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ABSTRACT
Evasion attacks are a threat to machine learning models, where
adversaries attempt to affect classifiers by injecting malicious sam-
ples. An alarming side-effect of evasion attacks is their ability to
transfer among different models: this property is called transfer-
ability. Therefore, an attacker can produce adversarial samples on a
custom model (surrogate) to conduct the attack on a victim’s orga-
nization later. Although literature widely discusses how adversaries
can transfer their attacks, their experimental settings are limited
and far from reality. For instance, many experiments consider both
attacker and defender sharing the same dataset, balance level (i.e.,
how the ground truth is distributed), and model architecture.

In this work, we propose the DUMB attacker model. This frame-
work allows analyzing if evasion attacks fail to transfer when the
training conditions of surrogate and victim models differ. DUMB
considers the following conditions: Dataset soUrces,Model archi-
tecture, and the Balance of the ground truth. We then propose a
novel testbed to evaluate many state-of-the-art evasion attacks with
DUMB; the testbed consists of three computer vision tasks with
two distinct datasets each, four types of balance levels, and three
model architectures. Our analysis, which generated 13K tests over
14 distinct attacks, led to numerous novel findings in the scope
of transferable attacks with surrogate models. In particular, mis-
matches between attackers and victims in terms of dataset source,
balance levels, and model architecture lead to non-negligible loss
of attack performance.
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1 INTRODUCTION
Evasion attacks consist in crafting a sample to produce a misclassifi-
cation in a target Machine Learning (ML) model. With the integra-
tion of ML models in deployed real-life systems, the cybersecurity
community increased its interest in studying how attackers can
exploit ML vulnerabilities for some advantages. For instance, an
attacker might try to make a hateful sentence look non-hateful [12]
or botnets legitimate applications [3].

Although effective in theory, conducting evasion attacks in real-
world scenarios is challenging since malicious actors cannot ac-
cess target models’ information (e.g., the gradient) [2]. Adversarial
samples transferability is a possible solution investigated in prior
works [24]: the attacker feeds the victim’s model with adversarial
samples computed by leveraging an own surrogate model.

While attempting to test the robustness of ML models of top
IT companies (through their official APIs), we realized that not
even transferable attacks are so simple. In particular, we found
a non-negligible obstacle during our tests: how should we train a
surrogate model? We needed a dataset to train a surrogate model,
but we had no clue about the victim’s dataset. Furthermore, suppose
we were willing to produce a new dataset (or use an external one)
for an inherently imbalanced task (e.g., a few samples of a botnet
and thousands of benign samples): is the ground truth distribution
matching the victim’s one? And finally, what is the victim’s ML
architecture? Settings that differ from the victim might negatively
impact the attack’s success.

Contributions. Attackers, therefore, live in a state of “uncertainty”
when training a surrogate model. Current literature fails to consider
such scenarios, resulting in a lack of understanding of the real effect
of state-of-the-art attacks. This work fills such a gap by proposing
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the DUMB attacker model, a framework that allows analyzing if
evasion attacks fail to transfer when the training conditions of
surrogate and victim models differ. In particular, DUMB faces the
following conditions: Dataset soUrces, Model architecture, and the
Balance of the ground truth.

We then propose a novel testbed to analyze the evasion at-
tacks’ transferability with DUMB. The testbed consists of three
distinct computer vision binary tasks, two sources that generate
such datasets, four ground truth balancing levels (from balanced
to highly imbalanced), and three models architecture. With this
testbed, we analyzed the transferability of seven popular state-of-
the-art attacks and six simple image transformations and generated
13K tests. Such extensive analyses allowed us to unveil new aspects
of the transferability of evasion attacks and, furthermore, confirmed
the importance of considering the three dimensions introducedwith
the DUMB attacker model.

Our contributions can be summarized as follows:
• We propose the DUMB attacker model, a novel evaluation
system to measure evasion transferability.

• We propose a novel testbed to evaluate evasion transferabil-
ity with the DUMB attacker model. The testbed comprises
three distinct computer-vision tasks, four distinct balance
levels of the classes, and three distinct state-of-the-art mod-
els.

• An extensive evaluation of state-of-the-art evasion attacks
with the DUMB attacker model.

Findings. After evaluating many evasion attacks on all possi-
ble combinations of dataset source, model architecture, and class
balance of the datasets, our findings can be summarized as follows:

(1) Less robust models are more susceptible to adversarial per-
turbations than highly performing models.

(2) Adversarial attacks in literature face difficulty transferring
across architectures.

(3) Simple image obfuscation is an effective offensive strategy.
(4) Adversarial attacks struggle when transferring.
(5) Not all basic surrogate models are ideal for evading attacks.
(6) The discrepancy in class distributions between surrogate

and victim datasets can greatly hinder the effectiveness of
evasion attacks. Additionally, targeting the minority class
seems to be easier than targeting the majority.

(7) Creating surrogate data can negatively impact the effective-
ness of transferable attacks.

Our testbed and experiments are open-source and available at the
following link: https://github.com/Mhackiori/DUMB.

Organization. This paper is organized as follows. Section 2 sum-
marizes the literature on adversarial machine learning and trans-
ferable attacks. Section 3 introduces the DUMB attacker model.
Section 4 describes the experimental settings. Sections 5 and 6
present the results and conclusions of our work, respectively.

2 PRELIMINARIES
Adversarial Machine Learning. Adversarial machine learning

(AML) is the discipline that studies how adversaries can exploit
machine learning (ML) algorithms to conduct an attack. Adversar-
ial attacks can be classified with the following properties [4]: the

influence, where attackers can actively affect the training procedure
(causative attacks), or they simply do not alter the victims’ models
(exploratory attacks); the security violation, where attackers might
attempts to alter victims’ model’s performance (integrity violation),
to make victims’ model unavailable (availability violation), or to
obtain sensitive information (privacy violation); last, the specificity
of the attack, if the attack targets a specific set of samples (targeted
attack) or generic samples (untargeted attacks). The definition of an
attack is further defined by the attackers’ knowledge of the victims’
system (e.g., training data, model architecture). In particular, we
refer to white-box attacks when the attacker has (nearly) perfect
knowledge about the victim’s system, setting the worst-case sce-
nario; on the opposite, we refer to black-box attacks when attackers
know a little about the target.

Evasion Attacks. This work focuses on evasion attacks, where
attackers aim to modify an input sample to produce a misclassifi-
cation in the victim’s model. Malicious samples 𝑥∗ can be defined
as 𝑥∗ = 𝑥 + 𝑟 , where 𝑥 is the original sample, and 𝑟 is the pertur-
bation. The perturbation 𝑟 can be obtained through the following
optimization process:

𝑟 = argmin
𝑧

𝑓 (𝑥 + 𝑧) ≠ 𝑓 (𝑥) . (1)

Here, 𝑧 is the variable being optimized, which represents the pertur-
bation that is added to the original input 𝑥 to create the perturbed
input 𝑥+𝑧. ManyML algorithms do not guarantee that the optimiza-
tion is linear or convex, so we cannot always find a closed-form
solution. Prior works propose different approaches to estimate
such a perturbation; for instance, the Fast Gradient Signed Method
(FGSM) [11]:

𝑥∗ = 𝑥 + 𝜀 · 𝑠𝑖𝑔𝑛(∇𝑥 𝐽 (𝜃, 𝑥,𝑦)), (2)

where 𝜀 is small to ensure an “imperceptible” perturbation, 𝐽 is a
loss function (e.g., cross-entropy), 𝜃 the parameters of the model 𝑓 ,
and 𝑦 the ground truth for the given input 𝑥 .

Transferable Attacks. A fascinating aspect of adversarial samples
is their ability to potentially fool not only the model 𝑓 used to find
the perturbation 𝑟 for a given sample 𝑥 but also unknownmodels 𝑓 ′.
This behavior has a strong repercussion in cyber-security: attackers
can therefore leverage their own model 𝑓 (named substitute or
surrogate model) to produce adversarial samples for the victims
model. Using a substitute model to generate an attack presents
many advantages, such as white-box access. Papernot et al. [24]
defined two distinct transferability scenarios by considering the
surrogate and victim models. They referred to intra-techniques
transferability when the two models share the same architecture
(e.g., both logistic regression or both Deep Neural Network), or,
vice-versa, to cross-techniques transferability when the two models
have distinct architecture (e.g., one is a logistic regression and the
other a Deep Neural Network).

Adversarial Attacks in Practice. The literature primarily covers
theoretical aspects of threats in machine learning systems. Little is
known about attacks in practice, where challenges that occur only
in real-life might not be considered in controlled environments.
Therefore, real-life attacks might be utterly different from what is
discussed in the literature [2, 33]. Consequently, industries might
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perceive as “innocuous” threats that are considered technically at-
tractive by the research community and “serious” those that are not.
For instance, consider Perspective, a toxicity detection model de-
ployed by Google: in their recent report [18], the developers tested
their model against a simple NLP attack introduced by Gröndahl et
al. [12] that can be deployed by many end-users rather than more
complex - and perhaps unrealistic - attacks studied in the literature.

A few noticeable works proved the feasibility of attacking de-
ployed ML applications: “All You Need Is Love”, where simple tex-
tual perturbations (e.g., typos) endangered toxicity detectors [12];
“stealthy porn”, where researchers showed that social network users
evaded porn detectors by applying simple image filters [33]; attacks
on deployment libraries, where attackers can exploit vulnerabilities
of the libraries utilized to deploy a machine learning model [32];
“camouflage attack”, a threat that exploits image-scaling algorithms
to produce evasion in computer-vision applications [31]; “Zero-
Width Space attack”, where invisible Unicode characters inserted
in textual samples disrupted the textual representations of many
NLP services deployed by top IT companies [23]; “Captcha attack”,
where researchers showed potential adversarial samples utilized
by Instagram users that endanger the OCR of automatic content
moderators [6].

Challenges of Transferable Attacks. Practical constraints might
affect the transferability of the attacks as well. We now summarized
relevant prior works that attempted to study different variables that
might impact the attacks’ transferability. Generally, such works are
guided by a common observation: it is unrealistic that attackers
have knowledge of the victims’ systems (e.g., dataset, model archi-
tecture), limiting the adoption of surrogate models. For instance,
training a surrogate model might be expensive (or even impossible)
for an attacker since it requires possessing valid training data. We
identified two types of solutions in the literature that relax the
constraint of having valid data: (i) cross-domain perturbations, i.e.
perturbations computed on a task (e.g, paintings, cartoons, or med-
ical images) that transfer on models trained on a distinct task (e.g,
ImageNet classes) [22]; (ii) data-free attacks, where the substitute
model can be learned thanks to the cooperation between a genera-
tive model, a discriminator, and a series of queries to the victim’s
model [34].

Nevertheless, many works analyzed the impact of surrogates on
transferable attacks. Mao et al. [20], instead, discuss the problem
of transferring attacks among computer-vision Machine-Learning-
as-a-Service (MLaaS) and analyze how different models’ properties
might impact the attack. For instance, the authors found that simple
surrogates do not necessarily improve transferability and that there
is no dominant architecture for surrogates. Suciu et al. [27] proposed
FAIL attacker model, where the authors investigated the impact
of evasion transferability under different types of knowledge of
victims’ systems: the feature space, the architecture of the model,
the label instances, and the leverage (i.e., constraints on the type of
modification at the feature space).

Compared to the previous works, with DUMB, we attempt to
cover unique aspects of the surrogate training, and in particular
Dataset soUrces,Model architecture, and the Balance of the ground
truth. In particular, while aspects like the impact of the model
architecture have been covered in literature, others were not, like

the source of data and the imbalance problem. Therefore, analyses
combining these three aspects are, per se, novel, and they can unveil
unique patterns of adversarial transferability.

3 THE DUMB ATTACKER MODEL
Suppose being in the shoes of an attacker aiming to evade a victim
organization 𝑓 ′. What are the steps necessary to conduct a (po-
tentially) successful attack? Current literature studies the effect of
transferability on settings far from being real [13]. Consider the
adversary pipeline necessary to generate an adversarial sample; it
consists of: (i) finding a suitable dataset that matches the victim’s,
(ii) choosing a surrogate model 𝑓 , and picking a methodology that
produces adversarial attacks. When designing such a pipeline, we
find the following challenges that might affect the attack execution.

The dataset choice. Prior works mainly use a dataset shared
among attackers and victims. This is unrealistic. Building a proper
surrogate dataset is all but trivial since attackers and victims might
follow different corpus generation strategies. For instance, in the
hate speech detection task, Gröndahl et al. [12] show that prior
works tackling hate speech propose many datasets following dis-
tinct generation procedures; as a result, models trained on a specific
dataset lack in terms of generalization on distinct ones. Therefore,
in such cases, the transferability might be a property not fully
guaranteed.

Ground truth distribution. Prior works mainly assume that at-
tackers and victims use datasets originating from the same source
and, therefore, the distributions of the ground-truth match. This is a
hard constraint in real settings since such distributions might differ
for many reasons. First, the two distributions might result from two
distinct methodologies to produce the datasets (see the choice of the
dataset). Second, many preprocessing techniques might be used to
augment the training data. This scenario is likely especially when
the task is inherently imbalanced (e.g., hate speech detection1).
Augmentation techniques can over-sample the minority class (e.g.,
SMOTE [5], Generative Adversarial Networks [10]) or undersample
the majority one.

Model selection. Prior works consider this scenario when analyz-
ing the transferability of distinct adversarial attacks. Indeed, attack-
ers and victims might use one of the many state-of-the-art models
or custom ones. For instance, only in computer vision, someone
might choose among several models to fine-tune, such as VGG [26]
(and its many versions like VGG16 and VGG19) and ResNet [14]
(e.g., ResNet18, ResNet50).

Considering such challenges, we can clearly see a need to en-
hance the study of adversarial transferability in many distinct sce-
narios and not limit empirical evaluations to a few artificial settings.
Thus, experiments focusing on white-box (full access to the victims’
model) and black-box (little known about the victims’ model) might
not be representative of the many shades that might occur in real-
life. We address such a gap by proposing theDUMB attacker model
for transferable samples that present many attack scenario cases.
DUMB considers Dataset soUrces, Model architecture, and the
Balance of the ground truth, potential factors that might affect the
1In the hate-speech detection, usually datasets are strongly imbalanced toward the
hateful class [12].
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transferability of the attacks. In Table 1, we present eight distinct
variations of attacks that can occur in a black-box attack, and in
particular, potential mismatches between the source (or surrogate)
and target (or victim) models. Subscript 𝑎 and 𝑣 stand for attacker
and victim, respectively. We highlight that, in real-life conditions,
attackers do not know a priori in which attack scenario they are –
except for the white-box case.

4 METHODOLOGY (THE DUMB TESTBED)
To simulate the eight specific cases presented in the DUMB table
(Table 1), we design a testbed that considers distinct sources of
datasets, different balance levels, and different model architectures.
In this section, we describe our experimental setup, starting from
the data collection phase (Section 4.1), the definition of the bal-
ance levels (Section 4.2), and the choice of the models (Section 4.3).
Finally, we describe the attacks that we use and their implementa-
tion (Section 4.4) and our testing methodology (Section 4.5). Our
GitHub repository contains the code and datasets to reproduce our
experiments.

4.1 Dataset Sources (DU-dimension)
In this work, we focused on the transferability of binary classi-
fiers, which is a common setting in many cybersecurity applica-
tions (e.g., spam/non-spam, phishing/non-phishing, hate/non-hate
speech). We focus on computer-vision tasks since most adversar-
ial attacks literature covers this domain. We defined three distinct
tasks: Bikes&Motorbikes, Cats&Dogs, and Men&Women. Given the
specific requirements of our testbed, the datasets for each task have
been manually collected and validated according to the following
steps.

(1) Data Collection – We generate two distinct datasets for each
binary task by manually collecting images from two popu-
lar search engines: Bing and Google. By creating our own
dataset instead of using open-source ones, we can ensure
their integrity and have more control over the complexity of
the task and possible biases. We collect an average of 14264
images for each dataset.

(2) Duplicate Removal – Duplicated images in each dataset are
discarded with the difPy2 library. After this procedure, an
average of 254 images are removed from each dataset.

(3) Manual Check – Through manual inspection, we ensure
that the datasets do not contain erroneous samples (e.g., not
coherent with the classes, paintings, sketches, or low quality).
Although this procedure might reduce any bias of having
different data validation strategies between attackers and
victims, it allows us to reveal the true effect of having distinct
sources that generate (theoretically) the same type of data.
On average, we remove 1854 images from each dataset.

(4) Image Selection – We randomly selected, for each dataset,
10000 samples equally split among the two classes.

(5) Image Resizing – Using Python Imaging Library (PIL)3, each
image is resized to 300 × 300 and converted to RGB. For the
resizing process, we used the antialias option provided by
PIL to prevent aliasing artifacts.

2https://github.com/elisemercury/Duplicate-Image-Finder
3https://pillow.readthedocs.io/en/stable/

For each class in each dataset, we split those 5000 samples into
training, validation, and test sets with respective ratios of 70%, 10%,
and 20% (i.e., 3500 samples for the training set, 500 samples for
the validation set, and 1000 samples for the test set). The images
contained in the test set will be used not only to first evaluate the
models but also to generate the adversarial samples.

4.2 Ground Truth Balancing (B-dimension)
A second (potentially) critical variable is the different class bal-
ance levels between attacker and defender. We simulate different
balancing levels in the training sets with the following ratios:

• Balanced – 50% minority class, 50% majority class.
• Weak Imbalance – 40% minority class, 60% majority class.
• Medium Imbalance – 30% minority class, 70% majority class.
• Strong Imbalance – 20% minority class, 80% majority class.

For all our tasks, we choose the first class to be the minority class
(i.e., Cats, Men, and Bikes), and this choice will be uniform for
all balance levels. The number of class samples for each level of
ground truth balancing is shown in Table 2. To achieve this, we
fix the number of samples for the majority class and randomly
undersample the minority class accordingly. For instance, to obtain
a strong imbalance for the Cats&Dogs task, we keep all the 3500
images of Dogs and randomly select only 875 images of Cats. The
validation set and the test set are unaffected by this procedure and
contain an equal number of samples between the two classes.

4.3 Model Architectures (M-dimension)
We utilize three state-of-the-art computer vision models for fine-
tuning tasks: AlexNet [16], ResNet [14] (ResNet18 version), and
VGG [26] (VGG11-bn version). The training procedure follows what
is described in the official PyTorch documentation.4 We train a total
of 3 tasks × 2 sources × 4 class distribution levels × 3 architectures
= 72 models. A graphical overview of the training combinations is
shown in Figure 1.

24 Models for
each task

Google Bing

ResNetAlexNet VGG

60/4050/50 70/30 80/20

Task

2 Datasets

3 Architectures

4 Balance Levels

3 Tasks

x

x

Figure 1: Model combinations during the training phase.

After training the models on each dataset, we evaluate their
baseline performance on the test set. As a metric of evaluation, we
will use the F1 score, which is defined as the harmonic mean of
the precision and recall. This metric provides a balanced measure

4https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
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Table 1: DUMB attacker model of adversarial transferable samples. 𝐷𝑈 = Dataset soUrce,𝑀 = Model architecture, 𝐵 = balance
level.

Case Condition Attack Scenario

C1
𝐷𝑈𝑎 = 𝐷𝑈𝑣

𝑀𝑎 = 𝑀𝑣

𝐵𝑎 = 𝐵𝑣

The ideal case for an attacker. We identified two potential attack scenarios. (i)
Attackers legally or illegally gain information about the victims’ system. (ii)
Attackers and victims use the state-of-the-art.

C2
𝐷𝑈𝑎 = 𝐷𝑈𝑣

𝑀𝑎 = 𝑀𝑣

𝐵𝑎 ≠ 𝐵𝑣

Attackers and victims use state-of-the-art datasets and model architecture.
However, victims modify the class balance to boost the model’s performance.
This scenario can occur especially with imbalanced datasets.

C3
𝐷𝑈𝑎 = 𝐷𝑈𝑣

𝑀𝑎 ≠ 𝑀𝑣

𝐵𝑎 = 𝐵𝑣

Attackers and victims use standard datasets to train their models. However,
there is a mismatch in the model architecture. This scenario might occur when
state-of-the-art presents many comparable models. Or similarly, the victims
choose a specific model based on computational constraints.

C4
𝐷𝑈𝑎 = 𝐷𝑈𝑣

𝑀𝑎 ≠ 𝑀𝑣

𝐵𝑎 ≠ 𝐵𝑣

Attackers and victims use standard datasets to train their models, while models’
architectures differ. Furthermore, victims adopt data augmentation or prepro-
cessing techniques that alter the ground truth distribution (balancing). This
scenario can occur especially with imbalanced datasets.

C5
𝐷𝑈𝑎 ≠ 𝐷𝑈𝑣

𝑀𝑎 = 𝑀𝑣

𝐵𝑎 = 𝐵𝑣

Attackers and victims use different datasets to accomplish the same classifica-
tion task. The ground truth distribution can be equal, especially in inherently
balanced tasks. Similarly, models can be equal if they both adopt the state-of-
the-art.

C6
𝐷𝑈𝑎 ≠ 𝐷𝑈𝑣

𝑀𝑎 = 𝑀𝑣

𝐵𝑎 ≠ 𝐵𝑣

Attackers and victims use different datasets to accomplish the same classi-
fication task. Datasets have different balancing because they are inherently
generated in different ways (e.g., see hate speech datasets example) or because
the attackers or victims augmented them. Attackers and victims use the same
state-of-the-art architecture.

C7
𝐷𝑈𝑎 ≠ 𝐷𝑈𝑣

𝑀𝑎 ≠ 𝑀𝑣

𝐵𝑎 = 𝐵𝑣

Attackers and victims use different datasets to accomplish the same classifica-
tion task. Datasets ground truth distribution matches. Attackers and victims
use different models’ architecture.

C8
𝐷𝑈𝑎 ≠ 𝐷𝑈𝑣

𝑀𝑎 ≠ 𝑀𝑣

𝐵𝑎 ≠ 𝐵𝑣

The worst-case scenario for an attacker. Attackers do not match the victims’
dataset, balancing, and model architecture.

For simplicity, C1 corresponds to the white-box setting, where attackers can access the victims’ model, including gradients.

Table 2: Number of samples in different levels of imbalance
of the training dataset.

Balance Level Minority Class Majority Class

Balanced 3500 3500
Weak Imbalance 2334 3500
Medium Imbalance 1500 3500
Strong Imbalance 875 3500

that considers both aspects of model performance, which is rele-
vant in scenarios with possibly unbalanced dataset distributions.

In particular, the F1 score is expressed as follows:

𝐹1 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 . (3)

In Table 3a and 3b, we show the average performance of our
models at the varying of task, architecture, and class balance lev-
els for models trained on Bing and Google, respectively. All mod-
els are able to achieve good results on all balancing levels, but
some differences can be noticed between the different tasks. Indeed,
Men&Women appear to be the most complex task for any model,
while Bikes&Motorbikes seem to be the easiest among the three.
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Table 3: Baseline evaluation of the models. A = AlexNet, R =
ResNet, V = VGG.

(a) Models trained on Bing.
Bikes&Motorbikes Cats&Dogs Men&Women
A R V A R V A R V

20/80 0.99 0.99 0.99 0.93 0.97 0.97 0.85 0.92 0.92
30/70 0.98 0.99 0.99 0.94 0.97 0.97 0.87 0.93 0.93
40/60 0.99 0.99 0.99 0.95 0.98 0.98 0.89 0.94 0.94
50/50 0.99 0.99 0.99 0.95 0.98 0.98 0.90 0.95 0.95

(b) Models trained on Google.
Bikes&Motorbikes Cats&Dogs Men&Women
A R V A R V A R V

20/80 0.96 0.96 0.97 0.95 0.97 0.98 0.82 0.89 0.88
30/70 0.97 0.98 0.98 0.96 0.98 0.98 0.86 0.91 0.92
40/60 0.97 0.98 0.98 0.96 0.98 0.99 0.86 0.92 0.93
50/50 0.97 0.99 0.98 0.96 0.98 0.99 0.86 0.93 0.93

4.4 Attacks
We consider two distinct attack families: mathematical, if the result
of an optimization process (e.g., FGSM), and non-mathematical, if
the result of a transformation that does not take into account any
machine learning model (e.g., blurring).

Mathematical Attacks. For the mathematical attacks, we use the
following popular attacks.

• BIM – Basic Iterative Method adversarial attack, as proposed
by Kurakin et al. in their paper [17], is a method for gener-
ating adversarial examples for image classifiers. The attack
works by iteratively perturbing the input image and using
gradient descent to optimize the perturbation such that it
causes the image classifier to produce the wrong output. One
of the key features of the BIM attack is that it can be used
to generate adversarial examples that are robust to various
types of transformations, such as scaling and rotation.

• DeepFool – Moosavi-Dezfooli et al. proposed an algorithm
to compute a minimal norm adversarial perturbation for a
given image in an iterativemanner [21]. At each iteration, the
algorithm adds some perturbation that is computed to take
the image to the edge of the region confined by the decision
boundaries of the classifier; after that, the perturbations are
accumulated to compute the final perturbation, which it is
shown to be smaller than the one computed by FGSM in
terms of their norm.

• FGSM – Fast Gradient Sign Method is one first and simplest
adversarial attacks, first proposed by Goodfellow in a paper
from 2014 [11]. It works by computing the gradient of the
loss of the prediction made by a model based on the true
class label of an image and using its sign to construct the
adversarial image.

• PGD – Madry et al. proposed the Projected Gradient De-
scent [19]: an adversarial attack in which an attacker per-
turbs the input to a machine learning model in such a way
as to cause the model to produce the wrong output. The
attack works by iteratively calculating the gradient of the
loss function with respect to the input and then using this

gradient to update the input in the direction that will most
likely cause the model to produce the wrong output.

• RFGSM – Tramèr et al. proposed an upgraded version of the
FGSM attack called Random Fast Gradient Sign Method [28].
The most significant difference is that the FGSM attack gen-
erates the perturbation simultaneously, while the RFGSM
attack generates the perturbation in a series of "random"
steps. This makes the RFGSM attack more computationally
efficient, as it can often find an adversarial example faster
than the FGSM attack.

• Square – Andriushchenko et al. [1] proposed a new black-
box attack called Square attack that does not rely on local
gradient. It is a score-based attack, meaning that, while not
having access to the target model, it can query the probability
distribution over the classes predicted by the classifier.

• TIFGSM – The paper by Dong et al. [9] proposed a new
method for generating adversarial examples, the Translation-
Invariant Fast Gradient Sign Method (TI-FGSM), which aims
to evade defenses that are based on input transformations
by adding a translation-invariant constraint to the itera-
tive FGSM algorithm. The key aspect of the paper is that it
achieves high transferability of adversarial examples across
different models by making the adversarial perturbations
translation-invariant.

All mathematical attacks are implemented with Torchattacks [15],
a popular python library used in the community [29, 30].

Non-mathematical Attacks. The other type of attacks we con-
sider is non-mathematical attacks. These kinds of attacks do not
require any gradient computation and are independent of the model
or the task considered. Indeed, non-mathematical attacks have been
shown to be effective in real-life ML applications [33]. We imple-
mented these attacks using the PIL library since only simple image
processing is required. More in detail, we implemented the follow-
ing transformations:

• Box Blur – By applying this filter, it is possible to blur the
image by setting each pixel to the average value of the pixels
in a square box extending radius pixels in each direction. It
is possible to specify a radius of arbitrary size.

• Gaussian Noise – A statistical noise having a probability
density function equal to normal distribution. It is possible
to specify a 𝜎 value.

• Grayscale Filter – To get a grayscale image, the color infor-
mation from each RGB channel is removed, leaving only the
luminance values. Grayscale images contain only shades of
gray and no color because maximum luminance is white and
zero luminance is black, so everything in between is a shade
of gray.

• Invert Color – An image negative is produced by subtracting
each pixel from the maximum intensity value, so for color
images, colors are replaced by their complementary colors.

• Random Black Box – We draw a black square in a random
position inside the central portion of the image to cover
some crucial information. It is possible to define a size for
the black square.

• Salt and Pepper – An image can be altered by modifying a
certain amount of the pixels in the image either black or
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white. The effect is similar to sprinkling white and black
dots (salt and pepper) in the image. It is possible to specify
the proportion of salt and pepper noise.

Parameters tuning. All the considered attacks need parameters
that regulate the intensity of the perturbations. For instance, all the
mathematical attacks have the parameter 𝜖 , except for DeepFool,
which is regulated by the “overshoot” parameter. Similarly, some
non-mathematical attacks have a parameter as well: radius for Box
Blur, 𝜎 for the Gaussian Noise, the size of a black square for the
Random Black Box, and the proportion of salt and pepper noise
for Salt and Pepper. In general, we identified optimal parameters 𝛾
through the following optimization procedure:

𝛾 = argmax
𝑠

1
𝑛

𝑛∑︁
𝑖=1

𝑓 (𝑥𝑖 ) ≠ 𝑓 (𝑥∗𝑖 ),

subject to
1
𝑛

𝑛∑︁
𝑖=1

𝑆𝑆𝐼𝑀 (𝑥𝑖 , 𝑥∗𝑖 ) ≥ 𝛼.

(4)

In the notation, 𝑓 is the model owned by the attacker and used
during the optimization process, 𝑥∗ is the adversarial samples de-
rived byA(𝑓 , 𝑥 ; 𝑠), andA is the adversarial procedure with param-
eter 𝑠 . The reader might notice that the first part of the equation
is nothing more than the Attack Success Rate (ASR), where the
higher, the more samples evaded. The optimization is constrained
by the SSIM (Structural Similarity Index Measure), a measure that,
given two images, computes their similarity. 𝛼 is the minimum
degradation threshold we accept by the perturbations. In our exper-
iments, we set 𝛼 = 0.4 for all types of attacks. For all mathematical
attacks except for DeepFool (i.e., attacks using 𝜖 as a parameter),
we test 𝜖 values in the range [0.01, 0.3] with a step of 0.01, while for
DeepFool overshoot was tested in the range [10, 100] with a step
of 1. For non-mathematical attacks with a parameter, ranges and
steps were determined individually and based on performance and
perturbation. More details on the ranges for the attack parameters
can be found in the attack generation script in our repository.

4.5 Testing Methodology
In Section 4.4, we presented a total of 13 attacks, comprising 7 math-
ematical and 6 non-mathematical attacks. After the searching phase
for the optimal attacks’ configuration (see Equation 4), we generate
sets of adversarial samples containing 300 instances equally dis-
tributed among the classes. The images are randomly selected from
the corresponding test set, which, however, is filtered in order to
consider only images that the model correctly classified. In this way,
we ensure that any misclassified adversarial sample can count in the
Attack Success Rate. In the remaining part of the section, we discuss
our testing methodology for the adversarial samples against our
models separately for mathematical and non-mathematical attacks,
as these attacks rely on different approaches.

Mathematical Attacks. Generating adversarial samples for math-
ematical attacks such as the FGSM requires an input model to com-
pute and generate a perturbed image. Figure 2 shows an overview
of the process. For each of the seven attacks we want to test, we
need to evaluate all possible combinations of the following pairs
(𝑀𝑠𝑟𝑐 , 𝑀𝑡𝑟𝑔):

• 𝑀𝑠𝑟𝑐 – The model used to generate the adversarial sample.
The source model is the surrogate in the transferability set-
ting.

• 𝑀𝑡𝑟𝑔 – The model against which the adversarial sample
was tested. The target model is the victim’s model in the
transferability setting.

As explained in Section 4.3, we trained 24 models for each task
and used each of them as the𝑀𝑠𝑟𝑐 to generate a set of adversarial
samples. We tested each set against 24 different 𝑀𝑡𝑟𝑔 , resulting in
242 × 3 tasks = 1728 observations for each attack. Since we need to
perform this evaluation for each of the seven mathematical attacks,
we obtain a total of 1728 × 7 = 12096 observations.

Non-mathematical Attacks. Non-mathematical attacks, instead,
are generated differently since they are transformations applied to
the test set of a dataset and do not rely on any model. Thus, for each
non-mathematical attack, we generate a total of 2 sets of samples
(i.e., the datasets), and we test them on each model, obtaining a
total of 2 × 24 × 3 tasks = 144. This is valid for each of the 6 non-
mathematical attacks we consider, obtaining 144 × 6 = 864.

Therefore, the total number of observations performed in our
study is 12096 + 864 = 12960.

5 RESULTS
In this section, we will discuss the evaluation results carried out
with our experimental setup. Given the number of variables that
potentially affect our results, we first evaluate the performance
of state-of-the-art evasion attacks in the scenarios detailed by the
DUMB attacker model (Section 5.1). We then evaluate individually
the impact of the model (Section 5.2), class distribution (Section 5.3),
and dataset source (Section 5.4). All the raw files from which our
results are obtained can be found in the results folder in our
repository.

5.1 DUMB Evaluation
In this section, we assess how adversarial attacks perform in the
eight distinct cases of our proposed DUMB attacker model. We
start by analyzing the results of the mathematical attacks, shown
in Figure 3. In that Figure, we can observe the effect of two main
variables: the task and the attacks. Note that all the performances
are averaged among the three DUMB dimensions.

Task. The first outcome of the analysis highlights how transfer-
ability highly varies at the varying of tasks. For instance, attacks
poorly transfer in Bikes&Motorbikes, while they are effective in the
Men&Women task. A possible explanation can be linked with mod-
els’ performance (reported in Table 3), where the attack poorly trans-
fers when models greatly solve the task: in the Bikes&Motorbikes,
indeed, models almost perfectly distinguish the two classes, while,
on the opposite, on Men&Women they struggle. The outcome sug-
gests malicious actors might easily transfer attacks on models with
performances that are far from perfect. This finding is concerning
if we consider that many real-life tasks are challenging, and state-
of-the-art performance is even much below 0.90 of the F1-score.
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Figure 2: Pipeline of our testing methodology regarding mathematical attacks.

Observation 1:Compared with high-performant models, models
with performance far from perfect appear more vulnerable to
adversarial perturbations.

Attacks. Another noticeable outcome is the superiority of TIFGSM,
which outperforms all the other attacks in most cases. We recall
that this is the only attack among the considered set explicitly de-
signed for transferability purposes. The attacks produce a strong
transferability in the Men&Women task, with an evasion rate close
to 1 (perfection) in four out of eight cases.

Last, the “rectangular” shape of TIFGSM. By cross-looking with
the DUMB attacker model, we can see that TIFGSM, and more in
general, all the considered attacks, provide better performance on
attacks where attackers and defenders use the same model architec-
ture (i.e., C1, C2, C5, and C6). Conversely, much lower performance
(almost unsuccessful) occurs when attackers and defenders do not
share the same model architecture.

Observation 2: Literature proposes adversarial attacks that
struggle to transfer among different architecture.

Non-Mathematical Attacks. A different pattern can instead be
seen in the non-mathematical attacks, shown to be effective in
the past by [33]. For simplicity, we report in the paper only the
case of Men&Women, while more details about the other tasks
are available in our GitHub repository. Figure 4 shows the results.
Generally, it appears that simple obfuscations are not effective on
our complex models (i.e., AlexNet, ResNet, and VGG). The most
effective attack is the RandomBlackBox, which, in contrast, results
in the most “altered” images.

While the TIFGSM generally outperforms non-mathematical at-
tacks, this is not always true for the rest of the consideredmathemat-
ical attacks. Therefore, we count howmany times non-mathematical
outperforms mathematical attacks for each case of the DUMB at-
tacker model and for each task. We applied 42 comparisons (7 math-
ematical × 6 non-mathematical) for each case, for a total of 336 tests
(42×8 cases). Overall, non-mathematical attacks outperform mathe-
matical 79, 81, and 101 times out of 336 cases for Bikes&Superbikes,
Cats&Dogs, and Men&Women, respectively. Furthermore, we an-
alyzed if such successes are uniformly distributed or centered in
some of the DUMB cases. The result is shown in Figure 5. The reader
can observe that the higher values are found in C3, C4, C7, and C8,
highlighting the fragility of mathematical attacks in cases where
surrogate and victims do not share the same model architecture.

Observation 3: Simple obfuscations are solid offensive black-box
techniques.

5.2 Models Impact (M-dimension)
Demontis et al. [8] observed that adversarial transferability depends
on the complexity of the surrogate and victim’s model. In particular,
low-complexity surrogates produce stronger evasion attacks. Simi-
larly, low-complexity victims’ models are more resilient to evasions.
Low-complexity models should be preferred by both attackers and
defenders since, for the former, models tend to produce stable gra-
dients that better align with victims’ ones. For the latter, models
tend to produce smaller gradients size.

Therefore, we now investigate if we observe similar behavior in
our testbed. Due to its effectiveness, we focus on the TIFGSM attack.
Figure 6 presents the analysis results by averaging the ASR among

322



Your Attack Is Too DUMB RAID ’23, October 16–18, 2023, Hong Kong, China

C1

C2

C3

C4
C5

C6

C7

C8

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Bikes&Motorbikes

C1

C2

C3

C4
C5

C6

C7

C8

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Cats&Dogs

C1

C2

C3

C4
C5

C6

C7

C8

0.25
0.50
0.75
1.00

0.25
0.50
0.75
1.00

Men&Women

BIM DeepFool FGSM PGD RFGSM Square TIFGSM

Figure 3: ASR for mathematical attacks. Each subfigure corresponds to a different task and contains two different graphs.
The external one shows the performance of our attacks in each of the scenarios of our DUMB attacker model through bar
charts. The internal one overviews their overall ASR through a spider chart. While with the former the individual ASR of each
attack is more clear, the latter shows their overall performance and trends across the different scenarios. The definitions of the
scenarios have been clarified in Table 1.

the three different datasets. We can first observe that, as expected,
the highest ASR corresponds to those cases where the source model
𝑀𝑠𝑟𝑐 and target model 𝑀𝑡𝑟𝑔 share the same architecture. Second,
VGG is the weakest victim model for both AlexNet and ResNet.
This is shown by the fact that when VGG is the target model, the
ASR is the second highest for all other source models (after the
case in which 𝑀𝑠𝑟𝑐 = 𝑀𝑡𝑟𝑔). Third, ResNet seems to be the most
effective surrogate model. Indeed, when using it as a source model,

we see that ASR values are relatively low. At the same time, it is
particularly effective as a target model when attacking vulnerable
architectures such as VGG. We find such results not aligned with
what was discussed by Demontis et al. [8], and in agreement with
Mao et al. [20]. Consider the complexity of our models, measured
in the number of parameters: 61M for AlexNet, 11M for ResNet,
and 132M for VGG. Therefore, ResNet and VGG are the lower and
higher complexity models, respectively.
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Figure 4: ASR for non-mathematical attacks for the
Men&Women task. Information is conveyed in the same way
as Figure 3.
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Figure 5: Ratio of non-mathematical outperforming mathe-
matical attacks, grouped by DUMB attacker model cases and
tasks.

Observation 4: Simple surrogate models are not always optimal
to transfer evasion attacks.
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Figure 6: ASR at the varying of source model𝑀𝑠𝑟𝑐 and target
model𝑀𝑡𝑟𝑔 . Here, the “sourcemodel” refers to themodel that
has been used for adversarial attack generation. In contrast,
the “target model” refers to the model on which we test the
adversarial samples.

5.3 Class Distribution Impact (B-dimension)
One of the hypotheses of our work is that attackers and defend-
ers might have different ground-truth distributions. Therefore, we
investigate how class balance levels impact the success of a trans-
ferable attack. For simplicity, we show the performance of TIFGSM
for the Men&Women dataset. Figure 7 shows the results. The reader
can observe an opposite behavior in the transferability between
minority and majority classes. In particular, attacking a minority
class under a 20/80 ratio is always effective in every source condi-
tion (first column of Figure 7a). The attack increases its complexity
as we reach a balancing equilibrium. Conversely, it appears to be
extremely complex to camouflage a majority sample as a minority
one (fist column of Figure 7b). This observed behavior might be ex-
tremely relevant, especially in the context of cybersecurity, where
ML classifiers are applied in extremely imbalanced contexts, like
malware [25] and hate speech detection [7], making such applica-
tions weak to transferable attacks.

Another important aspect to consider when the source model is
trained in an imbalanced dataset is the choice of the perturbation
size. As we introduced in Equation 4, we computed the global ASR
for both classes for each task. However, as shown in Figure 8, the
majority class tends to require more perturbation to be effective,
while the minority requires a little. Therefore, attackers that aim
to produce optimal attacks while preserving as much as possible
the quality of the samples, should create separate hyperparameter
tuning processes for each class.

Observation 5: The mismatch between the surrogate and victim
datasets’ class distributions might severely penalize the transfer-
ability of the evasion attacks. Furthermore, attacking theminority
class appears to be easier compared to the majority.
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Figure 7: ASR for theminority andmajority classes. Here, the
“source balancing” refers to the balance level of the model
that has been used for the adversarial attack generation. In
contrast, the “target balancing” refers to the balance level of
the model on which we test the adversarial samples.

0 10 20 30 40 50 60 70 80 90 100
HIstory [%]

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

Attack
TIFGSM
DeepFool

Metrics
ASR
ASRmaj

ASRmin

Figure 8: Attacks parameter tuning for Cats&Dogs dataset, in
the 20/80 balance level setting. Since TIFGSM and DeepFool
use two different types of parameters with different ranges,
we use "history" to characterize their level of perturbation.

5.4 Sources Impact (DU-dimension)
Last, we investigate whether the choice of the dataset impacts the
attack transferability. The data source has a non-negligible impact
if we find at least one case where the choice of the source pro-
duces a varied effect on the attack outcome. For example, we can

examine the strong imbalance setting (20/80) for the Cats&Dogs
and Men&Women tasks. This scenario is particularly interesting
to study since models typically perform well on the former task
but struggle with the latter, often achieving an F1-score lower than
90, as previously shown in Table 3. We analyze the ASR obtained
using the mathematical attacks by considering data sources mis-
match, i.e., a surrogate trained on the Bing dataset used to attack
models previously trained on the Google dataset, and vice versa.
This corresponds to C5, C6, C7 and C8 of our DUMB attacker model
(Table 1).

Figure 9 shows the observed distributions. We can notice that for
Cats&Dogs, the two curves almost overlap, while there is a partial
mismatch inMen&Women. Specifically, regarding theMen&Women
task, it appears that attacks directed toward models trained on the
Google dataset (and thus generated from a model trained on the
Bing dataset) yield better results. This behavior also reflects the
baseline evaluation for the two datasets in Table 3, where on the
same tasks, models trained on Google had lower F1 scores with
respect to the ones trained on Bing. We statistically confirmed what
was observed with the Kolmogorov-Smirnov test (two-sided, the
null hypothesis is that the two distributions are equal). We reject
the null hypothesis in the Cats&Dogs case with a 𝑝𝑣𝑎𝑙 = 0.01. We,
therefore, conclude that the choice of the dataset impacts the attack
transferability.

Observation 6: Generating surrogate data might produce a drop
in the performance of transferable attacks.
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Figure 9: Probability Density Function of ASR for mismatch
sources, over 20/80 balance level. The range of possible ASR is
reported on the x-axis, while the y-axis shows the probability
density of each ASR. The curve represents the shape of the
PDF, where the peak corresponds to the most likely success
rate and the width indicates the range of success rates that
are probable.

6 CONCLUSION
Transferring evasion attacks among different machine learning
models is challenging in a real-world scenario. While the use of
surrogate models has been widely studied in the field of adversarial
transferability, many more variables must be considered to depict
the full picture of its effectiveness.

In this work, we fill such a gap by proposing the DUMB attacker
model. This framework allows analyzing if evasion attacks fail
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to transfer when the training conditions of surrogate and victim
models differ. This framework considers three distinct conditions:
Dataset soUrce, Model architecture, class Balance of the dataset.
Therefore, surrogate and victim models might vary based on the
combinations of these conditions, e.g., surrogate and victim models
are trained on the same dataset and ground-truth distribution, but
they use different architectures.

We evaluated the DUMB attacker model on our novel DUMB
testbed, consisting of 3 distinct binary computer-vision tasks, with
two dataset versions each – collected with Bing and Google as
sources –, 4 type of imbalance conditions (from balanced to highly
imbalanced), and 3 state-of-the-art model architectures. By analyz-
ing 7 well-known evasion attacks and 6 simple image transforma-
tions, we explored a total of 13K attacks.

Considerations. Our extensive evaluation unveiled aspects that
were ignored in the literature or not extensively investigated, with
the following repercussions:

(1) The complexity of the task might have a direct impact on
the success of evasion attacks’ transferability. As shown
in Section 5.1, models showing lower performance on the
task appear less robust to adversarial attacks. Future works
should better investigate the interplay between performance
and robustness.

(2) The above point has a direct impact on real-life machine-
learning applications. In particular, often, such tools show
performance far from being perfect. This results in tools that
are more prone to fail in the presence of adversaries. There-
fore, the cybersecurity community should utilize both toy-sh
and real-world tasks, where with the former, researchers can
gain insights about attacks, and with the latter, adapt such
insights to complex scenarios.

(3) In general, it appears that evasion attacks fail to transfer
when the training conditions of surrogate and victim mod-
els differ. Future researchers might benefit from both the
DUMB attacker model and the DUMB testbed to analyze
the transferability of novel proposed attacks.

(4) While the literature extensively covers the effect of model ar-
chitecture, little is known about the impact of dataset source
and class balancing. For the former, the data generation
and labeling process might introduce biases that might im-
pact the transferability. For the latter, many tasks are in-
herently imbalanced (e.g., spam/non-spam, malware/non-
malware), and due to data generation processes or under-
sampling/oversampling strategies, it is likely that attacker
and victim datasets present different ground truth distribu-
tions.

(5) Targeting different classes might lead to different transfer-
able performances. Little attention has been given to the
properties of the target class we aim to attack. For instance,
when considering the MNIST dataset, the choice seems ar-
bitrary. On the opposite, in cybersecurity tasks, the usual
class is the malicious one (e.g., spam, malware). An impor-
tant property to consider we observed is its numerosity:
minority classes of highly imbalanced datasets appear to
require limited perturbations to fool (see Figure 8). Future
researchers should include such a consideration since many

real-life tasks are inherently highly imbalanced, especially
those covered by the cybersecurity community.

(6) We did not observe a model architecture superior in acting
as a surrogate model. Future researchers should better inves-
tigate the interplay between complex model architectures
and their ability to generate transferable attacks.

Limitation and Future Work. In this study, we aim to provide a
systematic view of factors affecting transferability related to the
training of a surrogate model. Therefore, some conclusions remain
not fully answered and require further studies. For instance, our
proposed testbed is defined by binary tasks, and our conclusions
might not be extended to multiclass tasks. Furthermore, our ex-
periment included our novel testbed containing somehow toy-sh
tasks, and therefore, far from real conditions. However, our testbed
allowed us to clarify different aspects of transferable attacks. There-
fore, we believe the proposed testbed might be a precious resource
for future researchers conducting analyses in adversarial machine
learning. In particular, we believe that both DUMB attacker model
and testbed can be utilized to extend the analyses of attacks, for
instance, from evasion to poisoning. Moreover, we believe that our
work can inspire the definition of novel testbeds, considering, for
instance, cybersecurity tasks such as spam and malware detection
and network intrusion detection systems.
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A ADDITIONAL EXPERIMENT DETAILS
A.1 Attack Examples
In this paper, we consider many types of attacks to evaluate the
different models we train on several datasets and balance levels of
the classes. To generate those attacks, as stated in Section 4.4, we
must first tune their parameters in order to produce images that
maximize the probability of fooling a model while perturbating
them as little as possible.

For most of the considered attacks, the level of perturbation
added to an image is related to a parameter that can be tuned
accordingly. However, by increasing the parameter, the image be-
comes gradually more degraded until it is unrecognizable even
to a human being. For this reason, in Equation 4 we included a
constraint on the similarity of the image; namely, the SSIM of the
perturbed image must be more than 𝛼 . In Figure 10, we show the
increasing degradation of a sample while increasing the attack pa-
rameter. More in particular, we show the effect of 𝜖 for the FGSM
attack on the AlexNet model trained on the Cats&Dogs task with a
strong unbalance level.

(a) Original. (b) 𝜖 = 0.1. (c) 𝜖 = 0.2. (d) 𝜖 = 0.3.

Figure 10: Effect of the attack parameter on the degradation of a sample.

In Figure 11 instead, we extend the visualization to all other
mathematical attacks we consider in our testbed. In particular, each
sample has been perturbed with its optimal value for 𝜖 . The samples
have been generated to target the AlexNet model trained on the
Cats&Dogs task with a strong unbalance level.

Finally, in Figure 12, we show the same effect for non-mathematical
attacks. Since some of those image transformations also include a
parameter, we also include its optimal value.

A.2 Hardware and Software Configuration
All experiments have been conducted on a workstation with the
following configurations:

• Operating System: Ubuntu 20.04.4 LTS.
• CPU: AMD Ryzen 5 3600X.
• GPU: NVIDIA RTX 3090.
• Software: Python 3.8.10, Pytorch 1.7.1.
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(a) BIM, 𝜖 = 0.29. (b) DeepFool, overshoot = 0.57. (c) FGSM, 𝜖 = 0.1. (d) PGD, 𝜖 = 0.22.

(e) RFGSM, 𝜖 = 0.27. (f) Square, 𝜖 = 0.15. (g) TIFGSM, 𝜖 = 0.28.

Figure 11: Examples of mathematical attacks perturbed with optimal parameter values.

(a) Box Blur, 𝑟 = 5.5. (b) Gaussian Noise, 𝜎 = 0.015. (c) Grayscale Filter. (d) Invert Color.

(e) Random Black Box, size =

200.
(f) Salt and Pepper, amount =

0.05.

Figure 12: Examples of non-mathematical attacks perturbed with optimal parameter values when possible.
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