
Freshness on Demand: Optimizing Age of
Information for the Query Process

Josefine Holm∗, Anders E. Kalør∗, Federico Chiariotti∗, Beatriz Soret∗, Søren K. Jensen+,
Torben B. Pedersen+, and Petar Popovski∗

∗Department of Electronic Systems, Aalborg University
Fredrik Bajers Vej 7C, 9220 Aalborg, Denmark, email: {jho,aek,fchi,bsa,petarp}@es.aau.dk

+Department of Computer Science, Aalborg University
Selma Lagerløfs Vej 300, 9220 Aalborg, Denmark, email: {skj,tbp}@cs.aau.dk

Abstract—Age of Information (AoI) has become an important
concept in communications, as it allows system designers to
measure the freshness of the information available to remote
monitoring or control processes. However, its definition tacitly
assumes that new information is used at any time, which is not
always the case. Instead instants at which information is collected
and used are dependent on a certain query process. We propose
a model that accounts for the discrete time nature of many
monitoring processes, by considering a pull-based communication
model in which the freshness of information is only important
when the receiver generates a query. We then define the Age
of Information at Query (QAoI), a more general metric that
fits the pull-based scenario, and show how its optimization can
lead to very different choices from traditional push-based AoI
optimization when using a Packet Erasure Channel (PEC).

Index Terms—Age of Information, networked control systems

I. INTRODUCTION

Over the past few years, the concept of information fresh-
ness has received a significant attention in relation to cyber-
physical systems that rely on communication of various up-
dates in real time. This has led to the introduction of Age of
Information (AoI) [1] as a metric that reflects the freshness
at the receiver with respect to the sender, and denotes the
difference between the current time and the time when the
most recently received update was generated at the sender.

The first works to deal with AoI considered simple queuing
systems, deriving analytical formulas for information fresh-
ness [2]. Follow-up works addressed AoI in specific wireless
scenarios with errors [3] and retransmissions [4], or basing
their analysis on live experiments [5]. The addition of more
sources in the queuing system leads to an interesting schedul-
ing problem, which aims at finding the packet generation rate
that minimizes the age for the whole system [6]. Optimizing
the access method and senders’ updating policies to minimize
AoI in complex wireless communication systems has been
proven to be an NP-hard problem, but heuristics can achieve
near-optimal solutions [7] by having sources decide whether
an update is valuable enough to be sent, i.e., whether it would
significantly reduce the AoI [8]. The average AoI has been
derived in slotted [9] and unslotted ALOHA [10], as well as
in scheduled access [11], and the performance of scheduling
policies has been combined with these access methods in [12].

However, the tacit assumption behind AoI, regardless of the
system for which it is computed, has been that the receiver
is interested in having fresh information at any time. In
other words, this assumption works with push-based commu-
nication, in which a hypothetical application residing at the
receiver has a permanent query to the updates that arrive at
the receiver. The motivation for this paper starts by questioning
this underlying assumption and generalizes the idea of AoI by
considering the timing of the query process. This makes the
communication between the sensor and receiver pull-based,
where the query can guide the communication strategy for the
sensor updates.

The impact of the query-driven, pull-based communication
model becomes immediately obvious with the (over)simplified
example in Fig. 1. The time is slotted and each packet, labeled
1, 2, . . . 7, takes one slot. Each update is generated immedi-
ately prior to the transmission. The queries Q1, Q2, Q3, . . .
arrive periodically, every 7-th slot. Furthermore, as an energy
constraint, it is assumed that the sender can transmit on
average one packet every 3 slots. Fig. 1a shows the case in
which the sender is oblivious to the query arrival process
and distributes the transmissions evenly in time. Another
strategy could be, in each slot, to decide to transmit with
probability 1/3 or stay silent otherwise; the important point
is that this decision is made independently from the query
process. Fig. 1b shows the case in which communication
is query-drive so the sender knows the query instants and
optimizes the transmissions with respect to the timing of the
query process, i.e., sends just before the query instants. In
both cases the (red) packets 1, 4, 5 are lost due to transmission
errors. Fig. 1c shows that the query-driven strategy is more
likely to provide updates that are fresh when a query arrives,
although its average AoI is worse at the instants in which there
is no query.

Despite the deceptively simple insight offered by the ex-
ample from Fig. 1, the introduction of query-driven com-
munication strategies does have a practical significance and
introduces novel and interesting problems, as this paper shows.
In fact, the assumption of a permanent query is relatively
uncommon in the network control literature [13], which often
uses periodic discrete time systems that poll the state of
the monitored process at predefined intervals. Most network

Q1 Q2 Q3

1 2 3 4 5 6 7

(a) Permanent query transmissions
Q1 Q2 Q3

21 43 65

(b) Query-aware transmissions

Q1 Q2 Q3

t

A
oI

Permanent query
Query-aware

(c) Age for the two systems

Fig. 1: Example of the difference between a system assuming
a permanent query and one that is aware of the query arrival
process. The same packets are lost (depicted in red) in both
systems, and the markers indicate the age at the query arrival
instants.

control systems are asynchronous, and use different sampling
strategies that depend on the reliability of the connection and
on the monitored process [14]. We define a query arrival
process and consider the optimization of the communication
process with respect to that arrival process. Furthermore, we
define an Age of Information at Query (QAoI) metric which
reflects the freshness in the instants when the receiver actually
needs the data: having fresh data when the monitoring process
is not asking for it does not provide any benefits to the system,
as the information will not be used. Our model is also relevant
for duty cycle-based applications, in which the sleeping pattern
of the sensors are synchronized with the monitoring process.

This paper introduces models to analyze the difference in
the communication strategies that should be used when the
query arrival process is taken into account compared to the
treatment of AoI in the context of a permanent query. In this
initial work, we derive a Markov Decision Process (MDP)
model for the problem with periodic queries and an erasure

channel, and show that an optimization aimed at QAoI can
significantly improve the perceived freshness with respect to
classical models.

The remainder of the paper is organized as follows. We
define the system model and the concept of QAoI in Sec. II,
and we formalize it as an MDP in Sec. III. The setting and
results of our simulations are described in Sec. IV, and Sec. V
concludes the paper and presents some possible avenues of
future work.

II. SYSTEM MODEL

We consider a scenario in which a wireless sensor generates
updates at will and transmits them to an edge node over a
wireless channel. The edge node receives queries from a server
about the state of the sensor, e.g. as part of a monitoring or
control process. The objective of this work is to maximize the
freshness of the information used in the query responses while
considering that the sensor is energy-constrained and needs to
limit the number of transmissions to the edge node to prolong
its lifetime.

A. Age of Information at Query

We consider a time-slotted system indexed by t = 1, 2, . . .,
and denote the time instants at which updates are successfully
delivered to the edge node by tu,1, tu,2, Following the
common definition of AoI considered in the literature, e.g.
[2], [6] we denote the AoI in time slot t by ∆(t), and define
it as the difference between t and the time at which the last
successfully received packet was generated:

∆(t) = t− max
i:tu,i≤t

tu,i. (1)

We will assume that tu,1 = 0 so that ∆(t) is well defined.
An alternative, but equivalent definition can be obtained by
introducing an indicator function ψ(t), which is equal to 1 if
a packet is successfully received in slot t and 0 otherwise:

∆(t) =

{
∆(t− 1) + 1 if ψ(t) = 0;

1 if ψ(t) = 1,
(2)

where ∆(0) = 0.
Most work considers the problem of minimizing the long-

term average of ∆(t). However, this is only one possibility
in real monitoring and control systems: discrete-time systems
involve queries in which the monitoring process samples
the available information. To capture such applications, we
introduce the QAoI metric, which generalizes AoI by sampling
∆(t) according to an arbitrary querying process, thereby
considering only the instants at which a query arrives. We
denote the query arrival times at the edge node by tq,1, tq,2, . . .,
and define the overall objective as minimizing the long-term
expected QAoI defined as

τ∞ = lim
t→∞

1

t
E

 ∑
i:tq,i≤t

∆(tq,i)

 . (3)

Although the query process may in general follow any random
process, in this initial paper we limit the focus to the case in

which the exact query instants are known in advance to the
edge node and the sensor. This is for instance the case when
the queries are periodic, or if the server repeatedly announces
its next query instant.

B. Models for Communication and Query Arrivals

We assume that each update has a fixed size and is trans-
mitted over a Packet Erasure Channel (PEC) with erasure
probability ε. For simplicity’s sake, in the following we refer to
the success probability ps = 1−ε. Packets are instantaneously
acknowledged by the receiver, so the sensor knows if a packet
was erased or correctly received.

To model the energy-constrained nature of the node, we use
a leaky bucket model, as commonly done in the literature [15]:
we consider a bucket of tokens, which is replenished by a
process which can generate tokens independently at each step
with probability µb. The node can only transmit a packet if
there are tokens in the bucket, and each transmission consumes
one token. This model can fit an energy gathering node, as
well as a general power consumption constraint on a battery-
powered node, which should limit its number of transmissions
in order to prolong its lifetime.

In this work, we assume the simplest possible query arrival
process, with periodic queries every Tq steps. We assume that
the sensor and receiver are synchronized, i.e., the sensor knows
when the next query will come. While simple, this assumption
is often realistic, as discrete time monitoring processes are
often designed with a constant time step.

The model can be easily extended to more complex query
arrival processes, and the process statistics can even be learned
implicitly as part of the optimal strategy, as long as it is consis-
tent. If we follow the definitions from Sec. II-A, the strategies
to minimize AoI and QAoI coincide in the memoryless case in
which the query arrival process is Poisson or when the query
arrival process is much faster than the sensor, i.e., when there
is a query in each time slot.

III. MDP FORMULATION AND PROBLEM SOLUTION

In the following, we will model the two communication
scenarios described in the next paragraph as MDPs, which
we will then proceed to solve. An MDP is defined by a state
space S, an action space A, a set of transition probabilities
pa(s, s′) = P (st+1 = s′|at = a, st = s), and an instantaneous
reward function r(s, a, s′), which represents the immediate
reward when taking action a and transitioning from state s to
state s′. The model can be used to represent two different sys-
tems: a Permanent Query (PQ) system, which minimizes the
traditional AoI, and a Query Arrival Process Aware (QAPA)
system, which minimizes the QAoI, only caring about the
instants when a query arrives. These two systems can use the
same state and action spaces, and only differ in the reward
function that they use.

Decisions are made at every slot, as the sensor can either
keep silent or send a packet. Consequently, the action space is
A = {0, 1}. As the aim of the QAPA agent is to minimize the
QAoI, the state should include the current age ∆(t), as well

as the number of slots σ(t) until the next query. Additionally,
the agent should know the number of available tokens, b(t),
as it will influence its decision whether to transmit. If the
number of tokens is 0, the sensor is blocked from transmitting
until a token is generated. The state space can then be defined
as S = N × {0, . . . , Tq − 1} × N, where N indicates the
set of strictly positive integers. A state st is given by the
tuple (∆(t), σ(t), b(t)). Each element in the state tuple evolves
independently between time steps, so in the following we
describe the state dynamics one by one.

The AoI increases by one between each slot unless the node
decides to transmit and the packet is successfully received,
with probability ps, in which case the AoI is reduced to one
in the subsequent slot. The non-zero transition probabilities
are thus described by

Pr(∆(t+ 1) = δ|∆(t), at) =


atps if δ = 1;

1− atps if δ = ∆(t) + 1;

0 otherwise,
(4)

where at is the action at time t, which equals zero if the
sensor is silent and one if it transmits. The time until the
next query, denoted by σ(t), is deterministic and independent
of the action, and decreases by one until it reaches zero, at
which point it is reset to Tq . Assuming that the first query
happens at time t = Tq , the value of σ(t) can be written

σ(t) = Tq − t (mod Tq). (5)

Finally, the number of tokens in the next slot depends on
whether a new token is generated and whether the sensor
transmits, in which case, it uses one token. The transition
probability from b(t) to b(t+ 1) is:

p(b(t+ 1) = b+ i|b(t), at) =


µb if i = 1− at;
1− µb if i = −at;
0 otherwise.

(6)

We define two cost functions; one for the PQ system, which
does not depend on the query instant and will be used as
baseline, and one for the QAPA system, in which the cost
is only considered when a query arrives. In the baseline PQ
model, the cost is given by the AoI in any slot:

cPQ(st, at, st+1) = ∆(t+ 1). (7)

However, in the QAPA system, the cost is the AoI when a
query arrives:

cQAPA(st, at, st+1) =

{
∆(t+ 1) if σ(t+ 1) = 0;

0 otherwise.
(8)

In both cases, the objective is to find a policy π∗ that
minimizes the long-term cost. In this initial work, we limit
ourselves to consider the discounted case, which benefits
from strong convergence guarantees, and defer the case with
undiscounted costs to future work. Specifically, we solve:

π∗ = arg min
π

E

[∞∑
t=0

λtc(t)|π

]
, (9)

where λ < 1 is the discount factor.
We can now proceed to solve the MDP for the two systems

we have defined using policy iteration, as described in [16, Ch.
4]. In order to apply the algorithm, we need to truncate the
problem to a finite MDP. We do so by defining a maximum
age ∆max and a token bucket size B: once the age or the
number of tokens in the bucket reach the maximum, they
cannot increase further. As long as the maximum values are
sufficiently large, they are not reached during normal operation
and this simplification does not affect the optimal policies or
their performance.

The policy iteration algorithm has two steps: 1) policy
evaluation and 2) policy improvement which are repeated until
convergence. To solve the proposed problem we initialize the
policy with zeros i.e. the policy where we never send any
updates, and the value to be larger than we expect from a
reasonable policy.

1) The policy is evaluated using

vπ(s) =
∑
s′

p(s′, c|s, a) (c+ λvπ(s′)) . (10)

for all s, where s is the current state, s′ is the new state,
a is the action, and c is the cost from either (7) or (8).

2) The policy is improved. First, we compute

qπ(s, a) =
∑
s′

p(s′, c|s, a) (c+ λvπ(s′)) (11)

for all a. If qπ(s, a) > vπ(s), we substitute a into the
policy. This is repeated for all s.

Policy iteration is guaranteed to converge to the optimal pol-
icy [17] in finite-state MDPs with finite reward. As mentioned
above, we truncated the age and token bucket size to make
the MDP finite, so the conditions to use the algorithm apply.

IV. NUMERICAL RESULTS

This section presents Monte Carlo evaluations of the poli-
cies obtained using the MDP described in Section III. Al-
though, the methods in Section III can be applied to any
query process, throughout the evaluation we will consider
queries that occur periodically, at a fixed time interval Tq .
Furthermore, we truncate the MDP at a maximum age of
∆max = 100Tq and a maximum token bucket size of B = 10,
and we use a discount factor λ = 0.75. We use the term AoI
to refer to the age at any time and QAoI for the age sampled
at the query instants.

We start by exploring the temporal dynamics of the AoI
process obtained using the PQ and the QAPA policies. Recall
that PQ is optimized to achieve a low AoI independent of the
query process, while QAPA minimizes the AoI at the query
times, using cost functions (7) and (8), respectively. Fig. 2a
shows the AoI for queries occurring periodically every Tq =
40-time slots as indicated by the vertical lines, a packet error
probability of ε = 0.2, and a token rate µb = 0.2. It is seen
that the PQ policy reduces the AoI approximately uniformly
across time, while the QAPA policy consistently tries to reduce
the AoI in the slots immediately prior to a query, so that the

0 50 100 150 200

0

10

20

30

t

∆
(t

)

PQ
QAPA
Query Time

(a) AoI over time for the two policies.

0 50 100 150 200

0

5

10

t

b(
t)

PQ
QAPA
Query time

(b) Available tokens over time for the two policies.

Fig. 2: AoI dynamics of the PQ and QAPA policies for Tq =
40, µb = 0.2, ε = 0.2. The PQ policy generally has a lower
AoI, but the QAPA policy minimizes the AoI at the query
instants.

AoI is minimized when the query arrives. This is reflected
in Fig. 2b, which shows that the QAPA policy accumulates
energy when the next query is far in the future, unlike PQ. A
consequence of this is that the QAPA policy generally has a
slightly higher average AoI than the PQ policy, but the QAoI
of the QAPA is significantly lower than that of the PQ policy.

The initial observations from Fig. 2 can be confirmed by
the distribution of the AoI as a function of the time since the
last query, as illustrated in Fig. 3. Figs. 3a and 3c show the
probability mass function of the AoI conditioned t mod Tq ,
while Figs. 3b and 3d show the Cumulative Distribution
Function (CDF) of the overall AoI and QAoI. In the scenario
with low error probability, ε = 0.2, the AoI distribution of
the PQ policy is uniform across time (upper plot in Fig. 3a),
while the QAPA policy has an increasing age as time since the
query passes, but a far lower age right before and at the query
instant, t mod Tq = 0 (lower plot in Fig. 3a). The resulting
CDF in Fig. 3b reveals, as expected, that the AoI and the QAoI
are equivalent for the PQ policy, as the distribution is the same
at any time instant. However, for the QAPA policy, the QAoI
is significantly lower than the AoI, while the AoI is often
larger than the PQ policies. This is because the QAoI is only
measured at the query instants, at which the age of the QAPA
policy is minimized. Due to the energy constraint, this comes
at the cost of a generally higher age, causing a higher AoI
measured at each time instant. Finally, the staircase appearance
in the CDF is because the queries happen periodically. If the
queries came at variable (but known in advance) intervals, the

20

40

A
oI

(P
Q

)

0.00

0.25

0.50

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.40

0.80

(a) PQ (upper) and QAPA (lower) density, ε = 0.2.

0 100 200 300 400
10−5

10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

AoI (PQ)
QAoI (PQ)
AoI (QAPA)
QAoI (QAPA)

(b) Complementary CDF, ε = 0.2.

20

40

A
oI

(P
Q

)

0.00

0.10

0.25

0 10 20 30

20

40

t mod Tq

A
oI

(Q
A

PA
)

0.00

0.15

0.30

(c) PQ (upper) and QAPA (lower) density, ε = 0.7.

0 100 200 300 400
10−5

10−4

10−3

10−2

10−1

100

AoI/QAoI

1
−

C
D

F

(d) Complementary CDF, ε = 0.7.

Fig. 3: AoI distributions and CDFs for PQ and QAPA for Tq = 40, µb = 0.1 and ε = {0.2, 0.7}. (a), (c): AoI distribution
for the PQ and QAPA conditioned on the time since the last query t mod Tq , which corresponds to Tq − σ(t), for ε = 0.2
and ε = 0.7, respectively. PQ achieves low AoI at all times, QAPA ensures that the AoI is low at the query instants, i.e. t
mod Tq = 0. (b), (d): Complementary CDF of the AoI and QAoI achieved by the two policies for ε = 0.2 and ε = 0.7.
Generally, the QAPA policy has lower QAoI but higher AoI than the PQ policy.

CDF would be smoother, maintaining QAPA’s performance
advantage.

The same observations apply for the scenario with high error
probability, ε = 0.7, shown in Figs. 3c and 3d. Although the
AoI and QAoI are higher due to the high packet error rate, the
applied policies are similar. The gain that the QAPA policy
achieves by clustering its transmissions close to the query
instant is clearly reflected in Fig. 3c where, although there
is a significant probability that the packet immediately prior
to the query is lost, the AoI distribution at t mod Tq = 0 is
still concentrated close to one.

We close the section by studying how the average AoI and
QAoI changes with the packet error probability ε for various
choices of the parameters, shown in Fig. 4. For all cases, the
QAPA policy achieves the lowest QAoI, while the PQ policy
achieves the lowest AoI. When the query period, Tq , is low,
the difference between AoI and QAoI is relatively small, as
is the difference between the two policies. Intuitively, this is
because the query instants, which are prioritized by the QAPA
policy, are more frequent, making the two problems more

similar. If we set Tq = 1, the two policies would coincide.
As a result, awareness of the query arrival process becomes
more important when queries are rare, i.e., when Tq is large:
this is clear from the large gap between the average QAoI
achieved by QAPA and by PQ in Fig. 4c and Fig. 4f. The upper
row, Fig. 4a-4c, shows the results for µb = 0.05, i.e., when a
new token is generated on average every 20 time slots. When
Tq = 10 (4a), the token period becomes a limiting factor,
and both the AoI and QAoI are relatively high even for low
values of ε. In particular, in the error-free case when ε = 0, the
average QAoI cannot be lower than (1 + 11)/2 = 6, which
is achieved by transmitting an update prior to every second
query. Interestingly, the impact of the energy limit becomes
less significant for the QAPA policy as the time between
queries increases: by saving up tokens until right before the
query, this policy can significantly reduce the QAoI, at the cost
of a higher AoI. On the other hand, the PQ policy does not
benefit from this increase, as it is oblivious of the query arrival
frequency. When tokens are generated faster, at rate µb = 0.2,
as shown in Fig. 4d-4f, the AoI and the QAoI are generally

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

AoI (PQ)
QAoI (PQ)
AoI (QAPA)
QAoI (QAPA)

(a) Average age for Tq = 10, µb = 0.05.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(b) Average age for Tq = 20, µb = 0.05.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(c) Average age for Tq = 40, µb = 0.05.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(d) Average age for Tq = 10, µb = 0.2.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(e) Average age for Tq = 20, µb = 0.2.

0 0.2 0.4 0.6 0.8

0

20

40

60

80

ε

A
ve

ra
ge

ag
e

(f) Average age for Tq = 40, µb = 0.2.

Fig. 4: Average AoI and QAoI for the two systems for different values of Tq and µb.

lower, since more frequent transmissions are allowed.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new metric for information
freshness, which we dubbed QAoI: unlike standard AoI for
push-based communication, this metric can be used for pull-
based communication in which the monitoring process is not
always listening, but sends queries when it is interested in the
information. With the proposed model and subsequent MDP
solution, we show the benefit of optimizing the transmission
policy using the available knowledge on the query arrival
process. Our results show that the standard PQ optimization,
which minimizes AoI at any instant, can be very different
from a QAPA policy that optimizes QAoI by concentrating its
transmissions right before it expects a new query.

We are considering several avenues of future work, such as
a formal derivation of the QAoI in simple queuing systems and
the modeling of more complex query processes with stochastic
timing, which would require the sensors to learn the nature of
the query arrival process online.

ACKNOWLEDGMENT

This work has, in part, been supported the Danish Council
for Independent Research (Grant No. 8022-00284B SEMI-
OTIC).

REFERENCES

[1] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A
new concept, metric, and tool,” Foundations and Trends in Networking,
vol. 12, no. 3, pp. 162–259, Nov. 2017.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in INFOCOM. IEEE, Mar. 2012, pp. 2731–2735.

[3] K. Chen and L. Huang, “Age-of-information in the presence of error,”
in International Symposium on Information Theory (ISIT). IEEE, Jul.
2016, pp. 2579–2583.

[4] R. Devassy, G. Durisi, G. C. Ferrante, O. Simeone, and E. Uysal,
“Reliable transmission of short packets through queues and noisy
channels under latency and peak-age violation guarantees,” IEEE JSAC,
vol. 37, no. 4, pp. 721–734, Feb. 2019.

[5] H. B. Beytur, S. Baghaee, and E. Uysal, “Measuring age of information
on real-life connections,” in 27th Signal Processing and Communications
Applications Conference (SIU). IEEE, Apr. 2019.

[6] I. Kadota and E. Modiano, “Minimizing the age of information in wire-
less networks with stochastic arrivals,” IEEE Transactions on Mobile
Computing, Dec. 2019.

[7] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov. 2017.

[8] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in International Symposium on Information Theory (ISIT).
IEEE, Jun. 2015, pp. 3008–3012.

[9] R. D. Yates and S. K. Kaul, “Status updates over unreliable multiaccess
channels,” in International Symposium on Information Theory (ISIT).
IEEE, Jun. 2017, pp. 331–335.

[10] R. D. Yates and S. K. Kaul, “Age of information in uncoordinated
unslotted updating,” arXiv preprint arXiv:2002.02026, Feb. 2020.

[11] R. Talak, S. Karaman, and E. Modiano, “Distributed scheduling algo-
rithms for optimizing information freshness in wireless networks,” in
19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC). IEEE, Jun. 2018.

[12] X. Chen, K. Gatsis, H. Hassani, and S. S. Bidokhti, “Age of information
in random access channels,” arXiv preprint arXiv:1912.01473, Dec.
2019.

[13] L. Zhang and D. Hristu-Varsakelis, “Communication and control co-
design for networked control systems,” Automatica, vol. 42, no. 6, pp.
953–958, Jun. 2006.

[14] D. Zhang, P. Shi, Q.-G. Wang, and L. Yu, “Analysis and synthesis of
networked control systems: A survey of recent advances and challenges,”
ISA transactions, vol. 66, pp. 376–392, Jan. 2017.

[15] V. Raghunathan, S. Ganeriwal, M. Srivastava, and C. Schurgers, “Energy
efficient wireless packet scheduling and fair queuing,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 3, no. 1, pp. 3–23, Feb.
2004.

[16] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[17] R. A. Howard, Dynamic programming and Markov processes. John
Wiley, 1960.

