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Abstract: Background/Objectives: Despite efforts within the framework of the Sustainable Develop-
ment Goal to end malnutrition by 2030, malnutrition and soil-transmitted helminth infections persist
in sub-Saharan Africa. A significant barrier to success is the inadequate understanding of effective
intervention methods. Most research on the gut microbiota’s role in health has been conducted in
developed countries, leaving a critical gap in knowledge regarding low-income populations. This
study addresses this gap by expanding research on the gut microbiota of underprivileged populations
to help tackle these public health challenges. Methods: We employed 16S rDNA sequencing to
assess the bacterial gut microbiota composition of 60 children (mean age: 26.63 ± 6.36 months) and
their 58 mothers (mean age: 30.03 ± 6.31 years) in Pemba, with a focus on helminth infection and
nutritional status. Results: Our differential abundance analysis identified bacterial taxa that were
significantly negatively associated with both helminth infections and malnutrition, highlighting
the potential for microbiota-directed interventions to address these health issues simultaneously.
Notably, we identified Akkermansia, Blautia, Dorea, and Odoribacter as promising probiotic candi-
dates for such interventions. In stunted children, positive co-occurrences were observed between
Lactobacillus, Prevotella, and Bacteroides, while Escherichia/Shigella displayed negative co-abundance
relationships with short-chain fatty acid (SCFA) producers in the gut microbiota. These findings
suggest that administering Lactobacillus and SCFA-producing probiotics to children may foster the
growth of beneficial bacteria like Prevotella and Bacteroides while reducing the relative abundance
of Escherichia/Shigella, potentially enhancing overall health. Conclusions: This study underscores
the importance of microbiota-directed interventions in children and women of reproductive age
as promising strategies, alongside established approaches, for combating helminth infections and
malnutrition in vulnerable populations.

Keywords: malnutrition; stunting; wasting; underweight; helminth; Ascaris; Trichuris trichiura; gut
microbiota; children; women of reproductive age

1. Introduction

Malnutrition remains one of the important world health challenges pointing to the
immense challenge of achieving the Sustainable Development Goal (SDG) that aims to
eliminate hunger by 2030. Millions of children under five years of age continue to suffer
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from stunting, wasting, and underweight [1]. Along with the increased proportion of
undernourished people, there is also the increasing prevalence of overnutrition, leading to
obesity and related health problems. This is called the double burden of malnutrition [2].

Growth faltering in children in the form of stunting, a sign of chronic malnutrition,
and wasting, an indicator of acute malnutrition, are common among young children in low-
and middle-income countries (LMICs) and may contribute to child mortality and adult
morbidity. Three out of five subregions with high rates (more than 30%) of child stunting
are found in sub-Saharan Africa: western Africa, middle Africa and eastern Africa [2].

In 2018, in the specific case of Tanzania, the level of stunting was considered “very
high” (≥30%) in 15 regions out of 26. In Zanzibar, the 2018 survey indicated prevalences of
21.5%, 5.3%, and 13.6% for child stunting, wasting, and underweight, respectively (Tanzania
National Nutrition Survey (TNNS) 2018) [3].

Another public health challenge that rages in developing countries, particularly in
sub-Saharan Africa, is the soil transmitted helminth (STH) infection. STH infections im-
pact human health, nutrition, and worker productivity, and hence aggravate poverty [4].
Parasitic infections have been recognized for decades to be major public health prob-
lems in Zanzibar [5]. Many programs aimed at combating parasitic infections have been
implemented in the area, yielding encouraging results in reducing the intensity and mor-
bidity associated with helminth infections. However, the ultimate goal of eliminating STH
infections has yet to be achieved [6].

The above-mentioned public health problems are interconnected with synergistic
consequence [7]. Helminth infections have been reported to play an important role in
malnutrition by causing protein-energy malnutrition, anemia, and physical complications
as a result of increased nutrient squandering, blood loss, intestinal obstruction, and rectal
prolapse [8]. Many studies have reported that STH infections are significantly associated
with undernutrition [9–11]. On the other hand, being malnourished is considered as a
risk factor for intestinal parasite infection [12]. Another important point to emphasize is
that malnutrition has an intergeneration impact [13]. Research suggests that the impact of
stunting on development can extend into the next generation of children [14]. Thus, early
intervention, particularly in young children and women of childbearing age, is crucial to
breaking this cycle [15].

The modest effects of interventions to prevent malnutrition may be attributed to an
incomplete understanding regarding the most effective strategies and timing for their
implementation [16]. With the development of high throughput sequencing tools and
techniques, the study of the gut microbiota and its connection to health and disease has
become widely adopted. Therefore, the gut microbiota is now recognized as playing an
important role in nutritional conditions [17,18]. Studies have revealed that malnourished
children have distinct microbiome compared to healthy counterparts [19,20]. The gut
microbiota of children who are undernourished is usually immature, resembling that of
younger children rather than that of age-matched healthy controls [21]. Laursen et al.
demonstrated that inadequate maturation of the gut microbiota is associated with poor
growth and development in early life [22]. These findings suggest a causal relationship
between the immature gut microbiota from undernourished infants and impaired growth
phenotypes. This was demonstrated by the fact that the transfer and invasion of healthy
microbiota into the guts of the undernourished mice by co-housing restored normal growth
in the latter [23]. Hopefully, some interventional studies targeting the gut microbiota had
positives outcomes. An experimental study using the probiotic Lactobacillus plantarum
revealed that the gut microbiota enhanced sensitivity to growth hormone [24]. Similarly,
Michael et al. found that restoring Bifidobacterium infantis to the gut of malnourished infants
boosts weight gain and reduces inflammatory markers [25]. Furthermore, there have been
many demonstrations that helminth infections shape the gut microbiota composition and its
function [26–28]. Helminth colonization in the gut requires support from the gut microbiota.
Helminth egg hatching is supported by some gut microorganisms such Escherichia/Shigella
and Salmonella typhimuriun [29–31]. On the other hand, the success of chemotherapy against
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helminth infection may be dependent on the composition of the gut microbiota prior to
treatment [32].

Despite increasing interest in the study of gut microbiota and its associations with
health and disease, research in less-developed countries remains limited. Browne et al. [33]
reported that around 85% of the 25,000 high-resolution gut metagenomes publicly available
from children under four came from individuals living in wealthy regions (Europe and
Nord America). Research indicates that the gut microbiota vary by geographical region
where individuals live [34,35], highlighting the urgent need to study the microbiota of
less favored populations to assess the effectiveness of microbiota-directed interventions
involving them.

This study was conducted in a region with a population vulnerable to malnutrition
and parasitic infections, with two primary objectives. First, it aimed to investigate the
relationship between helminth infection and gut microbiota shortly after deworming
treatment, in order to identify potential protective bacteria that could serve as candidate
probiotics or targets for microbiota-directed interventions. Second, it sought to examine
the association between malnutrition and gut microbiota to uncover potential protective
bacteria that could aid in combating malnutrition, particularly in children, by serving as
candidate probiotics or intervention targets.

2. Materials and Methods
2.1. Ethic Statements

This study was authorized by the Zanzibar Health Research Ethical Committee
(ZAHREC/03/REC/MARCH/2022/16), and all participants signed the informed con-
sent form for themselves and their children to participate in the study.

2.2. Study Design and Recruitment of Participants

This cross-sectional study was conducted in the Zanzibar archipelago (Tanzania) where
helminth infection and malnutrition are endemic. A total of 58 women of reproductive age
(WRA), already described in our previous article [36], and their 60 children, described here
for the first time, were recruited from three health facilities in Pemba. All participants were
either healthy or infected by helminths after the microscopical examination of eggs in their
stool samples. A comparative analysis of their gut microbiota was conducted considering
the helminth infection and nutritional status.

Inclusion criteria were as follows: (i) All participating mothers were between 18 and
45 years old, and children were 1.5 to 3 years old; and (ii) participants had not taken
antibiotics or probiotics in the past two months and did not present any symptoms of
disease. All participants not meeting the inclusion criteria were not considered in our study.

A detailed questionnaire was filled in by WRA for collecting information about their
lifestyle, family, health, and their nutritional conditions. Nutritional-related anthropometric
parameters were measured. Participants meeting the inclusion criteria were provided with
stool containers to collect stool samples.

2.3. Fecal Sample Collection and Parasitological Analysis

After collection, stool samples were sent and processed at the Public Health Labora-
tory Ivo De Carneri (PHL-IDC) in Pemba for parasitological analysis. Each sample was
divided into aliquots and stored at −20 ◦C before shipment to the University of Camerino,
Italy for the DNA extraction. The Mini–FLOTAC technique was used for microscopic
examination. Briefly, two grams of stool sample was homogenized sufficiently with the
flotation solution (saturated sodium chloride). After homogenization, the samples were
added to the two flotation chambers. After 10 min, the numbers of eggs per gram of feces
were determined under a microscope. Analytic sensitivity could reach ten eggs per gram
of feces. This analysis was conducted in duplicate for each sample by two well-trained
laboratory technicians. After the parasitological analysis, which was based on egg detection,
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the results were delivered to the enrolled participants to ensure that they could receive
anti-helminth treatment from the PHL-IDC team or attend the sanitary center to receive it.

2.4. Recording and Evaluation of Nutritional Conditions

With the assistance of nurses, anthropometric parameters such as height, weight, and
abdominal circumference were collected for women and their children. We used the World
Health Organization (WHO) indicators to evaluate the nutritional conditions of children
(WHO. 2024. malnutrition-in-children) [37]. For children, these indicators were defined
as follows:

• Stunting—height-for-age < −2 SD of the WHO Child growth standards median;
• Wasting—weight-for-height < −2 SD of the WHO Child growth standards median;
• Overweight—weight-for-height > +2 SD of the WHO Child growth standards median;
• Underweight—weight-for-age < −2 standard deviations (SD) of the WHO Child growth

standards median.

For women, the nutritional conditions were evaluated based on their BMI values
(WHO. 2024. Malnutrition in women) [38] as follows:

• BMI < 18.5: underweight; BMI 18.5–24.9: normal weight; BMI ≥ 25.0: overweight;
BMI ≥ 30.0: obesity.

2.5. DNA Extraction, PCR, and Sequencing

DNA was extracted using the QIAamp Fast DNA Stool Mini Kit by QIAGEN (Hilden,
Germany). The DNA concentration and absorbance of each sample was evaluated by using
a NanoDrop™ One/One C Microvolume UV–Vis spectrophotometer from Thermo Fisher
Scientific (Waltham, Massachusetts, MA, USA).

Before sending the samples for sequencing, all of the extracted DNA was amplified
through conventional PCR. The primers used for the purpose were:

Pro 341F: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNBGC-
ASCAG-3′

Pro 805R: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACNVGGG-
TATCTAATCC-3′

The PCR amplified product was run by gel electrophoresis at 120–124 volts for 24 min,
then examined under UV light. A total of 50 ng of purified DNA of each sample was
subsequently prepared and sent to BMR Genomics (Padova, Italy) for 16S sequencing.
Libraries were generated using the NEBNext® Ultra™ DNA Library Prep Kit (New England
Biolabs, Ipswich, MA, USA) following the manufacturer’s recommendations. Library
quality was assessed and sequenced on an Illumina MiSeq PE300 platform (Illumina,
San Diego, CA, USA).

2.6. Bioinformatics and Data Analysis

The QIIME2 (Quantitative Insights into Microbial Ecology, version 2023.5) software was
used to analyze the 16S rDNA gene sequences generated from NGS technologies. Briefly, after
filtering the low-quality reads (minimum quality score of 25, minimum/maximum length
of 200–250, no ambiguous bases allowed, no mismatches allowed in the primer sequence,
and no phiX reads/chimeric sequences), all of the remaining sequences were subsequently
clustered into operational taxonomic units (OTUs) based on their similarity (>97%) following
the DADA2 pipeline included in the QIIME 2 Plugin ‘dada2’ (version 2023.5.0). Samples
were evaluated for alpha diversity (microbial diversity within samples) and beta diversity
analysis (community diversity divergence between samples). We assessed the statistical
significance of alpha and beta diversity metrics by the two-sample t-test and Kruskal–Wallis
and by the PERMANOVA test, respectively, as implemented in QIIME2. Taxonomic analysis
was performed by matching OTU sequences with both the Silva and Greengenes databases.
The raw reads were deposited into the NCBI Sequence Read Archive database (SRA accession
number: SRP495566, BioProject accession number: PRJNA1088637).
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2.7. Statistical Analysis

Differential analysis of taxonomy between groups was performed using Welch’s t-test
in STAMP software (version 2.1.3). p-values ≤ 5 × 10−2 were considered as significant. A
student t-test was also used with p ≤ 5 × 10−2 considered as significant.

To detect bacterial co-occurrences in the gut microbiota of stunted and normally grow-
ing children and to construct a microbial network from the correlation matrix, Spearman
pairwise correlation coefficient analysis was performed between the OTUs using the cor
function in R-4.4.2. After converting the results into an adjacency matrix, we compared the
absolute values to a threshold of 0.3 to include both positive and negative correlations in
the network construction.

3. Results
3.1. Characteristics of Participants

Details of the participant characteristics are reported in Table 1. A total of 58 WRA
and 60 children were examined for their nutritional condition and carriage of helminth
parasites. The parasitological analysis, based on egg detection, revealed a prevalence of
helminthiasis of 24.13% and 33.33% in the WRA and children, respectively. According to
information from the Public Health Laboratory Ivo de Carneri and from the participant
interviews, they had been treated by anti-helminthic drugs only one or two months before
stool collection. This suggests either a failure of the treatment or a fast reinfestation.

Table 1. Characteristics of the participants.

Features Mothers 1 Children

Number of participants 58 60
Mean age ± SD 30.03 ± 6.31 (years) 26.63 ± 6.36 (months)
Mean BMI ± SD (mothers) 24.34 ± 4.88 (kg/m2) /
Helminth infected 14 20
Ascaris infected 8 5
Trichuris infected 8 18
Co-infected 2 3
Obesity (mothers) 17.24% (10/58) /
Underweight (mothers) 6.89% (4/58) /
Overall children malnutrition / 56.66% (34/60)
Stunting (height/age) / 46.66% (28/60)
Wasting (weight/height) / 23.33% (14/60)
Underweight children (weight/age) / 26.66% (16/60)

1 Mothers were the same group of women from Pemba described in [36]. Different parameters are here reported.

Analyses of the nutritional conditions of participants revealed a prevalence of obesity
of 17.24% in mothers and a prevalence of child malnutrition (all indicators taken together)
of 56.66% in Pemba.

The investigation examining the relationship between helminth infection and malnu-
trition in children revealed an increased odds of being stunted (OR = 1.21; 95% CI 0.4 to
3.65) with Trichuris trichiura infection. Similarly, there was an elevated risk of underweight
status associated with Trichuris infection (OR = 2.333; 95% CI 0.70 to 7.75).

3.2. Study of the Associations Between Helminth Infection and Bacterial Abundance

The analysis of diversity of the gut microbiota according to helminth infection revealed
no significant differences in the alpha and beta diversity of the WRA and children gut
microbiota analyzed shortly after deworming (see Figure S1). Since previous analyses [26]
on this population, with stool samples collected nearly one year after drug treatment,
revealed a modulation of gut microbiota diversity in infected individuals compared to non-
infected individuals, the present findings suggest that the administration of the anthelmintic
drug may have contributed to this modulation, reducing differences in the gut microbiota
between infected and uninfected individuals.
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However, the examination of the taxonomic composition differences between infected
and non-infected children and WRA, based on the advanced statistical analysis with STAMP
(Table 2), revealed that Akkermansia, typically associated with a healthy gut microbiota
and metabolic activity, Haemophilus, and Alloprevotella were negatively associated with
Ascaris infection in both the WRA and children. Additionally, several other genera showed
significantly different abundances based on helminth infection status. In children, seven
other taxa including two members of the Clostridia class (Eubacterium ruminatium and
Flavonifractor) and the genus Streptococcus, which includes the commonly used probiotic
Streptococcus thermophilus, were more abundant in healthy children compared to the Ascaris-
infected children. Similarly, in the WRA from Pemba, other taxa (see Table 2) including three
from the Clostridia class (Eubacterium eligens, Lachnospira, and UCG-005), were significantly
more abundant in non-infected participants compared to those infected with Ascaris. These
results suggest the potential significance of the Clostridia class in a microbiota-targeted
approach to cope with Ascaris infection.

Table 2. Taxa that were significantly more abundant in the healthy participants compared to the
Ascaris- or to Trichuris-infected children and women. The analysis was conducted using the software
STAMP, which considers the effect size. p ≤ 5 × 10−2 was considered as statistically significant and
reported as a single value for each taxon.

Healthy vs. Ascaris
(Children) p. Value Healthy vs. Ascaris

(Mothers) p. Value Healthy vs. Trichuris
(Children) p. Value Healthy vs. Trichuris

(Mothers) p. Value

Eubacterium
ruminatium 1.5 × 10−2 Eubacterium eligens 8.87 × 10−3 Eubacterium_coprostanoligens 4.5 × 10−2 Eubacterium eligens 8.87 × 10−3

Akkermansia 1.5 × 10−2 Akkermansia 2 × 10−2 Christensenellaceae_R_7
group 3 × 10−2 Eubacterium siraeum 3.62 × 10−3

Alloprevotella 3.4 × 10−2 Alloprevotella 7.87 × 10−3 Clostridia viadin
BB60_group 3.4 × 10−2 Ruminococcus torque 1.4 × 10−2

Haemophilus 2 × 10−2 Haemophilus 5.69 × 10−3 Klebsiella 4.8 × 10−2 Barneiella 1.9 × 10−2

Megamonas 9.05 × 10−3 Lachnospira 3.7 × 10−3 Paraprevotella 3.4 × 10−2 Bilophila 4.8 × 10−2

Barnesiella 1.2 × 10−2 Odoribacter 2.9 × 10−2 UCG-002 3.4 × 10−2 Blautia 1.3 × 10−2

Clostridia UCG-014 2.7 × 10−2 Phascolarctobacterium 3.7 × 10−2 Butirivibrio 2.4 × 10−2

Erysipelotrichaceae
UCG-003 1.7 × 10−2 Sutterella 6.44 × 10−3 Cyanobacteria 1.58 × 10−3

Flavonifractor 1.7 × 10−2 UCG-005 2.4 × 10−2 Desulfobacterota 4.2 × 10−2

Streptococcus 3.5 × 10−2 Verrucomicrobiota 2 × 10−2 Eryipelotrichaceae
UCG-003 7.51 × 10−3

Verrucomicrobiota 1.2 × 10−2 Gastranaerophilale 2.14 × 10−3

Klebsiella 2.04 × 10−3

Lachnospiraceae
NK4A136 4.68 × 10−3

Odoribacter 1.5 × 10−2

Roseburia 1.5 × 10−2

Sutterella 1.7 × 10−2

UCG-005 2.5 × 10−2

Looking at the association between Trichuris trichiura and gut microbiota in WRA
and children, we identified notable differences. In children, four taxa belonging to the
Clostridia class (Eubacterium_coprostanoligens, Christenellaceae_R_7 group, Clostridia viadin
BB60_group, and UCG-002), along with Paraprevotella from the Bacteroidia class, were
significantly more abundant in the non-infected group. Conversely, 16 taxa (see Table 2)
were more prevalent in the non-infected WRA. Among these, Odoribacter was also found
to be more abundant in Ascaris non-infected children, and the genus Blautia was found
to be negatively associated with Trichuris infection [26] in a study conducted in the same
population in 2018. This suggests its potential utility as a candidate probiotic or target for
microbiota-directed therapy.

3.3. Analysis of the Diversity of the Gut Microbiota According to Nutritional Status

The diversity analysis uncovered no significant differences in alpha and beta diversity
based on child nutritional status. However, alpha diversity was relatively lower in cases
of stunting and underweight children, suggesting potential disparities in specific taxa
abundances (see Figure 1). Similarly, the analysis did not reveal a significant difference
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in alpha and beta diversity between the gut microbiota of obese and non-obese WRA
(Figure S2).
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Figure 1. Analysis of the diversity of the gut microbiota of children from Pemba. (A) Alpha diversity
according to body weight, (B) beta diversity according to body weight, (C) alpha diversity according
to stunting; (D) beta diversity according to stunting. “No” refers to “no stunting” while “Yes”
indicates “stunted group”.

The analysis of the microbiota based on the children’s body weight (Figure 2) showed
that ten genera were significantly more abundant in children with normal weight compared
to the underweight group. Most of these taxa belonged to the Bacteroidia class such as
Prevotellaceae_NK3B31_group (p = 3 × 10−2), Alloprevotella (p = 3.9 × 10−2), Paraprevotella,
and Odoribacter (p = 3.9 × 10−2) or to the Clostridia class such as Dorea (p = 9.23 × 10−3),
Eubacterium_coprostanoligenes_group (p = 1.9 × 10−2), UCG-002 (p = 1.5 × 10−2), and Lach-
nospiraceae_010 (p = 1.9 × 10−2). Notably, some of these taxa were also found to be negatively
associated with helminth infection in this study: Alloprevotella was negatively associated
with Ascaris; Eubacterium_coprostanoligenes_group, UCG-002, and Paraprevotella were nega-
tively associated with Trichuris infection. Therefore, it can be inferred that a gut microbiota
therapeutic approach can be applied to address both helminth infection and malnutrition
in children.
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In addition, we conducted a comparative analysis of taxonomy between children
with stunting (growth retardation) and those with normal growth. Our analyses identified
four taxa that were significantly more abundant in children with normal growth than
in the stunted group (see Figure 3A). The genus Dorea (p = 2.2 × 10−2), which was also
found to be less abundant in underweight children, was notably less abundant in stunted
children, suggesting its potential as a marker of healthy nutritional conditions in children
(normal weight and height). Alloprevotella (p = 4.1 × 10−2), less abundant in Ascaris-infected
children, was also found to be lower in stunted children but significantly more abundant in
non-stunted children. Additionally, two other genera, Phascolarctobacterium (p = 1.2 × 10−2)
and Eubacterium_eligens_group (p = 2.1 × 10−2), showed similar patterns of abundance.
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Figure 3. Significant differential abundance of taxa observed by comparing the microbiota of stunted
children from Pemba (A). “No” refers to “no stunting” while “Yes” indicates the “stunting group”.
Significant differential abundance of taxa observed by comparing the microbiota of obese and not-
obese women from Pemba (B). “No” refers to “not-obese” while “Yes” indicates “obese group”.
* Stands for p ≤ 5 × 10−2; ** stands for p ≤ 1 × 10−2.

Furthermore, we analyzed the taxonomy regarding the wasting condition in children
(see Figure S3) and found that six taxa were significantly more abundant in the group
of children not suffering from wasting compared to children with wasting. The phylum
Verrucomicrobiota (p = 5 × 10−3) was notably higher in the group without wasting, a
finding supported by an increased abundance of the genus Akkermansia, the preeminent
member of the phylum, in the group of children with normal weight. Additionally, four
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other taxa negatively associated with wasting were identified: RF39 (p = 1.1 × 10−2),
Christensenellaceae_R-7_group (p = 1.4 × 10−2), Lachnospira (p = 2 × 10−2), and Haemophilus
(p = 1 × 10−2).

Finally, we analyzed the significant differences in bacterial abundance regarding the
WRA nutritional status (obesity) (Figure 3B). Alloprevotella (p = 3 × 10−3) and Bilophila
(p = 8 × 10−3) were significantly more abundant in the obese participants than in the non-
obese individuals.

3.4. Analysis of Bacteria Co-Occurrences According to the Stunting Condition

To deepen our understanding of stunting’s impact on the children’s microbiota, we
analyzed the co-occurrences within these groups, and the results are shown in the micro-
bial networks of both normally growing and stunted children (Figure 4A and Figure 4C,
respectively). The data used to construct the networks are shown in the adjacency matrices
reported in Figure 4B,D. While the microbial network of normally growing children did
not show clear clusters (Figure 4A), thus suggesting a higher sample variability, that of the
stunted group (Figure 4C) showed two clusters of coexisting microbes. Relevant positive
co-occurrences were observed between Lactobacillus and Dialister (Figure 4B) and between
Lactobacillus and Prevotella and Bacteroides (Figure 4D). This suggests that administering Lac-
tobacillus probiotics to children may promote the development of beneficial bacteria in their
gut microbiota, potentially enhancing their health. Furthermore, consistent co-occurrences
were found in both groups. For instance, positive co-occurrences involved Clostridium
sensu stricto_1, previously identified as negatively associated with helminth infection, with
Intestinibacter and Romboutsia in both the stunted (lower cluster in Figure 4C,D) and normal
groups (Figure 4B). Additionally, Escherichia/Shigella, typically linked with helminth and
gut bacterial infections, exhibited negative correlations with beneficial and short-chain
fatty acid (SCFA) producers, such as Faecalibacterium, Roseburia, Prevotella, and Agathobacter,
in both normal (Figure 4B) and stunted children (upper cluster in Figure 4C,D). These
findings suggest that interventions targeting gut microbiota to reduce Escherichia/Shigella
proliferation may mitigate its negative impact on healthy bacteria and promote SCFA
production, ultimately benefiting the children’s nutritional status and health.
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3.5. Detection of Enterotypes

The analysis of the taxonomy revealed that our samples were classified into three
distinct clusters, referred to as enterotypes ET1, ET2, and ET3 (Figure 5), according to
Schneeberger et al. [32]. ET1 was dominated by Bacteroidetes, ET2 by Proteobacteria,
and ET3 by Firmicutes. Children predominantly exhibited enterotype ET1 while mothers
showed ET3. Enterotype ET2, dominated by Proteobacteria, was more commonly found
in the children than in the mothers. Notably, almost all children in this enterotype group
suffered from some form of malnutrition (eight out of nine), with stunting being the most
frequently observed condition. No specific association was found between the distribu-
tion of helminth infections and the enterotypes. Considering mother–child pairs, only
12 children shared the same enterotype as their mothers: half of them were 18 months old,
while the other half were more than 30 months old.
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We selected specific taxa previously studied in relation to the response to anthelminthic
drugs [32]. We found that the Eubacterium coprostanoligenes group, which is part of the en-
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terotype that responds favorably to deworming treatment, was significantly (p = 2.3 × 10−2)
more abundant in enterotype ET3 compared to ET1 (Figure 6). Conversely, Ruminococcus
torques, also associated with a favorable response to treatment, was relatively less abundant
(p = 2.21 × 10−1) in enterotype ET3. This suggests that microbiota-directed interventions
aimed at increasing the abundance of Ruminococcus torques should be considered to enhance
the microbiota’s responsiveness to treatment in the studied population. On the other hand,
Prevotella (p = 4 × 10−4) and Roseburia (p = 3.3 × 10−2) were significantly more abundant
in enterotype ET1, with Veillonella also relatively more abundant (p = 8.5 × 10−2) in this
group, confirming the enterotype classification shown in [32].
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4. Discussion

Our findings shed light on the interplay between gut microbiota, helminthiasis, and
malnutrition. In the Pemba population, we observed a relatively high percentage of
helminth infection despite the recent deworming campaign, alongside a high prevalence
of malnutrition among children. Differential abundance analyses uncovered taxa with a
negative association with either helminth infection or malnutrition as well as taxa that
exhibited negative associations with both helminth infection and malnutrition, suggesting
that microbiota-directed interventions could serve as a dual approach to fight these health
issues simultaneously.

The relatively high percentage of helminth infection (24.13% and 33.33% in mothers
and children, respectively) observed shortly after deworming campaigns suggests either
rapid reinfestation or the failure of chemotherapy to effectively eliminate helminth infec-
tions in this population. In a cross-sectional study conducted on the same population in
2018, Chen et al. [26] reported similar prevalence rates (37.93% in mothers and 22.22%
in children), with samples collected nearly a year after the deworming campaign. These
findings closely align with the prevalence observed in our study, which was conducted
shortly after a deworming campaign. Previous research on this population has highlighted
the limited efficacy of chemotherapy interventions and the reduced sensitivity of Trichuris
trichiura to commonly used anthelminthic drugs [6,39,40]. This ongoing challenge under-
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scores the urgent need to identify complementary strategies to combat helminth infections
in this population.

In addition, this analysis also revealed a high prevalence of malnutrition among
children, with an overall rate of 56.66% in Pemba. This finding is comparable to data
from Ghana, where nearly half of all school-children were malnourished [8]. These results
highlight the severity of child malnutrition in sub-Saharan Africa. The prevalence of
child malnutrition in Pemba, marked by stunting (46.66%), underweight (26.66%), and
wasting (23.33%) was notably higher than that reported in the 2018 Tanzanian National
Nutritional Survey, which documented rates of 21.5%, 5.3%, 13.6% for stunting, wasting,
and underweight, respectively. The difference observed here can be attributed to the age
range covered in our study, which was 18 to 36 months, compared to the broader range of
0 to 59 months in the national survey. However, it is noteworthy that in the national survey,
the prevalence of stunting among children aged 24 to 35 months was similar (43.3%) to the
one found in this study (46.66%). This suggests a heightened vulnerability of children aged
1.5 to 3 years—a critical period of nutritional transition, when children gradually shift from
maternal feeding to more adult-like feeding habits. This result also alerts that the Global
Nutrition Targets by 2025, which aim for a 40% reduction in the number of children aged
under 5 years who are stunted [2], may not be achieved without the development of a more
appropriate and integrated approach. Moreover, a prevalence of stunting in childhood may
result in obesity later on in women’s lives. Henriques et al. demonstrated that being stunted
predisposed an individual to obesity [41]. Therefore, fighting against stunting not only
save children’s lives, but prevents the later onset of obesity and its related complications.

Our analysis revealed elevated odds of being stunted and underweight for children
who had a Trichuris trichiura infection. Previous studies have shown that the presence of
helminth affects the nutritional status of children [7,12,42–44] through different mechanisms
such as anorexia [42,45], mucosal damage, vomiting, and diarrhea [46,47]. A study in Brazil
revealed that helminthiasis in early childhood was associated with a 4.6 cm reduction
in height by the age of seven [48]. Conversely, the use of anthelmintic drugs has been
linked to improvements in weight, height, and mild-upper arm circumference [49,50].
These findings indicate the importance of combating helminth infections as a critical step
in reducing childhood malnutrition. The analysis of bacteria co-occurrences indicates a
strong negative co-abundance between Escherichia/Shigella and anti-inflammatory and SCFA
producers like Faecalibacterium and Dialister. This finding aligns with Chen et al. (2020),
who observed a similar pattern, where species within the Escherichia genus showed positive
co-abundance with species with pro-inflammatory properties, and negative co-abundance
with species with anti-inflammatory properties like F. prausnitzii [51]. Additionally, the
positive co-occurrences of Lactobacillus with beneficial gut bacteria, such as Bacteroides and
Prevotella, suggest a promising role for Lactobacillus probiotics in supporting children’s gut
microbiota health. This potential is supported by evidence from studies in both mice [52]
and humans [53]. However, it is essential to further investigate these correlations at the
species and subspecies levels, as microbial interactions can vary significantly depending on
the chosen taxonomic resolution [54].

While previous studies have reported significant changes in alpha and beta diversity
of gut microbiota with helminth infection [26,55,56], our study did not find a notable
impact on overall biodiversity in children. However, specific taxa showed significant
differences between the infected and non-infected participants. Similar to our finding,
Gobert et al. [57] observed changes in specific taxa abundance without affecting the over-
all diversity and noted reduced Haemophilus in helminth-infected participants, hinting
at its potential protective role. In our analysis, Akkermansia and Alloprevotella were more
abundant in Ascaris-non-infected participants, with Akkermansia muciniphila previously
linked to metabolic benefits and reduced helminth infection [58,59]. Additionally, two
members of the Clostridia class (Eubacterium ruminatium and Flavonifractor) were signifi-
cantly reduced in children, while three other members of the same class in the mothers
(Eubacterium eligens, Lachnospira, and UCG-005) exhibited a similar reduction in abundance
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as the Ascaris-infected participants. Members of this class were also found to be nega-
tively associated with Trichuris trichiura. Other taxa more abundant in children without
Trichuris belonged to the Clostridia class (Eubacterium_coprostanoligens, Christenellaceae_R_7
group, Clostridia viadin BB60_group, and UCG-002), suggesting a protective property of
this bacteria class. These findings align with previous studies that reported lower propor-
tions of Clostridia and Bacteroidia in helminth-infected individuals [28,55,60]. These studies
suggest that microbiota-directed interventions, such as dietary modifications to enhance
these bacterial groups, may offer protective benefits for vulnerable populations. Notably,
Odoribacter, which was more abundant in the non-infected women, has already shown
promise as a probiotic, improving glucose control and inflammation in obese mice [61–63].
These taxa could serve as candidates for probiotic development to support gut health in
vulnerable populations.

Previous studies have explored the relationship between the gut microbiota and
malnutrition and have identified significant differences between cases and controls [17,64].
We observed that some taxa, such as Alloprevotella, Eubacterium_coprostanoligenes_group,
UCG-002, and Paraprevotella, which are negatively associated with child malnutrition, were
also negatively associated with helminth infection. This suggests that intestinal parasites
may play an essential role in the chronicity of child malnutrition [65]. Among the taxa that
differed according to the nutritional condition in children, Dorea attracted our attention, as it
appeared to be negatively associated with both underweight and stunting conditions. Dorea
formicigenerans was associated with weight gain in a microbiota-directed food intervention
in children [66]. Two other studies found that species of the same genus were positively
correlated to weight and lean mass gain [67,68]. A study by Fontaine et al. [17] revealed
that the most discriminative species between healthy and undernourished children were
Bifidobacterium longum for young children in their first six months while the Dorea species,
Faecalibacterium Prausnitzii, and Ruminococcus species were relevant for children from 6 to
24 months. Therefore, bacteria from the genus Dorea may be considered as candidate
probiotics for addressing childhood malnutrition.

Akkermansia was negatively correlated with wasting condition and Ascaris infection.
A reduced abundance of this genus may prevent maturation of the gut microbiota in
children, potentially promoting the wasting condition. Roswell et al. [20] discovered that
Akkermansia, along with other bacteria usually found in the healthy gut microbiota of adults,
increased with age in children. Therefore, in Ascaris infection, reducing Akkermansia may
delay the maturation of children’s gut microbiota. This issue may be solved since it has
been demonstrated that the early life consumption of polyphenol [69–71] and omega-3
supplementation [72] can promote the development of Akkermansia.

Our investigation of the composition of the gut microbiota revealed three main clusters
in both the children and mothers, each dominated by a different phylum. Enterotype
ET2, dominated by Proteobacteria, was mostly found in the children, especially those
with malnutrition. This finding aligns with a study by Nuzha et al. [73] that also found
Proteobacteria to dominate the microbiota of malnourished children. Furthermore, only
one-fifth of the children shared the same enterotype as their mothers, and these children
were either at the early stage of gut microbiota development (18 months old) or nearing the
end of this development (31–36 months old). This suggests that the age window between
19 and 30 months may be optimal for probiotic interventions aimed at fostering a healthier
adult gut microbiota.

Eubacterium coprostanoligenes was identified as one of the most abundant species in
enterotype ET3, consistent with the findings of Schneeberger et al. [32], who reported that
enterotype ET3 is the most favorable for a positive response to albendazole-ivermectin
treatment. In a previous study on the same population [36], we observed positive associa-
tions between Eubacterium coprostanoligenes and specific foods and micronutrients including
cassava, vitamin B6, and folate. This indicates that increasing the intake of these foods and
nutrients may enhance the gut microbiota’s responsiveness to deworming treatments.
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Our study offers the advantage of being the first to simultaneously investigate the
connections between helminth infection, malnutrition, and gut microbiota in young chil-
dren and mothers in one area where helminthiasis and child malnutrition are prevalent.
However, the limited resolution of the 16S rDNA sequencing based on the primers we used,
although largely applied in most microbiota-compositional studies, did not allow for the
detection for subgenus taxa. Additionally, this study did not consider functional aspects,
which could be better addressed in further investigations using metatranscriptomic and
metabolomic approaches. Another limitation of this study is the relatively small sample
size. As the research was conducted in a specific region of Africa, caution is required when
attempting to generalize the findings.

Future studies should involve larger cohorts and interventional designs, where partic-
ipants follow prescribed diets and supplementation protocols. Such studies should also
include functional analyses, utilizing metatranscriptomics and metabolomics to provide
deeper insights into the gut microbiota’s role and interactions.

5. Conclusions

In this cross-sectional and observational study, we used the 16S rDNA sequencing ap-
proach to evaluate the composition of the gut microbiota of children and their mothers from
Pemba according to their helminth infection and nutritional status. Our analyses showed
that despite efforts made by the local government and partners to combat STH infections
and malnutrition, their prevalence remains high. The differential abundance of certain
taxa and the analysis of co-occurrences allowed us to postulate that microbiota-directed
interventions, through diet and/or probiotics, may aid in combating the public health
challenges of childhood malnutrition and helminthiasis. Some taxa negatively associated
with either helminth infection (Akkermansia, Haemophilus, and Blautia) or childhood malnu-
trition (Dorea and Odoribacter) have emerged as candidate probiotics. Furthermore, these
results outline the importance of promoting a nutritional educational campaign among
the population to suggest appropriate and sustainable nutrients to improve their intestinal
microbiota and health conditions. Nutritional education campaigns should be organized
under the supervision of local authorities prior to the nutritional intervention. This should
allow the population to better know how to use locally available foods. This should be part
of an integrated approach that should also include the regular use of certified anthelminthic
drugs and improvements in water quality, hygiene, and sanitation.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nu16234023/s1, Figure S1: Analysis of gut microbiota diversity according
to the helminth infection. No significant differences were shown in the alpha and beta diversity of the
WRA and children’s gut microbiota analyses performed shortly after deworming. (A) Alpha diversity
according to the parasite presence in WRA; (B) beta diversity according to parasite presence in WRA;
(C) alpha diversity according to parasite presence in children; (D), beta diversity according to parasite
presence in children. “No” refers to “no parasite detection” while “Yes” indicates “parasite detection”;
Figure S2: Analysis of diversity of the gut microbiota revealed no significant difference in alpha (A) and
beta (B) diversity between the gut microbiota of obese and non-obese WRA. “No” refers to “non-obese”
while “Yes” indicates “obese” WRA; Figure S3: Significant differential abundance of taxa observed by
comparing the microbiota of wasting children, analyzed at the phylum (A) and genus (B) levels. “No”
refers to “not wasting”, while “Yes” indicates “wasting” condition.
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