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To the editor,
Colorectal cancer (CRC) represents one of the lead-

ing causes of oncological-related death in both sexes 
worldwide [1]. A better understanding of CRC biology is 
urgently needed to reduce its progression. Recently the 
crucial role of the extracellular matrix (ECM) and extra-
cellular vesicles (EVs) in maintaining the tumor patho-
physiology has been recognized [2, 3]. Dysregulation of 
ECM remodeling has been shown to contribute signifi-
cantly to tumor fate, for example by inducing hypoxia 
followed by metabolic changes and drug resistance [4]. 
In parallel, mesenchymal stromal cell-derived EVs (MSC-
EVs) can play dual roles in tumor growth and progression 
[5, 6], and their effects on CRC are still debated. Here, the 
capability of MSC-EVs to diffuse into tumor ECM and be 
uptaken by engrafted tumor cells was evaluated using a 
three-dimensional (3D) CRC model. Moreover, the role 
of MSC-EVs in influencing tumor growth as well as their 
effects on the ECM was analyzed by proteomic analysis.

We used the ECM from CRC patients obtained by 
decellularization (Supplementary material 1) [7]. The 
ECM structure was characterized before (DM) and after 
repopulation (RM) with CRC cells, HT29 (Supplemen-
tary material 2A-B). ECM components were uniformly 
maintained in RM, as observed by PAS and Ki67-positive 
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staining (Supplementary material 2C-D). We proposed 
using this model to evaluate the MSC-EV role as thera-
peutics for CRC treatment.

The potential use of MSC-EVs as a bioactive com-
pound with per se anti-tumor activity is dependent 
on their incorporation capability that we established 
in normal culture conditions (Supplementary material 

2E). Then, we explored the MSC-EV diffusion into the 
ECM using DiI-labeled EVs. DiI-labelled-EVs were 
captured within the RM and accumulated in the cyto-
plasm of the HT-29 (Fig. 1A). EVs presented a diameter 
of 50–150  nm, consistent with a small EV population 
(Supplementary material 3A-B). Together with the 
classical exosomal and mesenchymal surface markers 

Fig. 1  MSC-EVs active uptake in the 3D-CRC model and proteome analysis of DM and RM samples. (A) Representative immunofluorescence images 
of CRC biopsies repopulated with ZSGreen-HT29 CRC cell line incubated with EVs-DiL or PBS-DiL. Cell nuclei were counterstained using DAPI. Scale 
bar=20 μm (left panel). 3D reconstruction of EVs-DiL or PBS-DiL (red) diffusion in decellularized CRC biopsies repopulated with ZSGreen-HT29 CRC cell line 
(green, right panel; scale bar = 20 μm). (B) Schematic representation of proteome and secretome analysis in DM and RM samples in which differentially 
abundant proteins were investigated in DM (upper panel) or RM (lower panel) after EV-treatment or not. Matrix samples were divided into four groups: 
(i) decellularized CRC biopsies, EV-untreated (DM-CTRL) or (ii) EV-treated (DM-EV); (iii) decellularized CRC biopsies repopulated with HT29 cancer cell line, 
EV-untreated (RM-CTRL) or (iv) decellularized CRC biopsies repopulated with HT29 cancer cell line EV-treated (RM-EV). Supernatants (S) of each condition 
(labelled in red) were also collected. Volcano plots of the comparison between the proteomic profile of RM and DM after incubation with MSC-EVs (C) 
or control medium (D); up-regulated proteins (red squares) and down-regulated proteins (green squares) between RM-EV vs. DM-EV and RM-CTRL vs. 
DM-CTRL. Venn diagrams of exclusively up-regulated (E) or down-regulated (F) proteins in RM-CTRL and RM-EVs groups. Up-regulated proteins specific 
of CTRL group are labelled in blue, those specific of EVs treated-group are in red and the up-regulated proteins shared by the two groups are in dark red. 
Down-regulated proteins specific of CTRL group are labelled in pink, those specific of EVs treated-group are in yellow and the down-regulated proteins 
shared by the two groups are in orange. (G-H) Functional annotation of the respectively up-regulated proteins in RM-CTRL and RM-EV using DAVID Bio-
informatics Resources for Biological processes
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(Supplementary material 3C), we identified 379 pro-
teins within the EVs by proteomic analysis (Supple-
mentary material 4). The gene-ontology enrichment 
analysis highlighted cargo proteins related to DNA reg-
ulation and ECM organization (Supplementary mate-
rial 3D-F). Interestingly, MSC-EVs were also identified 
in DM-EV in the absence of cancer cells (not shown), 
supporting the EV capability to migrate inside the 
ECM as described by [8].

In this light, we hypothesized that MSC-EVs can 
affect cancer cell behavior directly, by their cellular 
uptake, or indirectly, by modifying the ECM biologi-
cal properties. Therefore, we compared firstly the pro-
teomic profile of DM and RM after incubation with 
MSC-EVs or in their absence. (Fig.  1B). We identified 
a total of 117 differently expressed proteins between 
RM-EV and DM-EV, while 165 were differently 
expressed between RM-CTRL and DM-CTRL (Fig. 1C, 
D). Next, we compared the two lists to discriminate 
the direct effects of MSC-EVs on HT-29. Considering 
the up-regulated proteins, 82 and 121 proteins resulted 
exclusively modulated in EV- or CTRL-treated groups, 
respectively (Fig. 1E and Supplementary material 5). In 
the case of down-regulated proteins, 14 were specific 
for CTRL- and 3 for the EV-treated group (Fig. 1F and 
Supplementary material 5). The RM-CTRL showed 
enrichment for proteins involved in the cell cycle and 
proliferation (Fig.  1G). Conversely, the enriched pro-
teins in RM-EV were involved in gene silencing, trans-
lational processes negative regulation, and oxidative 
stress, suggesting a cell population exposed to stress 
conditions (Fig.  1H). This led us to speculate that 
MSC-EVs could prevent CRC cells from homing in the 
tumor-ECM.

This hypothesis was confirmed by a reduction of the 
viability of EV-treated CRC cells engrafting the ECM 
after MSC-EVs administration, mainly due to enhanced 
apoptosis measured by Tunel assay (Fig. 2A, B) as well 
as by the downregulation of the anti-apoptotic gene 
BCL-2 and the upregulation of the pro-apoptotic gene 
BAK-1 (Fig. 2C). Interestingly, a significant but slighter 
cytotoxic effect was observed culturing CRC cells in 
the 2D setting (Supplementary material 2F), highlight-
ing the importance of the direct activity of the EVs 
towards the ECM. The transcriptional down-regulation 
of Ki-67, c-Myc, CCND2, and CCNE1, in concomi-
tant with the over-expression of CDKN1A (Fig.  2D), 
confirmed an antitumor effect of the MSC-EV in the 
3D-CRC [9, 10]. Interestingly, the MSC-EV cargo is 
enriched with molecules involved in DNA synthesis 
and transcription, and epigenetic gene silencing (Sup-
plementary material 4). A strong overrepresentation 
of molecules belonging to the complement system was 
also identified (Supplementary material 3G, H), which 
can mediate immunosurveillance mechanisms against 
cancer [11]. The secretome profile of RM-EV was con-
sistent with the proteomic data obtained in the 3D 
model, showing the enrichment of proteins related to 
ECM organization compared to RM-CTRL (Fig.  2E-H 
and Supplementary material 6).

In conclusion, we establish a promising assay to inves-
tigate the biological activity of MSC-EVs in a 3D environ-
ment. In the 3D-CRC model, the direct influence of each 
biological component studied was discerned, allowing 
a better definition of the tumor-stroma response to EV 
treatment. In the future, this model can be translated to 
other tumors and EV sources to evaluate different anti-
cancer strategies in a 3D biomimicking environment.
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Abbreviations
CRC	� Colorectal cancer
TME	� Tumor microenvironment
ECM	� Extracellular matrix
EVs	� Extracellular vesicles
MSC	� Mesenchymal stem cell
MSC-EVS	� Mesenchymal stem cell-derived extracellular vesicles
DM	� Decellularized matrix

RM	� Recellularized matrix
PAS	� Periodic Acid-Schiff
3D-CRC	� Three-dimensional patient derived-CRC model
FDR	� False discovery rate
GO	� Gene Onthology
CTRL	� Control
CCND2	� Cyclin-D2
CCNE1	� Cyclin-E1

Fig. 2  Biological effect on cell cycle and apoptosis of the MSC-EVs treatment in the 3D-CRC model and secretome analysis of RM samples. (A) Repre-
sentative H&E images of 3D-CRC untreated (RM) or treated (RM-EV) with MSC-EVs (left panel). The apoptotic cells were detected using TUNEL assay, the 
DNA fragmentation is indicated by ApopTag Plus Peroxidase positive staining (brown) (right panel). Scale bar = 20 μm. (B) Quantification of apoptotic 
cells in the 3D-CRC model treated or untreated with MSC-EVs and expressed as apoptotic cells/field. Gene expression level of apoptosis and cell cycle-
related genes in the 3D-CRC model treated or untreated with MSC-EVs: (C) BCL-2 and BAK1. (D) C-MYC, KI-67, CCND2, CCNE1 and CDKN1A. P< 0,05 vs. 
RM, unpaired two-sided Student’s t-test. (E) Volcano plots of the comparison between the secretome profile of RM-EV vs. RM-CTRL, The up-regulated 
proteins (red squares) and down-regulated proteins (green squares) in the RM-EV secretome in respect to the RM-CTRL were defined. The 23 secreted 
proteins up-regulated in RM-EV were functionally annotated using DAVID Bioinformatics Resources in (F) Biological processes, (G) Molecular functions 
and (H) Cellular components
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CDK	� Cyclin Dependent Kinase
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