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ABSTRACT

The long-term variations in the orbit of the Earth govern the insolation on its surface and hence its climate. The use of the astronomical
signal, whose imprint has been recovered in the geological records, has revolutionized the determination of the geological timescales.
However, the orbital variations beyond 60 Myr cannot be reliably predicted because of the chaotic dynamics of the planetary orbits
in the Solar System. Taking this dynamical uncertainty to account is necessary for a complete astronomical calibration of geological
records. Our work addresses this problem with a statistical analysis of 120 000 orbital solutions of the secular model of the Solar
System ranging from 500 Myr to 5 Gyr. We obtain the marginal probability density functions of the fundamental secular frequencies
using kernel density estimation. The uncertainty of the density estimation is also obtained here in the form of confidence intervals
determined by the moving block bootstrap method. The results of the secular model are shown to be in good agreement with those of
the direct integrations of a comprehensive model of the Solar System. Application of our work is illustrated on two geological data
sets: the Newark-Hartford records and the Libsack core.
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1. Introduction

Milankovitch (1941) hypothesized that some of the past large
climate changes on the Earth originated from the long-term vari-
ations in its orbital and rotational elements. These variations
are imprinted along the stratigraphic sequences of sediments.
Using their correlations with an orbital solution (Laskar et al.
2004, 2011a; Laskar 2020), some of the geological records can
be dated with precision. This method, named astrochronology,
has become a standard practice in the stratigraphic community
and has proven to be a powerful tool for reconstructing the geo-
logical timescale (e.g., Gradstein et al. 2004, 2012; Gradstein &
Ogg 2020).

The climate rhythms found in the geological records are
directly related to the Earth’s precession constant and to the fun-
damental secular frequencies of the Solar System: the precession
frequencies (gi)i=1,8 of the planet perihelia and the precession
frequencies (si)i=1,8 of their ascending nodes. The evolution of
these fundamental frequencies is accurately determined up to
60 Myr (Laskar et al. 2004, 2011a; Laskar 2020). Beyond this
limit, even with the current highest precision ephemerides, it
is hopeless to obtain a precise past history of the Solar Sys-
tem simply via numerical integration. This limit does not lie
in the precision of the determination of the initial conditions
but originates in the chaotic nature of the Solar System (Laskar
1989, 1990; Laskar et al. 2011b). However, because the astro-
nomical signal is recorded in the geological data, it appears to
be possible to trace back the orbital variations in the geological
record and thus to constrain the astronomical solutions beyond
? The density estimation of the fundamental frequencies and their

combinations are only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/654/A156

their predictability horizon (Olsen & Kent 1999; Ma et al. 2017;
Olsen et al. 2019). Nevertheless, a deterministic view of the Solar
System is no longer reliable beyond 60 Myr, and a statistical
approach should be adopted. Geological constraints should like-
wise be retrieved in a statistical setting. In this spirit, a recent
Bayesian Markov chain Monte Carlo (MCMC) approach has
been proposed to provide geological constraints on the funda-
mental frequencies (Meyers & Malinverno 2018). For such a
Bayesian approach to give any meaningful constraint, proper
prior distributions of the fundamental secular frequencies are
required, and therefore a statistical study of the orbital motion
of the Solar System planets is needed. This constitutes the
motivation for the present study.

Laskar (2008) performed the first statistical analysis of the
long-term chaotic behavior of the planetary eccentricities and
inclinations in the Solar System. Mogavero (2017) reconsidered
the problem from the perspective of statistical mechanics. Our
study is a follow-up of Laskar (2008). We study fundamental
frequencies instead of orbital elements because they are more
robust and are closer to the proxies that can be traced in the
geological records. This study is based on the numerical inte-
grations of 120 000 different solutions of the averaged equations
of the Solar System over 500 Myr, 40 000 of which were inte-
grated up to 5 Gyr. The initial conditions of the solutions are
sampled closely around a reference value that is compatible with
our present knowledge of planetary motion.

2. Dynamical model

2.1. Secular equations

We used the secular equations of motions of Laskar (1985, 1990,
2008, and references therein). They were obtained via series

A156, page 1 of 18
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202140989
mailto:nam.hoang-hoai@obspm.fr 
http://cdsarc.u-strasbg.fr
ftp://130.79.128.5
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A156
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/654/A156
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0


A&A 654, A156 (2021)

expansions in planetary masses, eccentricities, and inclinations
as well as through second-order analytical averaging over the
rapidly changing mean longitudes of the planets. The expansion
was truncated at the second order with respect to the masses
and to degree 5 in eccentricities and inclinations. The equations
include corrections from general relativity and Earth–Moon
gravitational interaction. This leads to the following system of
ordinary differential equations:

dω
dt

=
√
−1{Γ + Φ3(ω, ω̄) + Φ5(ω, ω̄)}, (1)

where ω = (z1, . . . , z8, ζ1, . . . , ζ8) with zk = ek exp($k) and ζk =
sin(ik/2) exp(Ωk). The variable $k is the longitude of the perihe-
lion, Ωk is the longitude of the ascending node, ek is eccentricity,
and ik is inclination. The function Φ3(ω, ω̄) and Φ5(ω, ω̄) are
the terms of degree 3 and 5. The 16× 16 matrix Γ is the linear
Laplace-Lagrange system, which is slightly modified to make
up for the higher-order terms in the outer Solar System. With
an adapted initial condition, the secular solution is very close
to the solution of direct integration over 35 Myr (Laskar et al.
2004). The major advantage of the secular system over direct
integration is speed. Numerically integrating averaged equations
is 2000 times faster than non-averaged ones due to the much
larger step size: 250 yr instead of 1.8265 days. It is thus desirable
to employ the secular equations to study the statistics of the Solar
System. However, we also compare their predictions to those of
a non-averaged comprehensive dynamical model in Sect. 4.

2.2. Frequency analysis

We employed the frequency analysis (FA) technique proposed
by Laskar (1988, 1993) to extract the fundamental secular fre-
quencies from the integrated solutions. The method finds a
quasi-periodic approximation f ′(t) =

∑N
k=1 akeiνk t of a function

f (t) over a time span interval [0,T ]. It first finds the strongest
mode, which corresponds to the maximum of the function:

φ(σ) = 〈 f (t)|eiσt〉 =
1
T

∫ T

0
χ(t) f (t)e−iσtdt, (2)

where χ(t) is a weight function that improves the precision of
the maximum determination; it was chosen to be the Hanning
window filter, that is, χ(t) = 1 + cos(πt/T ). The next step is the
Gram-Schmidt orthogonalization. The complex amplitude a1 of
the first frequency ν1 is calculated via the orthogonal projection
of the function f (t) on eiν1t. This mode is then subtracted from
the function f (t) to get a new function, f1(t) = f (t) − a1eνt. The
process is then repeated with this newly obtained function until
N desired strongest modes are obtained. This technique works
very well for weakly chaotic systems such as the Solar System
when variables can be decomposed into quasi-periodic modes
over a sufficiently short period of time. It has been proven that
this algorithm converges toward the true frequencies much faster
than the classical fast Fourier transform (Laskar 2005). There-
fore, it is a good tool for studying the chaotic diffusion of the
fundamental frequencies. In this work we used a routine naftab
written in the publicly available computer algebra software TRIP
(Gastineau & Laskar 2011), developed at IMCCE, to directly
apply the frequency analysis.

To extract the fundamental secular frequencies of the Solar
System, we applied the FA to the proper variables (z•i , ζ

•
i )i=1,8

of the secular equations (Laskar 1990). Each fundamental fre-
quency is obtained as the frequency of the strongest Fourier

component of the corresponding proper variable. To track the
time evolution of the frequencies, the FA was applied with a
moving interval whose sliding step was 1 Myr. The interval sizes
were 10 Myr, 20 Myr, and 50 Myr.

3. Estimation of probability density functions

The samples of this study consist of the secular frequencies of
the astronomical solutions that were obtained by integrating the
secular equations (Eq. (1)) from very close initial conditions.
Due to this initial proximity, the correlation of the solutions in
the samples lasts for a long period of time but will eventually
diminish. Our objective is to obtain a robust estimation of the
marginal probability density functions (PDFs) from these corre-
lated samples. In fact, this correlation is the main motivation for
our use of the estimation methods in this section. Details of our
samples are described in the first part of Sect. 4.

We used kernel density estimation (KDE) to estimate the
time-evolving marginal PDFs of the fundamental frequencies
of the Solar System. In addition, the statistical uncertainty of
our density estimations (i.e., PDF estimations) was measured by
the moving block bootstrap (MBB) method. To our knowledge,
this application of MBB for the KDE of a time-evolving sample
whose correlation changes over time is new. Therefore, in order
to ensure the validity of the method, we carried out several tests
(see Sect. 3.3).

3.1. Kernel density estimation

We chose KDE, also known as the Parzen-Rosenblatt window
method, as our preferred nonparametric estimator of the PDFs
of the fundamental frequencies of the Solar System because of
its high convergence rate and its smoothing property (Rosenblatt
1956; Parzen 1962).

We briefly present the method here. Let X = {X1, X2, . . . , Xn}
be a univariate independent and identically distributed (i.i.d.)
sample drawn from an unknown distribution P with density
function p(x). The KDE of the sample is then defined as:

p̂h(x|X) =
1

nh

n∑

i=1

K
( x − Xi

h

)
, (3)

where K is a nonnegative kernel function and h is the bandwidth
of the KDE. The choice of bandwidth h is much more important
than the choice of kernel K, which was chosen to be the stan-
dard normal distribution in this paper. In this work, we consider
bandwidths of the following form:

BWβ = 0.9 min
(
σ̂,

IQR
1.34

)
n−β, (4)

where σ̂ is the standard deviation of the sample, IQR is its
interquartile range, and β is a constant of choice. The band-
width with β = 1/5 corresponds to the Silverman’s rule of thumb
(Silverman 1986). The BWβ=1/5 is a version of the optimal choice
of bandwidth for Gaussian distributed data that is slightly modi-
fied for better adaption to non-Gaussian data. The bias error and
variance error of the KDE with this bandwidth will be on the
same order of magnitude. Under-smoothing, that is, choosing a
smaller bandwidth, shrinks the bias so that the total error is dom-
inated by the variance error, which can then be estimated by the
bootstrap method (Hall et al. 1995); the common value of β for
under-smoothing is 1/3.
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When the sample is identically distributed but correlated,
KDE is still valid under some mixing conditions (Robinson
1983; Hart 1996). Indeed, in the case of observations that are
not too highly correlated, the dependence among the data that
fall in the support of the kernel function K can actually be
much weaker than it is among the entire sample. This principle
is known as “whitening by windowing” (Hart 1996). There-
fore, the correlation in the sample does not invalidate the use
of KDE and only impacts the variability of the estimation (see
Sect. 3.2). With regard to the choice of bandwidth, Hall et al.
(1995) suggested that using the asymptotically optimal band-
width for the independent data is still a good choice, even
for some strongly dependent data sequences. The samples gen-
erated by a chaotic measure-preserving dynamical system (as
in the case of the numerical integration of the Solar System)
resemble those of mixing stochastic processes; therefore, the the-
ory of KDE should also be applicable for dynamical systems,
although the formulation might be different (Bosq & Guégan
1995; Maume-Deschamps 2006; Hang et al. 2018).

3.2. Moving block bootstrap

Since the seminal paper by Efron (1979), bootstrap has become
a standard resampling technique for evaluating the uncertainty
of a statistical estimation. Bias and variance errors of KDE with
the choice of bandwidth BW1/5 (Eq. (4)) are on the same order
of magnitude, and hence one should either under-smooth (i.e.,
choose a smaller bandwidth) to minimize the bias (Hall et al.
1995) or use an explicit bias correction with appropriate Stu-
dentizing (Cheng et al. 2019; Calonico et al. 2018). However,
naively applying the i.i.d. bootstrap procedure on dependent
data could underestimate the true uncertainty because all the
dependence structure would be lost just by “scrambling” data
together (Hart 1996). To remedy the problem, Kunsch (1989)
and Liu et al. (1992) independently devised the MBB, which
later became standard practice for evaluating the uncertainty in
dependent data (see Kreiss & Lahiri 2012 for a review). Although
the MBB for smooth functional has been intensively studied, the
literature on MBB for the KDE of dependent data is very lim-
ited. Recently, Kuffner et al. (2019) formulated an optimality
theory of the block bootstrap for KDE under an assumption of
weak dependence. They proposed both under-smoothing and an
explicit bias correction scheme to obtain the sampling distribu-
tion of the KDE. However, good tuning parameters, which are
generally difficult to find if the data are from an unknown distri-
bution, are required to provide a decent result. In this paper we
propose overcoming this problem with an inductive approach:
The optimal tuning parameters obtained in a known model are
tested on different models and then extrapolated to the subject of
our study, the Solar System.

Procedure of MBB. We briefly describe the under-smooth
MBB for the KDE method (a more detailed description can
be found in Kuffner et al. 2019). We suppose that X =
{X1, X2, . . . , Xn} is a dependent sample of a mixing process with
an underlying density function p(x). The KDE of the sam-
ple is p̂h = p̂h(x|X); the hat above a given quantity denotes
its estimated value. We used MBB to estimate the distribution
of δ(x) = p̂h(x) − p(x), where x ∈ Ω and Ω is the domain of
interest. Let l be an integer satisfying 1 ≤ l ≤ n. Then Bi,l =
{Xi, Xi+1, . . . , Xi+l−1} with i ∈ {1, . . . , n − l + 1} denotes all the
possible overlapping blocks of size l of the sample. Supposing,
for the sake of simplicity, that l divides n, then b = n/l. The
MBB samples are obtained by selecting b blocks randomly with
replacement from {B1,l, . . . , Bn−l+1,l}. Serial concatenation of b

blocks will give n bootstrap observations: X∗l = {B∗1,l, . . . , B∗b,l}.
By choosing sufficiently large values of l (preferably larger than
the correlation length), the MBB sample can retain the structure
of the sample dependence. For k > 0, the KDE of the boot-
strap sample is p̂∗k,l = p̂k(x|X∗l ) and its expectation is E[ p̂∗k,l] =

p̂k(x|B1,l, . . . , Bn−l+1,l). We define

δ∗k,l(x) =

√
k
h

( p̂∗k,l − E[ p̂∗k,l]) (5)

such that if h is chosen properly to reduce the bias to be asymp-
totically negligible with respect to the stochastic variation, then
the MBB distribution P(δ∗k,l(x)|X) is a consistent estimator of the
error distribution P(δ(x)) when h→ 0, nh→ ∞, k → 0, lk → ∞,
and n/l→ ∞. We note that if l = 1, then k = h and MBB reverts
to the under-smoothing procedure for the i.i.d. sample studied by
Hall et al. (1995). The efficiency of this estimator depends sen-
sitively on two tuning parameters, l and k. We are interested in
the uncertainty of the KDE, which is characterized by the con-
fidence interval CI1−α(x) and the confidence band CB1−α, which
are defined as:

P(|δ(x)| < CI1−α(x)) = 1 − α, (6)

P(|δ(x)| < CB1−α∀x ∈ Ω) = 1 − α, (7)

where α denote the level of uncertainty; for example, α = 0.05
denotes 95% CI.

They can be estimated by the MBB distribution P(δ∗k,l(x)|X)
as:

P(|δ∗k,l(x)| < ĈI1−α(x)) = 1 − α, (8)

P(|δ∗k,l(x)| < ĈB1−α∀x ∈ Ω) = 1 − α. (9)

In this paper we also use CB and CI without the hat overhead to
denote estimated values.

Our choice of the parameters of the MBB procedure, l and k,
is based on the effective sample size neff, defined as (Kass et al.
1998):

neff =
n

1 + 2
∑∞

k=1 ρ(k)
, (10)

where ρ(k) is the sample autocorrelation of lag k. The block
length l is chosen by the sample correlation size lcorr as

l = lcorr :=
n

neff
, (11)

and the bootstrap bandwidth is parametrized as

k = h(c0 + (1 − c0)l−γcorr), (12)

where γ and c0 are two optimizing constants. The reason for this
choice of parametrization is twofold. First, when lcorr → 1, the
sample become independent, and then k → h. Secondly, the rate
of change of k with respect to l should be greater when lcorr
is small than when it is large. Therefore, when lcorr � 1, the
optimal value of k should be quite stable. We also observe exper-
imentally that the optimal value of k is indeed relatively stable at
around 2h as long as l = lcorr � 1. So we simply chose γ = 1 and
c0 = 2. This choice of parameters turns out to be quite robust, as
demonstrated by the two numerical experiments in Sect. 3.3.

The literature on KDE and MBB focuses on stationary,
weakly dependent sequences. The data in our case, however,
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Fig. 1. Kernel density estimation (red line) with bandwidth h = BW1/3
and its 90% pointwise CI (red band) from an MCMC sample of n = 104

units with lcorr = 140 of a DGMM (Eq. (13) - black line).

are different: They are not strictly stationary; the formulation
of the mixing condition might be different (Hang et al. 2018);
the correlation in the sample is not constant but evolving with
time; finally, and most importantly, the data structure is different.
Our sample units, which are the orbital solutions, are ordered
based on their initial distances in phase space. The solutions
evolve over time but their order remains unchanged. Therefore,
statistical notions such as correlation and stationarity should be
considered within this framework for the sample at fixed values
of time. Because of the differences presented, an optimality the-
ory, which is not currently available, might be needed for this
case. However, we assume that it would not differ significantly
from the orthodox analysis and that a decent working MBB pro-
cedure could be obtained with some good choice of parameters.
This is tested in the section below.

3.3. Numerical experiments

We performed the KDE-MBB procedure on two numerical
experiments to ensure its validity. The double Gaussian mix-
ture model (DGMM) with different degrees of correlation was
used to calibrate the algorithm of the KDE-MBB method, that
is, to calibrate and test the tuning parameters (Eqs. (11)–(12)).
The resulting algorithm was then applied on the Fermi map as
an example of a real dynamical system for assessment.

Double Gaussian mixture model. The KDE-MBB cali-
bration was done on MCMC sequences that sample a double
Gaussian distribution. Our particular choice of the DGMM,
inspired by Cheng et al. (2019), is

fDG(x) = 0.6φ(x) + 0.4φ(x − 4), (13)

where φ(x) is the standard normal distribution. The MCMC
sequence X1, . . . , Xn was obtained by the Metropolis-Hasting
algorithm with a Gaussian proposal distribution whose stan-
dard deviation σp characterizes the correlation length of the
sequence (Metropolis et al. 1953; Hastings 1970). We could then
either vary σp or perform thinning to obtain a sequence of a
desired correlation length. The size of each MCMC sequence

60 80 100 120 140
x

0.00

0.02

0.04

0.06

0.08

0.10

DGMM n = 104, Estimation of 90% CI 
lcorr = 500
lcorr = 140
lcorr = 40
lcorr = 20
lcorr = 10
lcorr = 1

Fig. 2. Estimation of the 90% CI of KDEs from different samples
with different correlation lengths. Solid lines are the true values, and
the bands denote the distribution of MBB estimations (mean± standard
deviation); both are computed from 103 different samples, and each is
composed of n = 104 units generated from the DGMM by the MCMC
algorithm with the same lcorr.

was n = 104. The initial state of the sequence was directly sam-
pled from the distribution fDG itself so that burn-in was not
necessary and the whole sequence was usable.

On each MCMC sequence, we applied the KDE-MBB pro-
cedure with 500 MBB samples and the parameters specified
above (Eqs. (11)–(12)) with the under-smoothing bandwidth h =
BW1/3 to get the uncertainty estimation – the standard error,
the confidence interval (CI), and the confidence band (CB).
Figure 1 shows an example of the density estimation of an
MCMC sequence of 104 units, with correlation length lcorr =
140; the sequence was generated by choosing σp = 0.25. It is
clear in the figure that the true PDF (in black) lies inside the
range of the 90% CI estimated by MBB.

To assess the precision of the MBB uncertainty estimation, at
each value of lcorr we sampled 1000 different MCMC sequences
and applied the KDE-MBB process to each of them to obtain
their estimation of the CI. We thus obtained a distribution of CIs
estimated by MBB, which are depicted by the bands of mean
± standard deviation (Fig. 2). With the knowledge of the true
PDF (Eq. (13)), the true CI and CB values were obtained from
this collection of KDEs at each correlation length (Eqs. (6)–(7)).
Figure 2 compares the true values of the pointwise 90% CI with
the distribution of its values estimated by MBB at various cor-
relation lengths. We see that the 90% CI of KDE estimated by
MBB is accurate across a very wide range of lcorr, that is, the true
values almost always lie inside the estimation bands.

Fermi map. The second test for the MBB scheme is a two-
dimensional chaotic Hamiltonian system: the Fermi map (Fermi
1949; Murray et al. 1985). This simple toy model, originally
designed to model the movement of cosmic particles, describes
the motion of a ball bouncing between two walls, one of which
is fixed and the other oscillating sinusoidally. The equations of
the Fermi map read:

ut+1 = ut + sinψ,

ψt+1 = ψt +
2πM
ut+1

(mod 2π),
(14)
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0.150 BW1/3, 95% CB
BW1/5
True Density

Fig. 3. Density estimation of Fermi map. The black line (“true” density)
is the KDE with bandwidth h = BW1/5 from a sample of the velocity u
of n = 106 solutions of Fermi map at t = 30. The red line denotes the
KDE with bandwidth h = BW1/3 with its 95% CB estimated by MBB
(red band) from a sample of n = 103 solutions at the same time. The
dashed blue line represents the KDE with bandwidth h = BW1/5 from
the same sample.

where ut and ψt are the normalized velocity of the ball and the
phase of the moving wall right before the tth collision, respec-
tively; the stochastic parameter of the system M was chosen
here to be 104. The system was studied in the region of large-
scale chaos. Our sample was obtained by evolving Eq. (14) from
n = 103 initial conditions. The initial conditions, u0 and ψ0, are
drawn from uniform distributions on [90–10−5, 90 + 10−5] and
[0, 2π], respectively; they were then sorted by ascending value
of ψ0. The sorting step is imperative for quantifying the sam-
ple dependence as the initially ordered neighboring solutions
still tend to be correlated afterward and the autocorrelation func-
tion can be calculated from ordered samples. Large initial phase
variation will guarantee that chaotic diffusion is immediately
perceptible and that the PDF of the velocity will center around
its initial distribution. At each time t, we computed the KDE
of the sample with the bandwidth BW1/3. The KDE uncertainty
was estimated by applying the MBB 400 times with the same
parameters specified above (Eqs. (11)–(12)). The whole process
was then repeated 300 times with different sets of initial condi-
tions. In the Fermi map experiment, the true analytical form of
the density is not available. A numerical “true” density, which
is obtained by calculating the KDE with bandwidth BW1/5 from
an n = 106 sample, was used instead to assess the validity of the
MBB uncertainty estimation. From this “true” density and the
KDEs from 300 samples, we were able to determine the true CB
(Eqs. (6)–(7)).

Figure 3 shows an example of KDE and its CB estimated by
MBB at t = 30. Although the estimated CB is valid, as the true
curve lies completely in the band, the KDE itself looks quite
jagged. The jagged KDE is the result of the under-smooth band-
width h = BW1/3, so the bias is dominated by the variance error.
In fact, with the rule-of-thumb bandwidth h = BW1/5, we can
have a smoother KDE (cf. the dashed blue line in Fig. 3). This
choice is valid because its uncertainty is always smaller than that
estimated with h = BW1/3. Therefore, we chose to use the uncer-
tainty estimation computed with h = BW1/3 as an upper bound

10 20 30 40 50
Time

0.05

0.10

0.15

0.20

0.25

0.30

95
%

 C
B

true value, BW1/3
true value, BW1/5
estimation, BW1/3

Fig. 4. Comparison of the CB estimation with its true value. The blue
region represents the mean ±3 standard deviations of the CBs estimated
by the MBB method of KDEs with bandwidth h = BW1/3 from 300
different samples, each consisting of n = 103 solutions of the Fermi
map; the true values of the CB are also calculated from the KDEs with
bandwidth h = BW1/5 (dotted red line) and KDEs with bandwidth h =
BW1/3 (dotted blue line) from the same 300 samples.

of the uncertainty of a KDE with the rule-of-thumb bandwidth.
For example, a 95% CB of a KDE with h = BW1/3 will represent
an upper bound of a 95% CB of a KDE with h = BW1/5 (Fig. 4).
The same also applies for the CI.

Also from Fig. 4, we can see that the estimation of the CB
follows the true value well. This is remarkable because, first,
we can extend the use of MBB to measure the uncertainty of
the density estimation from solutions of the chaotic dynamical
system, where the correlation of the sample defined by initial
distances in phase space changes over time, and second, our sim-
ple choice of MBB parameters appears to work well across very
different models.

3.4. Combining samples

Having obtained a well-tested uncertainty estimator of KDE
for correlated data, the practical question arose of how to effi-
ciently combine the various samples of different correlation
lengths lcorr. Assuming we have m samples of the same size
n, X1 = {X1

1 , X
1
2 , . . . , X

1
n}, . . . ,Xm = {Xm

1 , X
m
2 , . . . , X

m
n }, where the

correlation within each sample is different, the KDE of these m
samples are p̂1, . . . , p̂m, and their pointwise standard error can be
estimated by MBB as σ̂1, . . . , σ̂m.

If all the samples conform to the same probability density
p, we can simply use the inverse variance weighting to get our
combined KDE:

p̂wa =

∑
i σ̂
−2
i p̂i∑

i σ̂
−2
i

, (15)

where p̂i and σ̂2
i are the individual KDE and its pointwise

estimated variance, respectively. The variance of the weighted
average will be σ̂2

wa = (
∑

i σ̂
−2
i )−1. With this choice, the vari-

ance of the weighted average p̂wa will be minimized and we
can thereby have the most accurate estimation of the density p
(Hartung et al. 2011).

A156, page 5 of 18



A&A 654, A156 (2021)

This inverse variance weighting is only applicable if we
assume that all our samples follow the same underlying distri-
bution, as for example in the DGMM. In the case of the Solar
System, different samples come from different sets of initial
conditions. The densities evolving from different initial condi-
tions will be different. Although they might converge toward
a common density function after a large period of time, the
assumption that different samples follow the same distribution is
not generally true. However, if the differences between the den-
sity estimations from different samples are small compared to
their in-sample density uncertainty, then we can assume a com-
mon true density that all the samples share, and therefore the
inverse variance weighted mean and its minimized variance will
in this case capture this assumed density function.

A more conservative approach consists in not trying to
estimate the common true density, but rather capturing the vari-
ability stemming from different samples and combining it with
their in-sample uncertainty. In this case, a combined KDE can
be introduced as a pointwise random variable whose distribution
function is given by:

p̂c ∼ m−1
m∑

i=1

P( p̂i(x) − δ∗i (x)|Xi), (16)

where δ∗i (x) is defined in Eq. (5) and P( p̂i(x) − δ∗i (x)|Xi) is the
MBB estimation of the distribution of the pointwise KDE from
sample Xi. If the m samples are good representatives of any
other sample taken from a certain population, then p̂c is a rea-
sonable choice for the KDE from an arbitrary sample generated
from that same population. We sample p̂c in a pointwise manner.
For each value of x, the same number of realizations are drawn
from each of the m MBB distributions, which are assumed here
to be Gaussian for practical purposes. It should be noticed that
a realization of p̂c(x) is not a continuous curve. When needed,
we could choose the pointwise median of p̂c as the nominal
continuous combined KDE.

4. Application to the Solar System

The goal of this paper is to have a consistent statistical descrip-
tion of the propagation of the dynamical uncertainty on the
fundamental secular frequencies of the Solar System induced
by its chaotic behavior: that is, simply put, to obtain their
time-evolving marginal PDF. We first sampled the initial orbital
elements of the Solar System planets that were close to the refer-
ence value, and then numerically integrated the secular equations
(Eqs. (1)) from those initial conditions to obtain a sample of
orbital solutions. Kernel density estimation was then used to esti-
mate the marginal PDF of the frequencies of the sample at a
fixed value of time, and finally the MBB method was applied to
estimate the uncertainty of the density estimation.

The evolution of our sample can be divided into two stages:
Lyapunov divergence and chaotic diffusion. In the first stage,
because the initial density is extremely localized around the
reference value, all solutions essentially follow the reference tra-
jectory; the difference between the solutions is very small but
diverges exponentially with a characteristic Lyapunov exponent
of ∼1/5 Myr−1 (Laskar 1989). The solutions in the first stage
are almost indistinguishable and the correlation between them
is so great that regardless of how many solutions in the sample
we integrated, the effective size of the sample is close to one.
The second stage begins when the differences between the solu-
tions are large enough to become macroscopically visible. The

Table 1. Offsets of the initial eccentricities of the four planets:
{Mercury, Venus, Earth, Mars}, which corresponds to i = {1, 2, 3, 4}.

Solutions Offsets ε

Xi −5000 ε to 5000 ε 10−10

Yi −5000 ε to 5000 ε 10−8

Zi −5000 ε to 5000 ε 10−11

Notes. Different integrations correspond to offsets of Nε in eccentricity
of a single planet for N = −5× 103, . . . ,+5× 103, while other variables
are kept to their nominal values.

Lyapunov divergence saturates and gives place to chaotic diffu-
sion. The correlation between the solutions starts to decrease,
the distribution of the sample settles, and the memory of the ini-
tial conditions fades. It can take several hundred million years
for the sample to forget its initial configuration. Contrary to the
exponential growth in the first stage, the dispersion of the sam-
ples expands slowly with a power law in time (see Fig. 10). The
time boundary between the two stages depends on the disper-
sion of the initial conditions: the wider they are, the faster the
second stages come, and vice versa. If they are chosen to repre-
sent the uncertainty of the current ephemeris, the second stage
should take place around 60 Myr in the complete model of the
Solar System (Laskar et al. 2011a,b).

In this section, we focus on the statistical description of the
fundamental frequencies of the Solar System in the second stage.
The aim is to obtain a valid estimation of time-evolving PDFs of
the frequencies beyond 60 Myr. However, the PDF evolution gen-
erally depends on the choice of initial conditions. Moreover, the
simplification of the secular equations compared to the complete
model of the Solar System could, a priori, provide results that
are not sufficiently accurate.

4.1. Choice of initial conditions

For a complete model of the Solar System, the initial conditions
should be sampled in such a way that they are representative of
the current planetary ephemeris uncertainty. Nevertheless, for
a simplified secular model (Eq. (1)), the difference from the
complete model is greater than the ephemeris uncertainty. An
optimized secular solution follows the complete solution initially
but departs from it long before 60 Myr (Laskar et al. 2004). A
direct adaptation of the current planetary ephemeris uncertainty
to the initial conditions of the secular model can thus be mis-
leading. Therefore, we adopted a more cautious approach, that
is, to study first the effect of sampling the initial conditions on
the PDF estimation.

Initial conditions can be sampled in many ways, especially in
a high-dimensional system such as the Solar System. Our choice
of initial conditions is quite particular, but they encompass differ-
ent possible ways of sampling initial conditions (Table 1). There
were three batches, {Xi}, {Yi}, and {Zi}, which correspond to three
different variation sizes ε of initial conditions. Each batch was
composed of four different sets of samples. Each set contained
10 000 initial conditions, where the eccentricity of the associ-
ated planet is linearly spaced from the reference value, with the
spacing ε corresponding to the batch it belongs to. We then
integrated the secular equations (Eq. (1)) from these initial con-
ditions 500 Myr into the past and 500 Myr into the future. For the
batch {Zi}, the integration time is 5 billion years in both direc-
tions. The frequencies were then extracted using FA (Sect. 2.2).
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Fig. 5. Density estimation with 95% pointwise CI of the fundamental frequencies of the four sets of the batch {Zi}i=1,4. Frequency values are
obtained by FA over an interval of 20 Myr centered at 150 Myr in the future.

It should be noted that we do not aim to obtain the joint proba-
bility distribution of all the fundamental frequencies, but rather
their individual marginal PDFs (i.e., the PDF of one frequency
at a time). The marginal PDFs of the frequencies were estimated
by the KDE with the rule-of-thumb bandwidth (BW1/5); upper
bounds of their 95% CIs are measured by the MBB method
with the bandwidth h = BW1/3 and the optimized parameters
(Eqs. (11)–(12)) from 1 000 MBB samples.

We first compare the evolution of the density of the four
sets in each batch in Sect. 4.2, and the second test is per-
formed to compare the statistics between the batches in Sect. 4.3.
The robustness of the secular statistics is assessed by these
two tests, which additionally shed light on the initial-condition-
dependence aspect of the statistics. All the density estimations
from these sets are compared with those of the 2500 complete
solutions obtained in the previous work of Laskar & Gastineau
(2009) to test the accuracy of the secular statistics. It should be
recalled that this numerical experiment needed 8 million hours
of CPU time, the output of which was saved and could thus be
used in the present study.

When comparing two sets of different sizes, because the rates
of divergence in the first stage are similar, the wider set reaches
the chaotic diffusion phase faster than the more compact set;
hence, it is essentially diffusing ahead for a certain time in the
second stage. Therefore, in order to have a relevant comparison,
a proper time shift was introduced to compensate for this effect.
We shifted {Xi} and {Yi} ahead by 30 Myr and 20 Myr, respec-
tively, while keeping the time of {Zi} as reference. This choice
was motivated by the fact that the transition to the chaotic dif-
fusion of {Zi} is around 50 – 60 Myr, which is indicated by the
direct integration of the Solar System (Laskar et al. 2011a,b).

4.2. First test: different samples of the same variation size ε

Comparing the density estimation of different sets in the same
batch was the first test of prediction robustness from our secu-
lar model. The evolution of the density estimations are sensitive
to how initial conditions are sampled, and therefore this initial-
condition sensitivity must be quantified for a valid prediction. In
this first test we compared the time-evolving PDFs whose ini-
tial conditions are sampled with the same variation size ε but in
different variables.

The result is quite clear. The different sets of the same batch
slowly lose the memory of their initial differences due to chaos
and then converge toward the same distribution. This conver-
gence is illustrated by Fig. 5, which shows that the density
estimation of (g)i=1,4 of the four sets of the batch {Zi} nearly

overlap with one another at 150 Myr in the future. The rates of
convergence of different batches are different. So although {Xi}
and {Yi} exhibit the same behavior as {Zi}, they converge differ-
ently with disparate rates: At around 100–150 Myr in the future,
the density estimations of the frequencies of {Xi} nearly overlap
with one another; this occurs at 150–200 Myr for {Yi}, depending
on the frequency. Interestingly, for the samples that are integrated
in the past, the rates of convergence are higher and the overlap
generally happens at around −100 Myr (see Fig. 6).

4.3. Second test: different samples of different variation sizes

Comparing the density estimation of the three batches, {Xi},
{Yi}, and {Zi}, was our second test of robustness. Although the
initial conditions of the three batches were varied around the
same reference values, the ways they were sampled were differ-
ent since the variation sizes were different. Differences in the
initial variation sizes mean that the batches enter the diffusion
stage at different times and also at different points in the phase
space, so that the convergence between batches, if it exists, takes
longer. The result of our test is summarized by the density esti-
mation of the frequencies at two times in the past, −100 Myr
and −200 Myr (Fig. 6). At −100 Myr, the density estimations
from different sets of each batch cluster around one another as
described in the previous test. Each batch forms a cluster of den-
sity estimations, and the differences between the three clusters
are noticeable. Moreover, the estimation uncertainty, depicted by
the colored band, is quite large. Fast-forward 100 Myr of chaotic
mixing: at −200 Myr, density estimations of the frequencies
spread out, estimation uncertainty shrinks, and, most impor-
tantly, differences between the three batches are much smaller
and continue to diminish even further with time. In the oppo-
site time direction, the same phenomenon is observed but the
rate of convergence between the batches is slower (Fig. 7). At
150 Myr in the future, the density estimations of the frequen-
cies of {Xi} and {Zi} have practically converged and those of {Yi}
are still trying to, and yet differences between the three batches
are noticeable. However, the estimations of all 12 sets from the
three batches nearly overlap with one another at 350 Myr, which
demonstrates that the effect of different initial samplings van-
ishes via chaotic mixing. It should be noted that when looking
at some specific properties of the PDF, such as means and vari-
ances, the differences between the sets are small. For example,
the differences between the means of the PDF estimation of the
12 sets are generally smaller than 0.1′′ yr−1 for most of the fun-
damental frequencies at −100 Myr; at −200 Myr, the differences
diminish to twice as small.

A156, page 7 of 18



A&A 654, A156 (2021)

5.00 5.25 5.50 5.75 6.00
0

5

10

15

20
100 Myr100 Myr100 Myr100 Myr Y1 4

X1 4
Z1 4

7.40 7.45 7.50
0

20

40

60

80

100

17.00 17.25 17.50
0

5

10

15

20

17.50 17.75 18.00 18.25 18.50
0

5

10

15

20

5.00 5.25 5.50 5.75 6.00
g1 [′′/yr]

0

5

10

15

20
200 Myr200 Myr200 Myr200 Myr

7.40 7.45 7.50
g2 [′′/yr]

0

20

40

60

80

100

17.00 17.25 17.50
g3 [′′/yr]

0

5

10

15

20

17.50 17.75 18.00 18.25 18.50
g4 [′′/yr]

0

5

10

15

20

6.0 5.5 5.0
0

5

10

15

20
100 Myr100 Myr100 Myr100 Myr Y1 4

X1 4
Z1 4

8.0 7.5 7.0 6.5
0

2

4

6

8

10

19.2 19.0 18.8 18.6
0

5

10

15

20

25

18.0 17.8 17.6
0

5

10

15

20

6.0 5.5 5.0
s1 [′′/yr]

0

5

10

15

20
200 Myr200 Myr200 Myr200 Myr

8.0 7.5 7.0 6.5
s2 [′′/yr]

0

2

4

6

8

10

19.2 19.0 18.8 18.6
s3 [′′/yr]

0

5

10

15

20

25

18.0 17.8 17.6
s4 [′′/yr]

0

5

10

15

20

Density Estimation, 95% CI

Fig. 6. Density estimation with 95% pointwise CI of the fundamental frequencies of the 12 sets coming from the three batches: {Xi} (yellow colors),
{Yi} (blue colors), and {Zi} (green colors). Estimations of sets from the same batch have the same color. Frequencies are obtained by FA over an
interval of 20 Myr centered at 100 Myr in the past (first and third rows) and 200 Myr in the past (second and fourth rows). The time reference is the
time of {Zi}, while the solutions of {Xi} and {Yi} are shifted ahead by 30 Myr and 20 Myr, respectively.

4.4. Final test: comparison with the complete model

The convergence of the density estimations from different sets of
initial conditions (seen in the first two tests) does not guarantee
convergence between the secular model and the complete model
of the Solar System. As a result, whether the secular statistics

will resemble that of the complete model is still not clear. In this
final test, we respond to this question by comparing the density
estimation from our secular solutions with those obtained from
the 2500 solutions of the complete model integrated into the
future (Laskar & Gastineau 2009). The initial conditions of the
complete solutions are sampled in a way similar to the present
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Fig. 7. Density estimation with 95% pointwise CI of the fundamental frequencies of the 12 sets coming from the three batches, {Xi} (yellow colors),
{Yi} (blue colors), and {Zi} (green colors), and from the 2500 solutions of complete model of Laskar & Gastineau (2009) (red colors), which is
denoted as La09. Estimations of sets from the same batch have the same color. Frequencies are obtained by FA over an interval of 20 Myr centered
at 150 Myr (first and third rows) and 350 Myr (second and fourth rows) in the future. The time reference is the time of {Zi}, while the solutions of
{Xi}, {Yi}, and La09 are shifted by 30 Myr, 20 Myr, and −70 Myr, respectively.

work, that is, one variable (the semimajor axis of Mercury) is
linearly spaced with a spacing of 0.38 mm and a range of about
one meter. We shifted the complete solution backward by 70 Myr
to adjust for the difference in the initial variation sizes and also
for the difference between the initial divergence rates.

The density estimations of the frequencies of the 2500 com-
plete solutions are shown along with the estimations from the
secular model in Fig. 7. The estimations of the complete model
are either close to or overlap with those of the secular model,
even at 150 Myr. Both models even predict the same minor
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Fig. 8. Density estimation with 95% pointwise CI of the fundamental frequencies of the set Z1, which are obtained by FA over an interval of
10 Myr (blue colors), 20 Myr (yellow colors), and 50 Myr (green colors) centered at −150 Myr (top row) and −350 Myr (bottom row).

features in the frequency density, for example the second peaks
of g3 or the tails of g4. The origins of these features are related to
the resonances associated with g3 and g4, so having these same
features indicates that the secular model could capture the res-
onance dynamics of the complete model. At 350 Myr, for most
of the frequencies, the differences between the results of the two
models are very small, especially for some frequencies, such as
g1, where it is difficult to distinguish between the two models.
If we look at some specific properties of the PDF, such as its
mean, the differences between the secular model and the com-
plete model are on the same order as the variability of the results
from the same secular model. These differences in the means
of the PDFs are generally smaller than 0.05′′ yr−1 at 350 Myr.
Although some minor differences between the two models are
still visible, especially in s1 for example, these differences dimin-
ish with time. This convergence between the two models strongly
suggests the compatibility of the secular system with the direct
integration of the realistic model of the Solar System used in
Laskar & Gastineau (2009).

4.5. A complementary test on frequency analysis

The fundamental frequencies of the Solar System are central in
our work, and the method to obtain them is thus essential. In this
section, we briefly examine the FA method (Sect. 2.2). The FA
method searches a quasi-periodic approximation of the solution
of the Solar System with constant frequencies over a time win-
dow ∆t. So unique frequencies at time t are extracted from an
oscillating sequence in the time interval [t − ∆t/2, t + ∆t/2]. For
a quasi-periodic solution, the longer we choose the time inter-
val ∆t to be, the more accurate the extracted frequencies are.
Nevertheless, the fundamental frequencies of the Solar System
are expected to vary over a few Lyapunov times, that is, over

5 Myr. Therefore, we have a trade-off between the extraction
accuracy and the time variation of the frequencies when choos-
ing ∆t: When ∆t is too large, the obtained frequency will tend
to be the average of its variation over the same period. We chose
∆t = 20 Myr as the standard FA interval. In some circumstances
that require the detection of rapid changes in frequencies, such
as the resonance transition, a smaller ∆t is more favorable (see
Sect. 6.3).

The extracted frequencies are sensitive to the choice of ∆t,
and yet their density estimation is relatively robust. Figure 8
compares the density estimation of the eccentricity frequencies
(gi)1,4, which are extracted via FA with three different ∆t at
two different times. The differences are generally small but still
notable for g2 and g4 at 150 Myr, and they diminish with time.

5. Parametric fitting

From Sect. 4, we see that the long-term PDFs of the secular fre-
quencies possess a distinct Gaussian-like shape that flattens as
time passes. It is interesting to approximate these densities by
a simple parametric model, such that its parameters can charac-
terize the shape of the density and summarize its evolution. The
model with its fitting parameters can also be used as an approx-
imation of the numerical densities for later application. For this
purpose, we used the density estimation of the secular frequen-
cies of the Solar System from the batch {Zi}, which is composed
of 40 000 different orbits over 5 Gyr. The inner fundamental fre-
quencies (i.e., the frequencies of the inner planets, (gi, si)i=1,4)
are obtained by FA over an interval of 20 Myr. For the outer fun-
damental frequencies (i.e., the frequencies of the outer planets,
(gi)i=5,8, (si)i=6,8), the FA interval is 50 Myr. The frequency s5 is
zero due to the conservation of the total angular momentum of
the Solar System.
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5.1. Skew Gaussian mixture model

Laskar (2008) found that the 250 Myr-averaged marginal PDFs
of the eccentricity and inclination of the inner Solar System plan-
ets are described quite accurately by the Rice distribution, which
is essentially the distribution of the length of a 2D vector when
its individual components follow independent Gaussian distribu-
tions. In in our case, the density estimations of the fundamental
frequencies of the Solar System resemble Gaussian distributions,
but many of them get skewed as time passes; this is especially
true for the inner frequencies. To account for this skewness, we
propose the skew normal distribution as the fitting distribution
to the density estimation of the frequencies:

fµ0,σ0,α0 (x) =
2
σ0
φ

(
x − µ0

σ0

)
Φ

(
α

(
x − µ0

σ0

))
, (17)

where α is the parameter characterizing the skewness, φ(x)
denotes the standard normal probability density distribution with
mean µ0 and standard deviation σ0, and Φ(x) is its cumulative
distribution function given by

Φ(x) =

∫ x

−∞
φ(t) dt =

1
2

[
1 + erf

(
x√
2

)]
, (18)

where erf denotes the error function.
Some of the frequencies, interestingly, have several sec-

ondary modes in their density estimation apart from their pri-
mary one. Most of the secondary modes, if they exist, are quite
small compared to the primary one. They are also often short
lived; most of them emerge at the beginning of the diffusion
stage and disappear quickly thereafter. Therefore, they are not
included in this parametric model, the aim of which is to fit
the long-term PDF of the fundamental frequencies. However,
some persist for a long time and have a small but non-negligible
amplitude. To account for these secondary modes, we simply
added Gaussian functions to the skew Gaussian distribution and
adjusted for their amplitudes so that the fitting distribution is
ultimately the skew Gaussian mixture model:

f (x) = A0 fµ0,σ0,α0 (x) +

m∑

i=1

AiN(µi, σ
2
i ), (19)

where
∑m

i=0 Ai = 1 and m is the number of secondary modes.
The secondary modes are much smaller than the primary mode:
A0 � ∑m

i=1 Ai. In our case here, m = 1 for g4 and s3, while the
asymptotic secondary modes for the other frequencies can be
considered negligible.

For the outer fundamental frequencies, we do not observe
significant skewness or secondary modes in their density esti-
mations. Therefore, the density estimations of the outer funda-
mental frequencies can be approximated by a simple Gaussian
distribution.

The density estimations of the frequencies are shown at three
well-separated times in Fig. 9. The diffusion is clearly visible as
the density estimations get more and more disperse over time.
Moreover, the density estimations get more skewed as time goes
by. For g3 and g4, the skewness of the density estimations is
small, so we assume α0 = 0 (Eq. (17)) for these frequencies for
the sake of simplicity. The fundamental frequencies of the outer
planets are very stable. Their variations are much smaller than
those of the inner frequencies. Taking as an example the most
unstable of the outer frequencies, g6, its standard deviation at
−4 Gyr is only about 2×10−3 ′′ yr−1, while that of the most stable

inner frequency, g2, is 15 times larger. Therefore, when consider-
ing a combination involving an inner fundamental frequency and
an outer one, the latter can be effectively regarded as a constant.

The result of our fitting model is also plotted in Fig. 9. It
is remarkable that the density estimations of the frequencies
are well approximated by the fitting curve over three different
epochs. It should be noticed that the base of our fitting model
– the skew Gaussian distribution – only has three parameters.
Additional parameters are only needed for some frequencies, for
example g4 and s3. Nevertheless, such additional parameters only
account for the minor features, and three parameters are suffi-
cient to represent the bulk of the density estimations over a long
timescale.

5.2. Evolution of the parameters

The parameters of our fitting models are extracted by the method
of least squares, implemented by the routine curve_fit in the
scipy package in Python. To retrieve the statistical distribution
(mean and standard deviation) of the parameters of a given
model, we implemented a bootstrap approach based on Eq. (16),
with the assumption that pointwise standard errors of the KDE
estimated by MBB are independent. We remark that, with such
an assumption, the variance of the fitting parameters tends to be
underestimated.

The time evolution of the mean of the parameters of the fit-
ting models is shown in Fig. 10, along with their ±2 standard
error, for both the past and the future. It turns out that the evolu-
tion of σ2

0 is robustly fitted from 200 Myr to 5 Gyr in the past by
the power-law function

σ2
0(t) = a T b, (20)

where T = t/(1 Gyr), as shown in Fig. 10. For all the other
parameters, we performed a linear fit. All these fits are summa-
rized in Table 2.

The differences between past and future evolutions are small
and generally tend to decrease with time. Therefore, the fit for the
parameters in the past given in Table 2 should also be represen-
tative of their future evolution. In general, the parameters follow
relatively smooth curves with distinct tendencies. The skewness
parameters α0, increasing in absolute value, show that the PDFs
of the inner fundamental frequencies get more and more skewed
over time. The center of the distributions, indicated by µ0, does
not change significantly compared to α0 and σ2

0 (Fig. 10). The
secondary modes of g4 and s3 are also quite stable.

The diffusion of the frequencies is quantified by the increas-
ing σ2

0, which is closely linked to their distribution variance.
As the exponents b of the power laws in Table 2 are different
from unity, the chaotic diffusion of the fundamental frequencies
turns out to be an anomalous diffusion process. Interestingly,
all the inner frequencies clearly undergo sub-diffusion, that is,
the exponent of the power law b is smaller than 1 (b = 1 cor-
responding to Brownian diffusion). Therefore, an extrapolation
of the variance of the inner frequencies based on the assump-
tion of linear diffusion over a short time interval would generally
lead to its overestimation over longer times. On the contrary, the
exponents b are either smaller or larger than unity for the outer
frequencies. It should be noted that, because the variations in the
outer frequencies are very small, the value of the corresponding
exponents b might be overestimated due to the finite precision of
FA.
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Fig. 9. Density estimation with 95% pointwise CI of the fundamental frequencies of the Solar System from the {Zi} solutions in the past at 500 Myr
(red band), 1 Gyr (green band), and 4 Gyr (blue band); the dashed curves with the corresponding colors denote their fitting distribution (Eqs. (19)
and Table 2). The frequencies are obtained by FA over an interval of 20 Myr.

6. Geological application

The aim of this project is to have a reliable statistical picture of
the secular frequencies of the Solar System beyond 60 Myr. It
is interesting to put recent geological results in this astronomi-
cal framework. First, it can be used as a geological test of our

study, and secondly the application provides a glimpse of how
astronomical data could be used in a cyclostratigraphy study. We
first show how the uncertainty of a widely used dating tool in
astrochronology can be quantified, then we apply our work to two
recent geological results, which are from the Newark-Hartford
data (Olsen et al. 2019) and the Libsack core (Ma et al. 2017).
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6.1. Astronomical metronomes

Although it is not possible to recover the precise planetary orbital
motion beyond 60 Myr, some astronomical forcing components
are stable and prominent enough such that they can be used to
calibrate geological records in the Mesozoic Era or beyond (see
Laskar 2020 for a review). The most widely used is the 405 kyr
eccentricity cycle g2 − g5, which is the strongest component of
the evolution of Earth’s eccentricity. The inclination cycle s3− s6
has also recently been suggested for the time calibration of strati-
graphic sequences (Boulila et al. 2018; Charbonnier et al. 2018).

Although s3 − s6 is not the strongest among the obliquity cycles,
it is quite isolated from other cycles and thus easy to iden-
tify (Laskar 2020). The main reason that g2 − g5 and, possibly,
s3 − s6 can be used as astronomical metronomes is their stability.
Indeed, their uncertainty has to be small to be reliably used for
practical application.

In previous work, the uncertainty of the frequency combi-
nation was derived from the analysis of a few solutions (Laskar
et al. 2004, 2011a; Laskar 2020). Here we used a much larger
number of solutions and the KDE-MBB method to derive both
the PDF of the frequencies and their statistical errors. Starting
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Table 2. Linear and power-law fits for the time evolution of the parameters (Fig. 10) of the skew Gaussian mixture model (Eq. (19)) for the
fundamental frequencies of the Solar System.

µ0 (′′ yr−1) a (′′ yr−1)2 b α0 µ1 (′′ yr−1) σ2
1 (′′ yr−1)2 A1

g1 5.759 + 0.006 T 3.37 × 10−2 0.52 −2.25 − 0.50 T
g2 7.448 − 0.004 T 4.17 × 10−4 0.70 1.38 + 0.21 T
g3 17.269 + 0.002 T 6.63 × 10−3 0.43
g4 417.896 + 0.005 T 46.88 × 10−3 0.41 17.6755 0.0034 0.110 −0.012 T
s1 −5.652 − 0.032 T 2.68 × 10−2 0.83 1.12 + 0.16 T
s2 −6.709 + 0.030 T 1.20 × 10−1 0.76 4 − 2.94 − 1.23 T
s3 −18.773 + 0.009 T 2.86 × 10−2 0.56 −3.40 − 0.08 T −18.5256 0.0028 0.023
s4 −17.707 + 0.013 T 1.19 × 10−2 0.68 −1.73 − 0.28 T

g5 4.257454 − 2.1 × 10−6 T 4.63 × 10−10 0.88
g6 2.824523 − 1.4 × 10−4 T 1.40 × 10−6 0.84
g7 3.087957 − 1.2 × 10−6 T 4.80 × 10−10 1.11
g8 6.730237 9.89 × 10−11 1.49
s6 −2.634787 + 1.5 × 10−5 T 1.21 × 10−8 0.85
s7 −2.992527 8.31 × 10−10 1.39
s8 −6.917366 42.93 ×10−11 1.47

Notes. Column 1 contains the considered secular frequencies. In Col. 2, we show the linear fits of µ0 that represent the center of the distribution.
The power-law fit of σ2

0 has the form σ2
0(t) = aT b (Eq. (20)), where T = t/(1 Gyr) and a and b are given in Cols. 3 and 4, respectively. Linear fits of

the skewness parameter α0 are given in Col. 5. The last three columns show linear fits of the secondary mode of g4 and s3 (Eq. (19)). The parameter
σ2

0 is fitted from 200 Myr to 5 Gyr in the past, while all the others are fitted from 500 Myr.
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Fig. 11. Density estimation with 95% pointwise CI of the period of g2 − g5 (top row) and s3 − s6 (bottom row) from the combining solutions from
{Xi}, {Yi}, and {Zi}. Frequencies are obtained by FA over an interval of 20 Myr centered at −100 Myr (left column), −210 Myr (middle column), and
−400 Myr (right column).

from the results of all the sets of orbital solutions (Sect. 4), we
produced the compound density estimation of the fundamental
frequencies and their relevant combinations following the con-
servative approach in Eq. (16). These data are archived with the
paper.

With this result, we can reliably estimate the uncertainty
of the astronomical metronomes. The uncertainty of the cycles
g2 − g5 and s3 − s6 is in fact the density width of the period
of these frequency combinations, which is shown in Fig. 11.
As time goes by, the two metronomes become more uncertain
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as their density spreads due to the chaotic diffusion, but they
are still reliable. At 400 Myr in the past, the relative standard
deviations (ratio of standard deviation to mean) of the g2 − g5
and s3 − s6 metronomes are approximately 0.4% and 1.26%,
respectively.

6.2. Newark-Hartford data

In Olsen et al. (2019) the astronomical frequencies were retrieved
from a long and well-reserved lacustrine deposit. The frequency
signals of the Newark-Hartford data are very similar to that
of the astronomical solution La2010d, which was taken from
13 available astronomical solutions (Laskar et al. 2011a). Hav-
ing 120 000 astronomical solutions at hand, we can derive a
more precise statistical analysis of this result. The fundamental
frequencies from the geological record were obtained in the fol-
lowing way. The data were dated by the relatively stable 405 kyr
cycle (g2 − g5) and additionally verified by a zircon U-Pb-based
age model (Olsen et al. 2019). An FA (Sect. 2.2) was performed
on the geological data as well as on the eccentricity of the

astronomical solution La2010d to retrieve their strongest fre-
quencies. The FA of geological data was cross-checked with that
of the astronomical solution to identify its orbital counterpart.
For example, the third strongest frequency from the Newark data,
12.989′′ yr−1, was identified with the second strongest frequency
from La2010d, 12.978′′ yr−1. which is g3 − g5. The frequency
g3 was then derived by summing the obtained combination with
g5, which is nearly constant. The same goes for g1, g2, and g4.
Definite values of astronomical fundamental frequencies were
thus determined. Unfortunately, the uncertainty estimation of the
geological frequencies is not yet available.

Our density estimation of the frequencies was obtained by
combining all our samples in the conservative approach outlined
in Sect. 3.4. Figure 12 compares the secular frequencies (right)
and their combinations (left) extracted from Newark–Hartford
data with our density estimation around the same time in the
past. For (g)i=1,3, both the geological and La2010d frequencies lie
relatively close to the main peak of their corresponding density,
while their values for g4 are near the tail. The frequency combi-
nations tell the same story since the geological values involving
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g4 are off from the main peak. Yet, they are all consistent with
our density estimation as there is a non-negligible possibility
of finding a secular solution that agrees with the geological
data. It should be noted that certain frequencies are signifi-
cantly correlated, g3 and g4 for example. We cannot assume that
they are independent; therefore, we have to calculate the density
estimation of their combination directly.

Given the unavailability of the uncertainty in geological
frequencies, the probability of finding the geological frequen-
cies in a numerical orbital solution cannot be obtained directly.
However, we can use La2010d, which is the solution from the

complete model of the Solar System that matches best with
the Newark-Hartford data, as the benchmark for our secular
statistics. There are several criteria for determining how good
a solution is (i.e., how well it could match with the geological
data). A simple and rather straightforward criterion that we used

is δ =

√
1
4
∑4

i=1(gi − g∗i )2, where gi and g∗i are the frequencies
from the astronomical solution and the geological data, respec-
tively. A better-suited solution will have smaller δ and vice versa.
We found that in the range from −200 Myr to −220 Myr, out of
the 120 000 solutions, there are around 5000 (roughly 4.2% of
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the total number) that have smaller s than that of La2010d at
−210 Myr, which is the value originally used to compare with
the geological data. It should be noted that La2010d is one of
13 available complete solutions. The 95% CI of the probability
of obtaining such a good matching solution from the complete
model of the Solar System is thus (1.37%, 33.31%) (Wilson
1927). Therefore, with the criterion δ, our result is statistically
compatible with that of Olsen et al. (2019).

6.3. Libsack core

Laskar (1990, 1992) presented several secular resonances to
explain the origin of chaos in the Solar System. In particular,
the argument of the resonance (s4 − s3) − 2(g4 − g3) is currently
in a librational state, that is,

(s4 − s3) − 2(g4 − g3) = 0, (21)

and moves out to the rotational state around −50 Myr. The
dynamics can even switch to the librational state of a new
resonance:

(s4 − s3) − (g4 − g3) = 0. (22)

This transition corresponds to a change from the 2:1 resonance
to the 1:1 resonance of two secular terms, g4 − g3 and s4 − s3.

Ma et al. (2017) found a sudden change in the period of
a long cycle from 2.4 Myr to 1.2 Myr in the Libsack core of
the Cretaceous basin from around −90 Myr to −83 Myr. This
change was also visible in the La2004 astronomical solution,
and the long cycle was attributed to the frequency combination
g4 − g3, which is visible from the spectrum of the eccentricity
of the Earth. Although the exact value before and especially
after the transition is not clear, the change in the period is
visible from the band power of the core (Fig. 1 of Ma et al.
2017).

This change in g4 − g3 observed in the Libsack core corre-
sponds to a transition from the resonance (s4 − s3) − 2(g4 − g3),
which is the resonance that the Solar System is currently at, to the
resonance (s4 − s3)− (g4 −g3). With a large number of astronom-
ical solutions, we could better understand this phenomenon. The
transition is usually very fast: The frequency changes quickly to
another value and then reverts back just as quickly. Therefore,
to study the transition we used a smaller window for the FA,
10 Myr instead of 20 Myr. Figure 13 shows the density estima-
tion of g4 − g3 at 90 Myr as well as at 300 Myr in the past. Both
have a principle population in the range [0.4, 0.8]′′ yr−1 and a
small but not insignificant one centered around 1.0′′ yr−1, which
corresponds to the small chunk of g4 centered at 18.2′′ yr−1. The
transition observed is a sudden jump in frequency from the main
population to the secondary one of g4, and therefore g4 − g3 as
well.

The size of the secondary population is defined as the propor-
tion of the solutions whose g4 − g3 > 0.9 ′′ yr−1 and is denoted
as P(g4 − g3 > 0.9′′ yr−1). The rate of transition is defined as
the proportion of the solutions whose g4 − g3 > 0.9′′ yr−1 over
10 Myr and is denoted as P10 Myr(g4 − g3 > 0.9 ′′ yr−1). Both are
shown in Fig. 14. During the predictable period, that is, from
now until −50 Myr, no transition is observed. After −50 Myr,
a transition can occur; its rate rises until 100 Myr, when the
percentage of a secondary population stays relatively stable at
around 2.1%± 0.5% at a time, and the rate of the transition could
also be determined to be 8%± 1% every 10 Myr during this
period. At 80–90 Myr, when the transition was detected in the
Libsack core, that rate of transition during this period is found
with our numerical solutions to be 7.7%± 4.5%.

7. Conclusion

In this work we give a statistical description of the evolution of
the fundamental frequencies of the Solar System beyond 60 Myr,
that is, beyond the predictability horizon of the planetary motion,
with the aim to quantify the uncertainty induced by its chaotic
behavior. The base of our analysis is 120 000 orbital solutions of
the secular model of the Solar System. The PDF of the frequen-
cies is estimated by the KDE, and its uncertainty is evaluated by
the MBB; both methods are tested via numerical experiments.

We benchmarked the secular model by sampling the initial
conditions in different ways and then compared the density esti-
mation of their solutions with one another and finally with the
complete model. The results are twofold. First, regardless of
how initial conditions were sampled, their density estimation
will converge toward a single PDF; after this overlap, a robust
estimation is guaranteed. Secondly, the density estimation of the
secular model is compatible with that of the complete model of
the Solar System. This agreement means that the results of the
secular model, with superior computational simplicity, can be
used for application to geological data.

We observe that the density estimations of the fundamental
frequencies can be well fitted by skew Gaussian mixture models.
The time evolution of the parameters σ2

0, related to the fre-
quency variances, follows power-law functions. Interestingly for
the inner fundamental frequencies, the exponents of such power
laws are all smaller than 1, which indicates that they undergo
sub-diffusion processes.

We show several examples of how this result can be used for
geological applications. First, the uncertainty of any astronom-
ical frequency signal is fully quantified, so that, for example,
a proper quantitative response can be given to the question of
how stable the astronomical metronomes are. With this statisti-
cal framework, previous results from geological records beyond
60 Myr can also be interpreted with a more comprehensive
approach. A more quantitative answer, not only about the pos-
sibility but also about the probability of the occurrence of an
astronomical signal in geological data, can be made. Apart from
these direct applications, a more systematic approach could
make full use of the density estimation of frequencies. The
method TimeOpt from Meyers & Malinverno (2018), for exam-
ple, shows that it is possible to combine the uncertainty from
astronomical signals with geological records to derive an effec-
tive constraint for both. In fact, any similar Bayesian method
could use the density estimation of frequencies as proper priors.
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