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Automated porosity estimation using CT-scans of extracted core data
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Abstract
Estimation of porosity at a millimeter scale would be an order of magnitude finer resolution than traditional logging techniques.
This enables proper description of reservoirs with thin layers and fine scale heterogeneities. To achieve this, we propose an end-
to-end convolutional neural network (CNN) regression model that automatically predicts continuous porosity at a millimeter
scale resolution using two-dimensional whole core CT scan images. More specifically, a CNN regression model is trained to
learn from routine core analysis (RCA) porosity measurements. To characterize the performance of such approach, we compare
the performance of this model with two linear regression models trained to learn the relationship between the average attenuation
and standard deviation of the same two-dimensional images and RCA porosity. Our investigations reveal that the linear models
are outperformed by the CNN, indicating the capability of the CNN model in extracting textures that are important for porosity
estimations. We compare the predicted porosity results against the total porosity logs calculated from the density log. The
obtained results show that the predicted porosity values using the proposed CNN method are well correlated with the core plug
measurements and the porosity log. More importantly, the proposed approach can provide accurate millimeter scale porosity
estimations, while the total porosity log is averaged over an interval and thus do not show such fine scale variations. Thus, the
proposed method can be employed to calibrate the porosity logs, thereby reducing the uncertainties associated with indirect
calculations of the porosity from such logs.
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1 Introduction

A comprehensive formation evaluation requires investigating
different reservoir characteristics such as formation pressure,
temperature, pore and grain size distribution, fluid saturations,
permeability, and porosity. Out of these, porosity is one of the
most important properties for reservoir modeling and reservoir
characterization processes, as its value and variation within
the reservoir determines the volume of reserves. Porosity is
moreover strongly correlated to the reservoir quality with re-
spect to the transport properties.

A common method for porosity estimation employs well
logs such as density, neutron, and sonic logs, where porosity is
indirectly computed from log responses by means of theoret-
ical and empirical calculations. This method provides contin-
uous porosity values along the well. The uncertainty in this
type of porosity estimation is high since the logs are affected
by other rock and fluid properties in addition to the porosity,
e.g., lithology, type of fluids in the pore spaces, wellbore
environment and type of drilling mud. Therefore, log-
derived porosity interpretations need to be corrected and cal-
ibrated against core plug porosity measurements. Moreover,
log-derived porosity interpretations overlook high resolution
(i.e., below log resolution) porosity variations associated with
fine-scale heterogeneities and thin layers.

Laboratory measurements using core plugs (typically 1 to
1.5 in. in diameter) and/or sidewall cores (1 in. in diameter)
provide local porosity estimates that represent an interval of
the cores extracted from the wells. Such analysis can produce
acceptable reservoir porosity estimations for relatively ho-
mogenous pore systems. However, core plugs, normally sam-
pled once per foot, might not provide representative data in
heterogeneous reservoirs with millimeter scale porosity
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variations. More frequent sampling is necessary in this kind of
reservoirs, which is laborious and cost consuming.

X-ray computerized tomography is a non-destructive tech-
nique that was initially used in medical science, and that has
now been widely applied to investigate materials in the earth
sciences, including petroleum geoscience [1, 2]. Whole core
CT scanning, that provides two-dimensional and three-
dimensional digital representations of extracted cores, has a
long history in assisting geologists. Utilizing this technique
leads to cores representations as grayscale images, where the
gray-level values represent X-ray attenuation depending on
the density and atomic number of the underlying materials.
Core CT scans can provide valuable information on the tex-
ture and internal structure of reservoir rocks [3]. Recent de-
velopments in artificial intelligence techniques, combined
with the fact that whole core CT scans are stored digitally,
open new possibilities to enhance utilization of such data in
rock characterization workflows. In this regard, CT scan im-
ages can be employed for automatic estimation of porosity at
the millimeter scale, thereby enhancing their value in opera-
tional settings.

Artificial intelligence has been widely applied to predict
transport properties such as porosity, permeability and water
saturation using various well logs and/or a combination of
core analysis measurements and well log data [4–20].
Ahmadi and Chen [4] compared different machine learning
models for predicting porosity and permeability using the
petrophysical logs and core analysis measurements. Aïfa
et al. [6] proposed a Hybrid Neuro-Fuzzy model to predict
porosity and permeability from well log data in the shaly sand
reservoirs. Helle et al. [11] developed two back-propagation
artificial neural networks (ANN) to predict porosity and per-
meability from density, gamma ray, neutron porosity, and
sonic logs.

Moreover, several publications have evaluated the poten-
tial of deep neural networks in predicting transport properties
(e.g., porosity and permeability) based on pore-scale micro-
CT and Scanning Electron Microscopy (SEM) images
[21–29]. Hebert et al. [24], inspired by Sudakov et al. [28],
used an AutoEncoder to segment three-dimensional grayscale
micro-CT images of Berea samples and to estimate porosity
values using expert-derived segmented images as training
ground truth. Bordignon et al. [23] proposed a methodology
to estimate grain size and porosity distribution using synthetic
idealized rocks (sphere packs) and Convolutional Neural
Networks (CNN). Alqahtani et al. [21] employed deep learn-
ing to predict porosity, coordination number, and average pore
size, where the ground truth values were computed using pore
networks extracted from manually segmented images. More
specifically, they used a CNN regression model to estimate
the mentioned properties from two-dimensional grayscale
micro-CT images. In the mentioned publications, machine
learning and deep learning method were applied at the pore

(micrometer) scale as an extension of Digital Rock Analysis
(DRA).

In this study we propose a methodology to estimate poros-
ity at the whole core (millimeter) scale using two-dimensional
core CT slices. More specifically we employ an end-to-end
CNN regression scheme to estimate porosity in a well using a
training dataset that includes porosity measurements derived
from routine core analysis. The trained model is then used to
populate the whole well with porosity values. The obtained
results are compared with a total porosity log computed based
on the density log. We moreover compare the deep learning
results with a simple linear regression (LR) model trained on
average attenuations of the same two-dimensional image
slices, and a multiple linear regression (MLR) model trained
on both average attenuations and standard deviation of two-
dimensional image slices. In fact, we discover that the CNN
model outperforms the linear regression models, which indi-
cates the optimized convolutional kernels extract the textures
and patterns that are important for estimating porosity.
Moreover, we quantitatively demonstrate that the proposed
CNNmodel can be employed to provide accurate local poros-
ity estimations.

The subsequent sections of this work are organized as fol-
lows: Section 2 presents a detailed description of the em-
ployed methodology, i.e., convolutional neural networks.
Section 3 describes the image pre-processing steps, including
the processes that have been applied to remove images with
undesired image artifacts and perform image augmentation.
Section 4 provides a brief description of the lithology of the
studied formations together with the available data, including
whole core CT scans and core analysis measurements.
Section 5 describes the details of the model training and
CNN hyperparameter selection processes. Section 6 summa-
rizes and discusses the obtained training and prediction re-
sults. Finally, the last section provides some concluding com-
ments, emphasizing the advantages of the proposed method
for porosity estimation over other schemes.

2 Method

In this study we compare two approaches for automatic po-
rosity estimation at the core scale. As shown in Fig. 1, the
methodology starts with pre-processing of two-dimensional
image slices, where images with undesired artifacts are
flagged and removed. The pre-processing steps are explained
in detail in Section 3.1.

After image pre-processing, two approaches are consid-
ered: In the first, the remaining pre-processed images are aug-
mented to expand the training dataset, as CNN networks are
proven to show better generalization capabilities with a higher
number of augmented images. Then, the augmented images
together with porosity values from routine core analysis are
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employed to train a CNN regression model. In the second
approach, a simple (LR) and a multiple linear regression
(MLR) model are trained to predict porosity. The LR model
is trained to learn the relationship between average attenua-
tions of the two-dimensional images and RCA-derived poros-
ity values. To count for distribution of the gray-level attenua-
tions, we compute the standard deviation of the two-
dimensional images. The computed standard deviation and
average attenuations are used to train the MLR model to learn
the measured RCA porosity. The reason for choosing linear
models is that we expect a linear correlation between the av-
erage gray-level at tenuations and porosi ty for a
monomineralic rock type with one type of fluid [30, 31].
This comparison will reveal if the CNNmodel extracts pattens
and features rather than just learning the average attenuation
of the images. The training results of these approaches are
compared, and finally the best performing model, i.e., the
CNN, is used to predict porosity of unseen images and to
populate the whole well with millimeter scale porosity values.
The theory of convolutional neural networks will be summa-
rized in subsequent sections.

2.1 Convolutional neural networks

Convolutional neural networks, initially proposed by LeCun
[32], have been one of the most popular machine learning
algorithms employed especially in classification, regression,

and object detection tasks that involve images. CNNs consist
of convolutional and pooling layers in addition to the fully
connected layers of classical neural networks. The network
in the convolutional section is locally connected, in contrast
with fully connected layers where each neuron is fully con-
nected to the neurons in the previous layers, and each connec-
tion has its own weight. The convolutional section in the CNN
models consists of three main layers: convolutional, activa-
tion, and pooling.

The sequence of these stacked layers can be repeated many
times depending on the task at hand. The convolutional layers
are responsible for feature extraction during training, where
low level features are extracted in the first convolutional layer,
while higher level features are extracted hierarchically as the
output of a layer feeds into the next layer. The extracted fea-
tures are then mapped into the output layer by fully connected
layers [33]. The main elements of CNNs and their tasks are
described below.

2.1.1 Convolutional layers

In the convolutional layers, a set of optimizable kernels are
superposed on the two-dimensional or three-dimensional digital
images represented as arrays of pixel numbers. Each kernel is
convolved across the image using an element-wise multiplica-
tion between the kernel and the current area of the image that it
covers (a.k.a. its receptive field). Then, these dot products are
summed up and stored in the corresponding position of the
output, i.e., the feature map. Once the convolutional operation
is computed and stored for a specific position, the kernel is
moved by a pre-defined offset, called stride. The convolution
process is then repeated until the entire image has been tra-
versed by the kernel. Since convolution is a linear operation,
the output feature maps are passed through an activation func-
tion to introduce a nonlinearity. Currently the most common
activation function to accomplish this is the rectified linear unit
(ReLU). However, other activation functions, such as hyperbol-
ic tangent or sigmoid functions, can also be employed. The
convolution operation in the convolutional layers can be written
as (modified from Anjos et al. [34]):

oi ¼ g oi−1*Wið Þ; ð1Þ
where oi is the output of the i

th layer, oi − 1 is the output of the
previous layer, * is the convolution operation,Wi is the kernel
weights of the ith layer, and g is the nonlinear activation
function.

2.1.2 Pooling layers

The feature map outputs of the convolutional layers record the
exact position of the features; that said, minor spatial changes

Fig. 1 Summary of applied methodology for automatic porosity
estimation of two-dimensional CT image slices
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in the input image result in a different feature map. Therefore,
after applying the activation function, a pooling layer is added
with two purposes. First, to make the extracted feature maps
invariant to local translations and spatial variations in the input
image. Second, to reduce the spatial dimension of the feature
maps, thereby reducing the computational time associated
with model training. Pooling is analogous to the convolutional
operation, where a window is sliding over the input image.
However, it executes a selection of elements inside the
pooling window without trainable parameters. The most com-
mon pooling operations are maximum pooling and average
pooling. Maximum pooling picks the maximum value inside
the window and discards the others, while average pooling
computes the average of values inside the pooling window.
The down-sampled feature map output of the pooling layer is
called the pooled feature map, and it is expected to contain the
most important structural features.

2.1.3 Fully connected layers

The pooled feature maps of the convolutional section are then
flattened and used as input to the fully connected layers,
whose purpose is to map the extracted features into the output
layer. As opposed to the convolutional layers, here the input
nodes are fully connected to the output nodes by learnable
weights. Nonlinearity in the fully connected layers can be
introduced by adding an activation function such as ReLU
so that mathematically these layers can be explained as (mod-
ified from Anjos et al. [34]):

zi ¼ g zi−1Wi þ bið Þ; ð2Þ
where zi is the output vector, zi − 1 is the output of the previous
layer in the fully connected network,Wi is the weights tensor
of the ith layer, bi is the bias of the ith layer and g is the
activation function. For the first layer, zi − 1 is the flattened
version of the last convolution layer, i.e., oi − 1. Note that the
activation function applied to the final fully connected layer is
normally selected based on the type of the task, e.g., classifi-
cation or regression. The softmax function is a common acti-
vation function for multi-class classification. However, linear
activation function is used in case of regression.

One of the limitations of the CNN architecture described
above is that it can easily be overfit to the training data, and
thus diminish the generalization capabilities of the model. To
overcome this limitation one may employ some regularization
technique, such as dropout, where randomly selected neurons
are temporarily removed together with their incoming and
outgoing connections, and not used in the back-propagation
phase [35, 36]. Dropout is performed to optimize the bias-
variance tradeoff, i.e., balancing out the bias and variance of
the est imates towards better performance. Batch

normalization is another common regularization technique,
where the output of a convolutional layer is normalized before
being used in the next one. Batch normalization is empirically
known to make training less sensitive to the initialization
point, plus speeding up the network training [37].

3 Data pre-processing

The provided CT scan data for individual cores are stored in
16bit unsigned DICOM format [38]. We stack the DICOM
images of individual core scans together and store them as
three-dimensional raw images using the ImageJ software
[39]. Once the three-dimensional raw images are created, the
next step is to remove border effects by cropping the image
into rectangular crops. We used a centered crop of size 256 ×
256 pixels, as shown in Fig. 2. Then a global minimum and
maximum intensity value is assigned to the rectangular crops
of the individual cores, i.e., the images are normalized be-
tween the global minimum and maximum intensity values.
These global intensity values are selected by observing the
three-dimensional histograms of rectangular crops of the en-
tire considered core. Further, the intensity adjusted images are
encoded in 8bit format, i.e., 0 − 255 grayscale values.

3.1 Removing undesired artifacts

Some of the studied CT images contain non-core regions and
undesired artifacts. One type of such artifacts is missing pixels
associated with poor core recovery, induced fractures, or rush
plugs. Images with missing pixels show low gray-level atten-
uation values (Fig. 3a). Other types of undesired features are
related to the intervals with drilling mud invasion, high-
density minerals (e.g., pyrite and siderite) cementation (Fig.
3b), and core barrel couplings (Fig. 3c).

The images with artifacts can negatively affect the perfor-
mance of the considered machine learning algorithms, since
they contain features not related to the actual phenomena be-
ing modeled. Thus, we implemented specific type-dependent
algorithms that aim at excluding images with such artifacts.
More precisely, to remove missing intervals we calculate the
average attenuation μc at the center of the image using a cen-
tered square covering 40% of the total number of pixels. If the
computed average attenuation is less than a pre-defined cutoff
Cm, the image is flagged and removed.

f m ¼ 1; μc < Cm

0; else

�
ð3Þ

where fm is the flag for missing interval. The image is removed
if fm is equal to 1. The cutoff Cm is defined by the user based
on observing the average attenuation of images with missing
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pixel values. In this study, we used cutoff Cm = 50. Image
intervals with drilling mud invasion and high-density material
show high gray-level attenuation readings, and they appear
very bright compared to the other intervals. To identify these
intervals, we compute the average attenuation μ of the whole
two-dimensional image, and if the average attenuation is
greater than a pre-defined cutoff Ch, the image is flagged for
removal:

f h ¼ 1; μ > Ch

0; else

�
ð4Þ

where fh is the high density flag. The image is removed if fh is
equal to 1.

The cutoff Ch is defined by the user based on observing the
average attenuation of images with drilling mud invasion and
high-density minerals. In this study, we used cutoffCh = 170.

Images from intervals with core barrel couplings show low
gray-level attenuation readings in the middle, while the image
edges appear brighter with higher attenuation readings (Fig.
3c). To detect these intervals, the difference in average atten-
uation of the center and edges of the image slices is calculated.
As above, the center average attenuation μc is computed con-
sidering 40% of the total number of pixels using a centered
square. To represent edge average attenuation μe, the outer 5%
of the total number of pixels along the edges are considered. If
the difference between center average attenuation and edge

average attenuation is greater than a pre-defined cutoff value
Cb, the image interval is flagged and removed:

f b ¼ 1; μe−μc > Cb

0; else

�
ð5Þ

where fb is the core barrel coupling flag. The image is
removed if fb is equal to 1. It is worth to mention that
the employed thresholds were computed using the glob-
al distribution of the minimum, mean, and maximum
intensity values observed in the data set. Note that in
the first approach (Fig. 1), the images are normalized
before being used as input for the CNN training (i.e.,
images are divided by 255). Moreover, to reduce the
computational time associated with model training, the
remaining two-dimensional image slices are coarsened
by a factor of four, so the final image size as used
for input to the CNN is 64 × 64 pixels.

3.2 Image augmentation

Deep learning networks notoriously require large amounts
of training data to achieve good performance. Aware of
this, we augmented the training images used for the CNN
through image augmentation, i.e., by applying different
kinds of modifications (e.g., shifting, flipping, random
rotation, and shearing) to the original images. In this
way the model can learn from more examples during

Fig. 2 As a pre-processing step,
the original DICOM images are
cropped into crops of size 256 ×
256 pixels (blue square). This is
done to remove border effects

Fig. 3 Two-dimensional image
slices with undesired artifacts: (a)
missing pixels, (b) high density
material, (c) core barrel coupling
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training phase, and at the same time make the model less
sensitive to spatial translations. In this study we specifi-
cally considered rotation and horizontal flips of the two-
dimensional images. In the case of horizontal flip, we
employed the “ImageDataGenerator” class, a publicly
available code that can be used for image augmentation
purposes on the fly, in Python using the Keras API [40].
The “ImageDataGenerator” class rotates the images ran-
domly within a range of user-defined angles, where in
case of squared images it is very likely that for some
specific rotation angles the pixels will fall out of the im-
age frame leaving some areas of the image with no pixels.
There are several interpolation techniques, such as nearest
neighbor, that can be used for those areas, but they can
amend the key features and create dissimilar features that
are then counterproductive for the training process. To
avoid this problem, the images were rotated outside
Keras, while the horizontal flipping was performed on
the fly using the “ImageDataGenerator” class. Here we
thus eventually considered rotation of the original images
by 90°, 180°and 270°.

4 The dataset

4.1 Lithology description of the studied well

This study utilizes the whole core CT scan images of a well
on the Norwegian continental shelf. The well penetrates
four main formations, denoted as Fm. (Formation) 1,
Fm.2, Fm.3, and Fm.4 in Fig. 4. Formation 1 consists of
very fine-grained argillaceous sandstones and cemented
sandstones; Formation 2 consists of successive layers of
mudstones and fine-grained sandstones; Formation 3 con-
sists of granule rich medium-grained sandstones and
spiculites (a biogenic rock composed of sponge silica spic-
ules); Formation 4 comprises mud and calcite rich marl-
stones. The overall lithology in this well is divided into 20
lithofacies by manual core descriptions [41]. A brief de-
scription of different lithofacies together with associated
abbreviations is provided in Table 1.

4.2 Whole core CT scan images

As mentioned previously, in this study we employ two-
dimensional core CT images. The original images are stored
as 16bit unsigned DICOM images slices with a vertical reso-
lution of approximately 0.45 millimeters. The images are pre-
processed, i.e., cropped and discarded if presenting undesired
artifacts as explained in section 3. The remaining images are
coarsened to 64 × 64 pixels and normalized before being used
for further analysis.

4.3 Routine core analysis data

Porosity measurements of 388 core plugs from routine core
analysis (RCA) are considered as ground truth for the consid-
ered convolutional neural network and linear regression
models. The RCA porosity-permeability cross-plot is shown
in Fig. 5, where different colors represent different lithofacies
observed through core descriptions.

According to Fig. 5, the studied well contains a whole
range of porosity values, from approximately 0.03 for well
cemented sandstones (WCemMSS) up to 0.40 for cross strat-
ified sandstones (CrossFineSS). Permeability.

values range from 0.01 mD for mudstones up to 50 Darcy
for granule rich medium-grained sandstone samples
(GraMSSDispC).

5 Training

As mentioned previously, convolutional neural networks and
linear regression models were employed in two separate ap-
proaches to estimate porosity at the whole core scale. This
section presents the details of the training processes for both
approaches.

5.1 Labeling and train-test splitting

In this study the RCA-derived core plug porosity measure-
ments were used as the target porosity values for individual
two-dimensional images. Porosity is often measured on core
plugs with typical lengths of 1 to 2 inches [42], which corre-
sponds to approximately 55 to 110 two-dimensional CT im-
age slices with vertical resolution of 0.45 millimeters. In our
approach we assign the same porosity labels to 19 successive
two-dimensional images (approximately 8.5 mm vertical
length) at depth intervals corresponding to the core plug
depths. In other words, individual two-dimensional images
are used as input to train the CNNmodel, where 19 successive
images at each depth interval are labeled with the same poros-
ity values coming from core plug measurements. Note that the
number of images in specific intervals might be less than 19
since images with artifacts are removed by image pre-
processing.

For regression modeling we use the same labeling strategy.
However, in case of linear regression, the average attenuation
and standard deviation of each two-dimensional image is
computed. The simple LR model is trained to learn the rela-
tionship between average attenuations (as independent vari-
ables) and core analysis porosity measurements (as dependent
variables), while the MLR model is trained to learn RCA
measured porosity from both average attenuation and standard
deviation.
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Generally, a machine learning model is trained on a set of
samples, i.e., training set. In a supervised learning environ-
ment, the training dataset consists of pairs of input and corre-
sponding output values that are used as the training target. The
output predictions during training are compared with the ac-
tual target values, and the model parameters are updated to
minimize the error between actual target and predicted values.
Once the model is fitted to the training set, its statistical per-
formance is evaluated on a set of unseen instances, i.e., test
set. In this manner, the test set provides an unbiased evaluation
of the trained model.

The labeling strategy explained above resulted in 6863 la-
beled images (about 3% of the total number of images in the
studied well). To cover the distribution of the measured po-
rosity values, we chose ~90% of the images as the training set
and the remaining ~10% as the test set. The train and test sets
were separated manually to ensure that the test set was repre-
sentative for the porosity distribution seen in the well. The test
set is a continuous subset of the well, therefore we do not have
images from the same plug in the train and test sets. Since the
lithofacies classes are varying gradually and slowly, a random
spilt would result in similar images in the training and test sets,
and overestimation of the performance of the model.
Moreover, 20% of the training set was employed as the vali-
dation set to provide an unbiased evaluation of the model
while tuning the kernels and the weights in the network. As
mentioned before, the images used for CNN training were
further augmented (rotated by three angles of 90°, 180°and

270°) to expand the training dataset and to obtain a more
robust model that is invariant to the image modifications.
The image augmentation process resulted in 19764 training
images.

5.2 CNN training and hyperparameter selection

Commonly, CNN training is performed by forward and back-
propagation processes, where the kernels in the convolutional
layers and weights in the fully connected layers are updated
iteratively to minimize the error (cost function) between the
actual and predicted values. Mean squared error (MSE) and
mean absolute error (MAE) are commonly used as cost func-
tions in CNN regression problems, and calculated as

MSE ¼ 1

N
∑
N

i¼1
yi−byi� �2

; ð6Þ

MAE ¼ 1

N
∑
N

i¼1
jyi−byij; ð7Þ

where N is the total number of samples, while yi andbyi are the
actual and predicted values of sample i.

The cost function is minimized using a gradient de-
scent optimization algorithm. More precisely, the partial
derivative of the cost function with respect to each

Table 1 A brief description of the
observed lithofacies and their
associated abbreviations derived
from manual core descriptions

Lithofacies abbreviations Lithofacies description

Marl Mud/clay rich marl

CalMarl Marl with caliche cementation

SpiculiteSS Medium-grained spiculitic sandstone

Mudstone Dark gray mudstone with plain parallel bedding/Mottled mudstone

WCemBelSS Well cemented medium-grained sandstone with Belemnite fossils

GraMSSDispC Granule rich medium-grained sandstone with dispersed carbonate cementation

PCemGraMSS Poorly cemented granule rich medium-grained sandstone

WCemMSS Well cemented medium-grained sandstone

MudsHighDens Mudstone with high density minerals (pyrite)

ArgFineSS Argillaceous fine-grained sandstone

RippleFineSS Fine-grained sandstone with ripple cross lamination

MassFineSS Massive fine-grained sandstone

CrossFineSS Fine-grained sandstone with cross stratified lamination

MudFineSS Muddy fine-grained sandstone

BioFineSS Bioturbated fine-grained sandstone

WCemFineSS Well cemented fine-grained sandstone

ContMud Continental mudstone

MassVeryFineSS Massive very fine-grained green sandstone

CemVeryFineSS Cemented very fine-grained green sandstone

VeryFineSSHorizontal Very fine-grained sandstone with horizontal lamination
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learnable parameter is calculated and those parameters
are updated using [33]:

ωþ ¼ ω−α
dE
dω

; ð8Þ

where ω refers to each learnable parameter (i.e., weights and
kernels), α is the learning rate, and E is the cost function. In
this study we considered both types of the above cost func-
tions. However, based on our preliminary experiments the
optimization of the MAE leads to a model with better perfor-
mance on the validation set than a model optimized withMSE.
Therefore, we usedMAE as the cost function to be minimized
during model training.

The learning rate determines how fast the learnable param-
eter should move along the direction of the gradient, and its
value can significantly affect the convergence of the cost func-
tion optimization process. There are different types of opti-
mizers and descent methods to minimize the cost function.
Here, we specifically used the Adam optimizer [43] and
mini-batch gradient descent to search for optimum weights
and kernel parameters.Mini-batch gradient descent is themost
common variation of gradient descent in deep learning [44],
where the training dataset is split into small batches, and the
error is calculated per batch before updating the learnable
parameters. In our study the final optimal approach was to
consider a batch size of 32 images. The optimization proce-
dure is carried out using a pre-defined number of epochs,
where an epoch is a period in which all the training samples

Fig. 4 Well log data and two-dimensional cross section of the core CT
image showing 142 m of the studied well. Log tracks from left to right:
track 1: Formations, track 2: Caliper (CALI) and Gamma ray (GR), track
3: Density (DEN) and Neutron (NEU), track 4: Deep resistivity (RDEP),

track 5: Photoelectric factor (PEF), track 6: Compressional wave
slowness (AC) and shear wave slowness (ACS), track 7: Two-
dimensional cross section of core CT scan

602 Computational Geosciences (2022) 26:595–612



have been presented at least once to the network. The number
of training epochs has high impact on the performance of the
CNN model too, since a too large or too small number of
epochs can lead to over- and underfitting, respectively. To
overcome this issue, in our study we used an early stopping
regularization technique, i.e., make the model training stop
once the model performance on the validation dataset starts
to degrade after a certain number of epochs. Here, a total
number of 300 epochs was assigned for the training process.

In addition to the learnable parameters there exist other
types of parameters, so called hyperparameters, that are not
learnable during the training process – for example the num-
ber of convolutional layers, the number of kernels in the
convolutional layers, the kernel size, the learning rate, and
similar factors.

The values of such hyperparameters are typically initially
assigned by the user using domain expertise considerations
and are kept constant during the training phase. Since the
choice of the hyperparameters highly affects the performance
of CNN networks, such hyperparameters may be adjusted
through a process referred to as hyperparameter tuning. In this
study we performed such a tuning on the number of
convolutional layers, the number of kernels in the
convolutional layers, kernel size, learning rate, number of
neurons in the fully connected layer and dropout rate.

The proposed CNNmodel was developed in Keras with the
Tensorflow backend. To automatically tune the considered
hyperparameters, we employed the Keras tuner library [45],
where we define a search space for each hyperparameter to-
gether with a proper tuner. The tuner automates the tuning
process by evaluating a certain number of configurations with

different hyperparameter combinations. The considered
hyperparameters and associated search spaces are presented
in Table 2. There are different types of tuners such as
RandomSearch, Hyperband and BayesianOptimization.
More detailed information on the differences among these
approaches can be found in [46–49]. In this study we used
the Hyperband algorithm [48], which is a relatively newmeth-
od, and that uses adaptive resource allocation and an early
stopping rule to quickly converge to a high-performance mod-
el. More precisely, a large number of random configurations
are run for a specific number of epochs (i.e., one or two) per
configuration. Then the top-performing model configurations
based on the previous results are trained for more epochs.
Finally, the best model configuration trained to the assigned

Fig. 5 Porosity-permeability cross-plot for available core analysis measurements of the studied well. Different colors represent various lithofacies
observed through core descriptions

Table 2 The CNN hyperparameters and their associated search space
considered during hyperparameter tuning to optimize the model
architecture. The final optimal values are shown in bold. Note that three
numbers are bold for convolutional kernels since two convolutional
layers have 176 kernels each, while the other two have 112 and 240
kernels each (Fig. 6)

CNN hyperparameters Parameter space

Number of convolutional layers (2, 3, 4, 5)

Number of convolutional kernels (16, 48, 80, 112, 144, 176, 208, 240)

Kernel size (3, 5)

number of neurons in the fully
connected layer

(32, 64, 96, 128, 160, 192, 224)

Learning rate (0.01, 0.001, 0.0001)

Dropout rate (0, 0.2, 0.4, 0.6)
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maximum number of epochs is returned by the algorithm. The
proposed CNN architecture, optimized using the above
hyperparameter selection process, is indicated by bold num-
bers in Table 2, while the corresponding CNN is shown in Fig.
6. The CNN architecture is then described in detail in the next
subsection.

5.2.1 CNN architecture

The optimal CNN architecture is presented in Fig. 6. The input
images are two-dimensional grayscale images of size 64 ×
64, with one channel represented by two-dimensional arrays.
There are four convolutional layers, denoted as “Conv1”,
“Conv2”, “Conv3” and “Conv4” in Fig. 6, with 176, 176,
112 and 240 convolutional kernels, respectively. From the
hyperparameter tuning the optimal size of convolutional ker-
nels is 5 × 5.

To preserve the original image size, zero padding is applied
in the convolutional layers, i.e., a layer of pixels with values of
zero are added around the edges of the images. Here, the
convolution operation is applied using a stride of 1, i.e., the
convolutional kernel is moved by 1 pixel while performing
convolution operations.

To introduce nonlinearity, a ReLU activation function is
applied to the feature map outputs of each convolutional layer.
Then, the feature maps are sent to the next layer, the pooling
layer, where they are downsampled using a pooling window
size of 2 × 2 and a stride of 1.

The pooled feature maps of the convolutional section are
flattened into a one-dimensional vector that is fed into the fully
connected layer to be mapped to the output layer. The pro-
posed architecture consists of one hidden layer with 160 neu-
rons optimized by the hyperparameter tuning process ex-
plained above. Moreover, a ReLU activation function follow-
ed by a dropout layer is applied to the hidden layer. As ex-
plained in subsection 2.1.3., the dropout layer is applied as a
regularization technique to prevent overfitting in the proposed

network. Here, a dropout rate of 0.2, optimized during
hyperparameter tuning, was applied in the proposed network,
meaning that one in 5 of the neurons (in the hidden layer)
together with their incoming and outgoing connections were
randomly ignored from each update iteration.

The output layer contains a single neuron since we are
dealing with a regression problem, where a single porosity
value is predicted for each input image.

5.3 Linear regression training

As indicated before, two linear regression models (LR and
MLR) were trained to predict porosity directly from the aver-
age attenuation and standard deviation values calculated for
the individual two-dimensional image slices. The purpose of
such a step is to enable a subsequent analysis revealing if the
CNNmodel extracts relevant features rather than just learning
the average attenuation and standard deviation of the images.
Figure 7 then shows the average attenuation versus measured
porosity values for the training dataset, where different colors
correspond to various lithofacies classes in the study well.
Note that the same porosity values are assigned to 19 succes-
sive image slices. We can see that the number of images as-
sociated to some porosity values are less than 19 since some of
the images with artifacts are removed by image pre-process-
ing. This figure shows that porosity is negatively correlated
with average attenuation. However, some of the datapoints
behave differently and appear as outliers (see the red and blue
ellipsoids in Fig. 7). Based on our investigations the
datapoints within the red ellipsoid are associated with images
that partly contain missing pixels, and this indicates that these
images were not completely removed during the image pre-
processing step. Themissing pixels are characterized by lower
gray-level attenuation values, resulting in lower average atten-
uation in these images compared to the other images with
similar measured porosity values. The datapoints within the
blue ellipsoid, instead, are associated with images containing

Fig. 6 The proposed CNN architecture for porosity estimation using two-dimensional CT images
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high density material with higher average attenuation values
compared to the images with similar measured porosity
values. Since the linear regression training process can be
affected by outliers, we included a step of detecting and re-
moving these outliers prior to model training. To detect the
outliers we employed the Isolation Forest (iForest) algorithm
initially proposed by Fei Tony Liu et al. [50, 51]. The iForest
algorithm is a model that is based on unsupervised learning
and that works using the principle of isolating anomalies.
Similar to the Random Forest, the iForest method randomly
splits the datapoints by building an ensemble of trees (called
iTrees), where the goal here is to isolate the anomalous
datapoints. Based on this algorithm, there is a tendency for
anomalous instances to be isolated easier compared to the
normal instances, i.e., anomalies are the datapoints with short
average path lengths on the iTrees.

As expected, the datapoints related to the images with part-
ly missing pixels and high-density material (red and blue
ellipsoids in Fig. 7) were detected as outliers by the iForest
algorithm. These outliers are removed from the training set
before fitting the linear regression models. The fitted LRmod-
el is shown in Fig. 7.

6 Results and discussions

We now present the obtained training results and compare the
prediction capabilities of the CNN and linear regression ap-
proaches presented above.

6.1 Training results

The CNN regression model was trained to predict RCA mea-
sured porosity values using two-dimensional whole core CT
image slices. The linear regression models were instead
trained to predict RCA measured porosity based on the aver-
age attenuation and standard deviation values computed on
the same two-dimensional CT image slices. Note that the LR
model was trained only on the average attenuations, while the
MLR model was trained on both average attenuations and
standard deviations with the purpose of counting for variation
from the mean average attenuation. To evaluate the training
results, we have shown a quantitative description of the pro-
posed models in Table 3, where we can clearly see that the
CNN outperforms the linear regression models. Moreover, we
can see better performance in the linear regression models by
including the standard deviation as one of the independent
variables. The measured porosity is plotted versus the predict-
ed porosity for the CNN and MLR models in the first row of
Fig. 8. In addition, the corresponding residual plots are shown
in the second row. We observe that the measured and CNN

Fig. 7 Average attenuation of two-dimensional image slices versus
RCA-derived porosity measurements. Different colors correspond to
different lithofacies in the studied well. The datapoints within the red

and blue ellipsoids are the outliers detected by iForest algorithm. The
LR is trained on the datapoints excluding the outliers

Table 3 Coefficient of
determination (r2) and
mean absolute error
(MAE) of the training set
for the CNN and LR
models

Models r2 MAE

LR 0.768 0.027

MLR 0.781 0.026

CNN 0.997 0.005
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predicted porosity values are in good agreement, while there
are bigger deviations between the measured andMLR predict-
ed values. Moreover, the residual errors for the CNN model
are randomly distributed around 0, while the residual errors
for the MLR model exhibit patterns with various degrees of
scattering for various fitted porosity values. These results in-
dicate that average attenuation and gray-level standard devia-
tion do not fully explain the porosity variations. In other
words, the pixel intensity variations that are captured by the
CNN model translate into a learning of the relationship that
exist between these variations (extracted in the form of fea-
tures) and the porosity values. Having highlighted this impor-
tant result, in the remainder of the paper we continue with

evaluating only the performance of MLR and CNN models
in predicting porosity on the unseen images.

6.2 CNN evaluation

As mentioned, to obtain an unbiased evaluation of the CNN
model, 20% of the training set was used as validation set
during training and hyperparameter tuning process. In other
words, once the model is trained at the end of each epoch, its
generalization capability is evaluated on the validation set
using the mean absolute error as the training metric. Figure 9
shows how the error is minimized with increasing the number
of epochs in both the training and the validation sets. Note that

Fig. 8 Porosity prediction of the training dataset. In the first row, the
predicted porosity is plotted versus the actual measured porosity for the
CNN (left) and the multiple linear regression (right) model. The red

dashed line represents the 1:1 line. The corresponding residual error
plots are shown in the second row
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despite assigning 300 epochs, the training process stops after
221 iterations due to the early stopping regularization tech-
nique dictating so. We can see that the model shows high
generalization capabilities on the validation dataset.

6.3 Porosity prediction

The proposed CNN and MLR models were further used to
predict porosity on a set of unseen images, i.e., the test set,
from the same well. Like the training set, 19 successive im-
ages at each depth interval were labeled with the same RCA

derived porosity values. Note that in the case of MLR model,
the calculated average attenuation and standard deviations of
test set images were used to predict RCA porosity, while in
case of CNN the image slices were directly used to predict
porosity. The CNN predicted results are plotted versus the
actual measured values in Fig. 10 (left). Here we show the
CNN predicted porosity values with error bars, where the
markers signify the mean predicted porosity of 19 successive
images, while the error bars show the standard deviations, i.e.,
the variability of the predicted porosity for the 19 images. The
mean predicted porosity and the actual measured porosity for
the CNN and MLR models (Fig. 10) show an r2 of 0.81 and
0.69, respectively. Here, we can see that the CNN predicted
mean porosity values are closer to the line of equality (1:1
line) and the error bars for most of the samples cross the line
of equality), showing that the correlation is balanced. These
results again indicate higher performance of the CNN model
in predicting porosity on the unseen images.

However, there are a few samples that occur relatively far
below the equality line, i.e., samples belonging to the poorly
cemented granule rich medium-grained sandstone
(PCemGraMSS) and muddy fine-grained sandstone
(MudFineSS) classes. These are shown within the red dashed
ellipsoid in Fig. 10.

Image examples of these classes are presented in Fig. 11.
One can clearly see that the images in the first row are char-
acterized by high drilling mud invasion, where mud appears
with very bright to white gray-level attenuation values.
Moreover, the images in the second and third rows are darker

Fig. 9 The CNNmodel performance during training using mean squared
error as the evaluation metric. The blue and red lines depict the training
and validation errors, respectively

Fig. 10 CNN Porosity prediction of the unseen test images plotted versus
the actual measured porosity (left). The CNN model shows an r2 of 0.81,
where high deviations occur in images with drilling mud invasion and

core barrel coupling artifacts. Mean porosity prediction of the unseen test
images plotted versus actual measured porosity for both the CNN and
MLR models (right). The MLR model shows an r2 of 0.69
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in the middle and brighter at the edges. As mentioned before,
this type of artifacts is characteristic of the image intervals
with core barrel couplings. Apparently, these images are not
completely removed during pre-processing, and the men-
tioned artifacts are probably the reason for CNN model defi-
ciency in porosity prediction associated with these images.
Here the model is predicting lower porosity values compared
to the actual values. This is expected given the presence of
pixels with high gray-level attenuations.

In addition, it is worth to mention that the proportion of
different lithofacies classes is varying in the training set (as
shown in Table 4), meaning that the CNN model is trained on
fewer image examples for classes in minority than the more
frequent ones. Given such an imbalanced training dataset, the
model is expected to show lower prediction performance on
the minority classes. This is clearly confirmed in Table 4,
where the average prediction error for lithofacies classes in

minority is higher than the one in more frequent classes.
Note that high average predic t ion error for the
PCemGraMSS class is associated with image artifacts (as ex-
plained above).

Overall, the proposed CNN model shows satisfying
prediction performance on the unseen images. Therefore,
we applied this model to predict porosity throughout the
whole studied well, thereby populating the whole well
with millimeter scale porosity values. Note that this inter-
polation step is performed using a model that was trained
and evaluated on approximately 3% of the available im-
ages. The obtained results are presented in Fig. 12, where
we can see a clear correlation between the CNN predicted
porosity (light blue curve) and the RCA porosity (red
circles). The available total porosity log is also plotted
on the same figure, i.e., the black curve. The total porosity
(φ) log is computed using density porosity equation:

Fig. 11 Examples of the two-dimensional images from the test set, where
there are bigger deviations between the actual measurements and the
predicted porosity values. Clearly, the image artifacts due to mud

invasion (first row) and core barrel couplings (second and third row)
are the reason for CNN model deficiency
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φ ¼ ρma−ρb
ρma−ρfl

; ð9Þ
where ρma indicates the matrix density index obtained from
core measurements, ρb is the bulk density index derived from
the density log, and ρfl is the measured fluid density. To

Table 4 The proportion of
various lithofacies classes in the
training set and average
prediction error calculated on the
test samples of each class. Note
that some of the classes are
missing in the test set, so the
average prediction error for those
classes is not applicable

Lithofacies Classes Proportion in Training Set Average Prediction Error

Marl 0.003 0.060

CalMarl 0.009 NA

SpiculiteSS 0.050 0.023

Mudstone 0.056 0.026

WcemBelSS 0.003 0.065

GraMSSDispC 0.149 0.009

PCemGraMSS 0.040 0.120

WCemMSS 0.021 NA

MudsHighDens 0.003 NA

ArgFineSS 0.091 0.003

RippleFineSS 0.149 0.002

MassFineSS 0.126 0.008

CrossFineSS 0.125 0.003

MudFineSS 0.025 0.028

BioFineSS 0.003 NA

WcemFineSS 0.009 0.020

ContMud 0.003 NA

MassVeryFineSS 0.034 0.006

CemVeryFineSS 0.081 NA

VeryFineSSHorizontal 0.022 0.005

Fig. 12 Populating the whole well with porosity values. The CNN predicted porosity is in line with the RCA measured porosity. A 1.5 m interval is
zoomed in and shown in the plot to the right
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compare the predicted results with the total porosity log at the
same scale, the predicted porosity was coarsened to match the
resolution of the porosity log.

For this purpose, we calculated a moving average of the
CNN predicted porosity using a window size of 30 cm. The
coarsened porosity curve is shown by green color in Fig. 12,
where one can see that it is well correlated with the total
porosity log. A 1.5 meter interval of the well is zoomed in
and shown in Fig. 12. Here we can see the millimeter scale
porosity variations predicted by the CNN model, while the
other two curves are averaged and do not show finer scale
variations. In fact, the predicted porosity is more accurate
and more in line with the core porosity measurements com-
pared to the total porosity log. Note that a bulk depth shift has
been applied on the CNN images and RCA porosity measure-
ments to match the depth of the total porosity log. As this is a
bulk depth shift, there might be local depth-match issues.

The proposed method can thus be employed to provide
accurate local porosity estimations and the obtained results
can be used to calibrate porosity logs. Moreover, it can help
in identifying the appropriate core plug locations.

6.4 Cross-well validation

To further evaluate the generalization capability of the proposed
CNN model, we employed the model to predict porosities from
core CT images coming from a second well from the same field,
and thus on data that was completely unseen by the model
training process. This well penetrates only two of the previously
mentioned formations, i.e., Formation 3 and Formation 4 as
shown in Fig. 13. The lithology of Formation 4 in this well is
very similar to the first well, consisting of mud and caliche rich
marlstones. However, Formation 3 is quite different than the one
in the first well, as it also contains intervals with more coarse-
grained lithofacies. The obtained prediction results are presented
in Fig. 13, where one can see quite good correlation between the
predicted (light blue curve) and measured porosity (red circles),
especially for depth intervals above XX17. As mentioned, the
lithology in these intervals is very similar to the lithology in the
first well. This might explain the higher prediction accuracy.
However, the model predictions are less accurate for porosity
values in the intervals where the lithology is significantly differ-
ent than the lithologies that the model was trained on.

Overall, theMAE and r2 between the core porosity measure-
ments and model predicted porosity is 0.032 and 0.73, respec-
tively. These results indicate the practical applicability of the
proposed CNN model on unseen images from other wells.

7 Conclusions

This study investigated the capability of convolutional neural
networks to automatically predict RCA porosity from two-

dimensional whole core CT scan images and proposed a
workflow to predict millimeter scale continuous porosity
values. The proposed CNN regression model, trained to learn
the relationship between convolution-derived features and
RCA-derived porosity values, was compared with linear re-
gression models trained to predict RCA porosity from average
gray-level attenuation and standard deviation computed for
the same two-dimensional CT images.

Summarizing, the results show that the CNN model is well
able to predict the porosity with a coefficient of determination of
0.81 for the unseen test set. This indicates that the optimized
convolutional kernels have learned the textures and patterns that
are important for estimating porosity. The capabilities of the
CNNmodel in predicting porosity on completely unseen images,
and the capabilities of cross-populating two wells with porosity
values were moreover both tested quantitatively. The obtained
results show that the model generalizes well on unseen images
where the lithology is similar to those that the model has been
trained on. However, images coming from significantly different

Fig. 13 Porosity prediction in the second well employing the proposed
CNN model. The model performs quite well given that the lithology in
some intervals is different than the lithofacies that the model is trained on
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lithologies, and images with specific features/image artifacts
(e.g., images with drilling mud invasion and core barrel cou-
plings) can result in model deficiencies.

Overall, comparison of the predicted porosity with total
porosity log reveals that the proposed method can provide
accurate millimeter scale porosity estimations, while the po-
rosity log has a lower resolution and therefore overlooks such
high-resolution variations.

Our conclusion is thus that the proposed method can be em-
ployed to estimate continuous core scale porosity values in an
automatic fashion, and at early stages of the reservoir character-
ization process. This method can moreover be used to calibrate
the porosity logs, thereby reducing the uncertainties associated
with indirect calculations of the porosity from such logs.We also
remark that it may be helpful to identify proper core plug loca-
tions for an improved core analysis. However, the most signifi-
cant application of the proposed high-resolution porosity log
might be in reservoir characterization and modeling.

It is worth to mention that in this study the CNNmodel was
trained only on images from a single well. Ideally, training the
model on multiple wells, covering different lithofacies and a
wide range of porosity values, is expected to result in higher
generalization capabilities.
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