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Abstract

Motivation: Gene regulation is responsible for controlling numerous physiological functions and dynamically
responding to environmental fluctuations. Reconstructing the human network of gene regulatory interactions is thus
paramount to understanding the cell functional organization across cell types, as well as to elucidating pathogenic
processes and identifying molecular drug targets. Although significant effort has been devoted towards this direc-
tion, existing computational methods mainly rely on gene expression levels, possibly ignoring the information con-
veyed by mechanistic biochemical knowledge. Moreover, except for a few recent attempts, most of the existing
approaches only consider the information of the organism under analysis, without exploiting the information of
related model organisms.

Results: We propose a novel method for the reconstruction of the human gene regulatory network, based on a
transfer learning strategy that synergically exploits information from human and mouse, conveyed by gene-related meta-
bolic features generated in silico from gene expression data. Specifically, we learn a predictive model from metabolic ac-
tivity inferred via tissue-specific metabolic modelling of artificial gene knockouts. Our experiments show that the combin-
ation of our transfer learning approach with the constructed metabolic features provides a significant advantage in terms
of reconstruction accuracy, as well as additional clues on the contribution of each constructed metabolic feature.

Availability and implementation: The method, the datasets and all the results obtained in this study are available at:
https://doi.org/10.6084/m9.figshare.c.5237687.

Contact: gianvito.pio@uniba.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Living organisms need, for their survival and replication, a gene
regulatory system responsible for their maintenance, development
and response to changing environmental conditions. Gene regulation
is orchestrated by large sets of regulator molecules with specific tar-
gets, which collectively form a gene regulatory network (GRN). The
mapping of GRNs was recently propelled by the surge of high-
throughput data, which led to both the discovery of unknown bio-
logical interactions and a deeper understanding of known structures

(Davidson, 2010; Gardner et al., 2003; Ye et al., 2018). The prob-
lem of GRN reconstruction has therefore wide applications in basic
biology, but also in related disciplines, such as biomedicine and bio-
technology (Karlebach and Shamir, 2008).

Several computational methods for GRN reconstruction have
been proposed in the literature, including graphical Gaussian models
(Schäfer and Strimmer, 2005), Bayesian networks (Zou and Conzen,
2005), as well as approaches that consider and exploit causality phe-
nomena (Luo et al., 2009; Pio et al., 2020) or knowledge derived
from related organisms (Mignone et al., 2020a). To predict unknown
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relationships, GRNs have also been mathematically integrated with
metabolic networks, which mediate interactions between gene regula-
tion and environmental cues (Yeang and Vingron, 2006).

At the same time, the importance of GRNs is connected to the
long-standing problem of understanding the relationship between
genotype and phenotype. Solving this problem can shed light on
many open biological questions, such as the aetiology of a disease
and its potential treatments, or the mechanisms that regulate cell
physiology. The most adopted approaches are genome-wide associ-
ation studies (GWAS) and systems biology methods. GWAS can as-
sociate gene variations to phenotypic traits, but fail to provide a
mechanistic explanation for their findings (Welter et al., 2014).
Systems biology techniques are designed to address this issue
(Yurkovich and Palsson, 2016). Widely used systems biology meth-
ods are genome-scale metabolic models (GSMMs), i.e. mathematical
representations of known biochemical reactions and transmembrane
transporters in an organism. Being focused on metabolism, they bio-
logically complement GRN models, and are indeed suited for inte-
gration (Chandrasekaran and Price, 2010; Motamedian et al.,
2017b).

A peculiarity of GSMMs is that they allow capturing long-range
phenomena on the scale of cellular systems thanks to the functional
information they contain, encoded in their metabolic pathway and
reaction representations (Richelle et al., 2021). Flux balance analysis
(FBA) is one of the most employed techniques to estimate the meta-
bolic activity within a GSMM at steady-state (i.e. when metabolite
concentrations do not change). This enables the conversion of the
mathematical approach into a linear system, which is solved for the
reaction rates, namely the activity of each reaction in the network
(Palsson, 2015). The additional advantage of this approach is that
GSMMs can be tailored to a specific condition or individual. This is
achieved by constraining the GSMM using experimental data and
omics profiles, thereby creating a context-specific model from which
to draw conclusions for a specific experimental setting (Nielsen,
2017; Töpfer et al., 2015; Vijayakumar et al., 2018). These models,
exploited by methods such as FBA, can provide context-specific
metabolic reaction fluxes, whose information can be used coupled
with other relevant omic data to make predictions or improve the
understanding of several biological phenomena (Magazzù et al.,
2021; Yang et al., 2019).

There is a growing trend for the application of machine learning
methods in biology (Tonkovic et al., 2020) and, specifically, to pro-
cess and interpret the output of metabolic models (Ben Guebila and
Thiele, 2019; Culley et al., 2020; Kavvas et al., 2020; Yang et al.,
2019; Zampieri et al., 2019). In silico metabolic information has
been adopted in reconstructing GRNs (Karlebach and Shamir, 2008;
Schlitt and Brazma, 2007), and to infer gene relationships by analy-
sing the metabolic effect of simultaneous gene knockouts
(Occhipinti et al., 2020; Wang et al., 2017). However, metabolic
network modelling has not been used to inform GRN inference
methods in combination with transfer learning.

Following this line of research, in this article, we investigate the
potential of the exploitation of metabolic information while recon-
structing the human GRN, in an integrated transfer learning frame-
work. In particular, we reconstruct the human GRN by leveraging
the knowledge about an additional model organism (Mignone et al.,
2020b), i.e. the mouse, and exploit both a set of known/verified reg-
ulations as well as a large set of still unstudied gene regulations. The
two considered organisms are linked by considering their ortholo-
gous genes, i.e. genes inherited in both species from a common an-
cestor gene. Such genes are integrated within a constraint-based
model that simulates their artificial knockout and determines how
this perturbation propagates over the corresponding metabolic net-
work. This approach allows us to catch possible analogies between
the organisms in terms of their metabolic fluxes, in both known and
still unknown regulations. Our experimental evaluation, described
in detail in Section 3, empirically proves the effectiveness of the pro-
posed integrated approach, in terms of both increased accuracy of
the reconstruction and of possible clues coming from the analysis of
the most important metabolic features contributing to the GRN re-
construction, related to either the human or to the mouse organism.

2 Materials and methods

In this section, we first describe how we built the dataset under ana-
lysis, from the collection of the gene expression levels for both
human and mouse genes to the construction of metabolic features.
Then we provide the methodological details of the proposed transfer
learning approach. A graphical overview of the proposed approach
is shown in Figure 1.

2.1 Gene expression levels
We collected raw expression data from the Gene Expression
Omnibus—GEO (https://www.ncbi.nlm.nih.gov/geo/). We consid-
ered the platform GPL570 for the human organism and the platform
GPL1261 for the mouse organism. We took only control samples to
reconstruct the GRNs, without the potential influence of disease
conditions. A complete list of the considered GEO Accession
Numbers is reported in Supplementary Table S1.

Quantitatively, for the human organism, we collected 54 675
probesets, described by 180 samples (that correspond to features in
our case): 17 for bone marrow, 37 for brain, 6 for breast, 4 for heart,
7 for liver, 45 for lung and 64 for skin. As for the mouse organism,
we collected 45 101 probesets described by 171 features, distributed
as follows according to the organs: 14 for bone marrow, 8 for brain,
10 for breast, 8 for heart, 124 for liver, 4 for lung and 3 for skin. We
processed the raw control samples according to the workflow pro-
posed in the DREAM5 challenge (Marbach et al., 2012). In particu-
lar, for each organism, we applied microarray normalization Robust
Multichip Averaging (Irizarry et al., 2003), considering one batch
per organ, through Affymetrix Expression Console Software. Data
were background adjusted, quantile normalized and summarized
using median polish. Normalized data were exported as log-
transformed expression values. The mapping from Affymetrix pro-
beset IDs to gene IDs was performed through the Affymetrix libra-
ries. Finally, the expression values obtained from multiple probesets
mapping to the same gene were aggregated through the arithmetic
mean.

2.2 Metabolic features
To construct the metabolic features, we first filtered out genes with
no corresponding HGNC ID (Yates et al., 2017). We also removed
all the genes for which we did not find any regulatory information
according to the RegNetwork database (Liu et al., 2015). Finally, to
obtain an expression fold change for constraining the metabolic
model, each gene expression value was normalized against its me-
dian value across all the samples.

In order to include the regulatory information into the metabolic
features explicitly, we used TRFBA (Motamedian et al., 2017b),
which integrates a transcriptional regulatory network and the
related organism GSMM. We used Recon2.2 (Swainston et al.,
2016) and iMM1415 (Sigurdsson et al., 2010) as the human and
mouse metabolic models, respectively. The solution selected by
TRFBA lies in the feasible solution space defined by the following
constraints:

Sv ¼ 0
vlb � v � vubP

i2Rj
vi � Ej � C

sI �
P

r2GT
Er � ET þU �wI;1 þU �wI;2 � �INIP

r2GT
Er þU �wI;1 �U � kIP

r2GT
Er �U �wI;2 þU � kIþ1;

(1)

where S is the stoichiometric matrix associated with the species’
organism’s metabolism, v is the vector of metabolic flux rates, vlb

and vub are the metabolic fluxes lower and upper bounds, respective-
ly, Rj is the set of indices corresponding to the reactions which are
associated with metabolic gene j, GT is the set of indices of the regu-
latory genes of target gene T, Ei indicates the gene expression of
gene i, U is a very large number (in our experiments, it was set to the
maximum observed expression level multiplied by 5) and sI, INI,
wI;1; wI;2, kI and kIþ1 are parameters computed directly by the
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method from the gene expression levels (Motamedian et al., 2017b).
The hyperparameter C, used to convert the expression levels of the
genes to the upper bounds of the reactions, was set to 0.00014 as
suggested by Motamedian et al. (2017a). All the other parameters of
TRFBA and the boundary constraints for the metabolic models were
left to the default values. Therefore, TRFBA adds to the stoichiomet-
ric matrix of a GSMM further reactions representing the transcrip-
tomic regulations among the genes, which we exploited by
computing the single-gene knockouts and the resulting metabolic
fluxes via FBA (Palsson, 2015) for all the genes in the datasets. This
was performed for both organisms, obtaining a flux distribution for
each knockout.

To account for the tolerance of the solver Gurobi, we then elimi-
nated all the obtained fluxes whose value was lower than 10�7 for
all the samples, and applied a principal component analysis (PCA) to
reduce the dimensionality of the flux distributions. In both cases, we
retained an explained variance >99%, obtaining 250- and 150-di-
mensional features for the human and mouse samples, amounting to
1.7% and 0.92% of the original features, respectively. These steps
were conducted using the COBRA toolbox (Heirendt et al., 2019) in
Matlab R2017b.

2.3 Transfer learning for the reconstruction of the

human GRN from metabolic features
We here describe our transfer learning approach for the reconstruc-
tion of the human GRN, which also exploits the information con-
veyed by the mouse organism. Our approach learns a model that is
able to predict a score in ½0;1�, representing the degree of certainty
about the existence of a given regulation between two genes. The
synergies among the two considered organisms are captured by

resembling to a multi-target prediction model, which aims at pre-
dicting the existence of a given regulation between two genes in the
two organisms simultaneously. Although predicting the existence of
a given regulation for the mouse organism is not of specific interest
in this study, this strategy allows us to exploit possible correlations
between the organisms not only in the input space, but also in the
output space (Levatic et al., 2017).

Methodologically, we focused on orthologous genes, i.e. differ-
ent genes of the human and mouse organisms that originated from a
single common ancestor gene. Each possible pair of orthologous
genes corresponds to a unit of analysis for the predictive task at
hand, namely to a possible regulation activity between the two
genes. The descriptive attributes of a gene pair correspond to the
concatenation of principal component features calculated from flux
rates obtained after the respective single-gene knockouts. On the
other hand, the value of each target attribute (i.e. the degree of cer-
tainty of the existence of such regulation, in the human and in the
mouse organisms, respectively) was set to 1.0 if the corresponding
gene regulation was experimentally validated according to the
BioGRID database (Stark et al., 2006), or estimated through a
clustering-based solution (Mignone et al., 2020a) if such regulation
has not yet been studied (i.e. it is an unlabelled example). This set-
ting corresponds to the so-called Positive-Unlabelled setting, that is a
subclass of the semi-supervised setting as well as a different way to
model a one-class classification task (Kaufmann et al., 2020). We
note that, for the descriptive attributes of each gene pair, one can in
principle compute a flux distribution after a double gene-knockout
for the pair, rather than concatenating single-gene knockout fluxes;
however, this would require prohibitive computational resources for
the dataset and metabolic model at hand (several years of computa-
tional time), but it could be a viable approach for smaller models.

Fig. 1. Starting from the selected gene sets for the human and mouse organisms (a), we compute metabolic fluxes from gene expression levels through genome-scale metabolic

modelling of gene knockouts (b) using TRFBA. Genes are then filtered to consider only the subset of orthologous genes for human and mouse (c). For both organisms, we esti-

mate the confidence of existence on unlabelled (i.e. untested) interactions through a clustering-based procedure, and in this way obtain a set of interaction confidence scores (d).

Finally, we build multi-target training instances and train a multi-target regression tree (e) to maximize the homogeneity both in the input and in the output spaces, between

gene regulations of both human and mouse. The values in the circles of the regression tree represent the prediction (for the human and for the mouse organisms) provided to a

gene pair falling into a specific leaf of the regression tree
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Specifically, the known regulations were grouped into clusters,
whose number was optimized via a silhouette analysis (Rousseeuw,
1987). The value of the target attributes for unlabelled pairs of genes
was then estimated according to the similarity with their closest clus-
ter, computed on the descriptive attributes. Formally, given the de-
scriptive feature vectors xh 2 R

p (for the human organism) and
xm 2 R

q (for the mouse organism) for the same gene pair, we com-
puted the value of the target variables th (for the human organism)
and tm (for the mouse organism) to use during the training of the
predictive model, as follows:

thðxhÞ ¼ maxc2Ch
simpðxh; centðcÞÞ

tmðxmÞ ¼ maxc2Cm
simqðxm; centðcÞÞ;

(2)

where Ch and Cm are the sets of clusters identified for the human
and mouse organisms, respectively; cent(c) is the feature vector of

the centroid of the cluster c; simk: Rk � R
k ! ½0; 1� is a vector simi-

larity function working on arbitrary k-dimensional vectors, based on
the Euclidean distance after applying a min–max normalization (in
the range ½0;1�) to all the descriptive features. Formally,

simkða;bÞ ¼ 1� 1=k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
i¼1

ðai � biÞ2
s

. In this way, we exploited both

the information on verified regulations and the information con-
veyed by a large set of unlabelled examples, according to their simi-
larity with respect to labelled examples.

Finally, we built a predictive model in the form of a multi-target
regression tree, by exploiting the system CLUS (Levatic et al., 2018),
which is based on the predictive clustering framework. Predictive
clustering approaches appear adequate to solve the task at hand,
since they have proven to be generally effective in detecting different
kinds of autocorrelation phenomena (Corizzo et al., 2019), includ-
ing network autocorrelation phenomena usually exhibited by data
organized in network structures (Pio et al., 2018; Serafino et al.,
2018).

The multi-target regression tree was built via a standard proced-
ure for the top-down induction of regression trees, where the tests of
the internal nodes are greedily chosen by considering the reduction
of variance achieved by partitioning the examples according to this
test. In our case, the model aims to reduce the variance of both target
attributes th and tm. More formally, for a given internal node of the
tree under construction, it aims to maximize the reduction of the
average variance over the target attributes due to the split, namely

VarXðth; tmÞ �
�

VarX0 ðth; tmÞ þ VarX00 ðth; tmÞ
�
; (3)

where X;X0;X00 are the sets of examples in the parent, left child and

right child nodes, respectively, and VarZðth; tmÞ ¼ VarZðthÞþVarZðtmÞ
2 is

the average variance on the target attributes th and tm, computed
over the set of examples Z. As a result, we maximized the homogen-
eity of the defined subsets of examples, which also depends on the
correlations, both in the input and in the output spaces, between
gene regulations of both the human and the mouse organisms.

3 Results and discussion

The final network under consideration consists of 512 576 possible
interactions. Among them, 507 656 are unlabelled, while 4920 are
labelled/known interactions from BioGRID. Therefore, the propor-
tion of labelled:unlabelled interactions is �1:100.

We compare the results obtained by our framework based on
metabolic features, hereafter referred to as TRANSFER, with those
achieved by two different settings:

• Expression levels. We adopt the same workflow proposed in this

article, but directly using the expression level features instead of

metabolic features. This setting allows us to evaluate the actual

contribution provided by metabolic features.
• NOTRANSFER. We only exploit features related to the genes of the

human organism. This setting allows us to evaluate the contribution

provided by information conveyed by the mouse organism as well as

the effectiveness of the proposed transfer learning solution.

The experiments were performed through 10-fold cross-validation.
In particular, each fold consists of 9/10 positive examples for train-
ing and 1/10 positive examples for testing, while all the unlabelled
examples are used for both training and testing purposes. Therefore,
coherently with the semi-supervised transductive setting (Ji et al.,
2010; Ma et al., 2020), at training time the methods know the exam-
ples for which they have to make a prediction, i.e. they may already
observe and exploit the value of descriptive attributes, but not the
actual value of the target attributes. We note that the confidence
scores estimated by our method are not adopted to define a ground
truth for unlabelled examples, but only as an intermediate step for
the construction of the multi-target regression tree.

The results were evaluated in terms of recall@k (r@k), the area
under the r@k curve (AUR@K), the area under the ROC curve
(AUROC) and the area under the precision-recall curve (AUPR). We
note that, while r@k and AUR@K do not introduce any bias on the
existence of a regulation activity on unlabelled gene pairs, the com-
putation of the AUROC and AUPR requires considering the un-
labelled examples as negative examples.

In Figure 2, we show the measured r@k in the range ½0;1%�,
which is the range of the top-1% most reliable interactions returned
by all the approaches considered. Our results show that the adop-
tion of metabolic fluxes is beneficial, with respect to directly adopt-
ing the raw gene expression levels, both when exploiting the
knowledge coming from the mouse organism (TRANSFER) and
when ignoring such additional information (NOTRANSFER).
Specifically, such an improvement amounts to 6.6% in the case of
NOTRANSFER and to 8.73% in the case of TRANSFER, when
observing the recall@1%. Moreover, it is noteworthy that, in
the TRANSFER setting, we identify existing gene regulations much
earlier in the returned ranked list of interactions. Specifically, we
identify 96% of the known interactions of the testing set in the top-
0.3% interactions returned in the case of the TRANSFER setting,
whereas we need to consider 0.8% of the list of the returned

Fig. 2. Recall@k measured in the range ½0; 1%� for the reconstruction of the human GRN, by considering different sets of features. The NOTRANSFER approach does not ex-

ploit data of the mouse organism, while the TRANSFER approach exploits also the mouse GRN knowledge
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interactions to identify the same amount of known interactions in
the NOTRANSFER setting. This behaviour emphasizes that the
knowledge coming from the mouse organism can fruitfully be
exploited to improve the accuracy of the reconstruction of the
human GRN.

A more comprehensive overview is reported in Figure 3, where
we show boxplots representing AUR@K, AUROC and AUPR meas-
ured over the 10 folds of the cross-validation. These show that the
predictive models trained via metabolic fluxes can better exploit the
mouse gene regulation knowledge leading to more stable predictive
models (i.e. with a lower variance observed over different folds of
the 10-fold cross validation). Furthermore, the area under all the
considered curves is higher and more stable when adopting the meta-
bolic fluxes in combination with the TRANSFER setting.
Conversely, when adopting metabolic fluxes in the NOTRANSFER
setting, we observe worse results with respect to directly using ex-
pression levels. This phenomenon indicates that the metabolic fluxes
of the human organism alone are not able to describe the regulatory
activities as well as expression levels, but the exploitation of mouse
and human metabolic fluxes in combination provides our frame-
work with a significant advantage, leading to the best overall results.
This observation confirms that the proposed workflow, which syner-
gically exploits metabolic fluxes and the knowledge of the mouse
GRN, provides significant advantages in terms of the quality of the
reconstruction of the human GRN.

To understand the contribution provided by human and mouse
metabolic features in human GRN reconstruction, we performed
additional experiments in the TRANSFER and NOTRANSFER set-
tings. Specifically, we considered the approach proposed by Petkovi�c
et al. (2017), based on the evaluation of the (negative) effect of noise.
We purposely introduced noise in a given feature by randomly per-
muting its values over the examples, evaluating the effect on the pre-
dictive performance of the tree: the greater the performance
degradation, measured through the relative increase of the predictive
error, the higher is the importance/contribution of the feature. We
produced a descending ranking of the features for each fold of the
10-fold cross-validation, and analysed the average ranks (see
Supplementary Table S2 for the computed average ranks).

As shown in Figure 4c, the metabolic features related to the
mouse organism dominate the upper half of the ranking and are
therefore assigned a higher relevance than those related to the
human, in the setting TRANSFER. Conversely, when directly using
gene expression levels, many features from human retain a high

relevance when combined with those from mouse (see
Supplementary Table S2). This finding further confirms the advan-
tage provided by the adoption of our transfer learning technique on
GSMM-derived information.

Furthermore, a consistent number of metabolic features (295/
800) present a relevance score equal to zero, as opposed to the more
gradual decline in gene expression feature relevance. This is in line
with previous experimental results from another data integration
task, where metabolic features displayed a highly skewed relevance
distribution compared to transcriptomic ones (Culley et al., 2020). A
possible explanation is given by the structure of metabolic networks
and by the method used to estimate its activity, which is based on a
linearly constrained MILP problem that generates collinearity and
redundancy among the features.

Consistently, the addition of mouse-related features impacts the
importance of human-related features to a varying degree depending
on their type. When comparing the TRANSFER and NOTRANSFER
settings, human metabolic features have indeed an average import-
ance difference of 2.12 6 2.80, whereas for human transcriptomic fea-
tures such difference is 2.99 6 1.25. In other words, human gene
expression features that are considered poorly (or highly) relevant in
the NOTRANSFER scenario have on average a higher chance to be
considered more (or less) relevant in the TRANSFER setting—and by
a larger extent—as compared to human metabolic features. However,
the difference in importance for the latter is highly variable and
reaches the highest values. The addition of mouse-related features
therefore appears to drastically change the learned model when using
metabolic features.

To further characterize our results, we inspected the metabolic
pathways associated with the most relevant reactions adopted in
the construction of the metabolic features. We conducted a flux en-
richment analysis using the MATLAB Bioinformatics Toolbox on
the subset of reactions which, for each organism in the two experi-
mental settings (TRANSFER and NOTRANSFER), had been given
a weight above the 90th percentile. The weight for the jth reaction
was computed as

hj ¼
X

i

jlij � r2
i � ðrank1j þ rank2jÞj; (4)

where lij is the linear coefficient of the jth feature/reaction with re-
spect to the ith principal component deriving from the PCA (adopted
to generate the metabolic features), r2

i is the variance explained by
the ith principal component, while rank1j and rank2j are the rankings
of the jth feature, computed using the approach proposed by
Petkovi�c et al. (2017), when considered in the first and second pos-
ition, respectively, in the gene pair. From these values, we computed
the average flux weight for each metabolic pathway as the average
weight of its reactions.

As shown in Figure 4a and d, the number of enriched pathways
(associated P-value� 0.05, corrected through the Benjamini–
Hochberg procedure for multiple hypothesis testing) is higher for
the metabolic features of the mouse, while it is almost equal for the
human ones. Indeed, reactions enriched in the human features
employed when building the model without the mouse features
(NOTRANSFER-Human) were all included in the pool of enriched
reactions from the human features used in the TRANSFER setting.
In particular, in this setting, the enrichment also includes exchange/
demand reactions (P-value> 0.05 for the NOTRANSFER-Human
features), indicating that adding features from a different organism
increased the importance of the features associated with internal
production/consumption reactions and extracellular/intracellular
transport reactions. Conversely, mouse features share all the trans-
port pathways of the human ones, except for that relating to lyso-
somal transport, and also encompass the pathways associated with
the citric acid cycle, nucleotide metabolism, fatty acid activation
and the metabolism of leucine, isoleucine and valine (see Fig. 4a).

Overall, these results demonstrated the effectiveness of the pro-
posed approach, which exploits metabolic information coming from
two organisms through our transfer learning method. Moreover, the
analysis of the contribution of the metabolic features emphasized the
new information introduced by the mouse features. We believe that

Fig. 3. Boxplots for the 10 folds of the human GRN reconstruction task. Each row

corresponds to a measure, i.e. AUR@K, AUROC and AUPR, respectively, measured

in the range [0, 1%] of the top-k ranked interactions. Each column corresponds to a

learning setting, i.e. without and with the exploitation of the mouse GRN know-

ledge, respectively
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our results pave the way towards the exploitation of knowledge of
multiple model organisms—across several omic layers—while recon-
structing the GRN of a target organism.

4 Conclusion

We presented a novel method for the reconstruction of the human
GRN that fruitfully exploits the information conveyed by in silico-
generated metabolic fluxes of both mouse and human organisms.
Specifically, we exploit a transfer learning method to capture analo-
gies between the metabolic responses in mouse and human upon
simulated deletion of their orthologous genes.

Our results show that metabolic features, computed from gene
expression levels and metabolic modelling, improve the performance
and the stability of the trained predictive models when exploited in
combination with our transfer learning approach. This emphasizes
that the underlying regulatory patterns are better captured when
(both known and possible) gene regulations are described through
metabolic features, computed through GSMM simulations, on both
the human and the mouse organisms. To the best of our knowledge,
this work is the first attempt to exploit metabolic features and a
transfer learning approach for the reconstruction of the human
GRN, and our results support the adoption of the developed method
as a state-of-the-art tool for solving this task.

As future work, we aim to design a multi-source approach to
capture possible dependencies among multiple organisms and to
simultaneously reconstruct their GRNs, even when the knowledge
about their orthologous genes is limited. In conjunction with multi-
omic integration strategies, this could lead to refined GRN

reconstructions, thus expanding the current knowledge on the bio-
logical mechanisms of metabolic regulation.
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