴 [𝑝] c [𝑞] establishing that:

(i) 𝑞 is an under-approximation of post[c]𝑝 (i.e., of JcK𝑝);
(ii) post[c] is locally complete for input 𝑝 on 𝐴;

(iii) 𝑞 and post[c]𝑝 have the same over-approximation in 𝐴.

These properties of any provable triple ⊢𝐴 [𝑝] c [𝑞] allow us to distinguish between true and false alarms raised by an

abstract interpreter JcK♯
𝐴
𝛼 (𝑝) for verifying any correctness specification spec that is expressible in 𝐴. The key rules in

LCL𝐴 are:

post[e] locally complete for 𝑝 on 𝐴

⊢𝐴 [𝑝] e [post[e] (𝑝)] (transfer)

𝑝′⇒𝑝⇒𝐴(𝑝′) ⊢𝐴 [𝑝′] c [𝑞′] 𝑞⇒𝑞′⇒𝐴(𝑞)
⊢𝐴 [𝑝] c [𝑞] (relax)

The rule (transfer) checks that a basic expression e, such as a Boolean test b? or an assignment 𝑥 := a, is locally complete

for 𝑝 before inferring the output of post[e] on 𝑝 as post-condition. The consequence rule (relax) is the key principle

of LCL𝐴 and combines an over- and under-approximating reasoning: (relax) allows us to infer a post-condition that

defines an under-approximation 𝑞 of the exact behavior as well as a sound over-approximation 𝐴(𝑞) of it, i.e., such
that 𝑞 ⇒ post[c] (𝑝) ⇒ 𝐴(post[c] (𝑝)) = 𝐴(𝑞) holds. Likewise in the consequence rules of the reverse Hoare logic

Manuscript submitted to ACM

6 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

by de Vries and Koutavas [2011], incorrectness logic by O’Hearn [2020], and incorrectness separation logic by Raad

et al. [2020], the logical ordering between pre-conditions 𝑝′ ⇒ 𝑝 and post-conditions 𝑞 ⇒ 𝑞′ in the premises of (relax)
is reversed w.r.t. the canonical consequence rule of classical Hoare logic, and this is needed because our post-conditions

𝑞 are always under-approximations.

The key feature of (relax) is to constrain the under-approximating post-condition 𝑞 to have the same abstraction as

the strongest post-condition, which is needed for preserving local completeness. This twist is fundamental to guarantee

that any triple derivable in LCL𝐴 either proves correctness or incorrectness. Figure 1 illustrates the relations between

different proof systems. On the left, it is shown that Hoare logic for correctness derives any over-approximation of

post[c] (𝑝) (i.e., any provable triple {𝑝} c {𝑞} is such that 𝑞 belongs to the blue dotted upper diamond region) while

O’Hearn logic for incorrectness is able to derive any under-approximation of post[c] (𝑝) (i.e, any provable triple

⊢IL [𝑝] c [𝑞] is such that 𝑞 belongs to the blue dotted lower diamond region). On the right, we show the interplay

between approximations derived using locally complete abstract interpretation 𝐴 (the red bordered region, comprising

any 𝑞 such that 𝐴(𝑞) = 𝐴(post[c]𝑝)) and LCL𝐴 under-approximations (i.e., any provable triple ⊢𝐴 [𝑝] c [𝑞] is such that

𝑞 belongs to the red-filled region, still with 𝐴(𝑞) = 𝐴(post[c]𝑝)). We show that by the (relax) rule we can shrink the

post-condition of any triples, up to some boundary that fringes the assertions of O’Hearn logic. This is made without

much loss of precision: under mild conditions on spec, any approximation 𝑞 in the red-filled region guarantees that if

the over-approximation 𝐴(𝑞) reports some alarm, then 𝑞 contains a true alarm and, conversely, any alarm in 𝑞 is a true

one. The key point is that any derivable triple ⊢𝐴 [𝑝] c [𝑞] of LCL𝐴 provides an under-approximation 𝑞 which is not

too coarse. More precisely, given a correctness specification spec expressible in 𝐴, two scenarios can occur:

(a) spec is satisfied: Abstract interpretation in 𝐴, as well as any triple ⊢𝐴 [𝑝] c [𝑞] derivable in LCL𝐴 , allow to conclude

that spec holds. This is not true in Hoare logic: although {𝑝} c {spec} is a valid triple, since post-conditions in Hoare

triples can always be weakened, it is also possible to derive some triple {𝑝} c {𝑞} whose post-condition 𝑞 includes

some false alarm. Using IL, no true alarm can be found and no conclusion can be drawn about the validity of spec.

(b) spec is violated: Since spec is expressible in 𝐴, then any derivable triple ⊢𝐴 [𝑝] c [𝑞] of LCL𝐴 will expose a true

alarm witnessing that spec is violated. On the contrary, abstract interpretation in 𝐴, as well as Hoare logic, can

also expose false alarms that cannot be distinguished from true ones. In IL, although it is possible to derive triples

⊢IL [𝑝] c [𝑞] where 𝑞 exhibits some (true) alarms, since post-conditions can always be strengthened, other triples

for 𝑝 and c may have no alarm at all, e.g., ⊢IL [𝑝] c [ff].

We prove in Theorem 5.5 that LCL𝐴 is sound with respect to the above properties (i–iii). To prove a result of logical

completeness
2
of LCL𝐴 for a program c, we add two more ingredients:

(1) as in incorrectness logic [O’Hearn 2020], an infinitary rule (limit) for iteration; and
(2) the assumption that all the basic instructions occurring in the program c of a provable triple ⊢𝐴 [𝑝] c [𝑞] are globally

complete on 𝐴.

In Section 6, we show that IL coincides with LCL𝐴 when the straightforward abstraction 𝐴tr which is unable to

distinguish any two programs is considered. In fact 𝐴tr is globally complete for every transfer function, hence for

every program, and therefore the premises of the rule (transfer) are always satisfied. We also prove that 𝐴tr is the only

abstraction 𝐴 for which the proof system LCL𝐴 can be logically complete for a Turing complete programming language.

2
The term logical is used here to distinguish the standard notion of completeness for a proof system from the notion of completeness in abstract

interpretation.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 7

In Section 7, we observe that for iterative commands guarded by a Boolean guard b?, e.g., in while loops, it is not

necessary to require the proof obligations of local completeness for b? at every iteration provided that local completeness

is met when the loop invariant is reached. Therefore, to improve the expressiveness of the logical system in handling

while programs, we introduce two additional sound rules that are specific to while loops.

In Section 8 we consider the possibility of refining the abstract domain to complete the proof when some proof

obligations of local completeness are not met by the current abstraction. Proving a triple ⊢𝐴 [𝑝] c [𝑞] in a refined

domain can no longer guarantee the local completeness of JcK♯
𝐴
on input 𝑝 , but we can still prove the local completeness

of the best correct approximation JcK𝐴 so that JcK𝐴𝛼 (𝑝) = 𝛼 (JcK𝑝) = 𝛼 (𝑞) holds. From the viewpoint of program

verification w.r.t. a correctness specification spec that is expressible in 𝐴, this means that we retain all the potential of

LCL𝐴 for finding bugs (i.e., any element in 𝑞 \ spec) or proving correctness (when 𝑞 ⊆ spec holds) even if the abstract

interpretation JcK♯
𝐴
𝛼 (𝑝) is not as precise as the bca JcK𝐴𝛼 (𝑝).

Finally, Section 9 discusses some related work and Section 10 concludes by outlining some directions of future work

expanding the ideas of this paper.

This paper is a full and revised version of the LICS 2021 paper [Bruni et al. 2021], extended to include all the technical

proofs, further examples and some entirely novel contributions reported in: Section 4.1 concerning a local completeness

characterization for Boolean guards; Section 7 concerning a relaxation of local completeness requirements for while

loops; Section 8 concerning a program logic for best correct approximations.

2 BACKGROUND

As a matter of notation, given two sets𝑋 and 𝑌 ,𝑋 ∖𝑌 denotes the set-difference between𝑋 and 𝑌 , while 𝑋 ⊊ 𝑌 denotes

strict inclusion. Given two functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 we denote with 𝑔 ◦ 𝑓 , or simply 𝑔𝑓 , their composition.

For 𝑓 : 𝑋 → 𝑋 and 𝑛 ∈ N we let 𝑓 𝑛 : 𝑋 → 𝑋 be defined inductively as usual: 𝑓 0 ≜ id𝑋 and 𝑓 𝑛+1 ≜ 𝑓 ◦ 𝑓 𝑛 , where id𝑋
denotes the identity function on 𝑋 (often abbreviated id) .

In ordered structures such as posets and complete lattices over a set of elements 𝐶 , we typically use ≤𝐶 to denote a

partial order relation, ∨𝐶 for least upper bound (lub), ∧𝐶 for greatest lower bound (glb), ⊤𝐶 and ⊥𝐶 for, respectively,

greatest and least elements. We use ℘(𝑋) to denote the powerset complete lattice over a set 𝑋 ordered by inclusion. If

𝑓 : 𝑋 → 𝑌 then 𝑓 is overloaded to denote its powerset lifting 𝑓 : ℘(𝑋) → ℘(𝑌), where 𝑓 (𝑆) ≜ {𝑓 (𝑥) | 𝑥 ∈ 𝑆}. If 𝐶 is a

complete lattice and 𝑋 ⊆ 𝐶 then the Moore closure of 𝑋 is defined asM(𝑋) ≜ {∧𝐶𝑌 | 𝑌 ⊆ 𝑋 }, that is,M(𝑋) is the
least superset of 𝑋 closed under glbs of its subsets (also called Moore closed); in particular, notice that 𝑋 ⊆ M(𝑋) and
∧𝐶∅ = ⊤𝐶 ∈ M(𝑋). If𝐶 is a poset and 𝑙, 𝑢 ∈ 𝐶 then [𝑙, 𝑢] ≜ {𝑥 ∈ 𝐶 | 𝑙 ≤𝐶 𝑥 ≤𝐶 𝑢} denotes the segment between 𝑙 and

𝑢 in 𝐶 . For 𝑓 , 𝑔 : 𝐶1 → 𝐶2 between posets, 𝑓 ≤ 𝑔 denotes that for all 𝑥 ∈ 𝐶1, 𝑓 (𝑥) ≤𝐶2
𝑔(𝑥), while 𝑓 is monotone when

𝑥 ≤𝐶1
𝑦 implies 𝑓 (𝑥) ≤𝐶2

𝑓 (𝑦). A function 𝑓 between complete lattices is additive (respectively co-additive) when 𝑓

preserves arbitrary lubs (respectively glbs). The least fixpoint of a function 𝑓 : 𝐶 → 𝐶 on a poset 𝐶 is denoted, when it

exists, by lfp(𝑓). Let us recall that if 𝑓 is (Scott) continuous on a complete lattice then lfp(𝑓) = ∨
𝐶 {𝑓 𝑛 (⊥) | 𝑛 ∈ N}.

2.1 Abstract Interpretation

2.1.1 Abstract Domains. If the concrete semantics of our programming language is specified on a given concrete

domain of properties𝐶 , abstract interpretation [Cousot 2021; Cousot and Cousot 1977] is the method to specify abstract

semantics, namely approximate semantics defined on an abstract domain of approximate program properties𝐴. Concrete

and abstract domains are typically complete lattices. This guarantees the existence of the basic lattice operators of

join and meet used in the definition of concrete and abstract semantics. Since several abstractions are possible, we

Manuscript submitted to ACM

8 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

use subscripts such as ≤𝐴 and ∨𝐴 to disambiguate the underlying carrier set 𝐴 and omit the subscripts in the case of

𝐶 . Given complete lattices 𝐶 and 𝐴, a pair of functions 𝛼 : 𝐶 → 𝐴 and 𝛾 : 𝐴 → 𝐶 forms a Galois connection (GC, a

special case of an adjunction) when for all 𝑐 ∈ 𝐶 , 𝑎 ∈ 𝐴, 𝛼 (𝑐) ≤𝐴 𝑎 ⇔ 𝑐 ≤ 𝛾 (𝑎) holds. In a GC the lattices 𝐶 and 𝐴 are

called, respectively, concrete and abstract domain, and 𝛼 and 𝛾 are called, respectively, abstraction and concretization

maps. We only consider GCs such that 𝛼𝛾 = id𝐴 , called Galois insertions (GIs), where 𝛼 is surjective and 𝛾 is injective.

Let us recall that 𝛼 is additive, 𝛾 is co-additive, 𝛾𝛼 is an (upper) closure operator, that is, 𝛾𝛼 : 𝐶 → 𝐶 is a monotone,

idempotent and extensive (i.e., id𝐶 ≤𝐶 𝛾𝛼 holds) function, and 𝛾 (𝐴) ⊆ 𝐶 is Moore closed. Moreover, if 𝑋 ⊆ 𝐶 is Moore

closed then 𝑋 can be viewed as an abstraction of 𝐶 through the maps 𝛼 = 𝜆𝑐. ∧𝐶 {𝑥 ∈ 𝑋 | 𝑐 ≤𝐶 𝑥} and 𝛾 = id𝑋 . The

class of abstract domains of 𝐶 is given by Abs(𝐶) ≜ {⟨𝐴, ≤𝐴, 𝛼,𝛾⟩ | 𝛼 : 𝐶 → 𝐴, 𝛾 : 𝐴 → 𝐶 is a GI}, and we write

𝐴𝛼,𝛾 ∈ Abs(𝐶) to mean that 𝐴 is an abstract domain related to 𝐶 by the abstraction and concretization maps 𝛼 and 𝛾 .

When convenient, we simply use𝐴 in place of the function 𝛾𝛼 : 𝐶 → 𝐶 , e.g., Int({−7, 7}) = [−7, 7]. For example, since 𝛾

is injective, a condition such as 𝛼 (𝑐) ≤𝐴 𝛼 (𝑑) can be written as (and is equivalent to) 𝐴(𝑐) ≤ 𝐴(𝑑). An abstract domain

𝐴𝛼,𝛾 ∈ Abs(𝐶) is called strict when 𝛾 (⊥𝐴) = ⊥, and a concrete value 𝑐 ∈ 𝐶 is expressible in 𝐴 when 𝐴(𝑐) = 𝑐 , while

if 𝑐 < 𝐴(𝑐) holds then 𝑐 is (strictly) approximated in 𝐴. Notice that 𝛾 (𝐴) and 𝐶 ∖ 𝛾 (𝐴) are the sets of concrete values
which are, respectively, expressible and approximated in 𝐴. Given two abstract domains 𝐴𝛼𝐴,𝛾𝐴 , 𝐵𝛼𝐵 ,𝛾𝐵 ∈ Abs(𝐶), 𝐵
is a refinement of 𝐴, denoted by 𝐵 ⪯ 𝐴, when 𝛾𝐴 (𝐴) ⊆ 𝛾𝐵 (𝐵) holds, i.e., when 𝐵 is at least as expressive as 𝐴. An

abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) is trivial if: either (a) 𝛾𝛼 = id𝐶 holds, i.e., all the concrete values are expressible in 𝐴;

or (b) 𝛾𝛼 = 𝜆𝑥 .⊤𝐶 holds, i.e., 𝐴 is a singleton domain which can express the greatest element ⊤𝐶 only. 𝐴 is called the

identity abstraction in the case (a), and the top abstraction in the case (b).

2.1.2 Correctness. Given an abstract domain 𝐴𝛼,𝛾 ∈ Abs(𝐶) and a concrete operation 𝑓 : 𝐶 → 𝐶 (a generalization to

𝑛-ary functions of type 𝐶𝑛 → 𝐶 can be easily done pointwise), an abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a correct (or sound)

approximation (or abstract interpretation) of 𝑓 when 𝛼 𝑓 ≤ 𝑓 ♯𝛼 holds. It is known that if 𝑓 ♯ is a correct approximation

of 𝑓 then we also have fixpoint correctness when least fixpoints exist, i.e., 𝛼 (lfp(𝑓)) ≤ lfp(𝑓 ♯) holds. The best correct
approximation (bca) of 𝑓 in 𝐴 is defined as the abstract function 𝑓 𝐴 ≜ 𝛼 𝑓 𝛾 : 𝐴 → 𝐴. The term “best” is justified by the

well-known fact [Cousot and Cousot 1979] that an abstract function 𝑓 ♯ : 𝐴 → 𝐴 is a correct approximation of 𝑓 iff

𝑓 𝐴 ≤ 𝑓 ♯ holds, so that 𝑓 𝐴 is the most precise, w.r.t. the pointwise ordering ≤𝐴 , among the correct approximations of 𝑓

on 𝐴.

2.1.3 Completeness. The abstract function 𝑓 ♯ is a complete approximation of 𝑓 (or just complete) if 𝛼 𝑓 = 𝑓 ♯𝛼 holds.

The abstract domain 𝐴 is called a complete abstraction for 𝑓 if there exists a complete approximation 𝑓 ♯ : 𝐴 → 𝐴 of 𝑓

on the abstract domain 𝐴. Completeness intuitively encodes the greatest possible precision for an abstract function

𝑓 ♯ defined on 𝐴, meaning that the abstract behaviour of 𝑓 ♯ on 𝐴, i.e. 𝑓 ♯𝛼 , exactly matches the abstraction in 𝐴 of the

concrete behaviour of 𝑓 , i.e. 𝛼 𝑓 . In a complete approximation 𝑓 ♯ the only loss of precision is due to the abstract domain

and not to the definition of the abstract function itself. Analogously to soundness, completeness transfers to fixpoints,

meaning that if 𝑓 ♯ is complete for 𝑓 then fixpoint completeness 𝛼 (lfp(𝑓)) = lfp(𝑓 ♯) holds. It turns out that there exists
an abstract function 𝑓 ♯ : 𝐴 → 𝐴 such that completeness 𝛼 𝑓 = 𝑓 ♯𝛼 holds iff 𝛼 𝑓 = 𝛼 𝑓 𝛾𝛼 iff (𝛾𝛼) 𝑓 = (𝛾𝛼) 𝑓 (𝛾𝛼) iff
𝐴𝑓 = 𝐴𝑓 𝐴 iff 𝛾𝛼 𝑓 = 𝛾 𝑓 𝐴𝛼 . Hence, the chance of defining a complete approximation 𝑓 ♯ of 𝑓 on some abstract domain

𝐴 only depends upon the bca 𝑓 𝐴 of 𝑓 in 𝐴, i.e., completeness is a property of the abstract domain only. Moreover, let us

observe that any trivial abstract domain is always complete for any 𝑓 . In the following, we say both “𝐴 is complete for

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 9

𝑓 ” and “𝑓 is complete on 𝐴”, and we write C𝐴 (𝑓) to denote that 𝐴 is complete for 𝑓 :

C𝐴 (𝑓) △⇔ 𝐴 ◦ 𝑓 = 𝐴 ◦ 𝑓 ◦𝐴 . (1)

2.2 Regular Commands

Following O’Hearn [2020] for incorrectness logic, we consider a language of regular commands:

Reg ∋ r ::= e | r; r | r ⊕ r | r∗

which is general enough to cover deterministic imperative languages as well as other programming paradigms that

include, e.g., nondeterministic and probabilistic computations. The language is parametric on the syntax of basic

expressions e ∈ Exp, which provide the basic commands and can be instantiated with different kinds of instructions

such as (nondeterministic or parallel) assignments, (Boolean) guards or assumptions, error generation primitives, local

variable primitives, etc. The term r1; r2 represents sequential composition, the term r1 ⊕ r2 represents a nondeterministic

choice command, and the term r∗ is the Kleene iteration of r where r can be executed 0 or any finite number of times.

As a shorthand, we write r𝑛 for the sequence r; ...; r of 𝑛 instances of r and let Exp(r) denote the set of basic expressions
occurring in r ∈ Reg.

2.2.1 Concrete semantics. We assume that basic expressions have a semantics L ·M : Exp → 𝐶 → 𝐶 on a complete

lattice 𝐶 such that LeM is an additive function. This assumption can be done w.l.o.g. in Hoare-like (or collecting)

program semantics, since their basic functions are always defined by an additive lifting. The concrete semantics

J·K : Reg → 𝐶 → 𝐶 of regular commands is inductively defined as follows:

JeK𝑐 ≜ LeM𝑐

Jr1; r2K𝑐 ≜ Jr2K(Jr1K𝑐)

Jr1 ⊕ r2K𝑐 ≜ Jr1K𝑐 ∨ Jr2K𝑐

Jr∗K𝑐 ≜
∨{JrK𝑛𝑐 | 𝑛 ∈ N}

(2)

2.2.2 Abstract Semantics. The abstract semantics J·K♯
𝐴

: Reg → 𝐴 → 𝐴 of regular commands on an abstract domain

𝐴𝛼,𝛾 ∈ Abs(𝐶) is inductively defined as follows:

JeK♯
𝐴
𝑎 ≜ JeK𝐴𝑎

Jr1; r2K
♯

𝐴
𝑎 ≜ Jr2K

♯

𝐴
(Jr1K♯𝐴𝑎)

Jr1 ⊕ r2K
♯

𝐴
𝑎 ≜ Jr1K

♯

𝐴
𝑎 ∨𝐴 Jr2K

♯

𝐴
𝑎

Jr∗K♯
𝐴
𝑎 ≜

∨
𝐴{(JrK

♯

𝐴
)𝑛𝑎 | 𝑛 ∈ N}

(3)

where it is worth emphasizing that as abstract semantics JeK♯
𝐴
of basic expressions we consider their bcas on 𝐴, namely

JeK𝐴 ≜ 𝛼 ◦ JeK ◦𝛾 , i.e., we assume that no additional loss of precision is due to their interpretation. It is easy to check by

structural induction that the abstract semantics in (3) is monotonic (provided that JeK are monotone functions) and

correct, i.e.,

𝛼JrK ≤ JrK♯
𝐴
𝛼. (4)

Let us remark that (3) is the standard definition by structural induction of abstract semantics used in abstract interpreta-

tion, adapted to the language of regular commands. Therefore, it turns out that the abstract semantics of the choice

Manuscript submitted to ACM

10 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

command preserves bcas, namely

Jr1 ⊕ r2K𝐴𝑎 = Jr1K𝐴𝑎 ∨𝐴 Jr2K𝐴𝑎. (5)

As observed above in Section 1, this property of preserving bcas, in general, does not hold for sequential composition

and Kleene iteration: for example, Jr2K𝐴 ◦ Jr1K𝐴 is not guaranteed to be the bca Jr1; r2K𝐴 . On the other hand, it can be

easily seen, by structural induction, that all the definitions in (3) preserve the property of being complete, meaning

that if Jr1K
♯

𝐴
, Jr2K

♯

𝐴
, JrK♯

𝐴
are complete, then Jr1; r2K

♯

𝐴
, Jr1 ⊕ r2K

♯

𝐴
and Jr∗K♯

𝐴
are complete as well. In the following, as a

shorthand, we write C𝐴 (r) instead of C𝐴 (JrK) to denote that 𝐴 is complete for JrK.
In our proofs, we will exploit some standard properties of abstract and concrete semantics, as summarized by the

following lemma.

Lemma 2.1. Let 𝐴𝛼,𝛾 ∈ Abs(𝐶). For all r ∈ Reg and 𝑐, 𝑑 ∈ 𝐶 :

(a) JrK𝐴𝛼 (𝑐) ≤𝐴 JrK♯
𝐴
𝛼 (𝑐);

(b) JrK♯
𝐴
𝛼 (𝑐) = 𝛼 (JrK𝑐) ⇒ 𝛼 (JrK𝑐) = 𝛼 (JrK𝛾𝛼 (𝑐));

(c) JrK♯
𝐴
𝛼 (𝑐) ≤𝐴 𝛼 (𝑐) ⇒ Jr∗K♯

𝐴
𝛼 (𝑐) = 𝛼 (𝑐);

(d) JrK𝐴𝛼 (𝑐) ≤𝐴 𝛼 (𝑐) ⇒ Jr∗K𝐴𝛼 (𝑐) = 𝛼 (𝑐);
(e) 𝑑 ≤ JrK𝑐 ⇒ Jr∗K(𝑐 ∨ 𝑑) = Jr∗K𝑐 .

Proof. Let us recall that 𝐴 = 𝛾𝛼 .

(a): By correctness (4), and by definition of bca JrK𝐴 .
(b): By (a), 𝛼 (JrK𝑐) ≤𝐴 𝛼 (JrK𝛾𝛼 (𝑐)) = JrK♯

𝐴
𝛼 (𝑐) ≤𝐴 JrK♯

𝐴
𝛼 (𝑐) = 𝛼 (JrK𝑐).

(c): Let us assume that JrK♯
𝐴
𝛼 (𝑐) ≤ 𝛼 (𝑐). The following property can be proved by an easy induction on 𝑛 ≥ 1:

∀𝑛 ≥ 1. JrK♯
𝐴
𝑛𝛼 (𝑐) ≤𝐴 𝛼 (𝑐). (‡)

Thus,

Jr∗K♯
𝐴
𝛼 (𝑐) = [by definition]∨

𝐴{JrK
♯

𝐴
𝑛𝛼 (𝑐) | 𝑛 ∈ N} = [by (‡) and JrK♯

𝐴
0𝛼 (𝑐) = 𝛼 (𝑐)]

𝛼 (𝑐) .

(d): The proof is analogous to that of (c) and therefore omitted.

(e): Let us assume that 𝑑 ≤ JrK𝑐 . Then:

Jr∗K𝑐 ≤ [by monotonicity of Jr∗K]

Jr∗K(𝑐 ∨ 𝑑) ≤ [by hyp. 𝑑 ≤ JrK𝑐]

Jr∗K(𝑐 ∨ JrK𝑐) ≤ [as JrK𝑐 ≤ Jr∗K𝑐]

Jr∗K(𝑐 ∨ Jr∗K𝑐) = [as 𝑐 ≤ Jr∗K𝑐]

Jr∗K(Jr∗K𝑐) = [by idempotency of Jr∗K]

Jr∗K𝑐. □

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 11

2.2.3 Programs. We consider standard basic expressions used in deterministic while programs: no-op instruction,

assignments and Boolean guards, as defined below:

Exp ∋ e ::= skip | 𝑥 := a | b?

where a ranges over arithmetic expressions on integer values in Z and variables 𝑥 ∈ Var , and b ranges over Boolean

expressions in BExp including negation. Hence, a standard deterministic imperative language Imp (cf. [Winskel 1993])

can be defined using guarded branching and loop commands as syntactic sugar as follows (cf. [Kozen 1997, Section 2.2]):

if b then c1 else c2 ≜ (b?; c1) ⊕ (¬b?; c2)

while b do c ≜ (b?; c)∗ ; ¬b?

(6)

The syntax of Imp commands is defined by the grammar below

Imp ∋ c ::= skip | 𝑥 := a | c; c | if b then c else c | while b do c

To improve readability, in our running examples we will often use this syntactic sugar.

A program store 𝜎 : 𝑉 → Z is a total function from a finite set of variables of interest 𝑉 ⊆ Var to values and

Σ ≜ 𝑉 → Z denotes the set of stores on the variables ranging in a set𝑉 that, for simplicity, is left implicit. This definition

of stores allows us to compose logical proofs for regular commands by choosing a finite set of variables𝑉 which is large

enough to include all the variables occurring in a finite set of commands. The concrete domain is S ≜ ℘(Σ), ordered by

inclusion.

The semantics L ·M : Exp → S→ S of basic expressions is defined as follows:

LskipM𝑝 ≜ 𝑝

L𝑥 := aM𝑝 ≜ {𝜎 [𝑥 ↦→ {|a|} 𝜎] | 𝜎 ∈ 𝑝}

Lb?M𝑝 ≜ {𝜎 ∈ 𝑝 | {|b|} 𝜎 = tt}

where store update 𝜎 [𝑥 ↦→ 𝑣] and the semantics of arithmetic expressions {|a|} : Σ → Z and Boolean expressions

{|b|} : Σ → {tt,ff} are defined as expected.

For brevity, we overload b to denote the set Lb?M Σ of all and only stores that satisfy b, so that Lb?M𝑝 = 𝑝 ∩ b filters

the concrete stores in 𝑝 making b true. The usual strongest post-condition for r for a pre-condition 𝑝 ∈ S is therefore
post[r]𝑝 ≜ JrK𝑝 . Analogously, we define post𝐴 [r]𝛼 (𝑝) ≜ JrK♯

𝐴
𝛼 (𝑝).

In the following, we will present some simple running examples involving programs with just one variable, so

that 𝑉 = {𝑥}. In these cases, to simplify the notation, ℘(Z) will be used to represent sets of stores in S, i.e., 𝑝 ∈ ℘(Z)
represents the set {𝜎 ∈ Σ | 𝜎 (𝑥) ∈ 𝑝} ∈ S. Accordingly, Abs(℘(Z)) will represent Abs(S). For example, {−2, 2} will be
used to represent a verbose expression such as 𝑥 = −2 ∨ 𝑥 = 2.

3 ON THE LIMITS OF (GLOBAL) COMPLETENESS

Giacobazzi et al. [2015, Theorem 4.5] proved that completeness holds for all programs in a Turing complete programming

language only for trivial abstract domains. This means that the only abstract domains that are complete for all programs

are the straightforward ones: the identical abstraction, making abstract and concrete semantics the same, and the top

abstraction, making all programs equivalent by abstract semantics. Giacobazzi et al. [2015] observed that since skip
is always trivially complete and composition, conditional and loop statements all preserve the completeness of their

subprograms, the only sources of incompleteness may arise from assignments and Boolean guards. Nevertheless, one

Manuscript submitted to ACM

12 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

⊩𝐴 skip

C𝐴 (𝑥 := a)

⊩𝐴 𝑥 := a

⊩𝐴 c1 ⊩𝐴 c2

⊩𝐴 c1; c2

C𝐴 (b) C𝐴 (¬b) ⊩𝐴 c1 ⊩𝐴 c2

⊩𝐴 if b then c1 else c2

C𝐴 (b) C𝐴 (¬b) ⊩𝐴 c

⊩𝐴 while b do c

Fig. 2. A Basic Proof System ⊩𝐴 for Global Completeness [Giacobazzi et al. 2015, Figure 5].

∅

Z<0 Z=0 Z>0

Z≤0 Z≠0 Z≥0

ZSign

∅

Z<0 Z=0 Z>0

Z≤0 Z≥0

ZSign
1

∅

Z<0 Z=0

Z≤0 Z≥0

ZSign
2

Fig. 3. Abstract Domains for Sign Analysis.

can prove the completeness of specific programs by structural induction on their syntax, through the basic proof system

by Giacobazzi et al. [2015], recalled in Figure 2, where a proof of ⊩𝐴 c entails the completeness of a program c in an

abstract domain 𝐴. Hence, the completeness of (the semantic functions associated with) assignments and Boolean

guards occurring in a program is a sufficient condition to guarantee the completeness of the whole program.

Example 3.1. As a simple example, consider the abstract domain Sign for sign analysis depicted in Figure 3 and the

Imp program

c ≜ if 𝑥 < 0 then 𝑥 := 𝑥 ∗ 2 else 𝑥 := 𝑥 ∗ 3 .

It turns out that all the guards and assignments occurring in c are complete on Sign, i.e., CSign (𝑥 < 0?), CSign (𝑥 ≥ 0?),
CSign (𝑥 := 𝑥 ∗ 2) and CSign (𝑥 := 𝑥 ∗ 3) hold. Thus, one can easily prove ⊩Sign c, entailing that c is complete on Sign. □

While the completeness of assignments has been extensively studied (e.g., the completeness conditions for as-

signments in major numerical domains such as intervals, congruences, octagons and affine relations have been fully

settled [Giacobazzi et al. 2015; Miné 2017; Ranzato 2020]), the case of Boolean guards is troublesome and largely

unexplored. In particular, in the case of conditional and loop statements, the completeness on a store abstraction 𝐴 calls

for the validity of the conditions C𝐴 (b?) and C𝐴 (¬b?):

∀𝑝 ∈ S . 𝐴(Lb?M𝑝) = 𝐴(Lb?M𝐴(𝑝)) ∧ 𝐴(L¬b?M𝑝) = 𝐴(L¬b?M𝐴(𝑝)) ,

that is,

∀𝑝 ∈ S . 𝐴(𝑝 ∩ b) = 𝐴(𝐴(𝑝) ∩ b) ∧ 𝐴(𝑝 ∩ ¬b) = 𝐴(𝐴(𝑝) ∩ ¬b) . (7)

The term global in the section title refers to the universal quantification over any possible set 𝑆 of stores in (7), which

we prove to be a major limitation. The following results provide a sufficient and necessary condition on the abstract

domain 𝐴 for guaranteeing both C𝐴 (b?) and C𝐴 (¬b?). We first observe that when the functions Jb?K and J¬b?K are
complete in a strict abstract domain 𝐴, then b and ¬b are expressible in 𝐴, that is, 𝐴(b) = b and 𝐴(¬b) = ¬b hold.

Lemma 3.2. Let 𝐴 ∈ Abs(S) be strict. If C𝐴 (b?) and C𝐴 (¬b?) hold, then b and ¬b are expressible in 𝐴.

Proof. Let us show the contrapositive, so we assume that either 𝐴(b) ≠ b or 𝐴(¬b) ≠ ¬b. Since, for all 𝑝 ∈ S,
𝑝 ⊆ 𝐴(𝑝) holds, we have that b ⊊ 𝐴(b) or ¬b ⊊ 𝐴(¬b), so that either 𝐴(b) ∩ ¬b ≠ ∅ or 𝐴(¬b) ∩ b ≠ ∅. Assume that

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 13

𝐴(b) ∩ ¬b ≠ ∅ holds. Then 𝐴(b ∩ ¬b) = 𝐴(∅) = ∅ while ∅ ⊊ 𝐴(b) ∩ ¬b ⊆ 𝐴(𝐴(b) ∩ ¬b), so that C𝐴 (¬b) does not
hold. The case 𝐴(¬b) ∩ b ≠ ∅ is symmetric. □

Furthermore, when b and ¬b are both expressible in𝐴, it turns out that the completeness of Jb?K and J¬b?K boils down
to a co-additivity condition for the abstraction map 𝛼 , or, equivalently, an additivity condition for the concretization

map 𝛾 . This is clearly a way too strong requirement in abstract interpretation as co-additive abstraction maps imply

that the abstract domain is (isomorphic to) a complete sublattice of the concrete domain, namely it is a disjunctive

abstraction [Giacobazzi and Ranzato 1996, 1998].

Lemma 3.3. Let b and ¬b be expressible in 𝐴𝛼,𝛾 ∈ Abs(S). Then, C𝐴 (b?) and C𝐴 (¬b?) hold iff

∀𝑝 ∈ S . 𝛼 (𝑝 ∩ b) = 𝛼 (𝑝) ∧𝐴 𝛼 (b) ∧ 𝛼 (𝑝 ∩ ¬b) = 𝛼 (𝑝) ∧𝐴 𝛼 (¬b) . (8)

Proof. We show that (7) is equivalent to (8). Observe that for all 𝑝 ∈ S,

𝛼 (𝛾𝛼 (𝑝) ∩ b) = [because b is expressible in 𝐴]

𝛼 (𝛾𝛼 (𝑝) ∩ 𝛾𝛼 (b)) = [by GI, 𝛾 is co-additive]

𝛼𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)) = [by GI, 𝛼𝛾 = id]

𝛼 (𝑝) ∧𝐴 𝛼 (b).

Thus, when b and ¬b are expressible, it turns out that 𝛼 (𝛾𝛼 (𝑝)∩b) = 𝛼 (𝑝∩b) iff 𝛼 (𝑝)∧𝐴𝛼 (b) = 𝛼 (𝑝∩b). Symmetrically,

𝛼 (𝛾𝛼 (𝑝) ∩ ¬b) = 𝛼 (𝑝 ∩ ¬b) iff 𝛼 (𝑝) ∧𝐴 𝛼 (¬b) = 𝛼 (𝑝 ∩ ¬b). We have therefore proved (7) ⇔ (8). □

The next characterization result provides an effective way to check whether an abstract domain 𝐴 is complete w.r.t. a

Boolean guard b. It amounts to check that b and ¬b are both expressible in 𝐴 and that the union of the concretizations

of any two abstract points in 𝐴 below, respectively, 𝛼 (b) and 𝛼 (¬b), is also expressible in 𝐴 (see Example 3.5).

Theorem 3.4 (Complete Guards). Let b and ¬b be expressible in 𝐴𝛼,𝛾 ∈ Abs(S). Then, C𝐴 (b?) and C𝐴 (¬b?) hold iff

∀𝑎1, 𝑎2 ∈ 𝐴.
(
𝑎1 ≤𝐴 𝛼 (b) ∧ 𝑎2 ≤𝐴 𝛼 (¬b) ⇒ 𝛾 (𝑎1 ∨𝐴 𝑎2) = 𝛾 (𝑎1) ∪ 𝛾 (𝑎2)

)
. (9)

Proof. Let us first show thatC𝐴 (b)∧C𝐴 (¬b) is equivalent to condition (9).We know that𝛾𝛼 (b) = b and𝛾𝛼 (¬b) = ¬b.
By co-additivity of 𝛾 , for any 𝑝 ∈ S, we have that

𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)) = 𝛾𝛼 (𝑝) ∩ b and 𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (¬b)) = 𝛾𝛼 (𝑝) ∩ ¬b. (§)

By Lemma 3.3, to prove our statement we show that (8)⇔ (9) holds.

(⇒) By contraposition we prove that if (9) is not satisfied then (8) does not hold. Let us assume that there exist

𝑎1 ≤𝐴 𝛼 (b) and 𝑎2 ≤𝐴 𝛼 (¬b) such that 𝛾 (𝑎1 ∨𝐴 𝑎2) ⊋ 𝛾 (𝑎1) ∪ 𝛾 (𝑎2), so that there exists 𝜎 ∈ 𝛾 (𝑎1 ∨𝐴 𝑎2) such that

𝜎 ∉ 𝛾 (𝑎1) ∪ 𝛾 (𝑎2). Clearly, either 𝜎 ∈ b or 𝜎 ∈ ¬b. Without loss of generality we assume that 𝜎 ∈ b (the case 𝜎 ∈ ¬b is

Manuscript submitted to ACM

14 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

symmetric). Let 𝑝 ≜ 𝛾 (𝑎1) ∪ 𝛾 (𝑎2) so that:

𝛾𝛼 (𝑝 ∩ b) = [by definition of 𝑝]

𝛾𝛼 ((𝛾 (𝑎1) ∪ 𝛾 (𝑎2)) ∩ b) = [by distributivity]

𝛾𝛼 ((𝛾 (𝑎1) ∩ b) ∪ (𝛾 (𝑎2) ∩ b)) = [by 𝛾 (𝑎1) ⊆ 𝛾𝛼 (b) = b and 𝛾 (𝑎2) ⊆ 𝛾𝛼 (¬b) = ¬b]

𝛾𝛼𝛾 (𝑎1) = [by GI, 𝛼𝛾 = id]

𝛾 (𝑎1) .

Thus, 𝜎 ∉ 𝛾𝛼 (𝑝 ∩ b) = 𝛾 (𝑎1) because 𝜎 ∉ 𝛾 (𝑎1) ∪ 𝛾 (𝑎2). Moreover,

𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)) = [by (§)]

𝛾𝛼 (𝑝) ∩ b = [by definition of 𝑝]

𝛾 (𝛼 (𝛾 (𝑎1) ∪ 𝛾 (𝑎2))) ∩ b = [by GI, 𝛼 is additive]

𝛾 (𝛼𝛾 (𝑎1) ∨𝐴 𝛼𝛾 (𝑎2)) ∩ b = [by GI, 𝛼𝛾 = id]

𝛾 (𝑎1 ∨𝐴 𝑎2) ∩ b,

so that 𝜎 ∈ 𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)) because we have assumed 𝜎 ∈ 𝛾 (𝑎1 ∨𝐴 𝑎2) and 𝜎 ∈ b. Thus, 𝛾𝛼 (𝑝 ∩ b) ≠ 𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)).
Since 𝛾 is injective, 𝛼 (𝑝 ∩ b) ≠ 𝛼 (𝑝) ∧𝐴 𝛼 (b), i.e., (8) does not hold.
(⇐) By contraposition, we prove that if (8) fails then (9) does not hold. If (8) does not hold, there must exist some 𝑝 ∈ S
such that

𝛼 (𝑝 ∩ b) <𝐴 𝛼 (𝑝) ∧𝐴 𝛼 (b) or 𝛼 (𝑝 ∩ ¬b) <𝐴 𝛼 (𝑝) ∧𝐴 𝛼 (¬b) .

Thus, by applying 𝛾 which, by GI, is injective, 𝛾𝛼 (𝑝 ∩ b) ⊊ 𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (b)) or 𝛾𝛼 (𝑝 ∩ ¬b) ⊊ 𝛾 (𝛼 (𝑝) ∧𝐴 𝛼 (¬b)). In
turn, since 𝛾 is co-additive and b, ¬b are expressible in 𝐴, 𝛾𝛼 (𝑝 ∩ b) ⊊ 𝛾 (𝛼 (𝑝)) ∩ b or 𝛾𝛼 (𝑝 ∩ ¬b) ⊊ 𝛾 (𝛼 (𝑝)) ∩ ¬b.
Hence, we obtain that

𝛾𝛼 (𝑝 ∩ b) ∪ 𝛾𝛼 (𝑝 ∩ ¬b) ⊊ 𝛾 (𝛼 (𝑝)) . (†)

Let us now consider 𝑎1 ≜ 𝛼 (𝑝 ∩ b) and 𝑎2 ≜ 𝛼 (𝑝 ∩ ¬b). Then,

𝛾 (𝑎1 ∨𝐴 𝑎2) = [by definition]

𝛾 (𝛼 (𝑝 ∩ b) ∨𝐴 𝛼 (𝑝 ∩ ¬b)) = [by GI, 𝛼 is additive]

𝛾 (𝛼 ((𝑝 ∩ b) ∪ (𝑝 ∩ ¬b))) = [by distributivity]

𝛾 (𝛼 (𝑝)) ⊋ [by (†)]

𝛾𝛼 (𝑝 ∩ b) ∪ 𝛾𝛼 (𝑝 ∩ ¬b) = [by definition]

𝛾 (𝑎1) ∪ 𝛾 (𝑎2),

thus proving that (9) does not hold. □

Let us illustrate through some examples how Theorem 3.4 can be applied to check the completeness of some guards.

Example 3.5. Let Sign, Sign
1
, Sign

2
∈ Abs(℘(Z)) be the abstract domains depicted in Figure 3 and consider the

programs AbsVal and ReLU defined in Section 1.

In Sign, all expressible Boolean guards are complete and the completeness of both the programs AbsVal and ReLU can

be proved inductively.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 15

In Sign
1
, no expressible Boolean guard is complete (except the trivial ones tt and ff). Indeed, only the elements ∅ and Z

satisfy condition (9). The negation of Z=0 is Z≠0, which does not belong to Sign
1
. For the guard Z<0, its negation Z≥0

is in Sign
1
, but the join of Z<0 with Z>0 ≤Sign

1

Z≥0 is again Z≠0 ∉ Sign
1
. Dually for Z>0.

In Sign
2
, the guards Z≥0 and Z<0 are complete, while Z≤0 and Z=0 are not. For example, for Z=0 ≤Sign

2

Z≥0 and Z<0

we have 𝛾 (Z=0 ∨Sign
2

Z<0) = 𝛾 (Z≤0) = 𝛾 (Z=0) ∪𝛾 (Z<0). It follows that, even if both ReLU and AbsVal are complete in

Sign
2
, only ReLU can be inductively proved to be complete, because all its basic expressions are complete in Sign

2
. In

the case of AbsVal instead, the assignment 𝑥 := −𝑥 is not complete, e.g. for 𝑝 ≜ 𝑥 > 0 (the fact that such input will

never be provided to that branch of code is irrelevant). □

It is worth remarking that condition (9) of Theorem 3.4 suggests a strategy to make a given abstract domain 𝐴

complete for b and ¬b: We can either add to 𝐴 the concrete values 𝛾 (𝑎1) ∪ 𝛾 (𝑎2) that are missing in 𝐴 or remove either

𝑎1 or 𝑎2 from 𝐴 when 𝛾 (𝑎1) ∪ 𝛾 (𝑎2) is not in 𝐴.

Example 3.6. Consider the domain IntN ∈ Abs(℘(N)) of (possibly infinite) intervals on natural numbers N [Cousot

and Cousot 1977] and assume we are interested in testing equality to 0. The Boolean guards 𝑥 = 0? and 𝑥 ≠ 0? are

expressible in IntN as the intervals [0, 0] and [1,∞], respectively. However, ∅ is the only (trivial) interval below [0, 0]
and, besides ∅, any element of the form [𝑎, 𝑏], with 1 < 𝑎 ≤ 𝑏, is below [1,∞]. Theorem 3.4 requires that any element

in the set {[0, 0] ∪ [𝑎, 𝑏] | 1 < 𝑎 ≤ 𝑏} is also exactly represented. Therefore, an abstract domain which is complete for

the guards 𝑥 = 0? and 𝑥 ≠ 0? can be obtained by adding to IntN all the elements in {[0, 0] ∪ [𝑎, 𝑏] | 1 < 𝑎 ≤ 𝑏}. Observe
that IntN ∪ {[0, 0] ∪ [𝑎, 𝑏] | 1 < 𝑎 ≤ 𝑏} is Moore closed (see Section 2.1.1) and therefore it is an abstract domain of

℘(N) (cf. Section 2.1.1). Note that only the guards 𝑥 = 0? and 𝑥 ≠ 0? are complete on this refined abstract domain. □

Because all interesting programs include Boolean guards, complete abstract domains refining a given domain may

indeed become very close to the concrete domain, therefore limiting the effectiveness of this notion of completeness in

program analysis. The following example, similar to Example 3.6, shows that this phenomenon can be a major drawback

of refining an abstract domain in order to achieve completeness for the Boolean guards occurring in a given program.

Example 3.7. Consider the abstract domain Int ∈ Abs(℘(Z)) of integer intervals [Cousot and Cousot 1977]. The only

Boolean guards b such that both b and ¬b are expressible in Int are the infinite intervals [−∞, 𝑘] and [𝑘,∞], for some

𝑘 ∈ Z, together with the trivial intervals Z and ∅. In fact, in Int, the complement of any finite interval [𝑎, 𝑏] ∈ Int, with

𝑎 ≤ 𝑏, must be necessarily approximated. However, if we consider b = [−∞, 𝑘] and, correspondingly, ¬b = [𝑘 + 1,∞],
then condition (9) of Theorem 3.4 is not satisfied. As an example, let us fix 𝑘 = −1, i.e. b = [−∞,−1] and, correspondingly,
¬b = [0,∞]. Condition (9) of Theorem 3.4 would require the presence of all the concrete joins [𝑛1, 𝑛2] ∪ [𝑚1,𝑚2] with
𝑛1 ≤ 𝑛2 < 0 ≤ 𝑚1 ≤ 𝑚2, because [𝑛1, 𝑛2] ≤Int [−∞,−1] and [𝑚1,𝑚2] ≤Int [0,∞], but these joins are not intervals,
unless 𝑛2 = 0 and𝑚1 = 1. If we add all such joins [𝑛1, 𝑛2] ∪ [𝑚1,𝑚2] to Int, we obtain a Moore closed subset of ℘(Z)
and therefore we achieve a complete abstraction for the guards 𝑥 < 0? and 𝑥 ≥ 0?.

Even a basic guard such as b ≜ Z=0 = [0, 0] would need its complement ¬b = Z≠0 = [−∞,−1] ∪ [1,∞] as well
as the concrete joins [𝑛1, 𝑛2] ∪ [0, 0] for any 𝑛1 ≤ 𝑛2 < −1 or 1 < 𝑛1 ≤ 𝑛2, because any such interval [𝑛1, 𝑛2] is
below [−∞,−1] ∪ [1,∞]. Moreover, notice that the intersection of ¬b with any interval [𝑛,𝑚] with 𝑛 < 0 < 𝑚 is

[𝑛,−1] ∪ [1,𝑚], and since abstract domains are Moore closed, all these sets must be included as well. □

4 LOCAL COMPLETENESS

Section 3 shows that the standard notion of (global) completeness (1) for Boolean guards is a too strong requirement for

abstract domains, often met in practice just by trivial guards or domains. While completeness can be hard/impossible to

Manuscript submitted to ACM

16 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

achieve globally, i.e. for all possible sets of stores, it could well happen that completeness holds locally, i.e. just for some

store properties. We therefore put forward a notion of local completeness, which in program analysis corresponds to

considering completeness only along certain program executions.

Definition 4.1 (Local Completeness). An abstract domain 𝐴 ∈ Abs(𝐶) is locally complete for 𝑓 : 𝐶 → 𝐶 at a concrete

value 𝑐 ∈ 𝐶 , written C𝐴𝑐 (𝑓), if the following condition holds:

C𝐴𝑐 (𝑓)
△⇔ 𝐴𝑓 (𝑐) = 𝐴𝑓 𝐴(𝑐). □

Accordingly, ordinary completeness as defined by (1) is also referred to as global completeness. Note that global

completeness amounts to the universal quantification of local completeness, in the sense that C𝐴 (𝑓) ⇔ ∀𝑐 ∈ 𝐶. C𝐴𝑐 (𝑓).
Let us also observe that 𝐴 is trivially locally complete for any 𝑓 on any abstract value 𝐴(𝑐) (i.e., C𝐴

𝐴(𝑐) (𝑓) always holds).
As discussed in Section 1, in program analysis it may well happen that JrK is not globally complete w.r.t. the abstract

domain 𝐴 but it is locally complete for a particular class of inputs 𝑝 (that is a value in the concrete domain of powerset

of stores). In the following, we write C𝐴𝑝 (r) instead of the more verbose C𝐴𝑝 (JrK).

Example 4.2. Consider the following Imp program

c ≜ if (0 < 𝑥) then 𝑥 := 𝑥 − 2 else 𝑥 := −𝑥

and the interval abstraction Int. While the transfer function J0 < 𝑥?K is not globally complete (see Example 3.7), it is

locally complete for any set 𝑝 ∈ ℘(Z) satisfying one of the following conditions:

(1) 𝑝 ⊆ Z>0, or (2) 𝑝 ⊆ Z≤0, or (3) {0, 1} ⊆ 𝑝.

Since the transfer functions for constant addition and multiplication are globally complete, the program c is locally

complete for any 𝑝 satisfying one of the above conditions (1–3), meaning that its abstract interpretation in Int will not

lose precision. For example, if 𝑝 = {0, 1, 4}, condition (3) holds and we have that Int(JcK𝑝) = Int({−1, 0, 2}) = [−1, 2]
and Int(JcKInt(𝑝)) = Int(JcK[0, 4]) = Int({−1, 0, 1, 2}) = [−1, 2]. As an example of local incompleteness, if 𝑝 = {0, 4}
we have that Int(JcK𝑝) = Int({0, 2}) = [0, 2], but Int(JcKInt(𝑝)) = [−1, 2]. □

Let us remark that, with respect to compositional reasoning, there is a significant key difference between global and

local completeness: while the composition (via generic regular commands operators, and consequently via conditionals

and loops) of globally complete transfer functions is always globally complete, the same does not necessarily hold for

local completeness that depends on a given input property. Equivalently, local completeness of a composite program

may well depend on the partial store properties met during the computation, as shown by the following example.

Example 4.3. Consider a composition c; c, where c is defined in Example 4.2. Int is locally complete for c on the

input property 𝑝 = {2, 6}, because condition (1) of Example 4.2 holds. However, Int is not locally complete for c; c

on 𝑝 , because Int(Jc; cK{2, 6}) = Int(JcK{0, 4}) = [0, 2] while Int(Jc; cKInt({2, 6})) = Int(Jc; cK[2, 6]) = Int(JcK[0, 4]) =
Int({−1, 0, 1, 2}) = [−1, 2]. □

4.1 Locally Complete Boolean Guards

By focussing on Boolean guards, we can characterize the local completeness of both positive b? and negative ¬b?

branches of a conditional statement b ∈ BExp for a given input store property.

Theorem 4.4 (Locally Complete Guards). Let b ∈ BExp, 𝐴 ∈ Abs(S) and 𝑝 ∈ S. Then, 𝐴 is locally complete for both

Jb?K and J¬b?K on 𝑝 iff (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b) ∈ 𝐴.
Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 17

Proof. (⇒): We assume that C𝐴𝑝 (b) and C𝐴𝑝 (¬b) and prove that (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b) is expressible
in 𝐴. We have that

𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) ⊆ [by monotonicity]

𝐴(𝐴(𝑝 ∩ b) ∪𝐴(𝑝 ∩ ¬b)) = [by GI, 𝛼 is additive and 𝐴(𝐴(𝑞) ∪𝐴(𝑤)) = 𝐴(𝑞 ∪𝑤) for any 𝑞,𝑤]

𝐴((𝑝 ∩ b) ∪ (𝑝 ∩ ¬b)) = [by set theoretic properties]

𝐴(𝑝),

so that, by exploiting the hypothesis of local completeness of Jb?K on 𝑝 ,

𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) ∩ b ⊆ 𝐴(𝑝) ∩ b ⊆ 𝐴(𝐴(𝑝) ∩ b) ∩ b = 𝐴(𝑝 ∩ b) ∩ b.

Likewise,

𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) ∩ ¬b ⊆ 𝐴(𝑝 ∩ ¬b) ∩ ¬b.

Thus,

𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) = [by set properties](
𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) ∩ b

)
∪
(
𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) ∩ ¬b

)
⊆ [by above inclusions]

(𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b),

meaning that (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b) ∈ 𝐴.

(⇐): For the converse implication, we assume that (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b) ∈ 𝐴 and prove that both C𝐴𝑝 (b)
and C𝐴𝑝 (¬b) hold. It turns out that 𝑝 = (𝑝 ∩ b) ∪ (𝑝 ∩ ¬b) ⊆ (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b).
Therefore, by exploiting the hypothesis, we obtain that

𝐴(𝑝) ⊆ 𝐴((𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b)) = (𝐴(𝑝 ∩ b) ∩ b) ∪ (𝐴(𝑝 ∩ ¬b) ∩ ¬b) .

Thus, 𝐴(𝑝) ∩ b ⊆ 𝐴(𝑝 ∩ b) ∩ b ⊆ 𝐴(𝑝 ∩ b), in turn entailing that local completeness 𝐴(𝐴(𝑝) ∩ b) = 𝐴(𝑝 ∩ b) holds.
Analogously, we obtain that 𝐴(𝐴(𝑝) ∩ ¬b) = 𝐴(𝑝 ∩ ¬b). □

Example 4.5. Let us apply Theorem 4.4 to show that for the interval abstraction Int, the Boolean guard 0 < 𝑥 is locally

complete for any 𝑝 ∈ ℘(Z) such that: (1) 𝑝 ⊆ Z>0, or (2) 𝑝 ⊆ Z≤0, or (3) {0, 1} ⊆ 𝑝 . In fact, it turns out that positive and

negative branches J𝑥 > 0?K and J𝑥 ≤ 0?K are both locally complete on 𝑝 iff

(Int(𝑝 ∩ 𝑥 > 0) ∩ 𝑥 > 0) ∪ (Int(𝑝 ∩ 𝑥 ≤ 0) ∩ 𝑥 ≤ 0) ∈ Int. (∗)

Since 𝑥 > 0 and 𝑥 ≤ 0 both belong to Int, condition (∗) boils down to

Int(𝑝 ∩ 𝑥 > 0) ∪ Int(𝑝 ∩ 𝑥 ≤ 0) ∈ Int. (★)

Now, it is just a matter of noticing that (★) holds iff either Int(𝑝 ∩ 𝑥 ≤ 0) is empty (condition (1)), or Int(𝑝 ∩ 𝑥 > 0) is
empty (condition (2)) or Int(𝑝 ∩ 𝑥 ≤ 0) and Int(𝑝 ∩ 𝑥 > 0) are contiguous nonempty intervals, and this happens iff 𝑝

includes both cut points 0 and 1 of the guard 0 < 𝑥 . □

Likewise Theorem 3.4 can be used to construct domains that are complete for some Boolean guards, Theorem 4.4

gives a way to construct domains that are locally complete for some Boolean guards. The next example shows that, as

Manuscript submitted to ACM

18 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

C𝐴𝑝 (e)
⊢𝐴 [𝑝] e [JeK𝑝]

(transfer)
𝑝′ ≤ 𝑝 ≤ 𝐴(𝑝′) ⊢𝐴 [𝑝′] r [𝑞′] 𝑞 ≤ 𝑞′ ≤ 𝐴(𝑞)

⊢𝐴 [𝑝] r [𝑞] (relax)

⊢𝐴 [𝑝] r1 [𝑤] ⊢𝐴 [𝑤] r2 [𝑞]
⊢𝐴 [𝑝] r1; r2 [𝑞] (seq)

⊢𝐴 [𝑝] r1 [𝑞1] ⊢𝐴 [𝑝] r2 [𝑞2]
⊢𝐴 [𝑝] r1 ⊕ r2 [𝑞1 ∨ 𝑞2]

(join)

⊢𝐴 [𝑝] r [𝑤] ⊢𝐴 [𝑝 ∨𝑤] r∗ [𝑞]
⊢𝐴 [𝑝] r∗ [𝑞] (rec)

⊢𝐴 [𝑝] r [𝑞] 𝑞 ≤ 𝐴(𝑝)
⊢𝐴 [𝑝] r∗ [𝑝 ∨ 𝑞] (iterate)

Fig. 4. The Proof System LCL𝐴 .

expected, making an abstract domain locally complete for some guards is less demanding than making it (globally)

complete for the same guards.

Example 4.6. In Example 3.7 we have shown that in order to make the domain Int globally complete for the guards b ≜

𝑥 < 0 = 𝑥 ∈ [−∞,−1] and ¬b ≜ 𝑥 ≥ 0 = [0,∞] would require the addition of all the concrete joins [𝑛1, 𝑛2] ∪ [𝑚1,𝑚2]
with 𝑛1 ≤ 𝑛2 < 0 ≤ 𝑚1 ≤ 𝑚2.

Given any input 𝑝 , Theorem 4.4 shows that Int is made locally complete for the guards b and ¬b by adding the unique

element (Int(𝑝 ∩ b) ∩ b) ∪ (Int(𝑝 ∩ ¬b) ∩ ¬b) and taking the Moore closure. For example, when 𝑝 ≜ {𝑛 | 𝑛 odd} then
(Int(𝑝 ∩ b) ∩ b) ∪ (Int(𝑝 ∩ ¬b) ∩ ¬b) = [−∞,−1] ∪ [1,∞] = Z≠0 is the unique element to add (and, by Moore closure,

any concrete join of the form [𝑛,−1] ∪ [1,𝑚] with 𝑛 ≤ −1 and𝑚 ≥ 1). Thus, we get the domain that contains all the

intervals, possibly with a hole in 0. □

5 LOCAL COMPLETENESS LOGIC

We define a proof system for program analysis of regular commands, parameterized by an abstraction𝐴, whose provable

triples ⊢𝐴 [𝑝] r [𝑞] guarantee that

(i) 𝑞 is an under-approximation of JrK𝑝 (i.e. 𝑞 ⊆ JrK𝑝);
(ii) JrK is locally complete for input 𝑝 and abstraction 𝐴 (i.e. C𝐴𝑝 (r) holds);
(iii) 𝑞 and JrK𝑝 have the same over-approximation in 𝐴 (i.e. 𝐴(𝑞) = 𝐴(JrK𝑝)).

Given a correctness specification spec, we recall that abstract interpretation raises an alarm when𝛾 (JrK♯
𝐴
𝛼 (𝑝)) ⊈ spec:

such alarm is false if JrK𝑝 ⊆ spec and true otherwise. It turns out that the above three properties of any provable triple

⊢𝐴 [𝑝] r [𝑞] allow us to distinguish between true and false alarms, as described below:

Case 1: If the over-approximation JrK♯
𝐴
𝛼 (𝑝) does not raise alarms, i.e. 𝛾 (JrK♯

𝐴
𝛼 (𝑝)) ⊆ spec holds, then the program

r does not exhibit unwanted behaviours. It should be remarked that this already holds for any sound and possibly

incomplete over-approximating abstract interpretation.

Case 2: If spec is expressible in𝐴 and the abstract interpretation JrK♯
𝐴
𝛼 (𝑝) raises some alarms because𝛾 (JrK♯

𝐴
𝛼 (𝑝)) ⊈

spec, then, by local completeness, any provable triple ⊢𝐴 [𝑝] r [𝑞] is such that 𝑞 ∖ spec ≠ ∅ and all the stores in

𝑞 ∖ spec are true alarms. As discussed in the Introduction, let us recall that by relying on generic, thus possibly

incomplete, abstract interpretation we could not distinguish which alarms in 𝛾 (JrK♯
𝐴
𝛼 (𝑝)) ∖ spec are true ones

and which are false.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 19

Case 3: If spec is expressible in 𝐴, some alarm is raised because 𝛾 (JrK♯
𝐴
𝛼 (𝑝)) ⊈ spec but any attempt to derive a

triple ⊢𝐴 [𝑝] r [𝑞] for some under-approximation 𝑞 fails because some proof obligations of local completeness

C𝐴𝑐 (𝑓) are not met, then the abstraction 𝐴 is not precise enough to distinguish between true and false alarms in

a compositional way (for r on 𝑝). In this case, one could refine the abstraction 𝐴 to enhance its precision and

repeat the analysis, possibly guided by the failed proof obligations (see Example 5.9 and also Section 8).

The logical proof system ⊢𝐴 is defined in Figure 4 and called LCL𝐴 (Local Completeness Logic on 𝐴). Our objective

in designing this deductive system has been to track the assumptions of local completeness needed for having a

compositional proof. The distinctive rules are (transfer) and (relax) whose premises depend directly on the underlying

abstraction 𝐴. For the readers’ convenience, we copy rule (relax) below:

𝑝′ ≤ 𝑝 ≤ 𝐴(𝑝′) ⊢𝐴 [𝑝′] r [𝑞′] 𝑞 ≤ 𝑞′ ≤ 𝐴(𝑞)
⊢𝐴 [𝑝] r [𝑞] (relax)

The combined consequence rule (relax) is the key principle which allows us to adapt and generalize partial proofs

to broader contexts. The novelty of (relax) lies in combining an over- and under-approximating reasoning: (relax)
allows to infer a post-condition 𝑞 that is an under-approximation of the exact behaviour but whose abstraction 𝐴(𝑞) is
a sound over-approximation of it, i.e., such that 𝑞 ⊆ JrK𝑝 ⊆ 𝐴(JrK𝑝) = 𝐴(𝑞) holds. Likewise in the consequence rules

of de Vries and Koutavas [2011], O’Hearn [2020], and Raad et al. [2020], the logical ordering between pre-conditions

𝑝′ ≤ 𝑝 and post-conditions 𝑞 ≤ 𝑞′ in the premises of (relax) is reversed w.r.t. the canonical consequence rule of Hoare

logic and this is needed because our post-conditions 𝑞 are always under-approximations. Let us also remark that the

premises of (relax) imply that 𝐴(𝑝) = 𝐴(𝑝′) and 𝐴(𝑞) = 𝐴(𝑞′). Example 5.10 will show that a dual version of (relax)
with 𝑝 strengthening 𝑝′ and 𝑞 weakening 𝑞′ as in the classical consequence rule of Hoare logic would not be sound

w.r.t. local completeness.

The crux of (relax) is to constrain this under-approximating post-condition 𝑞 to have the same abstraction as the

exact behaviour, in order to preserve the precision of the deduction. This opens up an interesting perspective about

the generality of our proof system that will be tackled in Section 6 for showing how to recover O’Hearn [2020]’s IL as

an instance of our proof system. Moreover, in Section 5.3 we also show how an easy dualization of LCL𝐴 allows to

accomodate backward abstract reasoning as used in backward program analysis.

Technically, the validity of the rule (relax) relies on observing that local completeness is a kind of “abstract convex

property”, meaning that if 𝐴 is locally complete for some 𝑐 ∈ 𝐶 , then 𝐴 is locally complete for all 𝑑 ∈ 𝐶 such that

𝑐 ≤ 𝑑 ≤ 𝐴(𝑐) holds.

Lemma 5.1. If C𝐴𝑐 (𝑓) and 𝑑 ∈ [𝑐, 𝐴(𝑐)], then C𝐴
𝑑
(𝑓).

Proof. Since 𝑐 ≤ 𝑑 ≤ 𝐴(𝑐), by monotonicity of 𝑓 and 𝐴, we obtain that 𝐴𝑓 (𝑐) ≤ 𝐴𝑓 (𝑑) ≤ 𝐴𝑓 𝐴(𝑐) and 𝐴𝑓 𝐴(𝑑) ≤
𝐴𝑓 𝐴𝐴(𝑐) = 𝐴𝑓 𝐴(𝑐). Since 𝐴𝑓 𝐴(𝑐) = 𝐴𝑓 (𝑐) we have that 𝐴𝑓 (𝑐) = 𝐴𝑓 (𝑑). Finally, 𝐴𝑓 (𝑑) ≤ 𝐴𝑓 𝐴(𝑑) ≤ 𝐴𝑓 (𝑐) =

𝐴𝑓 (𝑑). □

The rule (transfer) checks that the basic expressions e are locally complete on 𝑝 and, in that case, provides the output

of the corresponding transfer function JeK on 𝑝 as post-condition.

C𝐴𝑝 (e)
⊢𝐴 [𝑝] e [JeK𝑝]

(transfer)

Manuscript submitted to ACM

20 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

CInt𝑝
1

(b
1

?)

⊢Int [𝑝
1
] b

1
? [{1, 999, 1000}]

(tr.)
CInt{1,999,1000} (e1

)

⊢Int [{1, 999, 1000}] e
1

? [{0, 998, 999}]
(tr.)

⊢Int [𝑝
1
] r

1
[{0, 998, 999}]

(seq)

CInt𝑝
1

(b
2

?)

⊢Int [𝑝
1
] b

2
? [{0, 1, 999}]

(tr.)
CInt{0,1,999} (e2

)

⊢Int [{0, 1, 999}] e
2
[{1, 2, 1000}]

(tr.)

⊢Int [𝑝
1
] r

2
[{1, 2, 1000}]

(seq)

⊢Int [𝑝
1
] r

1
⊕ r

2
[{0, 1, 2, 998, 999, 1000}]

(join)

(★)
(iterate)

CInt𝑝 (b
1

?)

⊢Int [𝑝] b
1

? [𝑝]
(tr.)

CInt𝑝 (e
1
)

⊢Int [𝑝] e
1
[{0, 998}]

(tr.)

⊢Int [𝑝] r
1
[{0, 998}]

(seq)

CInt𝑝 (b
2

?)

⊢Int [𝑝] b
2

? [𝑝]
(tr.)

CInt𝑝 (e
2
)

⊢Int [𝑝] e
2
[{2, 1000}]

(tr.)

⊢Int [𝑝] r
2
[{2, 1000}]

(seq)

⊢Int [𝑝] r
1
⊕ r

2
[{0, 2, 998, 1000}]

(join)

(★)
⊢Int [{0, 1, 999, 1000}] r [{0, 1, 2, 998, 999, 1000}]

(iterate)

⊢Int [{0, 1, 2, 998, 999, 1000}] r [{0, 2, 1000}]
(relax)

⊢Int [𝑝] r [{0, 2, 1000}]
(rec)

Legenda: b1 ≜ 0 < 𝑥 e1 ≜ 𝑥 := 𝑥 − 1 b2 ≜ 𝑥 < 1000 e2 ≜ 𝑥 := 𝑥 + 1 𝑝1 ≜ {0, 1, 999, 1000}

Fig. 5. Derivation of ⊢Int [𝑝 = {1, 999}] r [{0, 2, 1000}] for Example 5.2, where the label (tr.) stands for (transfer) .

Of course, for no-ops, Boolean guards and assignments, the rule (transfer) can be equivalently stated in symbolic form

as follows:

⊢𝐴 [𝑝] skip [𝑝] (skip)
C𝐴𝑝 (b?)

⊢𝐴 [𝑝] b? [𝑝 ∧ b] (assume)

C𝐴𝑝 (𝑥 := a)
⊢𝐴 [𝑝] 𝑥 := a [∃𝑣 .(𝑝 [𝑣/𝑥] ∧ 𝑥 = a[𝑣/𝑥])]

(assign)

where [𝑣/𝑥] denotes the substitution for replacing 𝑥 by 𝑣 .

The rule (seq) for sequential composition and the rule (join) for choice are standard. The rule (rec) allows us to
unfold one step of Kleene iteration, until the rule (iterate) can be applied.

The rule (iterate) is a distinguishing rule of LCL𝐴 and is as much fundamental as rule (relax) for several reasons:
both rules have premises depending on the abstraction 𝐴; under-approximated post-conditions are only introduced by

these two rules (all the other rules are otherwise “exact”); while the concrete semantics of r∗ can be infinitary (e.g.,

consider (𝑥 := 𝑥 + 1)∗), using (iterate) we can exploit the abstraction 𝐴 to stop the proof when the abstraction of a

finitary input 𝑝 is already an infinitary abstract invariant
3
(cf. Lemma 5.4), returning a finite under-approximation

of the concrete invariant; the combination of under- and over-approximations in the rule (iterate) is therefore more

expressive than the sum of its parts, as it allows us to speed up both program analysis and alarm detection.

The next two examples illustrate the key features of LCL𝐴: the first one exploits all the rules and the second one is

applied to a classical while-loop. They will be revisited in Section 5.1 to show how LCL𝐴 can help in program analysis.

Example 5.2. Let us consider the interval domain Int, the pre-condition 𝑝 ≜ {1, 999} and the command r ≜ (r1 ⊕ r2)∗

where:

r1 ≜ (0 < 𝑥?;𝑥 := 𝑥 − 1) , r2 ≜ (𝑥 < 1000?;𝑥 := 𝑥 + 1) .

The triple ⊢Int [𝑝] r [{0, 2, 1000}] can be derived as shown in Figure 5, where for brevity we let:

b1 ≜ 0 < 𝑥 e1 ≜ 𝑥 := 𝑥 − 1 𝑝1 ≜ {0, 1, 999, 1000}

b2 ≜ 𝑥 < 1000 e2 ≜ 𝑥 := 𝑥 + 1

3
A maybe non-obvious consequence of the condition 𝑞 ≤ 𝐴(𝑝) .
Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 21

C
Sign
𝑝 (𝑥 ≤ 0?)

⊢Sign [𝑝] 𝑥 ≤ 0? [{−10, −1}]
(transfer)

C
Sign
{−10,−1} (𝑥 := 𝑥 ∗ 10)

⊢Sign [{−10, −1}] 𝑥 := 𝑥 ∗ 10 [{−100, −10}]
(transfer)

⊢Sign [𝑝] 𝑥 ≤ 0?;𝑥 := 𝑥 ∗ 10 [{−100, −10}] {−100, −10} ⊆ Sign(𝑝) = Z≠0

(seq)

⊢Sign [𝑝] (𝑥 ≤ 0?;𝑥 := 𝑥 ∗ 10)∗ [{−100, −10, −1, 100}] {−100, 100} ⊆ {−100, −10, −1, 100} ⊆ Sign({−100, 100}) = Z≠0

(iterate)

⊢Sign [𝑝] (𝑥 ≤ 0?;𝑥 := 𝑥 ∗ 10)∗ [{−100, 100}]
(relax)

C
Sign
{−100,100} (0 < 𝑥?)

⊢Sign [{−100, 100}] 0 < 𝑥? [{100}]
(transfer)

⊢Sign [𝑝] c [{100}]
(seq)

Fig. 6. Derivation of ⊢Sign [𝑝 = {−10, −1, 100}] c [{100}] for Example 5.3.

Notably, each instance of rule (transfer) used in the derivation exposes a proof obligation (such as CInt𝑝 (e2), CInt𝑝1

(b1?),
etc.) concerning the local completeness of a basic command. This proof needs just one application of (rec) to compute

an under-approximation of post[r]𝑝 = JrK𝑝 , because the rule (iterate) can stop the unfolding of the Kleene iterate

operator as soon as an abstract invariant is detected, before the actual concrete invariant is fully computed (in this case

the abstract invariant is detected by {0, 1, 2, 998, 999, 1000} ⊆ [0, 1000]). Moreover, (relax) is exploited to reduce the

number of values to be taken into account (along the pre-conditions by navigating the derivation tree bottom-up and

along the post-conditions when the tree is explored top-down).

Finally, a similar result is soon obtained on any input 𝑝𝑘 ≜ {𝑘, 999} for some 𝑘 ∈ N, by applying the rule (rec) for 𝑘
times: then the rule (iterate) can be used. □

Example 5.3. Let us consider the domain Sign, the pre-condition 𝑝 ≜ {−10,−1, 100} and the following Imp program:

c ≜ while (𝑥 ≤ 0) do 𝑥 := 𝑥 ∗ 10

= (𝑥 ≤ 0? ; 𝑥 := 𝑥 ∗ 10)∗ ; 0 < 𝑥?

Let us verify that c does not satisfy the correctness specification spec ≜ 𝑥 < 10, even if the loop c diverges on

inputs {−10,−1}. The derivation in Figure 6 proves the triple ⊢Sign [𝑝] c [{100}]. As the post-condition {100} is an
under-approximation of JrK𝑝 (cf. Theorem 5.5 (1)), we conclude that 100 ∉ spec is a true alarm. Observe that all proof

obligations about local completeness due to rule (transfer) are satisfied, as e.g., letting b ≜ 𝑥 ≤ 0, for C
Sign
𝑝 (b?), we

have that:

Sign(Jb?KSign(𝑝)) = Sign(Jb?KZ≠0) = Sign(Z<0) = Z<0 = Sign({−10,−1}) = Sign(Jb?K𝑝) . □

Of course, let us point out that some additional valid rules could be added to our proof system, for example the

following two rules can be easily proved to be valid:

⊢𝐴 [𝑝] r [𝑞] 𝑞 ≤ 𝑝

⊢𝐴 [𝑝] r∗ [𝑝] (invariant)
⊢𝐴 [𝑝] r [𝑞] 𝐴(𝑝) = 𝐴(𝑞)

⊢𝐴 [𝑝] r∗ [𝑞] (abs-fix)

Lemma 5.4. The rules (invariant) and (abs-fix) can be derived in LCL𝐴 .

Proof. We first show that (invariant) is a derived rule. If 𝑞 ≤ 𝑝 we have 𝐴(𝑝 ∨ 𝑞) = 𝐴(𝑝). Since ⊢𝐴 [𝑝] r [𝑞], by
(iterate) it follows ⊢𝐴 [𝑝] r∗ [𝑝 ∨ 𝑞], i.e. ⊢𝐴 [𝑝] r∗ [𝑝].
For (abs-fix), since 𝛾 is 1-1, if 𝐴(𝑞) = 𝐴(𝑝), then 𝛼 (𝑝) = 𝛼 (𝑞). Therefore, 𝐴(𝑝 ∨ 𝑞) = 𝐴(𝑝), because 𝛼 is additive and

thus 𝐴(𝑝 ∨ 𝑞) = 𝛾 (𝛼 (𝑝 ∨ 𝑞)) = 𝛾 (𝛼 (𝑝) ∨𝐴 𝛼 (𝑞)) = 𝛾𝛼 (𝑞) = 𝐴(𝑞). Since ⊢𝐴 [𝑝] r [𝑞] and 𝑞 ≤ 𝐴(𝑞) = 𝐴(𝑝), by (iterate)
it follows ⊢𝐴 [𝑝] r∗ [𝑝 ∨ 𝑞]. Since 𝑞 ≤ (𝑝 ∨ 𝑞) ≤ 𝐴(𝑝 ∨ 𝑞) = 𝐴(𝑞), by (relax), we conclude ⊢𝐴 [𝑝] r∗ [𝑞]. □

Manuscript submitted to ACM

22 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

The rule (invariant) is the analogous of the loop invariant rule in Hoare logic, while (abs-fix) allows us to accelerate
the convergence of Kleene iteration to an abstract fixpoint.

It is worth remarking that indeed (invariant) and (iterate) are equivalent rules within LCL𝐴 . In fact, the proof of

Lemma 5.4 shows that the rule (invariant) can be derived from the rule (iterate), and, vice versa, (iterate) can be

derived using the rules (invariant), (rec) and (relax), as shown by the following inferences:

⊢𝐴 [𝑝] r [𝑞]

𝑝 ≤ 𝑝 ∨ 𝑞 ≤ 𝐴(𝑝) ⊢𝐴 [𝑝] r [𝑞]
⊢𝐴 [𝑝 ∨ 𝑞] r [𝑞] (relax)

𝑞 ≤ 𝑝 ∨ 𝑞

⊢𝐴 [𝑝 ∨ 𝑞] r∗ [𝑝 ∨ 𝑞]
(invariant)

⊢𝐴 [𝑝] r∗ [𝑝 ∨ 𝑞]
(rec)

where the proof obligation 𝑞 ≤ 𝑝 ∨ 𝑞 trivially holds, while 𝑝 ≤ 𝑝 ∨ 𝑞 ≤ 𝐴(𝑝) holds because the assumption 𝑞 ≤ 𝐴(𝑝) of
the rule (iterate) implies that 𝑝 ≤ 𝑝 ∨ 𝑞 ≤ 𝑝 ∨𝐴(𝑝) = 𝐴(𝑝).

5.1 Soundness

Our program logic LCL𝐴 turns out to be sound for the target properties (i–iii) stated at the beginning of Section 5, as

formalized by the following soundness result, where conditions (1) and (2) embody, respectively, items (i) and (ii)+(iii).

Theorem 5.5 (Soundness of LCL𝐴). Let 𝐴𝛼,𝛾 ∈ Abs(𝐶). For all r ∈ Reg, 𝑝, 𝑞 ∈ 𝐶 , if ⊢𝐴 [𝑝] r [𝑞] then:

(1) 𝑞 ≤ JrK𝑝 , and
(2) JrK♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (JrK𝑝).

Proof. For the sake of simplicity, let us refer to the equality JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) as (2a) and use (2b) for the equality

JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (JrK𝑝). Then we note that (2b) follows immediately from (1) and (2a) because, by monotonicity of 𝛼 and

correctness (4), we have that:

𝛼 (𝑞) ≤𝐴 𝛼 (JrK𝑝) ≤𝐴 JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) .

Therefore, in some cases we just prove (1) and (2a) and leave the proof of (2b) implicit. We proceed by induction on the

derivation tree of ⊢𝐴 [𝑝] r [𝑞], by distinguishing the various cases on the basis of the last rule that is applied.

(transfer) : If rule (transfer) is applied as last rule, then it must be r ≡ e ∈ Exp such that C𝐴𝑝 (e) and 𝑞 = JeK𝑝 . We have

that: (1) JeK𝑝 ≤ JeK𝑝 trivially holds, while JeK♯
𝐴
𝛼 (𝑝) = JeK𝐴𝛼 (𝑝) = 𝛼 (JeK𝛾𝛼 (𝑝)) = 𝛼 (JeK𝑝) holds by C𝐴𝑝 (e), so that we

also have (2).

(relax) : If the last rule applied is (relax), we assume by induction that ⊢𝐴 [𝑝′] r [𝑞′] can be derived and let 𝑝, 𝑞 such

that 𝑝′ ≤ 𝑝 ≤ 𝐴(𝑝′) and 𝑞 ≤ 𝑞′ ≤ 𝐴(𝑞).
(1) By inductive hypothesis (1) and monotonicity of JrK we have:

𝑞 ≤ 𝑞′ ≤ JrK𝑝′ ≤ JrK𝑝.

(2) Let us observe that from 𝑝 ∈ [𝑝′, 𝐴(𝑝′)] and 𝑞′ ∈ [𝑞,𝐴(𝑞)], we derive 𝛼 (𝑝′) = 𝛼 (𝑝) and 𝛼 (𝑞′) = 𝛼 (𝑞). Therefore:

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 23

𝛼 (𝑞) ≤𝐴 [by monotonicity of 𝛼 and (1)]

𝛼 (JrK𝑝) ≤𝐴 [by correctness (4)]

JrK♯
𝐴
𝛼 (𝑝) = [by hyp.]

JrK♯
𝐴
𝛼 (𝑝′) = [by ind. hyp. (2a)]

𝛼 (𝑞′) = [by hyp.]

𝛼 (𝑞),

so that, JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (JrK𝑝) follows.

(seq) : If the last rule applied is (seq), it must be r ≡ r1; r2 and we can assume by induction that ⊢𝐴 [𝑝] r1 [𝑤] and
⊢𝐴 [𝑤] r2 [𝑞], can be derived for some𝑤 . We need to prove the thesis for the conclusion ⊢𝐴 [𝑝] r1; r2 [𝑞].
(1) By inductive hypotheses (1) and monotonicity of Jr2K:

𝑞 ≤ Jr2K𝑤 ≤ Jr2K(Jr1K𝑝) = Jr1; r2K𝑝.

(2) We have that:

𝛼 (𝑞) ≤𝐴 [by (1) and monotonicity of 𝛼]

𝛼 (Jr1; r2K𝑝) ≤𝐴 [by correctness (4)]

Jr1; r2K
♯

𝐴
𝛼 (𝑝) = [by definition]

Jr2K
♯

𝐴
(Jr1K♯𝐴𝛼 (𝑝)) = [by ind.hyp. (2a), Jr1K

♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑤)]

Jr2K
♯

𝐴
𝛼 (𝑤) = [by ind.hyp. (2a)]

𝛼 (𝑞),

so that, Jr1; r2K
♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jr1; r2K𝑝) follows.

(join) : If the last rule applied is (join), it must be r ≡ r1 ⊕ r2 and we assume by induction that ⊢𝐴 [𝑝] r1 [𝑞1] and
⊢𝐴 [𝑝] r2 [𝑞2] can be derived for some suitable 𝑞1 and 𝑞2 such that 𝑞 = 𝑞1 ∨ 𝑞2. We need to prove the thesis for the

conclusion ⊢𝐴 [𝑝] r1 ⊕ r2 [𝑞1 ∨ 𝑞2].
(1) By inductive hypothesis, 𝑞𝑖 ≤ Jr𝑖K𝑝 , therefore:

𝑞1 ∨ 𝑞2 ≤ Jr1K𝑝 ∨ Jr2K𝑝 = Jr1 ⊕ r2K𝑝.

(2a) We have that:

Jr1 ⊕ r2K
♯

𝐴
𝛼 (𝑝) = [by definition]

Jr1K
♯

𝐴
𝛼 (𝑝) ∨𝐴 Jr2K

♯

𝐴
𝛼 (𝑝) = [by ind. hyp. (2a)]

𝛼 (𝑞1) ∨𝐴 𝛼 (𝑞2) = [by additivity of 𝛼]

𝛼 (𝑞1 ∨ 𝑞2),

so that, Jr1 ⊕ r2K
♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞1 ∨ 𝑞2) = 𝛼 (Jr1 ⊕ r2K𝑝) follows by (1) and (2a).

Manuscript submitted to ACM

24 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

(iterate) : If the last rule applied is (iterate), it must be r ≡ r∗
1
and we assume by induction that ⊢𝐴 [𝑝] r1 [𝑞1] for

some 𝑞1 such that 𝑞1 ≤ 𝐴(𝑝) and 𝑞 = 𝑝 ∨ 𝑞1. Note that 𝛼 (𝑞1) ≤𝐴 𝛼 (𝐴(𝑝)) = 𝛼 (𝑝). We need to prove the thesis for the

conclusion ⊢𝐴 [𝑝] r∗
1
[𝑝 ∨ 𝑞1].

(1) By inductive hypothesis (1), we have that:

𝑝 ∨ 𝑞1 ≤ 𝑝 ∨ Jr1K𝑝 = Jr1K0𝑝 ∨ Jr1K𝑝 ≤ ∨
𝑛∈NJr1K𝑛𝑝 = Jr∗

1
K𝑝.

(2a) By inductive hypothesis (2) and hypothesis 𝑞1 ≤ 𝐴(𝑝), we have Jr1K
♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞1) ≤𝐴 𝛼 (𝑝), so that Lemma 2.1 (c)

is applicable. Therefore:

Jr∗
1
K♯
𝐴
𝛼 (𝑝) = [by Lemma 2.1 (c)]

𝛼 (𝑝) = [by hyp. 𝑞1 ≤ 𝐴(𝑝)]

𝛼 (𝑝) ∨𝐴 𝛼 (𝑞1) = [by additivity of 𝛼]

𝛼 (𝑝 ∨ 𝑞1),

so that, Jr∗
1
K♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑝 ∨ 𝑞1) = 𝛼 (Jr∗

1
K𝑝) follows by (1) and (2a).

(rec) : If the last rule applied is (rec), it must be r ≡ r∗
1
andwe assume by induction that ⊢𝐴 [𝑝] r1 [𝑤] and ⊢𝐴 [𝑝∨𝑤] r∗

1
[𝑞]

can be derived for some𝑤 . We need to prove the thesis for the conclusion ⊢𝐴 [𝑝] r∗
1
[𝑞].

(1) By inductive hypothesis (1) and Lemma 2.1 (e) we have:

𝑞 ≤ Jr∗
1
K(𝑝 ∨𝑤) = Jr∗

1
K𝑝.

(2) We have that:

𝛼 (𝑞) ≤𝐴 [by monotonicity of 𝛼 and (1)]

𝛼 (Jr∗
1
K𝑝) ≤𝐴 [by correctness (4)]

Jr∗
1
K♯
𝐴
𝛼 (𝑝) ≤𝐴 [by monotonicity]

Jr∗
1
K♯
𝐴
𝛼 (𝑝 ∨𝑤) = [by ind.hyp. (2a)]

𝛼 (𝑞),

so that Jr∗
1
K♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jr∗

1
K𝑝) follows. □

As a consequence, if a correctness specification spec is expressible in 𝐴, i.e., if spec = 𝛾 (𝑎) for some abstract value

𝑎 ∈ 𝐴, then any provable triple ⊢𝐴 [𝑝] r [𝑞] allows us to use 𝑞 to witness either the correctness or the incorrectness of r

for the pre-condition 𝑝 , as stated by the following result.

Corollary 5.6 (Precision). For all 𝐴𝛼,𝛾 ∈ Abs(𝐶), r ∈ Reg, 𝑝, 𝑞 ∈ 𝐶 , if ⊢𝐴 [𝑝] r [𝑞], then:

∀𝑎 ∈ 𝐴. JrK𝑝 ≤ 𝛾 (𝑎) iff 𝑞 ≤ 𝛾 (𝑎) .

Example 5.7. In Example 5.3 we already noticed that, by Theorem 5.5 (1), JcK𝑝 does not satisfy spec. Note that for

𝑝′ ≜ {−10,−1, 5, 100} we could also prove, e.g., ⊢Sign [𝑝′] c [{5}] where the post-condition {5} has no alarm, even if

spec is not satisfied: since spec is not expressible in Sign, then Corollary 5.6 is not applicable. □

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 25

C
Sign
{10,20} (b1?)

⊢Sign [10, 20] b1? [{10, 20}]
(transfer)

C
Sign
{10,20} (e1)

⊢Sign [{10, 20}] e1 [{20, 30}]
(transfer)

⊢Sign [10, 20] r1 [{20, 30}]
(seq)

{20, 30} ⊆ Sign({10, 20}) = Z>0

⊢Sign [{10, 20}] r∗
1
[{10, 20, 30}]

(iterate)

(∗)
(rec)

C
Sign
𝑝

1

(b
1

?)

⊢Sign [𝑝
1
] b

1
? [𝑝

1
]

(tr.)
C
Sign
𝑝

1

(e
1
)

⊢Sign [𝑝
1
] e

1
[{20}]

(tr.)

⊢Sign [𝑝
1
] r

1
[{20}]

(seq)
(∗)

⊢Sign [𝑝
1
] r∗

1
[{10, 20, 30}] {10, 30} ⊆ {10, 20, 30} ⊆ Z>0

(rec)

⊢Sign [𝑝
1
] r∗

1
[{10, 30}]

(relax)

C
Sign
{10,30} (b2

?)

⊢Sign [{10, 30}] b
2

? [{30}]
(tr.)

C
Sign
{30} (e2

)

⊢Sign [{30}] e
2
[{−1}]

(tr.)

⊢Sign [10, 30] r
3
[{−1}]

(seq)
C
Sign
{10,30} (¬b2

)

⊢Sign [{10, 30}] ¬b
2

? [{10}]
(tr.)

⊢Sign [{10, 30}] r
2
[{−1, 10}]

(join)

⊢Sign [𝑝
1
] r [{−1, 10}]

(seq)

Legenda: r ≜ r∗
1
; r2 r1 ≜ b1?; e1 r2 ≜ (b2?; e2) ⊕ (¬b2?) r3 ≜ b2?; e2

b1 ≜ 𝑥 < 1000 e1 ≜ 𝑥 := 𝑥 + 10 b2 ≜ 𝑥 = 30 e2 ≜ 𝑥 := −1

Fig. 7. Derivation of ⊢Sign [𝑝1 = {10}] r [{−1, 10}] for Example 5.9.

Example 5.8. Let us consider again Example 5.2 and the triple ⊢Int [𝑝] r [{0, 2, 1000}] (see Figure 5.2) to discuss the

cases of three different correctness specifications: spec
1
≜ 𝑥 ≠ 2, spec

2
≜ 𝑥 ≤ 1000 and spec

3
≜ 100 ≤ 𝑥 .

Despite that spec
1
is not expressible in Int, the triple ⊢Int [𝑝] r [{0, 2, 1000}] exposes the true alarm 2 ∉ spec

1
, since

2 ∈ {0, 2, 1000} ⊆ JrK𝑝 (cf. Theorem 5.5 (1)).

By Theorem 5.5 (2), we know that JrK𝑝 satisfies spec
2
, because Int(JrK𝑝) = Int({0, 2, 1000}) = [0, 1000] ⊆ spec

2
. Since

spec
2
is expressible in Int, by Corollary 5.6, any other provable triple ⊢Int [𝑝] r [𝑞] will guarantee that spec2

holds.

Finally, the triple ⊢Int [𝑝] r [{0, 2, 1000}] exposes two true alarms 0, 2 ∉ spec
3
. Likewise spec

2
, by Corollary 5.6, the

post-condition 𝑞 of any provable triple ⊢Int [𝑝] r [𝑞] will contain a true alarm for spec
3
. In particular, any such triple

⊢Int [𝑝] r [𝑞], is such that 0 ∈ 𝑞, therefore contradicting the assertion spec
3
, because it must be Int(𝑞) = [0, 1000] =

Int(JrK𝑝). □

Example 5.9. Let us consider the program r ≜ r∗
1
; r2 where:

r1 ≜ (𝑥 < 1000?;𝑥 := 𝑥 + 10),

r2 ≜ (𝑥 = 30?;𝑥 := −1) ⊕ (𝑥 ≠ 30?).

Consider the correctness specification spec ≜ 𝑥 ≠ −1, and two pre-conditions 𝑝1 ≜ {10} and 𝑝2 ≜ {11}. In the case of

𝑝1, the value 30 for 𝑥 is actually computed by the Kleene iteration r∗
1
, causing a violation of spec. In the case 𝑝2, any

alarm raised by a static analysis would be a false positive since r∗
1
will never store the value 30 in 𝑥 . Let us use the

abstract domain Sign for the analysis of r.

Firstly, consider 𝑝1 and observe that by applying (rec) and (iterate) we can derive ⊢Sign [{10}] r∗
1
[{10, 20, 30}].

Then, by (relax), we prove ⊢Sign [{10}] r∗
1
[{10, 30}]. Note that C

Sign
{10,30} (𝑥 = 30?) and CSign{10,30} (𝑥 ≠ 30?), so that

⊢Sign [{10, 30}] r2 [{−1, 10}] can be proved. Finally, by applying (seq), we derive the triple ⊢Sign [{10}] r∗
1
; r2 [{−1, 10}],

whose post-condition includes the true alarm −1 violating spec. The whole derivation is in Figure 7.

Manuscript submitted to ACM

26 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Consider now the pre-condition 𝑝2. Here, we apply (rec), (iterate) and (relax) so as to derive ⊢Sign [{11}] r∗
1
[{11, 31}].

In this case, since local completeness C
Sign
{11,31} (𝑥 = 30?) does not hold (indeed note that any nonempty subset of {11, 31}

is not locally complete for 𝑥 = 30? on Sign), the proof cannot be completed in Sign. It is worth observing that in order

to prove that r satisfies spec for input 𝑝2 we need to resort to a more precise abstract domain where the guard 𝑥 = 30?

is locally complete for {11, 31}. In this sense, we remark that the failed proof obligation C
Sign
{11,31} (𝑥 = 30?) could be

exploited to find a refinement of the current abstraction Sign where the derivation can be completed. For example, a

possible choice is to extend the abstract domain Sign by taking Sign
30

as the Moore closure of Sign ∪ {𝑥 ≠ 30}: then,
the triple ⊢Sign

30

[𝑝2] r [{11}] could be derived to witness that r satisfies spec (by Corollary 5.6). □

The next example shows that the classical consequence rule of Hoare logic for strengthening pre-conditions and

weakening post-conditions is in general not compatible with the local completeness property (2) of Theorem 5.5.

Example 5.10. Consider the abstract domain Int, the absolute value program from the Introduction

AbsVal(𝑥) ≜ if (𝑥 < 0) then 𝑥 := −𝑥 else skip

and the pre-conditions 𝑝 ≜ {−5, 5} and 𝑝′ ≜ {−5,−1, 0, 5}. By applying (transfer) (to 𝑥 < 0?, 𝑥 ≥ 0?, 𝑥 := −𝑥 and skip),
(seq) twice and (join), one can easily derive ⊢Int [𝑝′] AbsVal(𝑥) [𝑞′] with 𝑞′ = {0, 1, 5}. In fact, Int is locally complete

for JAbsVal(𝑥)K on 𝑝′, because Int(JAbsVal(𝑥)KInt (𝑝′)) = [0, 5] = Int(𝑞′).
Imagine now to replace the rule (relax) by its dual (convex) version, inspired by the consequence rule of Hoare logic

𝑝 ≤ 𝑝′ ≤ 𝐴(𝑝) ⊢𝐴 [𝑝′] r [𝑞′] 𝑞′ ≤ 𝑞 ≤ 𝐴(𝑞′)
⊢𝐴 [𝑝] r [𝑞]

If we let 𝑞 = Int(𝑞′), since 𝑝 ⊆ 𝑝′ ⊆ Int(𝑝) = [−5, 5], and 𝑞′ ⊆ 𝑞 = Int(𝑞′), then we could derive, e.g., ⊢Int
[𝑝] AbsVal(𝑥) [𝑞]. However, Int is not locally complete for JAbsVal(𝑥)K on 𝑝 , because Int(JAbsVal(𝑥)K𝑝) = [5, 5] ≠
[0, 5] = Int(JAbsVal(𝑥)KInt(𝑝)). □

5.2 On the Logical Completeness of LCL𝐴

We now study the completeness of LCL𝐴 as a proof system. In this context, completeness is intended in the logical sense,

that is the ability of the proof system to derive any valid triple. To avoid the clash of terminology with completeness in

abstract interpretation, we call it logical (in)completeness. Our logic LCL𝐴 is not logically complete in general, i.e., the

converse of Theorem 5.5 does not hold, as shown by the following example.

Example 5.11 (Logical Incompleteness). Let e1 ≜ 𝑥 := 𝑥 − 1, e2 ≜ 𝑥 := 𝑥 + 1, and 𝑝 ≜ Z≥2. The abstract domain

𝐴 = Sign is locally complete for Je1; e2K on 𝑝:

𝛼 (Je1; e2K𝑝) = 𝛼 (Je2K(Je1K𝑝)) = 𝛼 (𝑝) = Z>0

Je1; e2K
♯

𝐴
𝛼 (𝑝) = Je2K

♯

𝐴
(Je1K

♯

𝐴
Z>0) = Je2K

♯

𝐴
Z≥0 = Z>0

but the triple ⊢Sign [𝑝] e1; e2 [𝑝] cannot be derived. This is because, in the attempt to derive the triple ⊢Sign [𝑝] e1 [Je1K𝑝]
by rule (transfer), the proof obligation CSign𝑝 (e1) fails: 𝛼 (Je1K𝑝) = 𝛼 (Z≥1) = Z>0 ≠ Z≥0 = 𝛼 (Z≥0) = 𝛼 (Je1KSign(𝑝)).
Note that the rule (relax) cannot help. In fact, let us assume that there exists some 𝑝′ such that 𝑝′ ⊆ 𝑝 ⊆ Sign(𝑝′) and
the triple ⊢Sign [𝑝′] e1 [Je1K𝑝′] is provable by (transfer). Then, Sign(𝑝′) = Sign(𝑝) = Z>0 and 𝑝′ ⊆ 𝑝 = Z≥2 imply

that Je1K𝑝′ ⊆ Z≥1. Hence, we would have that 𝛼 (Je1K𝑝′) ≤ 𝛼 (Z≥1) = Z>0 while 𝛼 (Je1KSign(𝑝′)) = 𝛼 (Je1KZ>0) = Z≥0.

Thus, C
Sign
𝑝′ (e1) does not hold, contradicting the hypothesis that ⊢Sign [𝑝′] e1 [Je1K𝑝′] is provable. □

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 27

For a result of logical completeness for LCL𝐴 , we need:

(1) to add the infinitary rule (limit) for Kleene star, whose soundness is shown by Lemma 5.12:

∀𝑛 ∈ N. ⊢𝐴 [𝑝𝑛] r [𝑝𝑛+1]
⊢𝐴 [𝑝0] r∗ [∨𝑖∈N 𝑝𝑖]

(limit)

(2) to assume that all the basic expressions occurring in a command r ∈ Reg are globally complete on 𝐴.

Lemma 5.12. The proof system extended with rule (limit) is sound.

Proof. We extend the inductive proof of Theorem 5.5 by considering the case where the last rule applied to derive

⊢𝐴 [𝑝] r [𝑞] is (limit). As in the proof of Theorem 5.5, we refer to the equality JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) as (2a) and use (2b) for

the equality JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (JrK𝑝). Then we recall that (2b) follows immediately by (1) and (2a).

(limit) : If the last rule applied is (limit), it must be r ≡ r∗
1
andwe can assume by induction that∀𝑛 ∈ N. ⊢𝐴 [𝑝𝑛] r1 [𝑝𝑛+1].

We need to prove the thesis for the conclusion ⊢𝐴 [𝑝0] r∗
1
[∨𝑖∈N 𝑝𝑖].

(1) We have that for every 𝑛 ∈ N, 𝑝𝑛 ≤ Jr1K𝑛𝑝0: obvious for 𝑛 = 0; then, by inductive hypothesis, 𝑝𝑛+1 ≤ Jr1K𝑝𝑛 ≤
Jr1K(Jr1K𝑛𝑝0) = Jr1K𝑛+1𝑝0. Thus,

∨
𝑛∈N 𝑝𝑛 ≤ ∨

𝑛∈NJr1K𝑛𝑝0 = Jr∗
1
K𝑝0.

(2a) We have that for every 𝑛 ∈ N, Jr1K♯𝐴
𝑛𝛼 (𝑝0) = 𝛼 (𝑝𝑛). In fact, by induction on 𝑛, this is obvious for the base case

𝑛 = 0. Then, for the inductive case:

Jr1K
♯

𝐴
𝑛+1𝛼 (𝑝0) = [by definition]

Jr1K
♯

𝐴
(Jr1K♯𝐴

𝑛𝛼 (𝑝0)) = [by ind. hyp. on 𝑛]

Jr1K
♯

𝐴
𝛼 (𝑝𝑛) = [by ind. hyp. (2a)]

𝛼 (𝑝𝑛+1) .

Consequently,

Jr∗
1
K♯
𝐴
𝛼 (𝑝0) = [by definition]∨

𝐴{Jr1K
♯

𝐴
𝑛𝛼 (𝑝0) | 𝑛 ∈ N} = [by property above]∨

𝐴{𝛼 (𝑝𝑛) | 𝑛 ∈ N} = [by additivity of 𝛼]

𝛼 (∨𝑛∈N𝑝𝑛). □

We are therefore able to obtain a result of logical completeness for LCL𝐴 when this includes the powerful infinitary

rule (limit) and under an assumption of global completeness for the basic expressions occurring in the program. Let us

remark that incorrectness logic [O’Hearn 2020] also includes this infinitary rule (limit), there called backwards variant

rule. Likewise (limit), the backwards variant rule of IL allows us to derive other finitary rules (e.g., Iterate zero) and

plays a crucial role for proving the logical completeness of IL [O’Hearn 2020, Theorem 6].

Lemma 5.13. Let 𝐴𝛼,𝛾 ∈ Abs(𝐶) and r ∈ Reg. Then:(
∀e ∈ Exp(r) . C𝐴 (e)

)
⇒ JrK♯

𝐴
𝛼 = 𝛼JrK.

Proof. We proceed by structural induction on r ∈ Reg.
Manuscript submitted to ACM

28 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

(r ≡ e):

𝛼 ◦ JeK = [by C𝐴 (e)]

𝛼 ◦ JeK ◦𝛾 ◦𝛼 = [by definition]

JeK♯
𝐴
◦𝛼

(r ≡ r1; r2):

𝛼 ◦ Jr1; r2K = [by definition]

𝛼 ◦ Jr2K ◦ Jr1K = [by ind.hyp.]

Jr2K
♯

𝐴
◦𝛼 ◦ Jr1K = [by ind.hyp.]

Jr2K
♯

𝐴
◦ Jr1K

♯

𝐴
◦𝛼 = [by definition]

Jr1; r2K
♯

𝐴
◦𝛼

(r ≡ r1 ⊕ r2): Let us take an arbitrary 𝑝 ∈ 𝐶 .

𝛼 (Jr1 ⊕ r2K𝑝) = [by definition]

𝛼 (Jr1K𝑝 ∨ Jr2K𝑝) = [by additivity of 𝛼]

𝛼 (Jr1K𝑝) ∨𝐴 𝛼 (Jr2K𝑝) = [by ind.hyp.]

Jr1K
♯

𝐴
𝛼 (𝑝) ∨𝐴 Jr2K

♯

𝐴
𝛼 (𝑝) = [by definition]

Jr1 ⊕ r2K
♯

𝐴
𝛼 (𝑝)

(r ≡ r∗
1
): Let us first prove the following property:

∀𝑛 ∈ N. 𝛼Jr1K𝑛 = Jr1K
♯

𝐴
𝑛𝛼. (∗)

For 𝑛 = 0: 𝛼 ◦ Jr1K0 = 𝛼 = Jr1K
♯

𝐴
0 ◦𝛼 .

For 𝑛 + 1,

𝛼 ◦ Jr1K𝑛+1 = [by definition]

𝛼 ◦ Jr1K ◦ Jr1K𝑛 = [by ind.hyp.]

Jr1K
♯

𝐴
◦𝛼 ◦ Jr1K𝑛 = [by ind.hyp.]

Jr1K
♯

𝐴
◦ Jr1K

♯

𝐴
𝑛 ◦𝛼 = [by definition]

Jr1K
♯

𝐴
𝑛+1 ◦𝛼

Thus, for any 𝑝 ∈ 𝐶 ,

𝛼 (Jr∗
1
K𝑝) = [by definition]

𝛼 (∨{Jr1K𝑛𝑝 | 𝑛 ∈ N}) = [by additivity of 𝛼]∨
𝐴{𝛼 (Jr1K𝑛𝑝) | 𝑛 ∈ N}) = [by (∗)]∨

𝐴{Jr1K
♯

𝐴
𝑛𝛼 (𝑝) | 𝑛 ∈ N}) = [by definition]

Jr∗
1
K♯
𝐴
𝛼 (𝑝)

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 29

This closes the proof. □

Theorem 5.14 (Logical Completeness). Let 𝐴𝛼,𝛾 ∈ Abs(𝐶) and r ∈ Reg such that any e ∈ Exp(r) is globally complete

on 𝐴. For any 𝑝, 𝑞 ∈ 𝐶 , if 𝑞 ≤ JrK𝑝 and JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞), then the triple ⊢𝐴 [𝑝] r [𝑞] can be derived in the proof system

extended with the (limit) rule.

Proof. We proceed by structural induction on r.

(r ≡ e): By hypothesis, JeK♯
𝐴
𝛼 (𝑝) = 𝛼 (JeK𝑝), thus, by Lemma 2.1 (b), 𝛼 (JeK𝑝) = 𝛼 (JeK𝛾𝛼 (𝑝)). Hence, C𝐴𝑝 (JeK) holds, so

that by (transfer), ⊢𝐴 [𝑝] e [JeK𝑝].

(r ≡ r1; r2): Assume that 𝑞 ≤ Jr1; r2K𝑝 and Jr1; r2K
♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jr1; r2K𝑝). Let𝑤 ≜ Jr1K𝑝 . Then, we have that:

(1) 𝑤 ≤ Jr1K𝑝 and, by Lemma 5.13, Jr1K
♯

𝐴
𝛼 (𝑝) = 𝛼 (Jr1K𝑝) = 𝛼 (𝑤);

(2) 𝑞 ≤ Jr2K𝑤 and, by Lemma 5.13, Jr2K
♯

𝐴
𝛼 (𝑤) = 𝛼 (Jr2K𝑤) = 𝛼 (Jr2KJr1K𝑝) = 𝛼 (Jr1; r2K𝑝) = 𝛼 (𝑞).

Thus, by induction, we derive ⊢𝐴 [𝑝] r1 [𝑤] and ⊢𝐴 [𝑤] r2 [𝑞], so that by (seq), ⊢𝐴 [𝑝] r1; r2 [𝑞] follows.

(r ≡ r1 ⊕ r2): Assume that 𝑞 ≤ Jr1 ⊕ r2K𝑝 and Jr1 ⊕ r2K
♯

𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jr1 ⊕ r2K𝑝). Let 𝑞𝑖 ≜ Jr𝑖K𝑝 . Then, we have

that 𝑞𝑖 ≤ Jr𝑖K𝑝 and, by Lemma 5.13, Jr𝑖K
♯

𝐴
𝑝 = 𝛼 (Jr𝑖K𝑝) = 𝛼 (𝑞𝑖). Thus, by induction, ⊢𝐴 [𝑝] r𝑖 [𝑞𝑖] so that by (join),

⊢𝐴 [𝑝] r1 ⊕ r2 [𝑞1 ∨𝑞2]. Then, because 𝑞 ≤ Jr1 ⊕ r2K𝑝 = Jr1K𝑝 ∨ Jr2K𝑝 = (𝑞1 ∨𝑞2) ≤ 𝛾𝛼 (Jr1 ⊕ r2K𝑝) = 𝛾𝛼 (𝑞), by (relax),
⊢𝐴 [𝑝] r1 ⊕ r2 [𝑞] follows.

(r ≡ r∗
1
): Assume that 𝑞 ≤ Jr∗

1
K𝑝 and Jr∗

1
K♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jr∗

1
K𝑝). Let us consider the N-indexed sequence {𝑝𝑛}𝑛∈N

of values in 𝐶 , where 𝑝𝑛 ≜ Jr1K𝑛𝑝 . We have that for all 𝑛 ∈ N, 𝑝𝑛+1 ≤ Jr1K𝑝𝑛 and, by Lemma 5.13, Jr1K
♯

𝐴
𝛼 (𝑝𝑛) =

𝛼 (Jr1K𝑝𝑛) = 𝛼 (𝑝𝑛+1). Thus, by induction, for all 𝑛 ∈ N, ⊢𝐴 [𝑝𝑛] r1 [𝑝𝑛+1] is derivable. Hence, by (limit), we derive
⊢𝐴 [𝑝] r∗

1
[∨𝑛∈N 𝑝𝑛]. Notice that

∨
𝑛∈N 𝑝𝑛 =

∨{Jr1K𝑛𝑝 | 𝑛 ∈ N} = Jr∗
1
K𝑝 . Therefore, 𝑞 ≤ Jr∗

1
K𝑝 ≤ 𝛾𝛼 (Jr∗

1
K𝑝) = 𝛾𝛼 (𝑞),

and by (relax) it follows ⊢𝐴 [𝑝] r∗
1
[𝑞]. □

It is worth noting that if any e ∈ Exp(r) is globally complete on 𝐴 then, as proved by [Giacobazzi et al. 2015,

Theorem 5.1], JrK♯
𝐴
𝛼 = 𝛼JrK also holds. Thus, the hypotheses of Theorem 5.14 imply that that properties (1–2) of the

soundness Theorem 5.5 all hold, i.e. Theorem 5.14 provides a result of (limited) logical completeness for LCL𝐴 . Vice

versa, whenever the language is Turing complete, 𝐶 = S and the abstraction 𝐴 is not trivial, LCL𝐴 turns out to be

intrinsically incomplete, meaning that it is always possible to find a valid triple (w.r.t. properties (1–2) of Theorem 5.5)

but LCL𝐴 is unable to prove it.

Theorem 5.15 (Intrinsic Incompleteness). Let Reg be a Turing complete language. Let 𝐴𝛼,𝛾 ∈ Abs(S). If 𝛾𝛼 ≠ id and

𝛾𝛼 ≠ 𝜆𝑥.Σ then there exist 𝑝, 𝑞 ∈ S and r ∈ Reg such that 𝑞 ≤ JrK𝑝 and JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (JrK𝑝) = 𝛼 (𝑞), but ̸⊢𝐴 [𝑝] r [𝑞].

Proof. The assumption of Turing completeness of Reg implies the possibility of defining regular commands

r=𝑐?, r≠𝑐? ∈ Reg, for any store 𝑐 ∈ Σ, such that, for any 𝑝 ∈ S, Jr=𝑐?K𝑝 = 𝑝 ∩ {𝑐} and Jr≠𝑐?K𝑝 = 𝑝 ∩ ¬{𝑐}. Like-
wise, Turing completeness implies the possibility of defining regular commands r𝑐 ∈ Reg, for any 𝑐 ∈ Σ, such that, for

any 𝜎 ∈ Σ we have Jr𝑐K{𝜎} = {𝑐}. Finally, Turing completeness implies that there exists w ∈ Reg such that for any

𝑝 ∈ S, JwK𝑝 = ∅ holds. For the sake of clarity, in Imp and assuming just one variable 𝑥 so that 𝑐 ∈ Z, these programs

Manuscript submitted to ACM

30 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

would be:

w ≜ while tt do skip

r=𝑐? ≜ if (𝑥 = 𝑐) then skip else w

r≠𝑐? ≜ if ¬(𝑥 = 𝑐) then skip else w

r𝑐 ≜ 𝑥 := 𝑐

Consider now𝐴𝛼,𝛾 ∈ Abs(S) such that 𝛾𝛼 ≠ id and 𝛾𝛼 ≠ 𝜆𝑥 .Σ. Then there exists 𝑝 ∈ ℘(Σ) such that 𝑝 ⊊ 𝐴(𝑝) (because
𝛾𝛼 ≠ id) and𝑤 ∈ ℘(Σ) such that 𝐴(𝑤) ⊊ Σ (because 𝛾𝛼 ≠ 𝜆𝑥.Σ). Let r𝑏 , r=𝑎?, and r≠𝑎? be regular commands defined as

above for some 𝑎 ∈ 𝐴(𝑝) \ 𝑝 and 𝑏 ∈ Σ \𝐴(𝑤). Now, take the program r ≜ r1;w where

r1 ≜ (r=𝑎?; r𝑏) ⊕ (r≠𝑎?;w).

We have that JrK𝑝 = JwK(Jr1K𝑝) = ∅ and JrK𝐴(𝑝) = JwK(Jr1K𝐴(𝑝)) = ∅, so that local completeness 𝐴(JrK𝑝) =

𝐴(JrK𝐴(𝑝)) holds. However, the triple ⊢𝐴 [𝑝] r [∅] cannot be derived, because we cannot derive any triple ⊢𝐴 [𝑝] r1 [𝑞]
(to be used by the rule (seq) for r1;w). This is a consequence of the fact that Jr1K is not locally complete on 𝑝 in 𝐴. In

fact, Jr1K𝑝 = ∅ while Jr1K𝐴(𝑝) = J(r=𝑎?; r𝑏) ⊕ (r≠𝑎?;w)K𝐴(𝑝) = Jr=𝑎?; r𝑏K𝐴(𝑝) ∪ Jr≠𝑎?;wK𝐴(𝑝) = {𝑏} ∪∅ = {𝑏}. Hence,
𝛼 (Jr1K𝑝) = 𝛼 (∅) while Jr1K

♯

𝐴
𝛼 (𝑝) ⊇ 𝛼 (Jr1K𝐴(𝑝)) = 𝛼 ({𝑏}) (by soundness of Jr1K

♯

𝐴
and monotonicity of 𝛼). We observe

that 𝛼 (∅) ≠ 𝛼 ({𝑏}), otherwise by monotonicity of 𝛾 and extensivity of 𝛾𝛼 , we would have 𝑏 ∈ 𝛾𝛼 ({𝑏}) = 𝛾𝛼 (∅) ⊆
𝛾𝛼 (𝑤) = 𝐴(𝑤) which would be a contradiction. Now suppose that ⊢𝐴 [𝑝] r1 [𝑞] for some 𝑞. By Theorem 5.5 (1), it

must be 𝑞 ⊆ Jr1K𝑝 = ∅, thus 𝑞 = ∅ and by Theorem 5.5 (2), we would obtain 𝛼 (∅) = 𝛼 (𝑞) = Jr1K
♯

𝐴
𝛼 (𝑝) ⊇ 𝛼 ({𝑏})

which is a contradiction. The rule (relax) cannot help here neither, because any strengthening of 𝑝 , say 𝑝′, such that

𝑝′ ⊆ 𝑝 ⊆ 𝐴(𝑝′) makes 𝐴(𝑝) = 𝐴(𝑝′) therefore making Jr1K incomplete also for 𝑝′ in 𝐴. □

Turing completeness is crucial here because the proof relies upon the possibility of: (1) specifying in Reg an arbitrary

store in Σ, (2) effectively checking store inequality, and (3) specifying in Reg an undefined transfer function. The

proof of Theorem 5.15 generalizes to LCL𝐴 and to Turing complete regular commands the proofs in [Bruni et al. 2020]

and [Giacobazzi et al. 2015]: the class of all programs for which an abstract interpretation on 𝐴 is globally complete is

the set of all programs if and only if𝐴 is trivial. As a consequence of Theorems 5.14 and 5.15, LCL𝐴 cannot be a logically

complete proof system for a Turing complete language unless the abstraction 𝐴 is trivial. Of course, the identical

abstraction is unfeasible here as both rules (transfer) and (relax) would become vacuous. Hence, the only meaningful

straightforward abstraction for LCL𝐴 is 𝐴 = 𝜆𝑥.Σ. In light of this, we may therefore observe that logical completeness

of IL [O’Hearn 2020, Theorem 6] follows from the choice made in its consequence rule of letting pre-conditions and

post-conditions be, respectively, arbitrarily weakened and strengthened, i.e., the choice of the abstraction 𝐴 = 𝜆𝑥 .Σ in

rule (relax). Section 6 provides additional details on the relationship with incorrectness logic.

5.3 A Backward Proof System

As pioneered by [Cousot and Cousot 1977, Section 5.2], it is known that abstract interpretation-based program analysis

can be defined either backward or forward (see [Bourdoncle 1993; Miné 2017] for examples of backward abstract

interpretations). Instead of propagating forward an abstract store in a program control flow graph (CFG) from its entry

point, a backward analysis can start from any program point 𝑞 of the CFG (possibly, but not necessarily, an exit point)

and from any input abstract value 𝑎 it abstractly computes backward in the CFG to derive necessary abstract conditions

for the executions reaching 𝑞 and satisfying the store property 𝑎. Backward analysis is typically used after a preliminary

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 31

forward analysis to refine its results, as acknowledged by Bourdoncle [1993] for abstract program debugging. An

under-approximating backward program analysis by abstract interpretation has been put forward by Miné [2014]. In

the following, we show how LCL𝐴 can be easily dualized in order to accomodate backward analyses.

In backward analysis, the basic expressions e ∈ Exp have a co-additive backward concrete semantics LeM� : 𝐶 → 𝐶 .

Notably, LeM�𝑌 ≜ {𝜎 | (𝜎, 𝜎′) ∈ 𝑅e ⇒ 𝜎′ ∈ 𝑌 }, where 𝑅e ≜ {(𝜎, LeM𝜎) | 𝜎 ∈ Σ} is the transition relation for e. For

example, for the basic commands of Imp (Section 2.2.3) we have that:

LskipM�𝑌 ≜ 𝑌

L𝑥 := aM�𝑌 ≜ {𝜎 ∈ Σ | 𝜎 [𝑥 ↦→ {|a|} 𝜎] ∈ 𝑌 }

Lb?M�𝑌 ≜ {𝜎 ∈ Σ | {|b|} 𝜎 = tt ⇒ 𝜎 ∈ 𝑌 } = 𝑌 ∪ ¬b

Furthermore, in backward concrete and abstract semantics: (1) the control flows backwards and (2) meets replace joins.

Hence, the backward semantics of regular commands is given as the following dual definition of (2):

JeK�𝑐 ≜ LeM�𝑐

Jr1; r2K�𝑐 ≜ Jr1K� (Jr2K�𝑐)

Jr1 ⊕ r2K�𝑐 ≜ Jr1K�𝑐 ∧ Jr2K�𝑐

Jr∗K�𝑐 ≜
∧{JrK𝑛�𝑐 | 𝑛 ∈ N}

This defines a standard backward semantics, e.g., as given in [Miné 2014, Section 2] for imperative programs.

By duality, the backward abstract semantics uses an under-approximating abstraction 𝑈𝛼,𝛾 ∈ Abs
� (𝐶), meaning

that𝑈 is defined by a Galois insertion w.r.t. the concrete domain ⟨𝐶, ≥⟩ where the partial order is the inverse relation
≥ ≜ ≤−1

. This means that for all 𝑐 ∈ 𝐶 , an under-approximation relation 𝛾𝛼 (𝑐) ≤ 𝑐 replaces an over-approximating

relation 𝑐 ≤ 𝛾𝛼 (𝑐).

Example 5.16. The interval domain Int can be viewed as an under-approximating abstraction by dualizing its abstraction

and concretization maps 𝛼�
: ℘(Z) → Int and 𝛾�

: Int → ℘(Z) as follows:

𝛾� ([𝑙, 𝑢]) ≜ ¬𝛾 ([𝑙, 𝑢]) = {𝑧 ∈ Z | 𝑧 < 𝑙 ∨ 𝑢 > 𝑧}

𝛼� (𝑋) ≜ 𝛼 (¬𝑋) = [min(¬𝑋),max(¬𝑋)]

For example, 𝛼� ({𝑥 ∈ Z | 𝑥 < −3 ∨ 𝑥 > 5} ∪ {0, 1, 2}) = [−3, 5] and 𝛼� ({𝑥 ∈ Z | 𝑥 < −3} ∪ {0, 1, 2} = [−3, +∞]. □

Accordingly, the abstract semantics JrK♯
𝑈
for an under-approximating abstraction𝑈 ∈ Abs

� (𝐶) is defined from (3)

by duality as follows:

JeK♯
𝑈
𝑎 ≜ 𝛼 (LeM�𝛾 (𝑎))

Jr1; r2K
♯

𝑈
𝑎 ≜ Jr1K

♯

𝑈
(Jr2K♯𝐴𝑎)

Jr1 ⊕ r2K
♯

𝑈
𝑎 ≜ Jr1K

♯

𝑈
𝑎 ∧𝑈 Jr2K

♯

𝑈
𝑎

Jr∗K♯
𝑈
𝑎 ≜

∧
𝑈 {(JrK♯

𝑈
)𝑛𝑎 | 𝑛 ∈ N}

Correspondingly, when our proof system ⊢𝑈 is instantiated to an under-approximating abstraction 𝑈 ∈ Abs
� (𝐶),

we need to replace ≤, which models logical implication, with ≥ and logical disjunction ∨ with conjunction ∧. Hence,
the fundamental (relax) rule becomes:

Manuscript submitted to ACM

32 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

LskipM(ok :𝑞, er :𝑤) ≜ ok :𝑞, er :𝑤

L𝑥 := aM(ok :𝑞, er :𝑤) ≜ ok :

⋃
𝜎∈𝑞{𝜎 [𝑥 ↦→ {|a|} 𝜎]}, er :𝑤

Lerror() M(ok :𝑞, er :𝑤) ≜ er :(𝑞 ∪𝑤)

Lassume(b) M(ok :𝑞, er :𝑤) ≜ ok :(𝑞 ∩ b), er :𝑤

L𝑥 := nond() M(ok :𝑞, er :𝑤) ≜ ok :

⋃
𝑣∈Z 𝑞 [𝑥 ↦→ 𝑣], er :𝑤

Fig. 8. Basic Transfer Functions for Additional Statements.

𝑈 (𝑝′) ≤ 𝑝 ≤ 𝑝′ ⊢𝑈 [𝑝′] r [𝑞′] 𝑈 (𝑞) ≤ 𝑞′ ≤ 𝑞

⊢𝑈 [𝑝] r [𝑞]

Thus, here the condition 𝑝 is logically stronger than 𝑝′ and weaker than the under-approximation𝑈 (𝑝′), and dually for

𝑞. By duality, as a direct consequence of Theorems 5.5 and 5.14, a result of soundness and limited logical completeness

for the dual logic ⊢𝑈 can be derived. Hence, a provable triple ⊢𝑈 [𝑝] r [𝑞] for an under-approximation𝑈 implies that:

JrK�𝑞 ≤ 𝑝 , i.e. 𝑝 is an over-approximation of the backward semantics, and JrK♯
𝑈
𝛼 (𝑞) = 𝛼 (𝑝) = 𝛼 (JrK�𝑞), i.e. local

completeness holds.

6 RELATIONSHIP WITH INCORRECTNESS LOGIC

The idea to reverse the direction of implication in Hoare’s consequence rule was investigated by de Vries and Koutavas

[2011] reverse Hoare logic to study reachability specifications for randomized algorithms. They first put forward the

following consequence rule for under-approximation triples:

𝑝′ ≤ 𝑝 [𝑝′] r [𝑞′] 𝑞 ≤ 𝑞′

[𝑝] r [𝑞] (cons)

O’Hearn’s incorrectness logic extends the approach of reverse Hoare logic with an explicit handling of error detection

and propagation. As pointed out by O’Hearn [2020], “Program correctness and incorrectness are two sides of the same coin

[...] Incorrectness logic is so basic that it could have been defined and studied immediately after or alongside the fundamental

works of Floyd and Hoare on correctness in the 1960s”. Because IL is tailored to under-approximations, it can be used to

prove the presence of bugs but not their absence.

In [O’Hearn 2020], programs are regular commands that include primitives such as: the error() statement, to halt

execution and raise an error signal er; assume(b) statements, analogous to our Boolean guards b?; and nondeterministic

assignments 𝑥 := nond() also present in the setting of reverse Hoare logic. Thus, we set:

Exp ∋ e ::= skip | 𝑥 := a | error() | assume(b) | 𝑥 := nond()

Incorrectness logic triples take the form ⊢IL [𝑝] c [𝜖 :𝑞], as their post-conditions are extended with labels 𝜖 ∈ {ok, er}
(following [O’Hearn 2020], we use colors for a visual differentiation) to distinguish the case of error-free termination

ok :𝑞 leading to an under-approximating post-condition 𝑞, from interrupted computations er :𝑞, meaning that some

error occurred under the circumstances reported by 𝑞. We write ⊢IL [𝑝] c [ok :𝑞] [er :𝑤] when ⊢IL [𝑝] c [ok :𝑞] and
⊢IL [𝑝] c [er :𝑤] are derivable for the same pre-condition 𝑝 . Notably, the proof system of IL is proved to be sound and

complete (in the logical sense): an error can arise iff it can be exposed by some provable triple.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 33

Next, we sketch how IL can be seen as an instance of LCL𝐴 . Due to error handling, the domain S is not informative

enough, but this is not a problem given the generality of LCL𝐴 . Therefore, we exploit the following four ingredients:

(i) A suitable concrete domain C ≜ ℘({ok, er} × Σ) that can distinguish between normal and erroneous termination.

For 𝑞 ∈ ℘(Σ) and 𝜖 ∈ {ok, er} we write 𝜖 :𝑞 as a shorthand for {𝜖 :𝜎 | 𝜎 ∈ 𝑞} = {𝜖} × 𝑞. Clearly, a generic 𝑆 ∈ C
takes the form ok :𝑞 ∪ er :𝑤 for suitable 𝑞,𝑤 ∈ ℘(Σ), so we denote elements in C more concisely as ok :𝑞, er :𝑤 .

(ii) Transfer functions 𝑓 : C → C are additive functions such that

𝑓 (ok :𝑞, er :𝑤) = er :𝑤 ∪ ⋃
𝜎∈𝑞 𝑓 (ok :𝜎)

meaning that all the errors𝑤 in the argument are preserved. possibly further errors are generated by the application

of 𝑓 to some 𝜎 ∈ 𝑞.

(iii) The semantics of basic transfer functions is defined in Figure 8, where we write 𝑞 [𝑥 ↦→ 𝑣] as a shorthand

for {𝜎 [𝑥 ↦→ 𝑣] | 𝜎 ∈ 𝑞}. For any r ∈ Reg and any 𝑞,𝑤 ∈ ℘(Σ), by structural induction on r, it follows that

JrK(er :𝑤) = er :𝑤 and JrK(ok :𝑞, er :𝑤) = JrK(ok :𝑞) ∪ er :𝑤 .

(iv) The abstract domain 𝐴tr is the trivial abstraction such that 𝛾𝛼 = 𝜆𝑋 .⊤ = 𝜆𝑋 .({ok, er} × Σ). Note that 𝐴tr is

(globally) complete for every transfer function, therefore all proof obligations C𝐴𝑐 (e) are trivially satisfied, and

(transfer) becomes an axiom. Moreover, by 𝐴tr (𝑝′) = ⊤ = 𝐴tr (𝑞), the rule (relax) boils down to the rule (cons).

At the level of concrete semantics, we can establish a tight connection between the transfer function JrK : C → C
associated with r ∈ Reg and its relational denotational semantics that was taken as a reference model for IL. Let

us denote by JrK𝜖 ⊆ Σ×Σ the relational semantics defined in [O’Hearn 2020, Figure 4]. In order to formalize the

correspondence, we find it convenient to let JrK𝜖 : S→ S denote the functional version of JrK𝜖 defined by:

JrK𝜖𝑝 ≜ {𝜎′ ∈ Σ | 𝜎 ∈ 𝑝, (𝜎, 𝜎′) ∈ JrK𝜖}.

Lemma 6.1. For any r ∈ Reg and 𝑝 ∈ S, we have:

JrK(ok :𝑝) = ok :JrKok𝑝, er :JrKer𝑝 .

Proof. The proof is by structural induction on r ∈ Reg.

(r ≡ skip): By definition,

JskipK(ok :𝑝) = ok :𝑝, er :∅ = ok :JskipKok𝑝, er :JskipKer𝑝.

(r ≡ 𝑥 := a): By definition,

J𝑥 := aK(ok :𝑝) = ok :

⋃
𝜎∈𝑝 {𝜎 [𝑥 ↦→ {|a|} 𝜎]}, er :∅ = ok :J𝑥 := aKok𝑝, er :J𝑥 := aKer𝑝.

(r ≡ error()): By definition,

Jerror()K(ok :𝑝) = ok :∅, er :𝑝 = ok :Jerror()Kok𝑝, er :Jerror()Ker𝑝.

(r ≡ assume(b)): By definition,

Jassume(b)K(ok :𝑝) = ok :(𝑝 ∩ b), er :∅ = ok :Jassume(b)Kok𝑝, er :Jassume(b)Ker𝑝.

Manuscript submitted to ACM

34 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

(r ≡ 𝑥 := nond()): By definition,

J𝑥 := nond()K(ok :𝑝) = ok :

⋃
𝑣∈Z 𝑝 [𝑥 ↦→ 𝑣], er :∅ = ok :J𝑥 := nond()Kok𝑝, er :J𝑥 := nond()Ker𝑝.

(r ≡ r1; r2): Let us assume the inductive hypotheses

∀𝑝 ∈ S . Jr1K(ok : 𝑝) = ok :Jr1Kok𝑝, er :Jr1Ker𝑝

∀𝑝′ ∈ S . Jr2K(ok :𝑝′) = ok :Jr2Kok𝑝
′, er :Jr2Ker𝑝′ .

Then, we have

Jr1; r2K(ok :𝑝) = Jr2K(Jr1K(ok :𝑝)) =

Jr2K(ok :Jr1Kok𝑝, er :Jr1Ker𝑝) =

er :Jr1Ker𝑝 ∪ Jr2K(ok :Jr1Kok𝑝) =

er :Jr1Ker𝑝 ∪ ok :Jr2Kok (Jr1Kok𝑝), er :Jr2Ker (Jr1Kok𝑝) =

er :Jr1Ker𝑝 ∪ ok :(Jr1Kok · Jr2Kok)𝑝), er :(Jr1Kok · Jr2Ker)𝑝) =

ok :(Jr1; r2Kok𝑝), er :(Jr1Ker𝑝 ∪ (Jr1Kok · Jr2Ker)𝑝)) =

ok :Jr1; r2Kok𝑝, er :Jr1; r2Ker𝑝 .

(r ≡ r1 ⊕ r2): Let us assume the inductive hypotheses

∀𝑝 ∈ S . Jr1K(ok :𝑝) = ok :Jr1Kok𝑝, er :Jr1Ker𝑝,

∀𝑝 ∈ S . Jr2K(ok :𝑝) = ok :Jr2Kok𝑝, er :Jr2Ker𝑝.

Then, we have

Jr1 ⊕ r2K(ok :𝑝) = Jr1K(ok :𝑝) ∪ Jr2K(ok :𝑝) =

(ok :Jr1Kok𝑝, er :Jr1Ker𝑝) ∪ (ok :Jr2Kok𝑝, er :Jr2Ker𝑝) =

ok :(Jr1Kok𝑝 ∪ Jr2Kok𝑝), er :(Jr1Ker𝑝 ∪ Jr2Ker𝑝) =

ok :Jr1 ⊕ r2Kok𝑝, er :Jr1 ⊕ r2Ker𝑝 .

(r ≡ r∗
1
): Let us assume the inductive hypotheses

∀𝑝 ∈ S . Jr1K(ok :𝑝) = ok :Jr1Kok𝑝, er :Jr1Ker𝑝.

Then, we prove by induction on 𝑛 ∈ N that

∀𝑛 ∈ N. Jr1K𝑛 (ok :𝑝) = ok :Jr𝑛
1
Kok𝑝, er :Jr𝑛

1
Ker𝑝.

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 35

Finally, we have that

Jr∗
1
K(ok :𝑝) =⋃{Jr1K𝑛 (ok :𝑝) | 𝑛 ∈ N} =⋃{(ok :Jr𝑛

1
Kok𝑝, er :Jr𝑛

1
Ker𝑝) | 𝑛 ∈ N} =

ok :

⋃{Jr𝑛
1
Kok𝑝 | 𝑛 ∈ N}, er :

⋃{Jr𝑛
1
Ker𝑝 | 𝑛 ∈ N} =

ok :Jr∗
1
Kok𝑝, er :Jr∗

1
Ker𝑝 .

This therefore concludes the proof. □

Lemma 6.1 is instrumental for proving the equivalence between IL and the particular instance LCL𝐴tr of our logic as

determined by (i–iv) above. This correspondence necessarily follows as a consequence of the (logical) completeness

of IL [O’Hearn 2020, Theorem 6] and our Theorem 5.14 of limited completeness, which guarantee that any under-

approximation of the strongest post-condition post[r]𝑝 is provable in both logics.

Corollary 6.2. For any 𝑝, 𝑞,𝑤 ∈ S and r ∈ Reg:

⊢IL [𝑝] r [ok :𝑞] [er :𝑤] iff ⊢𝐴tr [ok :𝑝] r [ok :𝑞, er :𝑤] .

It is interesting to observe that any instance LCL𝐴 of our logic using an abstraction 𝐴 ≠ 𝐴tr would only be able to

derive some triples of IL but not all of them (while, of course, any triple derived in ⊢𝐴 would also be derivable in ⊢IL).
This is a consequence of the intrinsic incompleteness Theorem 5.15 that extends the impossibility results of [Bruni et al.

2020; Giacobazzi et al. 2015] to regular commands. Therefore, whenever 𝐴 ≠ 𝐴tr there will always exist some program r

and some triple ⊢IL [𝑝] r [ok :𝑞] [er :𝑤] such that it will not be possible to derive ⊢𝐴 [ok :𝑝] r [ok :𝑞, er :𝑤] because
some proof obligation C𝐴𝑐 (e) of local completeness will fail for some basic expression e appearing in r.

The correspondence provided by Corollary 6.2 is interesting, because although the rules of IL and ours share some

similarities, they also display significant differences:

(a) The most visible difference is that the pre-conditions of the triples in ⊢IL are elements of S while pre-conditions of

triples in ⊢𝐴tr are elements of C, meaning that the rules in ⊢IL are concerned only with normal inputs, while the

rules in ⊢𝐴tr must deal also with (the propagation of) erroneous inputs.

(b) Building on (a), the rules of IL are tailored to error propagation, while our rules are designed for any concrete domain.

Both logical frameworks can be extended to deal with different kinds of error and error recovery mechanisms.

Because our rule (transfer) is parametric on basic expressions, it should not be necessary to change any rule of our

proof system to implement such extensions. For example, IL exploits two rules for sequential composition while

LCL𝐴 just needs a single composition rule but it delegates error propagation to the underlying concrete domain.

(c) Some rules of IL, such asDisjunction,Choice and Iterate zero in [O’Hearn 2020, Figure 2], are designed to incrementally

build the under-approximation bottom-up by composing smaller under-approximations into larger ones. On

the contrary, LCL𝐴 is constrained to work in the opposite direction by the requirement of preserving the over-

approximation of the strongest post-condition in the abstraction 𝐴.

(d) Finally, incorrectness logic includes specific rules for dealing with the introduction of fresh local variables, while in

the context of abstract interpretation it is typically assumed that the program variables are statically known. Of

course, it would be possible to deal with dynamic allocation in LCL𝐴 although its formalization would be technically

more involved.

Manuscript submitted to ACM

36 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

⊥

ok er

⊤
𝛾Err (⊤) ≜ {ok, er} × Σ

𝛾Err (ok) ≜ {ok} × Σ
𝛾Err (er) ≜ {er} × Σ
𝛾Err (⊥) ≜ ∅

Fig. 9. Abstract Domain Err

The use of an abstract over-approximation in LCL𝐴 that constrains any under-approximation has some advantages

but also carries drawbacks. The main advantages are: (1) by exploiting the over-approximation, LCL𝐴 can also prove the

absence of errors, and (2) under the hypothesis that the correctness specification spec is expressible in the abstraction 𝐴,

any provable triple will suffice to establish either spec is satisfied or violated. However, as already mentioned, whenever 𝐴

is not trivial, not all the possible under-approximations can be obtained by our system. The next example shows this

phenomenon by combining the interval abstraction Int with the simple error domain Err depicted in Figure 9.

Example 6.3. Let us revisit Example 5.8 (in turn using the regular command r of Example 5.2). To study spec
2
≜ 𝑥 ≤ 1000,

in the context of ⊢IL we focus on the command r̂2 ≜ r; r𝑠2 where

r𝑠2 ≜ if 𝑥 ≤ 1000 then skip else error() = (𝑥 ≤ 1000?; skip) ⊕ (1000 < 𝑥?; error()).

Using ⊢Int, it was shown in Example 5.8 that ⊢Int is expressive enough to prove that r satisfies spec
2
, so that r̂2 will

never issue the error signal. Since the absence of errors cannot be proved by under-approximations, incorrectness

logic cannot derive any useful information in this case. Let us consider instead the abstract domain Int+ ≜ Err ⊓ Int

defined as reduced product [Cousot and Cousot 1979, Section 10.1] of Err and Int, that is, whose concretization map is

defined as 𝛾Int+ (⟨𝑎1, 𝑎2⟩) ≜ 𝛾Err (𝑎1) ∩ 𝛾Int (𝑎2). By mimicking the derivation of ⊢Int [𝑝] r [{0, 2, 1000}], it is not hard to

check that ⊢Int+ [ok : 𝑝] r̂2 [ok :{0, 2, 1000}] is derivable. Since Int+ (ok :{0, 2, 1000}) = ok :[0, 1000] over-approximates

the strongest post-condition, this is enough for proving that no error will be issued by r̂2 with pre-condition 𝑝 . Actually,

by Corollary 5.6, since spec
2
is expressible in Int, we are guaranteed that any provable triple ⊢Int [𝑝] r [𝑞] in our system

will be able to prove that spec
2
holds.

To study spec
3
≜ 100 ≤ 𝑥 , we focus on r̂3 ≜ r; r𝑠3 where

r𝑠3 ≜ if 100 ≤ 𝑥 then skip else error() = (100 ≤ 𝑥?; skip) ⊕ (𝑥 < 100?; error())

We know from Example 5.8, that JrK𝑝 ⊈ spec
3
, so that r̂3 can issue some errors. Within IL we can derive triples that

exhibit some erroneous situation, like ⊢IL [𝑝] r̂3 [er :{0}] as well as others that do not, e.g., ⊢IL [𝑝] r̂3 [ok :{1000}].
Let us consider once again the abstract domain Int+. By mimicking the derivation of ⊢Int [𝑝] r [{0, 2, 1000}], but
applying (rec) 100 times in order to include the values 100 and 101 that are necessary to satisfy the local completeness

requirements for the tests 100 ≤ 𝑥? and 𝑥 < 100?, we can then derive ⊢Int+ [ok :𝑝] r̂3 [ok :{1000}, er :{0, 2}] using the
abstract domain Int+. Note that, since Int+ (ok :{1000}, er :{0, 2}) = ⊤ :[0, 1000], the rule (relax) cannot be used to discard
all the errors because this would change the abstract over-approximation of the post-condition. Since ok :[100, +∞] is
expressible in Int+, by Corollary 5.6, the label ⊤ in the over-approximation provides good evidence about the occurrence

of one or more errors. Moreover, because the over-approximation induced by Int is always preserved, any provable

triple ⊢Int+ [𝑝] r̂3 [𝑞] is such that 𝑞 will contain the true alarm er :{0} (as well as ok :{1000}). □

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 37

⊢𝐴 [𝑝 ∧ b] c [𝑤] ⊢𝐴 [𝑝 ∨𝑤] while b do c [𝑞]
⊢𝐴 [𝑝] while b do c [𝑞] (unroll)

C𝐴𝑝 (b) C𝐴𝑝 (¬b) ⊢𝐴 [𝑝 ∧ b] c [𝑞] 𝑞 ≤ 𝐴(𝑝)
⊢𝐴 [𝑝] while b do c [(𝑝 ∨ 𝑞) ∧ ¬b] (loopinv)

Fig. 10. The Rules for While Loops.

In order to develop some tool or extend existing ones to exploit LCL𝐴 the idea is to start the analysis with some

well-known abstract domain and then collect the local completeness proof obligations arising from the analysis: when

they are not satisfied, then a new abstract domain must be synthesized to carry out the proof. As discussed in the

conclusions, a successful strategy outlined in [Bruni et al. 2022] would be to refine the current abstract domain in a

minimal way to recover local completeness of the analysis.

7 Imp PROGRAMS

The encoding (6) of while loops as regular commands is such that, due to the recursive rule (rec), proof obligations of
local completeness for the Boolean guard of the loop are required at each iteration. This turns out to be advantageous

to keep the rules of the logic as simple and straightforward as possible. However, this is not strictly necessary for

achieving local completeness of the loop invariant. We therefore introduce in Figure 10 two additional rules for while

loops that relax the local completeness requirements needed during their recursive applications. The key new rule is

(unroll): it is analogous to the rule (rec) when applied to r = b?; c, but the premise ⊢𝐴 [𝑝 ∧ b] c [𝑤] of (unroll) requires
local completeness exclusively on the body c of the loop and not on the Boolean guard b?. Moreover, the rule (loopinv)
is analogous to (iterate) and can be used to stop a proof attempt as soon as an abstract fixpoint 𝐴(𝑝) is reached. By
combining these rules (unroll) and (loopinv), the local completeness requirements for the Boolean guard b? of the loop,

namely C𝐴𝑝 (b?) and C𝐴𝑝 (¬b?), are therefore needed only at the last iteration and not at each iteration.

Lemma 7.1. The proof system extended with rules (unroll) and (loopinv) is sound.

Proof. We extend the proof by induction of Theorem 5.5 by considering the case where the last rule applied to derive

⊢𝐴 [𝑝] r [𝑞] is either (unroll) or (loopinv). As in the proof of Theorem 5.5, we refer to the equality JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) as

(2a) and use (2b) for the equality JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (JrK𝑝), and we recall that (2b) follows immediately by (1) and (2a).

(unroll): If the last rule applied is (unroll), it must be r ≡ while b do c and we can assume by induction that ⊢𝐴
[𝑝 ∧ b] c [𝑤] and ⊢𝐴 [𝑝 ∨𝑤] while b do c [𝑞] can be derived for some𝑤 . We need to prove the thesis for the conclusion

⊢𝐴 [𝑝] while b do c [𝑞].
(1) By inductive hypothesis (1), we have that𝑤 ≤ JcK(𝑝∧b) = Jb?; cK𝑝 , so that, by Lemma 2.1 (e), it follows J(b?; c)∗K𝑝 =

J(b?; c)∗K(𝑝 ∨𝑤). Then, by inductive hypothesis (1), we derive:

𝑞 ≤ Jwhile b do cK(𝑝 ∨𝑤) = J¬b?K(J(b?; c)∗K(𝑝 ∨𝑤)) = J¬b?K(J(b?; c)∗K𝑝) = Jwhile b do cK𝑝.

Manuscript submitted to ACM

38 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

(2) The proof is analogous to the case of rule (rec) in the proof of Theorem 5.5:

𝛼 (𝑞) ≤𝐴 [by monotonicity of 𝛼 and (1)]

𝛼 (Jwhile b do cK𝑝) ≤𝐴 [by correctness (4)]

Jwhile b do cK♯
𝐴
𝛼 (𝑝) ≤𝐴 [by monotonicity]

Jwhile b do cK♯
𝐴
𝛼 (𝑝 ∨𝑤) = [by ind.hyp. (2a)]

𝛼 (𝑞)

so that Jwhile b do cK♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (Jwhile b do cK𝑝) follows.

(loopinv): If the last rule applied is (loopinv), it must be r ≡ while b do c and we can assume by induction that

⊢𝐴 [𝑝 ∧ b] c [𝑞1] can be derived for some 𝑞1 such that 𝑞1 ≤ 𝐴(𝑝) and 𝑞 = (𝑝 ∨ 𝑞1) ∧ ¬b, with C𝐴𝑝 (b) and C𝐴𝑝 (¬b). We

need to prove the thesis for the conclusion ⊢𝐴 [𝑝] while b do c [(𝑝 ∨ 𝑞1) ∧ ¬b].
(1) We first observe that, by inductive hypothesis (1), 𝑞1 ≤ JcK(𝑝 ∧ b) = Jb?; cK𝑝 and that Jb?; cK0𝑝 = 𝑝 . Then:

𝑝 ∨ 𝑞1 ≤ Jb?; cK0𝑝 ∨ Jb?; cK1𝑝 ≤ ∨
𝑛∈NJb?; cK𝑛𝑝 = J(b?; c)∗K𝑝.

From this, it immediately follows by monotonicity of J¬bK:

(𝑝 ∨ 𝑞1) ∧ ¬b = J¬bK(𝑝 ∨ 𝑞1) ≤ J¬bK(J(b?; c)∗K𝑝 = Jwhile b do cK𝑝.

(2a) ByC𝐴𝑝 (b), we get 𝛼 (𝑝∧b) = 𝛼 (JbK𝑝) = JbK♯
𝐴
𝛼 (𝑝). Therefore, 𝛼 (𝑞1) = JcK♯

𝐴
𝛼 (𝑝∧b) = JcK♯

𝐴
JbK♯

𝐴
𝛼 (𝑝) = Jb?; cK♯

𝐴
𝛼 (𝑝).

By monotonicity of 𝛼 , we have that 𝛼 (𝑞1) ≤𝐴 𝛼 (𝑝), so that Lemma 2.1 (c) is applicable to derive J(b?; c)∗K♯
𝐴
𝛼 (𝑝) = 𝛼 (𝑝).

Since C𝐴𝑝 (¬b) and 𝑝 ≤ (𝑝 ∨ 𝑞1) ≤ 𝐴(𝑝) hold, by convexity, we get that C𝐴(𝑝∨𝑞1) (¬b) holds. Therefore:

𝛼 ((𝑝 ∨ 𝑞1) ∧ ¬b) = [by definition]

𝛼 (J¬b?K(𝑝 ∨ 𝑞1)) = [by convexity C𝐴(𝑝∨𝑞1) (¬b)]

J¬b?K♯
𝐴
𝛼 (𝑝 ∨ 𝑞1) = [by additivity of 𝛼]

J¬b?K♯
𝐴
(𝛼 (𝑝) ∨𝐴 𝛼 (𝑞1)) = [by hyp. 𝑞1 ≤ 𝐴(𝑝)]

J¬b?K♯
𝐴
𝛼 (𝑝) = [by Lemma 2.1 (c), see above]

J¬b?K♯
𝐴
(J(b?; c)∗K♯

𝐴
𝛼 (𝑝)) = [by definition]

Jwhile b do cK♯
𝐴
𝛼 (𝑝). □

We refer to the next section for an example (cf. Example 8.2) showing the advantage of applying the rules (unroll)
and (loopinv) because the local completeness requirements are not met at every iteration of the proof for a while loop

but just at the last one.

8 A LOGIC FOR LOCALLY COMPLETE BEST CORRECT APPROXIMATIONS

When a provable triple ⊢𝐴 [𝑝] r [𝑞] is used for program verification, we exploit the following property:

𝑞 ≤ JrK𝑝 ≤ 𝛼 (JrK𝑝) = 𝛼 (𝑞) (§)
Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 39

𝐴′ ⪯ 𝐴 𝐴(𝑝) = 𝐴′ (𝑝) ⊢⪯
𝐴′ [𝑝] r [𝑞] 𝐴′ (𝑞) = 𝐴(𝑞)

⊢⪯
𝐴

[𝑝] r [𝑞]
(refine)

Fig. 11. The Refinement Rule of LCL
⪯
𝐴
.

so that, by under-approximation 𝑞 ≤ JrK𝑝 , any alarm in 𝑞 is a true alarm for 𝑝 , and, by over-approximation JrK𝑝 ≤ 𝛼 (𝑞),
the lack of alarms in 𝛼 (𝑞) entails the correctness of 𝑝 . In LCL𝐴 , local completeness can be viewed as a technical

assumption to infer (§), meaning that it is a necessary condition for deriving ⊢𝐴 [𝑝] r [𝑞] within our proof system, since

we are able to prove only triples that satisfy local completeness JrK♯
𝐴
𝛼 (𝑝) = 𝛼 (JrK𝑝) (cf. Theorem 5.5). In this section,

we show that it is possible to relax our program logic so that local completeness is not required for the intensional

and inductively defined abstract interpreter JrK♯
𝐴
but merely for the best correct approximation JrK𝐴 ≜ 𝛼 ◦ JrK ◦𝛾 of the

extensional concrete semantics JrK. This is achieved by allowing different abstract domains in different sub-derivations

to increase the precision of the analysis whenever necessary. Without the extension proposed in this section, whenever

it would be convenient to use different abstract domains for different parts of the proof, the only possibility would be to

check if it is possible to complete the derivation in the abstract domain obtained as the reduced product of all domains

involved in every sub-derivation: for example, if we are able to derive ⊢𝐴1
[𝑝] r1 [𝑤] and ⊢𝐴2

[𝑤] r2 [𝑞], we could try

to derive ⊢𝐴1⊓𝐴2
[𝑝] r1; r2 [𝑞] leveraging the reduced product 𝐴1 ⊓𝐴2. One remarkable advantage of using different

abstractions within the same derivation will be that it is not necessary to consider their join at every step.

This extension of LCL𝐴 is obtained by adding the rule (refine) in Figure 11, where we recall that ⪯ denotes the

refinement relation between abstract domains and write ⊢⪯
𝐴

[𝑝] r [𝑞] for a triple that can be derived in this extended

proof system LCL
⪯
𝐴
≜ LCL𝐴 ∪ {(refine)}. When 𝐴 is not locally complete for r on 𝑝 , (refine) allows us to exploit an

abstraction refinement 𝐴′
of 𝐴 which is locally complete provided that the over-approximations in 𝐴 and 𝐴′

of both 𝑝

and 𝑞 coincide. The soundness result for LCL
⪯
𝐴
shows that any triple ⊢⪯

𝐴
[𝑝] r [𝑞] still ensures that 𝑞 ≤ JrK𝑝 ≤ 𝛼 (𝑞)

holds. Let us remark that the only difference in soundness of LCL𝐴 and LCL
⪯
𝐴
, as stated by Theorems 5.5 and 8.1, is that

the intensional abstract semantics JrK♯
𝐴
of Theorem 5.5 is replaced by the bca JrK𝐴 of Theorem 8.1.

Theorem 8.1 (Soundness of LCL
⪯
𝐴
). Let 𝐴𝛼,𝛾 ∈ Abs(𝐶). For all r ∈ Reg, 𝑝, 𝑞 ∈ 𝐶 , if ⊢⪯

𝐴
[𝑝] r [𝑞] then:

(1) 𝑞 ≤ JrK𝑝 , and
(2) JrK𝐴𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (JrK𝑝).

Proof. As in the proof of Theorem 5.5, we refer to the equality JrK𝐴𝛼 (𝑝) = 𝛼 (𝑞) as (2a) and use (2b) for the equality

JrK𝐴𝛼 (𝑝) = 𝛼 (JrK𝑝). We then recall that (2b) follows immediately by (1) and (2a).

The proof is by induction on the derivation tree of ⊢⪯
𝐴

[𝑝] r [𝑞]. For the cases where the last used rule is in LCL𝐴 (in

Figure 4), the proof follows the same pattern of the proof of Theorem 5.5: for (1) there is nothing to change, while

for (2) we just need to replace J·K♯
𝐴
with J·K𝐴 everywhere and slightly change the proof of (2a) for the sequence with

Manuscript submitted to ACM

40 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

the additional inequality Jr1; r2K𝐴𝛼 (𝑝) ≤𝐴 Jr2K𝐴 (Jr1K𝐴𝛼 (𝑝)) as follows:

𝛼 (𝑞) ≤𝐴 [by (1) and monotonicity of 𝛼]

𝛼 (Jr1; r2K𝑝) ≤𝐴 [by correctness (4)]

Jr1; r2K𝐴𝛼 (𝑝) ≤𝐴 [by definition]

Jr2K𝐴 (Jr1K𝐴𝛼 (𝑝)) = [by ind.hyp. (2a), Jr1K𝐴𝛼 (𝑝) = 𝛼 (𝑤)]

Jr2K𝐴𝛼 (𝑤) = [by ind.hyp. (2a)]

𝛼 (𝑞) .

Analogously, we slightly change the proof of (2a) for (iterate) as follows:

Jr∗
1
K𝐴𝛼 (𝑝) = [by Lemma 2.1 (d)]

𝛼 (𝑝) = [by hyp. 𝑞 ≤ 𝐴(𝑝)]

𝛼 (𝑝) ∨𝐴 𝛼 (𝑞) = [by additivity of 𝛼]

𝛼 (𝑝 ∨ 𝑞)

Instead, no changes are necessary for the join, because the abstract semantics of the choice command preserves bcas

(cf. (5)).

Therefore, to conclude, we just need to consider the case for the new rule (refine):

(refine) : If the last rule applied is (refine), we can assume by induction that ⊢⪯
𝐴′ [𝑝] r [𝑞] for some abstraction refinement

𝐴′ ⪯ 𝐴 such that 𝐴′ (𝑝) = 𝐴(𝑝) and 𝐴′ (𝑞) = 𝐴(𝑞). We need to prove the thesis for the conclusion ⊢⪯
𝐴

[𝑝] r [𝑞].
(1) by inductive hypothesis (1) we already have that 𝑞 ≤ JrK𝑝 holds.

(2) Let us recall that JrK𝐴𝛼 (𝑝) = 𝛼 (JrK𝐴(𝑝)). We first note that, by inductive hypothesis (2a), 𝛼 ′ (JrK𝐴′ (𝑝)) = 𝛼 ′ (𝑞), so
that JrK𝐴′ (𝑝) ≤ 𝐴′ (𝑞) holds. Therefore:

𝛼 (𝑞) ≤𝐴 [by monotonicity of 𝛼 and (1)]

𝛼 (JrK𝑝) ≤𝐴 [by monotonicity of 𝛼 ◦ JrK]

𝛼 (JrK𝐴(𝑝)) = [by hyp.]

𝛼 (JrK𝐴′ (𝑝)) ≤𝐴 [by monotonicity of 𝛼 and above hyp.]

𝛼 (𝐴′ (𝑞)) = [by hyp.]

𝛼 (𝐴(𝑞)) = [by GI]

𝛼 (𝑞)

so that, JrK𝐴𝛼 (𝑝) = 𝛼 (𝑞) = 𝛼 (JrK𝑝) follows. □

The following example shows how the rule (refine) allows us to infer a triple ⊢⪯
𝐴

[𝑝] r [𝑞] when JrK♯
𝐴
is not locally

complete for 𝐴 on 𝑝 — i.e., soundness as stated by Theorem 5.5 does not hold — while the best correct approximation

JrK𝐴 turns out to be locally complete. Interestingly, the rule (refine) allows us to combine sub-derivations that are

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 41

C
𝐴

1

𝑤
1

(𝑦 < 0?)

⊢𝐴
1

[𝑤
1
] (𝑦 < 0)? [𝑦 ∈ {−201, −3, −1}]

(transfer)
C
𝐴

1

(𝑦∈{−201,−3,−1}) (𝑦 := −𝑦)

⊢𝐴
1

[𝑦 ∈ {−201, −3, −1}] 𝑦 := −𝑦 [𝑤]
(transfer)

(∗)
(seq)

C
𝐴

1

𝑝 (𝑦 := 2 ∗ 𝑦 + 1)

⊢𝐴
1

[𝑝] 𝑦 := 2 ∗ 𝑦 + 1 [𝑦 ∈ [−201, 201] ∧ 𝑦 odd]
(transfer)

⊢𝐴
1

[𝑝] 𝑦 := 2 ∗ 𝑦 + 1 [𝑤
1
]

(relax)

(∗)
⊢𝐴

1
[𝑤

1
] (𝑦 < 0)?;𝑦 := −𝑦 [𝑤]

(seq)

C
𝐴

1

𝑤
1

(𝑦 ≥ 0?)

⊢𝐴
1

[𝑤
1
] (𝑦 ≥ 0)? [𝑤]

(transfer)
C
𝐴

1

𝑤 (skip)

⊢𝐴
1

[𝑤] skip [𝑤]
(transfer)

⊢𝐴
1

[𝑤
1
] (𝑦 ≥ 0)?; skip [𝑤]

(seq)

⊢𝐴
1

[𝑤
1
] AbsVal(𝑦) [𝑤]

(join)

⊢𝐴
1

[𝑝] c
1
[𝑤]

(seq)

Fig. 12. Derivation of ⊢𝐴1
[𝑝] c1 [𝑤] for Example 8.2, with 𝑤1 ≜ 𝑦 ∈ {−201, −3, −1, 1, 3, 201}.

C
𝐴

2

(𝑥=𝑦∧𝑦∈{3,201}) (𝑥 := 𝑥 − 1)

⊢𝐴
2

[𝑥 = 𝑦 ∧ 𝑦 ∈ {3, 201}] 𝑥 := 𝑥 − 1 [𝑥 = 𝑦 − 1 ∧ 𝑦 ∈ {3, 201}]
(transfer)

C
𝐴

2

(𝑥=𝑦−1∧𝑦∈{3,201}) (𝑦 := max(0, 𝑦 − 1))

⊢𝐴
2

[𝑥 = 𝑦 − 1 ∧ 𝑦 ∈ {3, 201}] 𝑦 := max(0, 𝑦 − 1) [𝑥 = 𝑦 ∧ 𝑦 ∈ {2, 200}]
(transfer)

⊢𝐴
2

[𝑥 = 𝑦 ∧ 𝑦 ∈ {3, 201}] c
4
[𝑥 = 𝑦 ∧ 𝑦 ∈ {2, 200}]

(seq)

(∗)
(unroll)

C
𝐴

2

(𝑥=𝑦∧𝑤
3
) (𝑥 := 𝑥 − 1)

⊢𝐴
2

[𝑥 = 𝑦 ∧𝑤
3
] 𝑥 := 𝑥 − 1 [𝑥 = 𝑦 − 1 ∧𝑤

3
]

(transfer)
C
𝐴

2

(𝑥=𝑦−1∧𝑤
3
) (𝑦 := max(0, 𝑦 − 1))

⊢𝐴
2

[𝑥 = 𝑦 − 1 ∧𝑤
3
] 𝑦 := max(0, 𝑦 − 1) [𝑥 = 𝑦 ∧ 𝑦 ∈ {1, 2, 199, 200}]

(transfer)

⊢𝐴
2

[𝑥 = 𝑦 ∧𝑤
3
] c

4
[𝑥 = 𝑦 ∧ 𝑦 ∈ {1, 2, 199, 200}]

(seq)

(∗∗)
(loopinv)

C
𝐴

2

𝑤 (𝑥 := 𝑦)

⊢𝐴
2

[𝑤] 𝑥 := 𝑦 [𝑥 = 𝑦 ∧𝑤]
(transfer)

(∗)

C
𝐴

2

(𝑥=𝑦∧𝑤
2
) (𝑥 > 1?) C𝐴2

(𝑥=𝑦∧𝑤
2
) (𝑥 ≤ 1?) (∗∗) (𝑥 = 𝑦 ∧ 𝑦 ∈ {1, 2, 199, 200}) ≤ (𝑥 = 𝑦 ∧ 𝑦 ∈ [1, 201])

⊢𝐴
2

[𝑥 = 𝑦 ∧𝑤
2
] c

3
[𝑞]

(loopinv)

⊢𝐴
2

[𝑥 = 𝑦 ∧𝑤] c
3
[𝑞]

(unroll)

⊢𝐴
2

[𝑤] c
2
[𝑞]

(seq)

Fig. 13. Derivation of ⊢𝐴2
[𝑤] 𝑥 := 𝑦; c2 [𝑞] for Example 8.2, with 𝑤2 ≜ 𝑦 ∈ {1, 2, 3, 200, 201} and 𝑤3 ≜ 𝑦 ∈ {2, 3, 200, 201}.

computed in different abstractions without the need to resort to a common more precise abstract domain such as their

reduced product.

Example 8.2 (Benefits of (refine)). Let us consider the Imp program c ≜ c1; c2, where:

c1 ≜ 𝑦 := (2 ∗ 𝑦) + 1;AbsVal(𝑦), c2 ≜ 𝑥 := 𝑦; c3 c3 ≜ while 𝑥 > 1 do {𝑥 := 𝑥 − 1;𝑦 := max(0, 𝑦 − 1)},

using the syntactic sugar

𝑦 := max(a1, a2) ≜ if a2 < a1 then 𝑦 := a1 else 𝑦 := a2 .

Manuscript submitted to ACM

42 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Consider the pre-condition 𝑝 ≜ 𝑦 ∈ [−101, 100]. It turns out that the interval domain 𝐴 ≜ Int is not locally complete,

because

JcK♯
𝐴
𝛼 (𝑝) = Jc2K

♯

𝐴
(Jc1K

♯

𝐴
(𝑦 ∈ [−101, 100]))

= Jc2K
♯

𝐴
(JAbsVal(𝑦)K♯

𝐴
(J𝑦 := (2 ∗ 𝑦) + 1K♯

𝐴
(𝑦 ∈ [−101, 100])))

= Jc2K
♯

𝐴
(JAbsVal(𝑦)K♯

𝐴
(𝑦 ∈ [−201, 201]))

= Jc3K
♯

𝐴
(J𝑥 := 𝑦K♯

𝐴
(𝑦 ∈ [0, 201]))

= Jc3K
♯

𝐴
(𝑥 ∈ [0, 201] ∧ 𝑦 ∈ [0, 201])

= 𝑥 ∈ [0, 1] ∧ 𝑦 ∈ [0, 201],

while

JcK𝛼 (𝑝) = Jc2K(Jc1K(𝑦 ∈ [−101, 100]))

= Jc2K(JAbsVal(𝑦)K(J𝑦 := (2 ∗ 𝑦) + 1K(𝑦 ∈ [−101, 100])))

= Jc2K(JAbsVal(𝑦)K(𝑦 ∈ [−201, 201] ∧ 𝑦 odd))

= Jc3K(J𝑥 := 𝑦K(𝑦 ∈ [1, 201] ∧ 𝑦 odd))

= Jc3K(𝑥 = 𝑦 ∧ 𝑦 ∈ [1, 201] ∧ 𝑦 odd)

= J𝑥 ≤ 1?K(J(𝑥 > 1?;𝑥 := 𝑥 − 1;𝑦 := max(0, 𝑦 − 1))∗K(𝑥 = 𝑦 ∧ 𝑦 ∈ [1, 201] ∧ 𝑦 odd))

= J𝑥 ≤ 1?K(𝑥 = 𝑦 ∧ 𝑦 ∈ [1, 201])

= 𝑥 ∈ [1, 1] ∧ 𝑦 ∈ [1, 1],

and thus JcK𝐴𝛼 (𝑝) = 𝛼 (JcK𝐴(𝑝)) = 𝛼 (JcK𝑝) = 𝑥 ∈ [1, 1] ∧ 𝑦 ∈ [1, 1]. Therefore, by Theorem 5.5 (2), it is not possible to

derive in LCL𝐴 a triple ⊢𝐴 [𝑝] c [𝑞], for any 𝑞. However, we show that, in this case, we can successfully resort to the

rule (refine) to infer the triple ⊢⪯
𝐴

[𝑝] c [𝑞] with 𝑞 ≜ 𝑥 = 1∧𝑦 = 1. To achieve this, we identify two suitable refinements

of Int that are used in different subtrees of the logical derivation of ⊢⪯
𝐴

[𝑝] c [𝑞]. The lack of local completeness in Int is

due to two reasons:

(i) the presence of the value 0 introduced in the over-approximation of c1;

(ii) the linear relationship 𝑥 = 𝑦 between the variables 𝑥 and 𝑦 after the assignment 𝑥 := 𝑦 cannot be expressed in a

nonrelational abstraction such as Int.

To address (i), we enrich the interval abstraction by adding a new abstract value Z≠0 expressing 𝑥 ≠ 0. Let 𝐴1 denote

the Moore closure of Int with this additional point Z≠0, so that 𝐴1 contains all the intervals possibly having a “hole”

in 0 (see Example 4.6). Using 𝐴1 ⪯ 𝐴, we can infer the triple ⊢𝐴1
[𝑝] c1 [𝑤] in LCL𝐴1

, where the post-condition is

𝑤 ≜ 𝑦 ∈ {1, 3, 201}, as shown by the proof in Figure 12, where the application of the rules is quite straightforward. In

particular, note the use of rule (relax) to reduce the number of concrete points in the under-approximation and the

inclusion of the value 3 in𝑤 , which will be useful for accelerating the convergence in the successive part of the proof

carried out in a second abstraction refinement 𝐴2.

To address (ii), we consider the well-known weakly relational abstract domain 𝐴2 ≜ Oct of octagons [Miné 2006].

Oct consists of octagonal constraints between two variables 𝑥,𝑦 of type ±𝑥 ± 𝑦 ≤ 𝑘 and interval constraints of type

±𝑥 ≤ 𝑘 , where 𝑘 ∈ Z ∪ {−∞, +∞}, while the representation of the abstract values in Oct relies on difference bound

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 43

matrices. ⟨Oct, ⊆⟩ is a complete lattice and is defined by a GI such that, for all 𝑋 ∈ ℘(Q𝑛), Oct(𝑋) is the least octagon
containing 𝑋 . Using 𝐴2 it is possible to derive the triple ⊢𝐴2

[𝑤] c2 [𝑞] in LCL𝐴2
, as shown in Figure 13, where

c4 ≜ 𝑥 := 𝑥 − 1;𝑦 := max(0, 𝑦 − 1) is the loop body. This derivation provides an example of use of the rules (unroll) and
(loopinv), discussed in Section 7, in lieu of (rec) and (iterate): in fact, the local completeness for the Boolean guard

𝑥 > 1 of c2 is not satisfied at each iteration but only when the abstract invariant is computed.

Finally, these two proofs ⊢𝐴1
[𝑝] c1 [𝑤] and ⊢𝐴2

[𝑤] c2 [𝑞] can be combined using (refine) twice and then (seq) to
infer ⊢⪯

𝐴
[𝑝] c [𝑞] in LCL

⪯
𝐴
as follows:

𝐴
1
⪯ 𝐴 𝐴

1
(𝑝) = 𝐴(𝑝) = 𝑝 ⊢⪯

𝐴
1

[𝑝] c
1
[𝑤] 𝐴

1
(𝑤) = 𝐴(𝑤) = 𝑦 ∈ [1, 201]

⊢⪯
𝐴

[𝑝] c
1
[𝑤]

(refine)
𝐴

2
⪯ 𝐴 𝐴

2
(𝑤) = 𝐴(𝑤) = 𝑦 ∈ [1, 201] ⊢⪯

𝐴
2

[𝑤] c
2
[𝑞] 𝐴

2
(𝑞) = 𝐴(𝑞) = 𝑞

⊢⪯
𝐴

[𝑤] c
2
[𝑞]

(refine)

⊢⪯
𝐴

[𝑝] c [𝑞]
(seq)

Note that, while the extremes of the interval 𝑝 = [−101, 100] have been chosen so to ease the derivation, the same

example would apply to any (finite) input 𝑝 that contains at least a negative and a positive number. □

Let us remark how the above example shows the ability of rule (refine) of carrying out different parts of a proof

in some abstraction refinements of a domain 𝐴 in a situation where local completeness would fail in the original

abstraction 𝐴. Here, the combined use of two refinements 𝐴1 and 𝐴2 turns out to be more convenient than carrying out

the whole proof in a more concrete domain that could be designed, e.g., as reduced product of 𝐴1 and 𝐴2, because this

latter domain would not necessarily be locally complete for the whole program.

9 RELATEDWORK

As already mentioned, de Vries and Koutavas [2011] were the first to introduce under-approximation triples by

proposing the backward consequence rule in reverse Hoare logic for the analysis of non-deterministic algorithms, e.g.,

for array shuffle. Later, the idea of defining a logic of under-approximation has been fully developed into the design

of Incorrectness Logic [O’Hearn 2020], whose comparison with our work has been fully investigated in Section 6.

Incorrectness logic attracted a lot of research interest and originated a recent strand of work that aims to exploit

incorrectness triples for catching memory errors by moving under-approximating reasoning to separation logic for

pointer analysis [Le et al. 2022; Maksimovic et al. 2022; Poskitt 2021; Poskitt and Plump 2023; Raad et al. 2020, 2022; Yan

et al. 2022]. The ability of incorrectness triples for compositional bug finding strategies has been practically shown

by [Le et al. 2022], where 15 new real bugs in OpenSSL were discovered and reported to OpenSSL maintainers thanks

to Pulse-X, an automatic program analysis tool based on incorrectness separation logic (ISL) [Raad et al. 2020]. Of

course, the main benefit of Pulse-X is that all reported errors are true positives. The work by Raad et al. [2022] extends

the above bug catching theory to concurrent programs by defining a parametric framework able to deal with race

detection, deadlock detection, and memory safety error detection. Exact separation logic (ESL) [Maksimovic et al. 2022]

relies on similar ideas but defines exact triples, in the sense that the consequences are at the same time an under- and

over-approximation of the semantics: while the ISL quadruple [𝑝] r [ok :𝑞] [er :𝑤] asserts that any state satisfying

either the success post-condition or the error post-condition is the outcome of executing the command r from some state

satisfying the pre-condition 𝑝 , the ESL quadruple (𝑝) r (ok :𝑞) (er :𝑤) additionally guarantees that any terminating

execution of r starting from a state satisfying the pre-condition 𝑝 either leads to a success state that satisfies 𝑞 or raises

some fault in a state that satisfies𝑤 . A major difference is therefore that valid ISL quadruples [𝑝] r [ok :𝑞] [er :𝑤] can
always be split into valid triples of the form [𝑝] r [ok :𝑞] and [𝑝] r [er :𝑤], while ESL quadruples (𝑝) r (ok :𝑞) (er :𝑤)
are atomic because they must account for all behaviours. Our conjecture is that ESL accounts for the case of LCL𝐴 where

Manuscript submitted to ACM

44 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

the trivial identity abstraction is considered, but to confirm this intuition we first plan to explore whether and how

the relationship of LCL𝐴 with IL studied in Section 6 could be extended to ISL [Raad et al. 2020]. The main challenge

for achieving this extension will be to engineer a suitable frame rule for heap assertions that is able to preserve local

completeness for the abstraction 𝐴.

Recently, Zilberstein et al. [2023] put forward Outcome Logic (OL), a generalization of Hoare Logic that is able to

find true bugs while preserving the ability of proving programs correct. OL is parametric on a monoidal structure for

predicates and on a so-called outcome assertion logic, and this enables correctness and incorrectness reasoning within

the same program logic. OL does not consider the chance of abstracting the predicates as we do in LCL𝐴 , so that we

envisage that this challenge can be an appealing subject for future work.

Kleene algebras with tests (KAT) enriched by forward and backward box and diamond operators, so-called modal

KATs, have been exploited to unify correctness and incorrectness logics in a single algebraic framework [Möller et al.

2021]. Möller and Struth [2006] already formalized the symmetries of forward and backward box and diamond operators

as Galois connections, complementarities and dualities, and provided algebraic soundness and completeness proofs

for Hoare logic. Later on, Möller et al. [2021] showed that modal KATs with countable joins of tests can also embed

incorrectness logic and can be used to draw some links between correctness and incorrectness specifications as well as

to deal with backward under-approximations. Recently, Zhang et al. [2022] have shown that O’Hearn incorrectness

logic cannot be formulated within a conventional KAT, but, at the same time, a full fledged modal KAT is not needed.

In fact, Zhang et al. [2022] prove that a KAT including a greatest element, so-called TopKAT, is capable to encode

both Hoare and O’Hearn program logics in a purely equational fashion. Milanese and Ranzato [2022] gave a further

contribution within this stream of works by showing how KATs extended either with a modal diamond operator or with

a top element are able to encode our local completeness logic LCL𝐴 . Thus, this latter result generalizes both the modal

KAT [Möller et al. 2021] and TopKAT [Zhang et al. 2022] approaches for encoding Hoare correctness and O’Hearn

incorrectness logics.

Regarding the use of under-approximation in abstract interpretation, Cousot and Cousot introduced the general

framework that could be used to study both over- and under-approximations already in their seminal work [Cousot

and Cousot 1977]. However, to the extent of our knowledge, there are no abstract domains thought from the ground up

for under-approximation in forward program analysis. The main problems in designing significant abstract domains for

under-approximation have been recently studied by Ascari et al. [2022].

10 CONCLUSION AND FUTUREWORK

We presented a program logic for locally complete abstract interpretations, called LCL𝐴 and parametric on an abstract

domain𝐴. LCL𝐴 can prove the presence as well as the absence of true alarms, meaning that proofs in LCL𝐴 are potentially

able to infer both the correctness and incorrectness of some program specification. As far as we know, LCL𝐴 combines for

the first time over- and under-approximations in a logical proof system for programs based on abstract interpretation.

We think that this work opens up many promising lines of research for the automatic verification of program correctness

and incorrectness.

When some proof obligation C𝐴𝑝 (𝑓) about the local completeness in the abstract domain 𝐴 of some basic transfer

function 𝑓 fails, a natural question is whether it is possible to transform 𝐴 into some 𝐴′
in order to satisfy C𝐴

′
𝑝 (𝑓) and

conclude the derivation in ⊢𝐴′ . In particular, following [Filé et al. 1996; Giacobazzi and Ranzato 1997; Giacobazzi et al.

2000], we are interested in the problem of minimally transforming the abstract domain 𝐴 to 𝐴′
through refinements (i.e.,

by adding concrete values) and simplifications (i.e., by removing abstract values) in order to make 𝐴′
locally complete

Manuscript submitted to ACM

A Correctness and Incorrectness Program Logic 45

for a set of basic transfer functions. This problem has been studied recently in [Bruni et al. 2022] where we proved that

in general there is no unique minimal solution to the problem of abstract domain refinement for local completeness

and a forward/backward strategy for optimally refining the abstract domain to achieve local completeness has been

introduced. As sketched in Example 5.9, in program verification the strategy would be to iteratively transform the

original abstract domain𝐴0 stepping through a sequences of abstract domains𝐴1, ..., 𝐴𝑛 , until a derivation ⊢𝐴𝑛
[𝑝] r [𝑞]

can be completed in 𝐴𝑛 . Each domain 𝐴𝑖+1 can be designed by looking at the proof obligations of local completeness

that fail in the attempt to prove ⊢𝐴𝑖
[𝑝] r [𝑞] using the current abstract domain 𝐴𝑖 . Notably, different abstraction

refinements could be used by applying the rule (refine) of the extended proof system LCL
⪯
𝐴
, introduced in Section 8, in

different subtrees of the same derivation.

We also aim at investigating extensions of our proof system with non-compositional rules for programs. Here, the

incompleteness for a statement r may turn to completeness for an extensionally equivalent statement r′ such that

JrK = Jr′K. For example, a command such as 𝑥 := 𝑥𝑦 + 1;𝑥 := 𝑥 − 1 is incomplete for a simple sign analysis in

Sign± ≜ {∅,Z<0,Z=0,Z>0,Z} because

J𝑥 := 𝑥 − 1K♯
Sign±

(J𝑥 := 𝑥𝑦 + 1K♯
Sign±

)⟨𝑥/Z>0, 𝑦/Z>0⟩ = J𝑥 := 𝑥 − 1K♯
Sign±

⟨𝑥/Z>0, 𝑦/Z>0⟩ = ⟨𝑥/Z, 𝑦/Z>0⟩ .

Nevertheless, when considering an equivalent statement such as 𝑥 := 𝑥𝑦, we achieve a complete sign analysis because

J𝑥 := 𝑥𝑦K♯
Sign±

⟨𝑥/Z>0, 𝑦/Z>0⟩ = ⟨𝑥/Z>0, 𝑦/Z>0⟩. Patterns of this kind could be handled by a noncompositional rule

for manipulating assignments such as

⊢𝐴 [𝑝] 𝑥 := (a2 [a1/𝑥]) [𝑞]
⊢𝐴 [𝑝] 𝑥 := a1;𝑥 := a2 [𝑞]

Because 𝑥 := (𝑥 − 1) [𝑥𝑦+1/𝑥] ≡ 𝑥 := 𝑥𝑦 + 1 − 1 ≡ 𝑥 := 𝑥𝑦, from ⊢Sign± [⟨𝑥/Z>0, 𝑦/Z>0⟩] 𝑥 := 𝑥𝑦 [⟨𝑥/Z>0, 𝑦/Z>0⟩], we
would be able to derive ⊢Sign± [⟨𝑥/Z>0, 𝑦/Z>0⟩] 𝑥 := 𝑥𝑦 + 1;𝑥 := 𝑥 − 1 [⟨𝑥/Z>0, 𝑦/Z>0⟩].

While completeness of abstract transfer functions is preserved by function composition, as encoded by the rule (seq)
of LCL𝐴 , one major issue of abstract interpretation is that best correct approximations are not compositional, i.e., the

composition of abstract predicate transformers may not be as precise as the abstraction of their concrete composition

[Reps et al. 2004; Yorsh et al. 2004]. The lack of composition for bcas has practical consequences, because the precision

of a program analysis strictly depends on the granularity of program decomposition into atomic operations. Finer

decompositions commonly induce more imprecise analyses, while coarser decompositions may enhance the chance of

designing bcas for larger code blocks. We plan to investigate a proof system for the property of being a bca, notably for

proving when the composition of bcas is a bca.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their helpful comments. The authors have been funded by the Italian

MIUR, under the PRIN2017 project no. 201784YSZ5 “AnalysiS of PRogram Analyses (ASPRA)” and by aMeta research gift.

Roberto Giacobazzi and Francesco Ranzato have been partially funded by Facebook Research, under a “Probability and

Programming Research Award”, by an Amazon Research Award for “AWS Automated Reasoning”, and by aWhatsApp

Research Award on “Privacy-aware Program Analysis”.

REFERENCES
Flavio Ascari, Roberto Bruni, and Roberta Gori. 2022. Limits and difficulties in the design of under-approximation abstract domains. In Proc. of 25th

International Conference on Foundations of Software Science and Computation Structures, FOSSACS 2022 (Lecture Notes in Computer Science, Vol. 13242),
Patricia Bouyer and Lutz Schröder (Eds.). Springer, 21–39. https://doi.org/10.1007/978-3-030-99253-8_2

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-030-99253-8_2

46 R. Bruni, R. Giacobazzi, R. Gori, and F. Ranzato

Thomas Ball, Todd D. Millstein, and Sriram K. Rajamani. 2005. Polymorphic predicate abstraction. ACM Trans. Program. Lang. Syst. 27, 2 (2005), 314–343.
https://doi.org/10.1145/1057387.1057391

François Bourdoncle. 1993. Abstract Debugging of Higher-Order Imperative Languages. In Proc. ACM SIGPLAN PLDI’93 (Albuquerque, New Mexico,

USA). ACM, 46–55. https://doi.org/10.1145/155090.155095

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras, and Dusko Pavlovic. 2020. Abstract extensionality: on the properties of

incomplete abstract interpretations. Proc. ACM Program. Lang. 4, POPL (2020), 28:1–28:28. https://doi.org/10.1145/3371096

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2021. A Logic for Locally Complete Abstract Interpretations. In Proceedings of
the 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Distinguished Paper. IEEE, 1–13. https://doi.org/10.1109/LICS52264.

2021.9470608

Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2022. Abstract interpretation repair. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI’22, Ranjit Jhala and Isil Dillig (Eds.). ACM, 426–441. https:

//doi.org/10.1145/3519939.3523453

Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakonstantinou,

Jim Purbrick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification. In Proc. NFM’15 (LNCS, Vol. 9058). Springer, 3–11. https:

//doi.org/10.1007/978-3-319-17524-9_1

Patrick Cousot. 2021. Principles of Abstract Interpretation. MIT Press.

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation

of fixpoints. In Proc. ACM POPL’77. ACM, 238–252. https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Proc. ACM POPL’79. ACM, 269–282. https://doi.org/10.

1145/567752.567778

Patrick Cousot and Radhia Cousot. 1992. Abstract interpretation frameworks. J. Logic and Comput. 2, 4 (1992), 511–547.
Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2018. Program analysis is harder than verification: A computability perspective. In

Proc. of the 30th International Conference on Computer Aided Verification, CAV 2018 (Lecture Notes in Computer Science, Vol. 10982). Springer, 75–95.
https://doi.org/10.1007/978-3-319-96142-2_8

Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In Proc. SEFM’11. Springer, 155–171. https://doi.org/10.1007/978-3-642-24690-6_12

Edsger W. Dijkstra. 1972a. Chapter I: Notes on Structured Programming. Academic Press Ltd., GBR, 1–82.

Edsger W. Dijkstra. 1972b. The Humble Programmer. Commun. ACM 15, 10 (1972), 859–866. https://doi.org/10.1145/355604.361591

Edsger W. Dijkstra. 1972c. Turing Award Lecture. https://www.youtube.com/watch?v=6sIlKP2LzbA.

Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. 2019. Scaling static analyses at Facebook. Commun. ACM 62, 8 (2019),

62–70. https://doi.org/10.1145/3338112

G. Filé, R. Giacobazzi, and F. Ranzato. 1996. A unifying view of abstract domain design. ACM Comput. Surv. 28, 2 (1996), 333–336. https://doi.org/10.1145/

234528.234742

Robert W. Floyd. 1967. Assigning Meanings to Programs. Proceedings of Symposium on Applied Mathematics 19 (1967), 19–32.
Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato. 2015. Analyzing Program Analyses. In Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 261–273. https://doi.org/10.1145/2676726.

2676987

Roberto Giacobazzi and Francesco Ranzato. 1996. Compositional Optimization of Disjunctive Abstract Interpretations. In Proceedings of 6th European
Symposium on Programming, ESOP’96, (Lecture Notes in Computer Science, Vol. 1058). Springer, 141–155. https://doi.org/10.1007/3-540-61055-3_34

Roberto Giacobazzi and Francesco Ranzato. 1997. Completeness in Abstract Interpretation: A Domain Perspective. In Proceedings of the 6th International
Conference on Algebraic Methodology and Software Technology, AMAST’97 (Lecture Notes in Computer Science, Vol. 1349). Springer, 231–245. https:

//doi.org/10.1007/BFb0000474

Roberto Giacobazzi and Francesco Ranzato. 1998. Optimal Domains for Disjunctive Abstract Intepretation. Sci. Comput. Program. 32, 1-3 (1998), 177–210.
https://doi.org/10.1016/S0167-6423(97)00034-8

Roberto Giacobazzi and Francesco Ranzato. 2022. History of Abstract Interpretation. IEEE Ann. Hist. Comput. 44, 2 (2022), 33–43. https://doi.org/10.1109/

MAHC.2021.3133136

Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. 1998. Complete Abstract Interpretations Made Constructive. In Proceedings of the 23rd
International Symposium on Mathematical Foundations of Computer Science, MFCS’98 (Lecture Notes in Computer Science, Vol. 1450). Springer, 366–377.
https://doi.org/10.1007/BFb0055786

Roberto Giacobazzi, Francesco Ranzato, and Francesca Scozzari. 2000. Making Abstract Interpretation Complete. Journal of the ACM 47, 2 (March 2000),

361–416. https://doi.org/10.1145/333979.333989

Charles A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

Charles A. R. Hoare. 2003. The verifying compiler: A grand challenge for computing research. J. ACM 50, 1 (2003), 63–69. https://doi.org/10.1145/602382.

602403

Cliff Jones, Peter O’Hearn, and Jim Woodcock. 2006. Verified Software: A Grand Challenge. IEEE Computer 39, 04 (2006), 93–95. https://doi.org/10.1109/

MC.2006.145

Manuscript submitted to ACM

https://doi.org/10.1145/1057387.1057391
https://doi.org/10.1145/155090.155095
https://doi.org/10.1145/3371096
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1109/LICS52264.2021.9470608
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1145/3519939.3523453
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-319-96142-2_8
https://doi.org/10.1007/978-3-642-24690-6_12
https://doi.org/10.1145/355604.361591
https://www.youtube.com/watch?v=6sIlKP2LzbA
https://doi.org/10.1145/3338112
https://doi.org/10.1145/234528.234742
https://doi.org/10.1145/234528.234742
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1145/2676726.2676987
https://doi.org/10.1007/3-540-61055-3_34
https://doi.org/10.1007/BFb0000474
https://doi.org/10.1007/BFb0000474
https://doi.org/10.1016/S0167-6423(97)00034-8
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1109/MAHC.2021.3133136
https://doi.org/10.1007/BFb0055786
https://doi.org/10.1145/333979.333989
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/602382.602403
https://doi.org/10.1145/602382.602403
https://doi.org/10.1109/MC.2006.145
https://doi.org/10.1109/MC.2006.145

A Correctness and Incorrectness Program Logic 47

Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. 2015. A Formally-Verified C Static Analyzer. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015. 247–259.
https://doi.org/10.1145/2676726.2676966

Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (May 1997), 427–443. https://doi.org/10.1145/256167.256195

Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Finding real bugs in big programs with incorrectness

logic. Proc. ACM Program. Lang. 6, OOPSLA (2022), 1–27. https://doi.org/10.1145/3527325

Xavier Leroy. 2006. Formal certification of a compiler back-end or: programming a compiler with a proof assistant. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2006, Charleston, South Carolina, USA, January 11-13, 2006. 42–54.
https://doi.org/10.1145/1111037.1111042

Petar Maksimovic, Caroline Cronjäger, Julian Sutherland, Andreas Lööw, Sacha-Élie Ayoun, and Philippa Gardner. 2022. Exact Separation Logic. CoRR
abs/2208.07200 (2022). https://doi.org/10.48550/arXiv.2208.07200 arXiv:2208.07200

John McCarthy. 1962. Towards a Mathematical Science of Computation. In IFIP Congress. 21–28.
Marco Milanese and Francesco Ranzato. 2022. Local Completeness Logic on Kleene Algebra with Tests. In Proceedings of the 29th International Static

Analysis Symposium (SAS’22) (Springer LNCS, Vol. 13790). 350–371. https://doi.org/10.1007/978-3-031-22308-2_16

Antoine Miné. 2006. The octagon abstract domain. High. Order Symb. Comput. 19, 1 (2006), 31–100. https://doi.org/10.1007/s10990-006-8609-1

Antoine Miné. 2017. Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation. Foundations and Trends in Programming Languages 4,
3-4 (2017), 120–372. https://doi.org/10.1561/2500000034

Antoine Miné. 2014. Backward under-approximations in numeric abstract domains to automatically infer sufficient program conditions. Sci. Comput.
Program. 93 (2014), 154 – 182. https://doi.org/10.1016/j.scico.2013.09.014

Bernhard Möller, Peter W. O’Hearn, and Charles A. R. Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In Relational and Algebraic
Methods in Computer Science - 19th International Conference, RAMiCS 2021, Marseille, France, November 2-5, 2021, Proceedings (Lecture Notes in Computer
Science, Vol. 13027), Uli Fahrenberg, Mai Gehrke, Luigi Santocanale, and Michael Winter (Eds.). Springer, 325–343. https://doi.org/10.1007/978-3-030-

88701-8_20

Bernhard Möller and Georg Struth. 2006. Algebras of modal operators and partial correctness. Theor. Comput. Sci. 351, 2 (2006), 221–239. https:

//doi.org/10.1016/j.tcs.2005.09.069

Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the Impact of Formal Methods. In Proc. LICS’18 (Oxford, United Kingdom). ACM, 13–25.

https://doi.org/10.1145/3209108.3209109

Peter W. O’Hearn. 2020. Incorrectness logic. Proc. ACM Program. Lang. 4, POPL (2020), 10:1–10:32. https://doi.org/10.1145/3371078

Benjamin Pierce. 2002. Types and Programming Languages. MIT Press.

Christopher M. Poskitt. 2021. Incorrectness Logic for Graph Programs. In Proceedings of the 14th International Conference on Graph Transformation, ICGT
2021 (Lecture Notes in Computer Science, Vol. 12741). Springer, 81–101. https://doi.org/10.1007/978-3-030-78946-6_5

Christopher M. Poskitt and Detlef Plump. 2023. Monadic second-order incorrectness logic for GP 2. J. Log. Algebraic Methods Program. 130 (2023), 100825.
https://doi.org/10.1016/j.jlamp.2022.100825

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules Villard. 2020. Local Reasoning About the Presence of Bugs:

Incorrectness Separation Logic. In Proc. CAV’20, Part II (LNCS, Vol. 12225). Springer, 225–252. https://doi.org/10.1007/978-3-030-53291-8_14

Azalea Raad, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. 2022. Concurrent incorrectness separation logic. Proc. ACM Program. Lang. 6, POPL
(2022), 1–29. https://doi.org/10.1145/3498695

Francesco Ranzato. 2020. Decidability and Synthesis of Abstract Inductive Invariants. In Proceedings of the 31st International Conference on Concurrency
Theory, CONCUR 2020 (LIPIcs, Vol. 171). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 30:1–30:21. https://doi.org/10.4230/LIPIcs.CONCUR.2020.30

Thomas W. Reps, Shmuel Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In Proc. VMCAI’04 (LNCS, Vol. 2937). Springer,
252–266. https://doi.org/10.1007/978-3-540-24622-0_21

Henry G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans. Amer. Math. Soc. 74 (1953), 358–366.
Xavier Rival and Kwang Yi. 2020. Introduction to Static Analysis – An Abstract Interpretation Perspective. MIT Press.

Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera Jaspan. 2018. Lessons from Building Static Analysis Tools at Google.

Commun. ACM 61, 4 (March 2018), 58–66. https://doi.org/10.1145/3188720

Alan M. Turing. 1989. Checking a Large Routine. In The Early British Computer Conferences, Martin Campbell-Kelly (Ed.). MIT Press, Cambridge, MA,

USA, 70–72. http://dl.acm.org/citation.cfm?id=94938.94952

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: an Introduction. MIT press.

Peng Yan, Hanru Jiang, and Nengkun Yu. 2022. On incorrectness logic for Quantum programs. Proc. ACM Program. Lang. 6, OOPSLA (2022), 1–28.

https://doi.org/10.1145/3527316

Greta Yorsh, Thomas W. Reps, and Shmuel Sagiv. 2004. Symbolically Computing Most-Precise Abstract Operations for Shape Analysis. In Proc. TACAS’04
(LNCS, Vol. 2988). Springer, 530–545. https://doi.org/10.1007/978-3-540-24730-2_39

Cheng Zhang, Arthur Azevedo de Amorim, and Marco Gaboardi. 2022. On Incorrectness Logic and Kleene Algebra with Top and Tests. Proc. ACM
Program. Lang. 6, POPL, Article 29 (jan 2022), 30 pages. https://doi.org/10.1145/3498690

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and Incorrectness Reasoning. Proc.
ACM Program. Lang. OOPSLA, To appear (2023).

Manuscript submitted to ACM

https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/3527325
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.48550/arXiv.2208.07200
https://arxiv.org/abs/2208.07200
https://doi.org/10.1007/978-3-031-22308-2_16
https://doi.org/10.1007/s10990-006-8609-1
https://doi.org/10.1561/2500000034
https://doi.org/10.1016/j.scico.2013.09.014
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1007/978-3-030-88701-8_20
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1016/j.tcs.2005.09.069
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-78946-6_5
https://doi.org/10.1016/j.jlamp.2022.100825
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3498695
https://doi.org/10.4230/LIPIcs.CONCUR.2020.30
https://doi.org/10.1007/978-3-540-24622-0_21
https://doi.org/10.1145/3188720
http://dl.acm.org/citation.cfm?id=94938.94952
https://doi.org/10.1145/3527316
https://doi.org/10.1007/978-3-540-24730-2_39
https://doi.org/10.1145/3498690

	Abstract
	1 Introduction
	2 Background
	2.1 Abstract Interpretation
	2.2 Regular Commands

	3 On the Limits of (Global) Completeness
	4 Local Completeness
	4.1 Locally Complete Boolean Guards

	5 Local Completeness Logic
	5.1 Soundness
	5.2 On the Logical Completeness of LCLA
	5.3 A Backward Proof System

	6 Relationship with Incorrectness Logic
	7 `3́9`42`"̇613A``45`47`"603AImp programs
	8 A Logic for Locally Complete Best Correct Approximations
	9 Related Work
	10 Conclusion and Future Work
	Acknowledgments
	References

